RU2561103C2 - Смеси полимолочной кислоты и растворимого в воде полимера - Google Patents
Смеси полимолочной кислоты и растворимого в воде полимера Download PDFInfo
- Publication number
- RU2561103C2 RU2561103C2 RU2013148381/05A RU2013148381A RU2561103C2 RU 2561103 C2 RU2561103 C2 RU 2561103C2 RU 2013148381/05 A RU2013148381/05 A RU 2013148381/05A RU 2013148381 A RU2013148381 A RU 2013148381A RU 2561103 C2 RU2561103 C2 RU 2561103C2
- Authority
- RU
- Russia
- Prior art keywords
- water
- compatibility
- pla
- grafted
- soluble polymer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/912—Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/06—Use of materials for tobacco smoke filters
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/06—Use of materials for tobacco smoke filters
- A24D3/067—Use of materials for tobacco smoke filters characterised by functional properties
- A24D3/068—Biodegradable or disintegrable
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/06—Use of materials for tobacco smoke filters
- A24D3/08—Use of materials for tobacco smoke filters of organic materials as carrier or major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/02—Loose filtering material, e.g. loose fibres
- B01D39/04—Organic material, e.g. cellulose, cotton
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/08—Filter cloth, i.e. woven, knitted or interlaced material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/50—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/88—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
- D01F6/92—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/02—Types of fibres, filaments or particles, self-supporting or supported materials
- B01D2239/0266—Types of fibres, filaments or particles, self-supporting or supported materials comprising biodegradable or bio-soluble polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/08—Cellulose derivatives
- C08J2301/26—Cellulose ethers
- C08J2301/28—Alkyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2401/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2401/08—Cellulose derivatives
- C08J2401/26—Cellulose ethers
- C08J2401/28—Alkyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2429/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2429/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2429/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2451/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2451/08—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/284—Alkyl ethers with hydroxylated hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/286—Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/08—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biological Depolymerization Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Artificial Filaments (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
Abstract
Изобретение относится к диспергирующимся в воде биологически разрушающимся композициям, которые можно сформовать в пленки и волокна, а именно к фильтрующему элементу курительного изделия, содержащему волокна, изготовленные из композиции, содержащей смесь полилактида (PLA) и растворимого в воде полимера, где смесь дополнительно содержит реакционноспособное вещество, обеспечивающее совместимость, в количестве, достаточном для обеспечения совместимости смеси. Также изобретение относится к применению привитых сополимеров (PLA-привитых растворимых в воде полимеров) для обеспечения совместимости PLA и растворимых в воде полимеров. Такое реакционное обеспечение совместимости несмешивающихся смесей полимеров проводится так, что основные компоненты смеси становятся ковалентно связанными. Кроме того, такое реакционное обеспечение совместимости можно реализовать с помощью реакционной экструзии. 3 н. и 14 з.п. ф-лы, 3 табл., 4 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к диспергирующимся в воде биологически разрушающимся композициям, которые можно сформовать в пленки и волокна. Настоящее изобретение также относится к смесям полимеров, содержащим полилактид и растворимые в воде полимеры.
Точнее, настоящее изобретение относится к применению привитых сополимеров (PLA-привитые растворимые в воде полимеры) для обеспечения совместимости PLA и растворимых в воде полимеров. Такое реакционное обеспечение совместимости несмешивающихся смесей полимеров проводится так, что основные компоненты смеси становятся ковалентно связанными. Кроме того, такое реакционное обеспечение совместимости можно реализовать с помощью реакционной экструзии.
Уровень техники
Для одноразовых продуктов желательно использовать материалы, которые являются и биологически разрушающимися, и диспергирующимися в воде.
Биологически разрушающиеся полимеры, помещенные в биологически активные среды, разлагаются вследствие воздействия ферментов микроорганизмов, таких как бактерии, грибы и водоросли. Их полимерные цепи также можно расщепить с помощью неферментативных реакций, таких как химический гидролиз. При использовании в настоящем изобретении термин “биологически разрушающаяся” означает, что композиция разрушается в течение одного года при использовании стандартной методики определения аэробного биологического разложения пластмасс при регулируемых условиях компостирования.
При использовании в настоящем изобретении термин “диспергирующаяся в воде” означает, что после погружения в воду примерно на 24 ч при комнатной температуре композиция растворяется или разрушается на кусочки размером менее 0,841 мм (20 меш).
Полимолочная кислота или полилактид (PLA) является привлекательным биологически разрушающимся и биологически совместимым полимером. Его получают из возобновляемых ресурсов (например, кукурузы, пшеницы или риса), и он является биологически разрушающимся, регенерируемым и компостируемым. Кроме того, PLA обладает превосходной обрабатываемостью. В действительности, PLA обладает лучшей термической обрабатываемостью, чем другие биологически разрушающиеся вещества, такие как поли(гидроксиалканоаты) (ПГА), поли(ε-капролактон) (ПКЛ) и т.п. Его можно обработать путем литьевого формования, экструзии пленки, выдувного формования, термоформования, вытягивания волокна и формирования пленки. Однако применение PLA может быть ограничено тем фактом, что он является гидрофобным полимером и не может солюбилизоваться или диспергироваться в воде.
Растворимые в воде биологически разрушающиеся полимеры можно синтезировать путем модификации крахмала и целлюлозы. Например, карбоксиметилцеллюлоза (КМЦ), обладающая разной степенью замещения карбоксиметильных групп, является группой имеющихся в продаже растворимых в воде полимеров. Гидроксиэтилцеллюлоза (ГЭЦ), гидроксипропилцеллюлоза (ГПЦ), метилцеллюлоза (МЦ) и этилцеллюлоза (ЭЦ) используются как связующие, средства удерживания воды, загустители, пленкообразователи, смазывающие вещества или модификаторы реологических характеристик. Растворимые в воде полисахариды также получают путем микробиологической ферментации. Ксантан является самым используемым микробиологическим полисахаридом. Применение ксантана в промышленности включает использование для извлечения нефти (регулятор вязкости), для изготовления бумаги, в сельском хозяйстве (стимулирование роста растений) и косметике. Для пуллулана также обнаружены различные возможные области применения. Например, он хорошо удерживает влагу, и низкая проницаемость для кислорода делает возможным его использование в качестве пищевых пленок для упаковки продуктов.
В настоящее время поливиниловый спирт (PVOH) является единственным полимером, содержащим в главной цепи только атомы углерода, который считают биологически разрушающимся. В настоящее время его используют в текстильной, бумажной и упаковочной промышленности в качестве покрытия для бумаги, клеев и пленок. Важно, что PVOH растворим в воде.
Недостатком растворимых в воде биологически разрушающихся полимеров является то, что они слишком чувствительны к воде, и это ограничивает их применение в большинстве обычных случаев использования полимера. Поэтому желательно получить материал, который можно использовать для изготовления одноразовых изделий и который реагирует на воду. Предпочтительно, чтобы такой материал был универсальным и недорогим в производстве. Также желательно, чтобы материал был достаточно стабильным для определенных случаев применения, но подвергался разложению при заранее заданных условиях.
Применение полимеров для изготовления диспергирующихся в воде изделий известно в данной области техники. В основном описаны композиции, содержащие многослойные полимерные пленки. И действительно, имеется много примеров многослойных пленок, которые используют в одноразовых объектах. Большинство этих объектов состоит из пленок или волокон, которые образуют наружные слои разрушающегося в окружающей среде полимера и внутренний слой из реагирующего на воду полимера. Применимость таких структур обусловлена регулированием физических характеристик для повышения стабильности или срока службы такой структуры. Например, в патенте US №4826493 описано применение тонкого слоя полимера гидроксибутирата в качестве компонента многослойной структуры, использующейся в качестве барьерной пленки.
Другим примером применения многослойных пленок является патент US №4620999, в котором описано применение растворимой в воде пленки, покрытой нерастворимой в воде пленкой или ламинированной с ней, в качестве одноразового мешка. Аналогичный тип мешка раскрыт в JP 61-42127. Он состоит из внутреннего слоя стойкой к воздействию воды диспергирующейся в воде смолы, такой как полилактид, и наружного слоя из поливинилового спирта. Однако все эти примеры ограничиваются композициями, состоящими из слоев разных полимеров, и не включают настоящие смеси разных полимеров.
Другие реагирующие на воду изделия раскрыты в патенте US №5508101, патенте US №5567510 и патенте US №5472518. В этих патентах раскрыта группа реагирующих на воду композиций, содержащих гидролитически разрушающийся полимер и растворимый в воде полимер. Однако эти изделия изготовлены из полимеров, которые сначала сформованы в волокна или пленки и затем объединены. Поэтому, хотя эти волокна и пленки из полимеров в таких композициях находятся очень близко друг к другу, они не являются настоящими смесями.
Смешивание полимеров является привлекательным подходом для регулирования свойств полимерных материалов без затрат на новые химические соединения. Из смесей разной морфологии наилучшее улучшение характеристик обеспечивают двухфазно-непрерывные смеси полимеров, поскольку оба компонента могут вносить вклад в характеристики смеси. Однако плохая граница раздела между разными полимерными фазами обычно приводит к значительному ухудшению характеристик, и, точнее, наблюдается ухудшение механических характеристик. Для преодоления этого затруднения вещества, обеспечивающие совместимость обычно используют для упрочнения границы раздела. В этой области методика реакционного обеспечения совместимости является весьма привлекательным и экономичным путем получения стабильных многофазных смесей полимеров.
В большинстве бинарных смесей полимеров не содержатся подходящие реакционноспособные группы, и необходима функционализация компонентов смеси. Однако в некоторые бинарные смеси полимеров в качестве предшественника вещества, обеспечивающего совместимость, можно добавить реакционноспособный полимер, который смешивается с одним из компонентов смеси и реакционноспособен по отношению к другому. Этот тип обеспечения совместимости смеси можно с успехом реализовать с помощью реакционной экструзии.
Реакционная экструзия (РЭК) является методикой обработки полимера, в которой в качестве химического реактора в основном используется экструдер. Полимеризацию и другие химические реакции, такие как реакционное обеспечение совместимости, проводят in situ, когда происходит обработка. Поэтому РЭК отличается от обычных методик получения полимера, в которых синтез является отдельной операцией и экструдер является только средством обработки.
В патенте US №5945480 раскрыты компоненты пригодных для смывания в унитазе средств личной гигиены, изготовленных с использованием волокон на основе смесей поливинилового спирта и полилактида. Компоненты смеси обеспечивают совместимость с помощью полилактида, модифицированного 2-гидроксиэтилметакрилатом (ГЭМА). Хотя раскрытое изобретение направлено на улучшение совместимости смешанных полимеров, в нем нет указаний на реакционное обеспечение совместимости. В действительности, можно ожидать только образования водородных связей между гидроксигруппами ГЭМА и поливиниловым спиртом. Примеры, в которых не описано образование какой-либо ковалентной химической связи для стимулирования совместимости смеси, не соответствуют настоящим процедурам реакционного обеспечения совместимости.
Желательны смешанные полимерные композиции для изготовления волокон и пленок, которые необязательно объединены, поскольку они очень стабильны. Оптимальная комбинация полимеров означает, что граница раздела полимера улучшена таким образом, что смеси полимеров обладают двухфазно-непрерывной морфологией. Это можно обеспечить с помощью реакционной экструзии. Особые характеристики смеси можно создать путем продуманного выбора реакционноспособных веществ, обеспечивающих совместимость. Хотя смешанные полимерные композиции известны, желательно реакционное обеспечение совместимости двухфазно-непрерывной смеси полимеров, поскольку полученная композиция более стабильна и универсальна.
В свете вышеизложенного желательно получить биологически разрушающиеся и диспергирующиеся в воде смеси полимеров, которые предпочтительно можно легко обработать с получением пленок и волокон. Также желательно получить термически обрабатывающиеся смеси полимеров, которые обладают хорошими механическими и физическими характеристиками.
Краткое изложение сущности изобретения
Первым объектом настоящего изобретения является диспергирующаяся в воде и биологически разрушающаяся композиция, содержащая смесь полилактида и растворимого в воде полимера, где смесь дополнительно содержит реакционноспособное вещество, обеспечивающее совместимость, в количестве, достаточном для обеспечения совместимости смеси.
Вторым и третьим объектами настоящего изобретения являются пленки и волокна соответственно, сформованные из диспергирующейся в воде и биологически разрушающейся композиции, соответствующей первому объекту.
Другим объектом настоящего изобретения является способ получения композиции, соответствующий первому объекту, способ включает: получение реакционноспособного вещества, обеспечивающего совместимость, с помощью реакционной экструзии полилактида и малеинового ангидрида, и смешивание в расплаве указанного вещества, обеспечивающего совместимость, с полилактидом и растворимым в воде полимером.
Другим объектом настоящего изобретения является фильтрующий материал и фильтрующие элементы, содержащие волокна, соответствующие первому объекту настоящего изобретения. Объектом настоящего изобретения также являются курительные изделия, включающие такой фильтрующий материал или такие фильтрующие элементы.
Еще одним объектом настоящего изобретения является применение реакционноспособного вещества, обеспечивающего совместимость, в реакционном обеспечении совместимости PLA и растворимого в воде полимера, где PLA и растворимый в воде полимер становятся ковалентно связанными.
Краткое описание чертежей
На фиг.1 приведена группа фотографий пленок, изготовленных из неразбавленного PLA и смеси PLA и PVOH 50/50 мас./мас., иллюстрирующих дисперсию в воде смесей полимеров, предлагаемых в настоящем изобретении.
На фиг.2 приведены пленки толщиной 500 мкм, изготовленные из пластифицированных смесей PLLA/ГЭЦ 40/60, для которых: а) совместимость не обеспечена и b) совместимость обеспечена с помощью 10 мас.% МА-привитой-PLLA.
На фиг.3 приведены спектры 1Н ЯМР смесей PLLA/PVOH 60/40 (мас./мас.), для которых: а) совместимость не обеспечена; и b) совместимость обеспечена с помощью МА-привитой-PLA.
На фиг.4 приведена группа фотографий элементарных волокон, изготовленных из неразбавленного PLA и смеси PLA и PVOH 40/60 мас./мас., иллюстрирующих фрагментацию и дисперсию в воде смешанной полимерной композиции.
Подробное описание изобретения
Настоящее изобретение относится к полимерным композициям, которые обладают хорошими механическими характеристиками, такими как прочность и хорошая обрабатываемость, которые также являются диспергирующимися в воде и биологически разрушающимися. Это означает, что такие композиции можно использовать для изготовления материалов, таких как пленки и волокна, которые являются подходящими для применения в одноразовых изделиях, которые используют в течение относительно непродолжительного времени и затем выбрасывают.
Пленки и волокна применимы в качестве компонентов одноразовых изделий, таких как упаковочные пленки, нетканые материалы и т.п. Диспергирующиеся в воде пленки и волокна, предлагаемые в настоящем изобретении, обладают тем особым преимуществом, что они являются биологически разрушающимися, так что пленки или волокна и изделия, изготовленные из этих пленок или волокна, могут легко разрушаться.
Одним особым случаем применения таких материалов является применение в курительных изделиях, которые хранят при относительно стабильных условиях и затем быстро используют и выбрасывают. Желательно, чтобы оставшиеся элементы использованного курительного изделия, в частности фильтрующий элемент, быстро разлагались и диспергировались при нормальных условиях окружающей среды и чтобы составные части подвергались биологическому разложению.
Композицию, содержащую полилактид и один или большее количество растворимых в воде биологически разрушающихся полимеров, можно сформовать в различные продукты, включая пленки и волокна, с помощью стандартных технологий, известных в данной области техники. Это возможно, поскольку для смесей полимеров, предлагаемых в настоящем изобретении, обеспечена совместимость и они обладают превосходной обрабатываемостью.
Обеспечение совместимости означает модификацию межфазных характеристик несмешивающейся смеси полимеров. Обеспечение совместимости позволяет получить несмешивающиеся смеси полимеров, обладающие модифицированной границей раздела и/или морфологией, где два несмешивающихся полимера стабилизированы путем образования ковалентной или ионной связи между фазами или притягивательным межмолекулярным взаимодействием (например, диполь-дипольным, с переносом заряда, H-связью или ван-дер-ваальсовыми силами и т.п.). Реакционное обеспечение совместимости несмешивающихся смесей полимеров является методикой, использующейся для получения хорошо диспергированных и стабилизированных фаз. Она основана на происходящем in situ образовании блок- или привитого сополимера на границе раздела между фазами смеси полимеров во время смешивания в расплаве. В некоторых случаях для образования обеспечивающего совместимость сополимера на границе раздела можно использовать третий полимер, который смешивается с одними компонентами смеси и может вступать в реакцию с другими. В настоящем изобретении реакционное обеспечение совместимости несмешивающихся смесей полимеров происходит по той причине, что основные компоненты смеси становятся ковалентно связанными.
Полилактид (PLA), использующийся в настоящем изобретении, можно получить по различным методикам синтеза, таким как полимеризация лактида с раскрытием цикла или непосредственная поликонденсация молочной кислоты. Одним образцом имеющейся в продаже полимолочной кислоты (PLA, 4032D), который можно использовать в настоящем изобретении, является продающийся фирмой Nature Works LLC (USA) продукт, обладающий среднечисловой молекулярной массой (Mn(PLA)), равной 58000 г/моль, содержанием D-изомера, равным примерно 1,5%, и индексом полидисперсности, равным 2,1. Для использования в настоящем изобретении можно выбрать любую марку PLA и молекулярные массы PLA могут меняться в зависимости от необходимых характеристик и области применения. Поли(Г-лактид) (PLLA) является предпочтительным вследствие его кристалличности, что благоприятно для производства волокон.
Растворимые в воде полимеры, применяющиеся в настоящем изобретении, предпочтительно являются биологически разрушающимися. Биологически разрушающиеся растворимые в воде полимеры, содержащие реакционноспособные группы, такие как гидроксигруппы или аминогруппы, являются подходящими для настоящего изобретения. Предпочтительные биологически разрушающиеся растворимые в воде полимеры включают поливиниловый спирт (PVOH), карбоксиметилцеллюлозу (КМЦ), гидроксиэтилцеллюлозу (ГЭЦ), гидроксипропилцеллюлозу (ГПЦ), метилцеллюлозу (МЦ) и этилцеллюлозу (ЭЦ), гидроксиэтилметакрилат (ГЭМА), ксантан и пуллулан или их смеси. Более предпочтительно, если биологически разрушающимися растворимыми в воде полимерами являются PVOH или ГЭЦ. Предполагается, что самые различные биологически разрушающиеся растворимые в воде полимеры будут способны оказывать на PLA такое же влияние, как PVOH и ГЭЦ, и они будут эффективны в настоящем изобретении.
Смеси полимеров, предлагаемые в настоящем изобретении, предпочтительно содержат от 30 до 70 мас.% биологически разрушающегося растворимого в воде полимера. Более предпочтительно, если смеси полимеров содержат от 40 до 60 мас.% и наиболее предпочтительно от 45 до 55 мас.% биологически разрушающегося растворимого в воде полимера.
Обеспечение совместимости происходит путем использования привитых сополимеров (PLA-привитые растворимые в воде полимеры) для обеспечения совместимости PLA и растворимых в воде полимеров. В действительности, предпочтительное реакционноспособное вещество, обеспечивающее совместимость, а именно привитой малеиновым ангидридом полилактид (МА-привитой-PLA), является реакционноспособным по отношению к гидроксигруппам выбранного растворимого в воде полимера (например, ГЭЦ или PVOH), что приводит к образованию PLA-привитых растворимых в воде полимеров, которые могут улучшить качество границы раздела между PLA и выбранным растворимым в воде полимером. Поэтому такое реакционное обеспечение совместимости несмешивающихся смесей полимеров проводится так, что основные компоненты смеси становятся ковалентно связанными.
Большинство биологически разрушающихся растворимых в воде полимеров содержит гидроксигруппы. Таким образом, выбранная реакционноспособная группа должна быть способна легко прививаться к PLA и должна быть реакционноспособной по отношению к гидроксигруппам.
Методика получения предпочтительного реакционноспособного вещества, обеспечивающего совместимость, а именно привитого малеиновым ангидридом полилактида (МА-привитой-PLA), продемонстрирована с помощью методики реакционной экструзии. Реакцию прививки также можно проводить в других устройствах для проведения реакции, если обеспечивается необходимое смешивание PLA и малеинового ангидрида (МА) и любых других реакционноспособных ингредиентов и подается количество энергии, достаточное для проведения реакций прививки. Привитой PLA может содержать от 0,1 до 5 мол.% привитого МА. Предпочтительно, если привитой PLA содержит от 0,2 до 1 мол.% привитого МА и наиболее предпочтительно от 0,3 до 0,6 мол.% привитого МА.
Другие реакционноспособные ингредиенты, которые можно добавлять к композициям, предлагаемым в настоящем изобретении, включают инициаторы, такие как Lupersol® 101, жидкий органический пероксид, выпускающийся фирмой Elf Atochem North America, Inc. of Philadelphia, USA. Свободнорадикальные инициаторы, применимые при практическом осуществлении настоящего изобретения, включают ацилпероксиды, такие как бензоилпероксид; диалкил-, диарил- или арилалкилпероксиды, такие как ди-трет-бутилпероксид; дикумилпероксид; кумилбутилпероксид; 1,1-ди-трет-бутилперокси-3,5,5-триметилциклогексан; 2,5-диметил-2,5-ди(трет-бутилперокси)гексан; 2,5-диметил-2,5-бис(трет-бутилперокси)гексин-3 и бис(альфа-трет-бутилпероксиизопропилбензол); сложные пероксиэфиры, такие как трет-бутилпероксипивалат; трет-бутилпероктоат; трет-бутилпербензоат; 2,5-диметилгексил-2,5-ди(пербензоат), трет-бутилди(перфталат); диалкилпероксимонокарбонаты и пероксидикарбонаты; гидропероксиды, такие как трет-бутилгидропероксид, п-метангидропероксид, гидропероксид пинана и гидропероксид кумола, и пероксиды кетонов, такие как пероксид циклогексанона и пероксид метилэтилкетона. Также можно использовать азосоединения, такие как азобисизобутиронитрил.
Кроме того, для дополнительного улучшения характеристик конечного материала к привитым полимерам, предлагаемым в настоящем изобретении, можно добавить другие компоненты, известные в данной области техники. Например, полиэтиленгликоль можно дополнительно добавить для улучшения вязкости расплава. При желании также можно включать другие добавки и обеспечить особые характеристики. Например, в полимерную композицию можно включать антистатические агенты, органомодифицированные глины, пигменты, красители и т.п. Кроме того, технологические характеристики можно улучшить путем включения в смеси полимеров, предлагаемые в настоящем изобретении, смазывающих веществ или агентов, снижающих трение. Все эти добавки обычно используют в относительно небольших количествах, обычно менее 3 мас.% в пересчете на конечную композицию.
Смешивание в расплаве является предпочтительной методикой, использующейся для объединения PLA и растворимого в воде полимера, предлагаемого в настоящем изобретении. Особенно предпочтительной является реакционное формование из расплава с помощью реакционной экструзии.
Смешивание в расплаве полилактида и биологически разрушающихся полимеров проводят путем термомеханической деформации в подходящем смешивающем устройстве, таком как внутренний смеситель типа Bradender®, вальцовая мельница, одно- или многошнековый экструдер или любое другое механическое смешивающее устройство, которое можно использовать для смешивания, компаундирования, обработки или приготовления полимеров. Особенно предпочтительным устройством для проведения реакции является экструдер, содержащий один или большее количество каналов. В предпочтительном варианте осуществления устройством для проведения реакции является двушнековый экструдер с вращением в одном направлении, такой как двушнековый экструдер ZSE 18 HP, выпускающийся фирмой Leitritz GmbH, Nuremberg (Germany). Этот экструдер содержит множество каналов загрузки и выпуска.
Наличие PLA или модифицированного PLA (которым является PLA, пластифицированный обычно использующимися пластификаторами, такими как триацетин, трипропионин, триэтилцитрат и т.п.), в смесях, использующихся для изготовления пленок и волокон, уменьшает чувствительность к воде неразведенных биологически разрушающихся растворимых в воде полимеров. МА-привитой-PLA является предпочтительным для улучшения совместимости между PLA и биологически разрушающимися растворимыми в воде полимерами по методике реакционного обеспечения совместимости, проводимой с помощью реакционной экструзии. Такое обеспечение совместимости предназначено для улучшения и обрабатываемости, и термомеханических характеристик конечного материала. Возможно использование смеси для изготовления материалов других форм, кроме пленок или волокон, и для термического формования смесей в изделия сложной формы.
Примеры
Настоящее изобретение более подробно иллюстрируется с помощью приведенных ниже конкретных примеров. Следует понимать, что эти примеры являются иллюстративными вариантами осуществления и что настоящее изобретение не ограничивается какими-либо из примеров.
Пример 1
Привитой малеиновым ангидридом PLA получали с использованием Leistritz ZSE 18 HP. До введения в экструдер высушенные пеллеты PLLA предварительно смешивали с 3 мас.% малеинового ангидрида и 0,5 мас.% Lupersol® 101. Затем проводили малеинизацию при 190°C при низкой скорости вращения шнека (50 об/мин) для увеличения времени пребывания.
Полученный таким образом МА-привитой-PLLA очищали и содержание МА определяли титрованием. Содержание МА найдено равным 0,45 мас.%.
Пример 2
Различные композиции PLLA/ГЭЦ 50/50 мас./мас. получали компаундированием расплава пеллет полимера и добавок (пластификаторы, вещества, обеспечивающие совместимость) при 190°C с использованием лабораторной месильной машины Brabender (model 50 EHT, свободный объем 80 см3), снабженной эксцентриковыми лопастями, в течение 3 мин при 30 об/мин, затем в течение 6 мин при 60 об/мин. ГЭЦ получали у фирмы Merck. Glyplast® получали from Condensa Quimica, Spain. Полиэтилен (Mw=200) получали у фирмы Fluka. Перед обработкой полимеры и добавки сушили в течение ночи при 80°C в вентилируемом сушильном шкафу.
Затем пленки толщиной 500 мкм готовили компрессионным прессованием при 190°C с использованием гидравлического пресса Agila РЕ20 (низкое давление в течение 120 с без цикла дегазации, затем цикл при высоком давлении, равном 150 бар, в течение 180 с с последующим охлаждением водопроводной водой при 50 бар в течение 180 с). Механические характеристики смесей PLLA/ГЭЦ 50/50 (мас./мас.) (пластифицированных с помощью 20 мас.% Glyplast®) оценивали путем испытания на растяжение. В качестве веществ, обеспечивающих совместимость, использовали МА-привитой PLLA. Результаты приведены ниже в таблице 1.
Таблица 1 | ||||
Образец | МА-привитой-PLA (мас.%) | Модуль Юнга (МПа) | Разрушающее напряжение (МПа) | Деформация при разрыве (%) |
1 | 0 | 977±33 | 15,3±0,5 | 3±1 |
3 | 4 | 817±68 | 12,8±1,0 | 22±4 |
4 | 8 | 878±99 | 13,7±0,7 | 23±4 |
Установлено, что при отсутствии вещества, обеспечивающего совместимость, смесь является довольно хрупкой. Добавление МА-привитой-PLLA увеличивает предельное удлинение, но не влияет на прочность на разрыв. Наилучшие результаты получали при использовании 4 мас.% МА-привитой-PLLA.
Пример 3
Исследовали пластификацию гидроксиэтилцеллюлозы (ГЭЦ). Для этой цели успешно модифицировали препаративную методику, обычно использующуюся для пластификации крахмала.
Смеси ГЭЦ и пластификаторов готовили при комнатной температуре и в некоторые композиции добавляли воду. Этим премиксам давали набухать в течение ночи. Затем композиции обрабатывали в расплаве с помощью смесителя Brabender при 110°C в течение 6 мин. Готовили различные композиции для исследования влияния содержания воды и пластификатора. Приготовленные образцы указаны ниже:
ГЭЦ/Глицерин 60/40
ГЭЦ/Глицерин 70/30
ГЭЦ/Глицерин/вода 60/30/10
ГЭЦ/Глицерин/вода 60/25/15
ГЭЦ/ПЭГ (полиэтиленгликоль) 200/вода 60/30/10
ГЭЦ/ПЭГ 400/вода 60/30/10
ГЭЦ/Глицерин/вода 60/30/10
Для каждой композиции получали гелеподобную структуру, что, видимо, указывало на эффективную пластификацию ГЭЦ.
Пример 4
Пластифицированную ГЭЦ использовали для приготовления смесей PLLA/ГЭЦ. Пластифицированные композиции PLLA/ГЭЦ 40/60 получали путем смешивания в расплаве с помощью смесителя Brabender при 190°C. Получали смесь, для которой не обеспечена совместимость, и композиции на основе МА-привитой-PLLA и компрессионным прессованием готовили пленки толщиной 500 мкм.
На фиг.2 представлены изготовленные таким образом пленки и показано влияние МА-привитой-PLLA на их морфологию. Можно видеть, что при отсутствии вещества, обеспечивающего совместимость, образуется неоднородная поверхность.
Механические характеристики этих пленок исследовали путем испытания на растяжение и определены предельные характеристики смеси, для которой не обеспечена совместимость, и смесей на основе МА-привитой-PLLA.
Подтверждено, что добавление МА-привитой-PLLA увеличивает прочность на разрыв смеси примерно на 30% и удваивает деформацию при разрыве. Эти результаты демонстрируют влияние вещества, обеспечивающего совместимость, на механические характеристики смесей PLLA/ГЭЦ. В действительности, обеспечение совместимости с помощью МА-привитой-PLLA увеличивает модуль Юнга и прочность на разрыв по сравнению со смесью, для которой не обеспечена совместимость.
Пример 5
Различные композиции PLLA/PVOH 50/50 мас./мас. получали компаундированием расплава пеллет полимера и добавок (пластификаторы, вещества, обеспечивающие совместимость) при 190°C с использованием лабораторной месильной машины Brabender (model 50 EHT, свободный объем 80 см3), снабженной эксцентриковыми лопастями, в течение 3 мин при 30 об/мин, затем в течение 6 мин при 60 об/мин. PVOH (марка Mowiol® 23-88) получали у фирмы Kuraray GmbH, Germany. Glyplast® получали у фирмы Condensa Quimica, Spain. Полиэтилен (Mw=200) получали у фирмы Fluka. Перед обработкой полимеры и добавки сушили в течение ночи при 80°C в вентилируемом сушильном шкафу.
Затем пленки толщиной 500 мкм готовили компрессионным прессованием при 190°C с использованием гидравлического пресса Agila РЕ20 (низкое давление в течение 120 с без цикла дегазации, затем цикл при высоком давлении, равном 150 бар, в течение 180 с с последующим охлаждением водопроводной водой при 50 бар в течение 180 с).
Механические характеристики смесей PLLA/PVOH 50/50 (мас./мас.) смесей оценивали путем испытания на растяжение. В качестве вещества, обеспечивающего совместимость, использовали МА-привитой PLLA. Результаты приведены ниже в таблице 2.
Таблица 2 | |||||
Образец | Пластификатор (20 мас.%) | МА-привитой-PLLA (мас.%) | Модуль Юнга (МПа) | Разрушающее напряжение (МПа) | Деформация при разрыве (%) |
1 | Отсутствует | 0 | 2723±162 | 35,0±4,2 | 2±1 |
2 | Отсутствует | 8 | 2679±157 | 50,3±4,6 | 3±1 |
4 | Glyplast® | 8 | 1169±103 | 15,5±2,1 | 16±6 |
5 | ПЭГ | 8 | 877±81 | 13,1±1,8 | 4±1 |
Таким образом, добавление МА-привитой-PLLA увеличивает прочность на разрыв смесей, но не влияет на предельное удлинение. Добавление Glyplast® увеличивает удлинение, тогда как ПЭГ был неэффективным.
Пример 6
МА-привитой-PLLA использовали в качестве вещества, обеспечивающего совместимость для смесей PLLA/PVOH. Такое улучшение совместимости приписано образованию ковалентных связей между PVOH и PLA, в результате чего привитые сополимеры становятся способными улучшить качество границы раздела.
Доказательство того, что эти сополимеры эффективно получаются при обработке расплавов смесей, получено с помощью исследований солюбилизации. Для этого рассмотрены смесь, для которой не обеспечена совместимость, и смеси на основе МА-привитой-PLA PLLA/PVOH 60/40. Их погружали в воду и после фильтрования и сушки извлекали растворимые в воде. Затем эти фракции погружали в хлороформ и для исследования с помощью ЯМР использовали только растворимые компоненты. Такая методика позволяет выделить возможно образовавшиеся сополимеры (поскольку они являются единственными компонентами, растворимыми и в воде, и в хлороформе).
Спектры 1H ЯМР приведены на фиг.3. Как можно видеть на части “b” спектра, представленного на фиг.3, наличие сигналов PLA (в основном примерно при 5,3 част./млн) подтверждает образование привитых сополимеров.
Пример 7
Пластификацию PVOH проводили с помощью двушнекового экструдера Leitritz ZSE 18 HP. Глицерин использовали в качестве пластификатора. Глицерин получали у фирмы Sigma-Aldrich. PVOH обрабатывали при 210°C при скорости вращения шнека, равной 30 об/мин. Глицерин вводили через вторую зону корпуса и подачу регулировали с помощью устройства загрузки жидкости. Таким образом, можно было приготовить композиции PVOH, пластифицированные с помощью 33,3 мас.% глицерина.
Полученный таким образом, пластифицированный PVOH использовали для приготовления смесей PLLA/PVOH 50/50 мас./мас. Эти композиции получали при отсутствии вещества, обеспечивающего совместимость, а также в присутствии 8 мас.% МА-привитой-PLA в качестве вещества, обеспечивающего совместимость. Смеси полимеров обрабатывали при 190°C при скорости вращения шнека, равной 50 об/мин. Затем волокна из смесей полимеров готовили с использованием мини-экструдера DSM, снабженного устройством для формования волокна. Только композиции, содержащие МА-привитой-PLA, были пригодны для формования волокна, что подтверждает пригодность МА-привитой-PLLA для улучшения обрабатываемости смеси полимеров.
Пример 8
Получали элементарные волокна на основе PLLA и PVOH. Для этого использовали вертикальный мини-экструдер DSM, снабженный специальным мундштуком для изготовления элементарных волокон. Композиции получали при 190°C при скорости вращения шнека, равной 120 об/мин., и длительность смешивания равнялась 4 мин. Готовили следующие образцы: PLLA (неразбавленный полимер)
PLLA/PVOH 50/50 (мас./мас.)+10 мас.% MAgPLA
PLLA/PVOH 40/60 (мас./мас.)+10 мас.% MAgPLA
Использование кольцевого мундштука (диаметр 0,5 мм) и прядильного устройства DSM позволило получить элементарные волокна диаметром, равным примерно 0,4 мм.
В таблице 3 приведены характеристики растяжения элементарных волокон. Следует отметить, что использованные условия были сходны с условиями, применявшимися для исследования пленки (скорость поперечной головки: 20 мм·мин-1, длина испытываемой части образца 25,4 мм).
Установлено, что элементарные волокна на основе PLLA обладают большей жесткостью, чем образцы на основе PBS. В обоих случаях увеличение содержания PVOH позволяло увеличить и прочность на разрыв, и предельное удлинение.
Таблица 3 | ||||||
Характеристики растяжения элементарных волокон на основе PVOH | ||||||
№ | Полимер (мас.%) | Вещество, обеспечивающее совместимость | Модуль Юнга (МПа) | Разрушающее напряжение (МПа) | Деформация при разрыве (%) | |
PLLA | PVOH | |||||
1 | 100 | 0 | Отсутствует | 3224±665 | 183,8±7,2 | 78±15 |
2 | 50 | 50 | MAgPLAа | 1359±153 | 37,1±8,9 | 7±2 |
3 | 40 | 60 | MAgPLAа | 1329±268 | 56,8±9,3 | 36±7 |
а MAgPLA включали в количестве, равном 10 мас.% |
На фиг.4 приведена группа фотографий элементарных волокон, изготовленных из неразбавленного PLA и смеси PLA и PVOH 40/60 мас./мас., иллюстрирующих фрагментацию и дисперсию в воде смешанной полимерной композиции.
Для описания различных аспектов и достижений в данной области техники все настоящее раскрытие проиллюстрировано различными вариантами осуществления, с помощью которых на практике можно осуществить заявленное изобретение (изобретения) и получить превосходные полимерные композиции. Преимущества и особенности раскрытия представлены только типичными образцами вариантов осуществления, и они не являются исчерпывающими и/или исключительными. Они приведены только для содействия пониманию заявленных особенностей. Следует понимать, что преимущества, варианты осуществления, примеры, функции, особенности, структуры и/или другие объекты раскрытия не следует рассматривать в качестве ограничения раскрытия, которое определяется формулой изобретения или ограничениями на эквиваленты формулы изобретения, и что можно использовать другие варианты осуществления и без отклонения от объема и/или сущности раскрытия в него можно внести изменения. Различные варианты осуществления могут с успехом содержать, состоять из или в основном состоять из различных комбинаций раскрытых элементов, компонентов, особенностей, частей, стадий, средств и т.п. Кроме того, раскрытие включает другие изобретения, которые не заявлены в настоящее время, но которые могут быть заявлены в будущем.
Claims (17)
1. Фильтрующий элемент курительного изделия, содержащий волокна, изготовленные из композиции, содержащей смесь полилактида (PLA) и растворимого в воде полимера, где смесь дополнительно содержит реакционноспособное вещество, обеспечивающее совместимость, в количестве, достаточном для обеспечения совместимости смеси.
2. Фильтрующий элемент по п.1, в котором растворимый в воде полимер выбран из группы, включающей: поливиниловый спирт (PVOH), карбоксиметилцеллюлозу (КМЦ), гидроксиэтилцеллюлозу (ГЭЦ), гидроксипропилцеллюлозу (ГПЦ), метилцеллюлозу (МЦ) и этилцеллюлозу (ЭЦ), ксантан и пуллулан или их смеси.
3. Фильтрующий элемент по п.2, в котором растворимым в воде полимером является PVOH или ГЭЦ.
4. Фильтрующий элемент по любому из предыдущих пунктов, в котором растворимый в воде полимер включен в количестве, находящемся в диапазоне от 30 до 70 мас.%, предпочтительно от 40 до 60 мас.% и более предпочтительно от 45 до 55 мас.% в пересчете на смесь полилактида и растворимого в воде полимера.
5. Фильтрующий элемент по п.1, в котором реакционноспособным веществом, обеспечивающим совместимость, является привитой сополимер.
6. Фильтрующий элемент по п.5, в котором привитым сополимером является сополимер PLA и соединения, реакционноспособного по отношению к гидроксигруппам.
7. Фильтрующий элемент по п.6, в котором привитым сополимером является привитой малеиновым ангидридом полилактид (МА-привитой-PLA).
8. Фильтрующий элемент по п.1, в котором композиция дополнительно содержит другие реакционноспособные ингредиенты, включая инициаторы, такие как Lupersol® 101, ацилпероксиды, арилалкилпероксиды, сложные пероксиэфиры, диалкилпероксимонокарбонаты, пероксидикарбонаты, гидропероксиды, пероксиды кетонов и азосоединения, такие как азобисизобутиронитрил.
9. Фильтрующий элемент по п.1, в котором композиция дополнительно содержит один или большее количество дополнительных компонентов, выбранных из группы, включающей: агенты, улучшающие вязкость расплава композиции, антистатические агенты, органомодифицированные глины, пигменты и красители, смазывающие вещества или агенты, снижающие трение.
10. Фильтрующий элемент по п.9, в котором дополнительные компоненты включены в количестве, равном менее 3 мас.% в пересчете на конечную композицию.
11. Способ изготовления фильтрующего элемента по любому из предыдущих пунктов, способ включает формирование волокон из композиции, содержащей смесь полилактида и растворимого в воде полимера, способ включает: реакционную экструзию смеси полилактида, растворимого в воде полимера и реакционноспособного вещества, обеспечивающего совместимость.
12. Способ по п.11, в котором полилактид, растворимый в воде полимер и реакционноспособное вещество, обеспечивающее совместимость, смешивают в расплаве.
13. Способ по п.11 или 12, в котором реакционноспособным веществом, обеспечивающим совместимость, является привитой малеиновым ангидридом полилактид, полученный с помощью реакционной экструзии PLA и малеинового ангидрида.
14. Способ по п.13, в котором привитой малеиновым ангидридом полилактид содержит от 0,1 до 5 мол.% привитого малеинового ангидрида, предпочтительно от 0,2 до 1 мол.% и более предпочтительно от 0,3 до 0,6 мол.% привитого малеинового ангидрида.
15. Способ по п.11, в котором обеспечение совместимости включает образование ковалентных химических связей.
16. Применение реакционноспособного вещества, обеспечивающего совместимость, для формирования волокон, предназначенных для изготовления фильтрующего элемента для курительного изделия посредством реакционного обеспечения совместимости PLA и растворимого в воде полимера, где PLA и растворимый в воде полимер становятся ковалентно связанными.
17. Применение по п.16, в котором веществом, обеспечивающим совместимость, является привитой малеиновым ангидридом полилактид.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1105455.8A GB201105455D0 (en) | 2011-03-31 | 2011-03-31 | Blends of a polylactic acid and a water soluble polymer |
GB1105455.8 | 2011-03-31 | ||
PCT/GB2012/050697 WO2012131370A1 (en) | 2011-03-31 | 2012-03-29 | Blends of a polylactic acid and a water soluble polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013148381A RU2013148381A (ru) | 2015-05-10 |
RU2561103C2 true RU2561103C2 (ru) | 2015-08-20 |
Family
ID=44071729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013148381/05A RU2561103C2 (ru) | 2011-03-31 | 2012-03-29 | Смеси полимолочной кислоты и растворимого в воде полимера |
Country Status (17)
Country | Link |
---|---|
US (1) | US9085660B2 (ru) |
EP (1) | EP2691458A1 (ru) |
JP (1) | JP5759611B2 (ru) |
KR (1) | KR101834283B1 (ru) |
CN (1) | CN103502356B (ru) |
AR (1) | AR088779A1 (ru) |
AU (1) | AU2012235960B2 (ru) |
BR (1) | BR112013024913A2 (ru) |
CA (1) | CA2828520C (ru) |
CL (1) | CL2013002729A1 (ru) |
GB (1) | GB201105455D0 (ru) |
HK (1) | HK1192577A1 (ru) |
RU (1) | RU2561103C2 (ru) |
TW (1) | TW201307461A (ru) |
UA (1) | UA106570C2 (ru) |
WO (1) | WO2012131370A1 (ru) |
ZA (1) | ZA201306484B (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2751465C2 (ru) * | 2017-07-13 | 2021-07-14 | Энзпаер Индастри Ко., Лтд. | Стерилизуемые медицинские упаковки с дышащими порами |
RU2818908C1 (ru) * | 2019-12-03 | 2024-05-07 | Филип Моррис Продактс С.А. | Фильтр для изделий, генерирущих аэрозоль, с новым фильтрующим материалом |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2849079C (en) | 2011-09-21 | 2019-06-11 | Donaldson Company, Inc. | Fine fibers made from polymer crosslinked with resinous aldehyde composition |
EP2964817A1 (en) * | 2013-03-09 | 2016-01-13 | Donaldson Company, Inc. | Fine fibers made from reactive additives |
CN103205076B (zh) * | 2013-04-15 | 2014-12-24 | 四川大学 | 热塑性聚乙烯醇-聚乳酸共混材料及其制备方法 |
CN103319865B (zh) * | 2013-06-08 | 2016-03-02 | 上海博疆新材料科技有限公司 | 聚乳酸合金薄膜及应用 |
WO2016013001A2 (en) * | 2014-07-22 | 2016-01-28 | Tama Plastic Industry | An "on-demand" self-degrading polymer composition and method thereof |
US20220232950A1 (en) * | 2015-10-16 | 2022-07-28 | Amolifescience Co., Ltd. | Dry cosmetic sheet |
CN107285396A (zh) * | 2016-04-12 | 2017-10-24 | 杭州中润惠民环保科技有限公司 | 一种可降解的pla净水过滤芯 |
PL3325703T3 (pl) | 2016-08-02 | 2020-03-31 | Fitesa Germany Gmbh | Układ i sposób wytwarzania materiałów włókninowych z poli(kwasu mlekowego) |
US11441251B2 (en) | 2016-08-16 | 2022-09-13 | Fitesa Germany Gmbh | Nonwoven fabrics comprising polylactic acid having improved strength and toughness |
CN108149509A (zh) * | 2017-12-22 | 2018-06-12 | 合肥洁诺无纺布制品有限公司 | 一种用于医用擦手纸的高吸湿聚乳酸纤维 |
CN108129810A (zh) * | 2017-12-22 | 2018-06-08 | 合肥洁诺无纺布制品有限公司 | 一种高吸湿医用擦手纸用聚乳酸纤维 |
CN110540738A (zh) * | 2018-05-28 | 2019-12-06 | 句容市华冠服帽厂 | 一种基于pla改性纤维的复合材料 |
JP7359138B2 (ja) * | 2018-09-28 | 2023-10-11 | 三菱ケミカル株式会社 | 樹脂組成物、成形品、及び樹脂組成物の製造方法 |
EP3864090B1 (en) * | 2018-10-09 | 2022-12-07 | BYK-Chemie GmbH | A composition comprising a grafted polylactic acid |
JP7537426B2 (ja) * | 2019-03-29 | 2024-08-21 | 三菱ケミカル株式会社 | 成形品及び成形品の製造方法 |
CN110423441B (zh) * | 2019-07-09 | 2021-11-30 | 中山市金群瑞科技有限公司 | 一种可降解的食品包装材料及其制备方法 |
EP4013821A1 (en) * | 2019-08-12 | 2022-06-22 | Solutum Technologies Ltd | Composites and uses thereof |
JP2021155665A (ja) * | 2020-03-30 | 2021-10-07 | 大阪瓦斯株式会社 | バイオマス樹脂組成物 |
EP4139395A4 (en) * | 2020-04-24 | 2024-05-01 | Infinite Material Solutions, LLC | WATER-SOLUBLE POLYMER BLEND COMPOSITIONS |
DE102020127063A1 (de) | 2020-10-14 | 2022-04-14 | Armin Auer | Kunststoffmaterialmischung zur Herstellung eines Kunststoffs |
KR102590852B1 (ko) * | 2023-06-19 | 2023-10-19 | 주식회사 블루워시 | 캡슐형 세제 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4013293A1 (de) * | 1990-04-26 | 1991-11-07 | Bat Cigarettenfab Gmbh | Cigarettenfilter |
NL9301996A (nl) * | 1993-11-18 | 1995-06-16 | Rudolph Arthur Marinus Kooijma | Biologisch afbreekbaar vezelprodukt, werkwijze voor de bereiding hiervan, en voortbrengselen, die uit dit vezelprodukt zijn gevormd. |
US6571802B1 (en) * | 1998-03-31 | 2003-06-03 | Japan Tobacco Inc. | Molded article of biodegradable cellulose acetate and filter plug for smoking article |
RU2232779C2 (ru) * | 1998-10-01 | 2004-07-20 | Макромед, Инк. | Биоразрушаемые трехблочные сополимеры сложного полиэфира и полиэтиленгликоля, имеющие низкую молекулярную массу и обратимые термические желатинирующие свойства |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9A (en) | 1836-08-10 | Thomas blanchard | ||
US4620A (en) | 1846-07-07 | Shauk of boob-knob | ||
US2813051A (en) * | 1955-04-18 | 1957-11-12 | American Viscose Corp | Method of producing an absorbent element for filters |
US3407822A (en) * | 1966-02-07 | 1968-10-29 | Eastman Kodak Co | Tobacco smoke filters containing polyethylene encapsulated cellulose particles |
GB8330414D0 (en) | 1983-11-15 | 1983-12-21 | Ici Plc | Disposable bags |
JPS6142127A (ja) | 1984-08-02 | 1986-02-28 | Agency Of Ind Science & Technol | イオンビ−ムの照射方法 |
AU603076B2 (en) | 1985-12-09 | 1990-11-08 | W.R. Grace & Co.-Conn. | Polymeric products and their manufacture |
US5252642A (en) | 1989-03-01 | 1993-10-12 | Biopak Technology, Ltd. | Degradable impact modified polyactic acid |
US5216050A (en) | 1988-08-08 | 1993-06-01 | Biopak Technology, Ltd. | Blends of polyactic acid |
US5360892A (en) | 1990-06-26 | 1994-11-01 | Arch Development Corporation | Water and UV degradable lactic acid polymers |
WO1992004413A1 (en) | 1990-09-06 | 1992-03-19 | Biopak Technology Ltd | Packaging thermoplastics from lactic acid |
US5410016A (en) | 1990-10-15 | 1995-04-25 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5200247A (en) | 1992-06-05 | 1993-04-06 | Clopay Corporation | Biodegradable film containing an alkanoyl polymer/PVA blend and method of making same |
AU4534093A (en) | 1992-06-26 | 1994-01-24 | Procter & Gamble Company, The | Biodegradable, liquid impervious monolayer film compositions |
JP2990970B2 (ja) | 1992-09-18 | 1999-12-13 | 日本電気株式会社 | ドライエッチング装置 |
KR970002523B1 (en) | 1993-04-24 | 1997-03-05 | Korea Inst Sci & Tech | Biodegradable polylactic acid having improved properties and method for manufacturing the same |
US5462983A (en) | 1993-07-27 | 1995-10-31 | Evercorn, Inc. | Biodegradable moldable products and films comprising blends of starch esters and polyesters |
JP2658837B2 (ja) | 1993-11-18 | 1997-09-30 | 東洋製罐株式会社 | 多層プラスチック容器 |
US5612412A (en) | 1994-09-30 | 1997-03-18 | Daicel Chemical Industries, Ltd. | Lactone-modified polyvinyl alcohol, a process for the preparation thereof |
US5472518A (en) | 1994-12-30 | 1995-12-05 | Minnesota Mining And Manufacturing Company | Method of disposal for dispersible compositions and articles |
US5654381A (en) | 1995-06-16 | 1997-08-05 | Massachusetts Institute Of Technology | Functionalized polyester graft copolymers |
DE19536505A1 (de) * | 1995-09-29 | 1997-04-10 | Biotec Biolog Naturverpack | Biologisch abbaubares Filtermaterial und Verfahren zu seiner Herstellung |
WO1998029506A1 (en) | 1996-12-31 | 1998-07-09 | Kimberly-Clark Worldwide, Inc. | Water-responsive polymer compositions and method of making the same |
US5883199A (en) | 1997-04-03 | 1999-03-16 | University Of Massachusetts | Polyactic acid-based blends |
US5952433A (en) | 1997-07-31 | 1999-09-14 | Kimberly-Clark Worldwide, Inc. | Modified polyactide compositions and a reactive-extrusion process to make the same |
EP1000102B1 (en) | 1997-07-31 | 2005-11-30 | Kimberly-Clark Worldwide, Inc. | Modified polylactide compositions, water-responsive, biodegradable films and fibers comprising polylactide and poly(vinyl alcohol) and methods for making the same |
US5945480A (en) | 1997-07-31 | 1999-08-31 | Kimberly-Clark Worldwide, Inc. | Water-responsive, biodegradable fibers comprising polylactide modified polylactide and polyvinyl alcohol, and method for making the fibers |
US6075118A (en) | 1997-07-31 | 2000-06-13 | Kimberly-Clark Worldwide, Inc. | Water-responsive, biodegradable film compositions comprising polylactide and polyvinyl alcohol, and a method for making the films |
US6552162B1 (en) | 1997-07-31 | 2003-04-22 | Kimberly-Clark Worldwide, Inc. | Water-responsive, biodegradable compositions and films and articles comprising a blend of polylactide and polyvinyl alcohol and methods for making the same |
US5910545A (en) | 1997-10-31 | 1999-06-08 | Kimberly-Clark Worldwide, Inc. | Biodegradable thermoplastic composition |
US6201068B1 (en) | 1997-10-31 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Biodegradable polylactide nonwovens with improved fluid management properties |
MXPA02001271A (es) * | 1999-08-06 | 2002-07-22 | Eastman Chem Co | Poliesteres que tienen un punto de fusion controlado y fibras formadas de ellos. |
US6573340B1 (en) | 2000-08-23 | 2003-06-03 | Biotec Biologische Naturverpackungen Gmbh & Co. Kg | Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials |
DE60103294T2 (de) | 2000-10-06 | 2005-06-02 | The Procter & Gamble Company, Cincinnati | Abbaubare polyestermischungen enthaltende absorbierende artikel |
US7053151B2 (en) | 2000-12-29 | 2006-05-30 | Kimberly-Clark Worldwide, Inc. | Grafted biodegradable polymer blend compositions |
US6552124B2 (en) | 2000-12-29 | 2003-04-22 | Kimberly-Clark Worldwide, Inc. | Method of making a polymer blend composition by reactive extrusion |
EP1368069B1 (en) | 2001-03-16 | 2009-12-09 | The Procter & Gamble Company | Flushable tampon applicators |
US6905759B2 (en) | 2001-04-23 | 2005-06-14 | Kimberly Clark Worldwide, Inc. | Biodegradable films having enhanced ductility and breathability |
US6660211B2 (en) | 2001-04-23 | 2003-12-09 | Kimberly-Clark Worldwide, Inc. | Methods of making biodegradable films having enhanced ductility and breathability |
CN1307259C (zh) * | 2001-08-03 | 2007-03-28 | 东丽株式会社 | 树脂组合物和由该树脂组合物制成的成型制品、薄膜和纤维 |
US6713140B2 (en) | 2001-12-21 | 2004-03-30 | Kimberly-Clark Worldwide, Inc. | Latently dispersible barrier composite material |
US20030232088A1 (en) | 2002-06-14 | 2003-12-18 | Kimberly-Clark Worldwide, Inc. | Materials with both bioadhesive and biodegradable components |
US7718718B2 (en) | 2003-03-28 | 2010-05-18 | Toray Industries, Inc. | Polylactic acid resin composition, process for producing the same, biaxially stretched polylactic acid film, and molded articles thereof |
US8058500B2 (en) | 2005-05-06 | 2011-11-15 | Kimberly-Clark Worldwide, Inc. | Malodor reduction patch |
CN100406498C (zh) | 2006-03-09 | 2008-07-30 | 四川大学 | 聚乙烯醇/聚乳酸接枝共聚物及其与淀粉的共混材料和它们的制备方法、用途 |
CN1817937A (zh) * | 2006-03-09 | 2006-08-16 | 中国科学院长春应用化学研究所 | 乳酸类聚合物的用途 |
DE102006024568A1 (de) | 2006-05-23 | 2007-12-06 | Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg | Verfahren zur Herstellung einer biologisch abbaubaren Kunststofffolie und Folie |
CN100569127C (zh) * | 2006-11-30 | 2009-12-16 | 中国科学院长春应用化学研究所 | 一种香烟过滤嘴丝束及其制备方法 |
GB0708327D0 (en) | 2006-12-11 | 2007-06-06 | Twist Cyril | Polymeric films |
JP2010535024A (ja) | 2007-08-01 | 2010-11-18 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 分解可能なシガレットフィルタ |
US8613284B2 (en) * | 2008-05-21 | 2013-12-24 | R.J. Reynolds Tobacco Company | Cigarette filter comprising a degradable fiber |
BRPI0822434B1 (pt) * | 2008-05-30 | 2018-05-29 | Kimberly-Clark Worldwide, Inc. | Trama não tecida, artigo absorvente e método para formar a trama não tecida |
TW201000701A (en) * | 2008-06-17 | 2010-01-01 | Tatung Co | Polylactic acid composition |
-
2011
- 2011-03-31 GB GBGB1105455.8A patent/GB201105455D0/en not_active Ceased
-
2012
- 2012-03-29 US US14/008,968 patent/US9085660B2/en active Active
- 2012-03-29 EP EP12718724.3A patent/EP2691458A1/en not_active Withdrawn
- 2012-03-29 UA UAA201312648A patent/UA106570C2/ru unknown
- 2012-03-29 WO PCT/GB2012/050697 patent/WO2012131370A1/en active Application Filing
- 2012-03-29 CA CA2828520A patent/CA2828520C/en not_active Expired - Fee Related
- 2012-03-29 CN CN201280016639.8A patent/CN103502356B/zh not_active Expired - Fee Related
- 2012-03-29 BR BR112013024913A patent/BR112013024913A2/pt not_active IP Right Cessation
- 2012-03-29 AU AU2012235960A patent/AU2012235960B2/en not_active Ceased
- 2012-03-29 JP JP2014500478A patent/JP5759611B2/ja active Active
- 2012-03-29 KR KR1020137028935A patent/KR101834283B1/ko not_active Application Discontinuation
- 2012-03-29 RU RU2013148381/05A patent/RU2561103C2/ru active
- 2012-03-30 TW TW101111243A patent/TW201307461A/zh unknown
- 2012-03-30 AR ARP120101118A patent/AR088779A1/es not_active Application Discontinuation
-
2013
- 2013-08-28 ZA ZA2013/06484A patent/ZA201306484B/en unknown
- 2013-09-24 CL CL2013002729A patent/CL2013002729A1/es unknown
-
2014
- 2014-06-20 HK HK14105904.8A patent/HK1192577A1/xx not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4013293A1 (de) * | 1990-04-26 | 1991-11-07 | Bat Cigarettenfab Gmbh | Cigarettenfilter |
NL9301996A (nl) * | 1993-11-18 | 1995-06-16 | Rudolph Arthur Marinus Kooijma | Biologisch afbreekbaar vezelprodukt, werkwijze voor de bereiding hiervan, en voortbrengselen, die uit dit vezelprodukt zijn gevormd. |
US6571802B1 (en) * | 1998-03-31 | 2003-06-03 | Japan Tobacco Inc. | Molded article of biodegradable cellulose acetate and filter plug for smoking article |
RU2232779C2 (ru) * | 1998-10-01 | 2004-07-20 | Макромед, Инк. | Биоразрушаемые трехблочные сополимеры сложного полиэфира и полиэтиленгликоля, имеющие низкую молекулярную массу и обратимые термические желатинирующие свойства |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2751465C2 (ru) * | 2017-07-13 | 2021-07-14 | Энзпаер Индастри Ко., Лтд. | Стерилизуемые медицинские упаковки с дышащими порами |
RU2818908C1 (ru) * | 2019-12-03 | 2024-05-07 | Филип Моррис Продактс С.А. | Фильтр для изделий, генерирущих аэрозоль, с новым фильтрующим материалом |
Also Published As
Publication number | Publication date |
---|---|
GB201105455D0 (en) | 2011-05-18 |
WO2012131370A1 (en) | 2012-10-04 |
US9085660B2 (en) | 2015-07-21 |
AR088779A1 (es) | 2014-07-10 |
JP2014516246A (ja) | 2014-07-10 |
KR20140034778A (ko) | 2014-03-20 |
HK1192577A1 (en) | 2014-08-22 |
CL2013002729A1 (es) | 2013-12-06 |
RU2013148381A (ru) | 2015-05-10 |
BR112013024913A2 (pt) | 2016-12-20 |
KR101834283B1 (ko) | 2018-03-06 |
CN103502356B (zh) | 2015-08-26 |
AU2012235960A1 (en) | 2013-09-05 |
CA2828520C (en) | 2016-05-10 |
TW201307461A (zh) | 2013-02-16 |
JP5759611B2 (ja) | 2015-08-05 |
CN103502356A (zh) | 2014-01-08 |
US20140080968A1 (en) | 2014-03-20 |
EP2691458A1 (en) | 2014-02-05 |
ZA201306484B (en) | 2016-02-24 |
UA106570C2 (ru) | 2014-09-10 |
CA2828520A1 (en) | 2012-10-04 |
AU2012235960B2 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2561103C2 (ru) | Смеси полимолочной кислоты и растворимого в воде полимера | |
US8851084B2 (en) | Cellulose acetate compositions | |
Tserki et al. | Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour | |
US5654353A (en) | Biodegradable composition, a process for preparing the same and the use thereof | |
US20090160095A1 (en) | Biodegradable thermoplasticized starch-polyester reactive blends for thermoforming applications | |
JPH08505654A (ja) | 生分解が加速された生分解性熱可塑性ポリマーブレンド組成物 | |
WO1997047670A1 (en) | Method of grafting functional groups to synthetic polymers for making biodegradable plastics | |
AU707060B2 (en) | Esterified and polyester-grafted starch and alloy thereof | |
JP3715100B2 (ja) | 生分解性を備えたセルロース誘導体混成グラフト化組成物の製造法 | |
Raj et al. | Biodegradability, thermal, chemical, mechanical and morphological behavior of LDPE/pectin and LDPE/modified pectin blend | |
FI104091B (fi) | Sulatyöstettävä tärkkelyskoostumus, menetelmä sen valmistamiseksi sekä koostumuksen käyttö | |
US6218532B1 (en) | High performance biodegradable materials from oriented starch derivatives | |
Ermolovich et al. | Effect of compatibilizer additives on the technological and performance characteristics of biodegradable materials based on starch-filled polyethylene | |
Jeziórska et al. | Properties of blends of starch, polyethylene and poly (ethylene-co-acrylic acid) copolymer | |
Persenaire et al. | Quintana et al.(43) Pub. Date: Mar. 20, 2014 | |
CN111514366B (zh) | 一种聚乳酸高强度高抗菌医用缝合线及其制备方法 | |
CN115594980B (zh) | 一种淀粉基可生物降解抗菌材料及其制备方法 | |
Persenaire et al. | Lemmouchi et al.(43) Pub. Date: Jul. 3, 2014 | |
Sundararajan et al. | Biodegradable Edible Microbial Cellulose-based Film for Sustainable Packaging from Lab to Land: Physicomechanical Study | |
CN117844267A (zh) | 一种多元组合协同精制的生物降解吸管及其制备方法 | |
Rogovina et al. | Biodegradable compositions of polylactide with ethyl cellulose and chitosan plasticized by low-molecular poly (ethylene glycol) | |
Vernon | Syntheses of Novel Biodegradable Materials from Biorenewable Resources through Nitroxide Mediated Polymerization; Green, Sustainable and Environmentally Benign Materials. | |
CN118027590A (zh) | 一种高强度双网络pva/抗菌纤维素复合材料及其一步制备方法 | |
JPH0459829A (ja) | 複合材料の製造方法 | |
FR2697260A1 (fr) | Compositions thermoformables biodégradables, leur procédé de préparation et leur utilisation pour l'obtention d'articles thermoformés. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20210408 |