CN110423441B - 一种可降解的食品包装材料及其制备方法 - Google Patents

一种可降解的食品包装材料及其制备方法 Download PDF

Info

Publication number
CN110423441B
CN110423441B CN201910615062.6A CN201910615062A CN110423441B CN 110423441 B CN110423441 B CN 110423441B CN 201910615062 A CN201910615062 A CN 201910615062A CN 110423441 B CN110423441 B CN 110423441B
Authority
CN
China
Prior art keywords
parts
packaging material
food packaging
lubricant
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910615062.6A
Other languages
English (en)
Other versions
CN110423441A (zh
Inventor
廖集汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Keyone Houseware Co ltd
Original Assignee
Zhongshan Jinqunrui Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Jinqunrui Technology Co ltd filed Critical Zhongshan Jinqunrui Technology Co ltd
Priority to CN202111199432.6A priority Critical patent/CN113897040A/zh
Priority to CN201910615062.6A priority patent/CN110423441B/zh
Priority to CN202111199434.5A priority patent/CN113817303B/zh
Publication of CN110423441A publication Critical patent/CN110423441A/zh
Application granted granted Critical
Publication of CN110423441B publication Critical patent/CN110423441B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

本发明公开了一种可降解的食品包装材料,由以下质量份的材料制成:聚乳酸55‑65份,聚乙烯醇45‑55份,马来酸酐接枝相容剂15‑25份,纳米二氧化钛3‑6份,所述纳米二氧化钛为锐钛矿晶型,复合填料20‑30份,润滑剂5‑8份,所述复合填料为羧甲基纤维素钠、壳聚糖、硬脂酸钙中的一种或几种,所述马来酸酐接枝相容剂为聚乳酸‑g‑聚乙烯醇接枝共聚物,所述润滑剂为乙酰化单甘油脂肪酸酯、聚乙烯蜡、聚酰胺蜡中的一种或几种。本发明的一种可降解的食品包装材料的主要成分聚乳酸和聚乙烯醇在环境中均可降解,制成的接枝共聚物也具有良好的可降解性能,解决现有食品包装材料难以降解的问题。

Description

一种可降解的食品包装材料及其制备方法
【技术领域】
本发明涉及食品包装材料技术领域,具体涉及一种可降解的食品包装材料及其制备方法。
【背景技术】
随着社会的发展,在日常生活中,很多非即食产品都需要使用包装材料来进行保存,具体可以使用各种类型的食品级塑料,如聚二偏氯乙烯、PP、超高分子量聚乙烯、PET材质等等。但是现有的食品包装材料在使用过后置于环境中都不容易降解,引起的“白色污染”等环境问题更是成为威胁人类生存环境的一个重大隐患。
而且现有的可降解食品包装材料的机械强度低,容易损坏,不利于食品在搬运、存储等过程中的品质安全。
【发明内容】
本发明的目的在于提供一种可降解的食品包装材料,解决现有食品包装材料难以生物降解以及机械强度低的问题。
为解决上述问题,本发明提供技术方案如下:
一种可降解的食品包装材料,由以下质量份的材料制成:聚乳酸 55-65份,聚乙烯醇45-55份,马来酸酐接枝相容剂15-25份,纳米二氧化钛3-6份,所述纳米二氧化钛为锐钛矿晶型,复合填料20-30 份,润滑剂5-8份,所述复合填料为羧甲基纤维素钠、壳聚糖、硬脂酸钙中的一种或几种,所述马来酸酐接枝相容剂为聚乳酸-g-聚乙烯醇接枝共聚物,所述润滑剂为乙酰化单甘油脂肪酸酯、聚乙烯蜡、聚酰胺蜡中的一种或几种。
优选的,所述聚乳酸为63份,所述聚乙烯醇为55份,所述马来酸酐接枝相容剂22份,所述纳米二氧化钛为6份,所述复合填料为 30份,所述润滑剂为6份,按照此配比制备的可降解食品包装材料在兼顾可降解性能的基础上机械性能较强。
优选的,所述聚乳酸为65份,所述聚乙烯醇为55份,所述马来酸酐接枝相容剂25份,所述纳米二氧化钛为6份,所述复合填料为 30份,所述润滑剂为8份,按照此配比制备的可降解食品包装材料在兼顾可降解性能的基础上机械性能最好。
优选的,所述润滑剂为乙酰化单甘油脂肪酸酯和聚酰胺蜡的混合物,其质量比为1:2~3,此质量比的润滑剂对于可降解食品包装材料的相容性较好。
优选的,所述润滑剂为聚乙烯蜡、聚酰胺蜡的混合物,其质量比为2:2~3,此质量比的润滑剂对于可降解食品包装材料的机械性能增强效果较好。
优选的,所述润滑剂为乙酰化单甘油脂肪酸酯和聚乙烯蜡的混合物,其质量比为1:1~2,此质量比的润滑剂对于可降解食品包装材料的相容性以及机械性能的增强效果都是最好的。
优选的,所述羧甲基纤维素钠、壳聚糖、硬脂酸钙的质量比为 2:2~3:2~5,此质量比的复合填料的可降解食品包装材料的降解性能最好。
本发明与现有技术相比,有以下优点:
本发明的一种可降解的食品包装材料的主要成分聚乳酸和聚乙烯醇在环境中均可降解,制成的接枝共聚物也具有良好的微生物可降解性能,解决现有食品包装材料难以降解的问题;同时食品包装材料中的锐钛矿晶型的纳米二氧化钛是一种光触媒,在环境中的紫外光的辐射下,可以催化有机物如聚乳酸、聚乙烯醇的分解进而降解,进一步加强可降解食品包装材料的可将解性能。通过马来酸酐接枝相容剂的接枝聚合提高聚乳酸和聚乙烯醇的相容性,同时改变聚乳酸和聚乙烯醇聚合的分子量,聚乙烯醇和聚乳酸分子之间的氢键得到加强,增强了聚乳酸和聚乙烯醇接枝聚合物之间的机械性能,使得聚乳酸脆而易断的特性得到改善,即改善普通聚乳酸材料的机械性能。复合填料可以在满足具有使用功能的前提下减少聚合原料的使用,节省成本。复合材料中的硬脂酸钙与润滑剂还可进一步增强聚乳酸和聚乙烯醇之间的相容性,其与聚乳酸和聚乙烯醇的接枝共聚物形成的分子间氢键还加强了食品包装材料的机械性能。
本发明还提供一种制备上述食品包装材料的方法,具体步骤如下:
(1)按质量份称取聚乳酸、聚乙烯醇、马来酸酐接枝相容剂、润滑剂、复合填料以及纳米二氧化钛并加入到配料容器中,在80℃~ 125℃条件下搅拌均匀,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,得到制造食品包装材料的粒料Ⅱ;
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
双螺杆挤出机中的温度为120℃~190℃。
在物料Ⅰ的制备过程中,搅拌速度为300-500r/min。
与现有技术相比,本发明具有以下优点的食品包装材料的方法:
采用本发明的食品包装材料的方法,可以制备出洁净型可降解的食品包装材料。食品包装材料中含有锐钛矿型晶型的纳米二氧化钛使得包装材料表面具有一定的抗菌活性,能够杀死表面的微生物,防止这些微生物进入包材包装着的食品内部,使包材具有洁净的能力。而包材的主要成分均为可降解的有机物,通过使用两种可降解的有机物使得包装材料在自然环境下可降解,且环境中的包装材料内部的纳米二氧化钛是一种光触媒,在紫外光的照射下,还可以进一步促进可降解材料的分解,解决现有食品包装材料难以降解的问题;马来酸酐接枝相容剂将两个不相容的物料体系共聚在一起,使得材料的机械性能加强,解决现有食品包装材料机械强度低的问题。
【具体实施方式】
下面将对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例1:本实施例提供一种食品包装材料,按照所述制备食品包装材料的方法制备,具体步骤如下:
(1)按质量份称取聚乳酸55份、聚乙烯醇45份、马来酸酐接枝相容剂15份、润滑剂5份、复合填料20份以及纳米二氧化钛3份并加入到配料容器中,其中复合填料为羧甲基纤维素钠,润滑剂为乙酰化单甘油脂肪酸酯,在80℃~90℃条件下搅拌均匀,在物料Ⅰ的制备过程中,搅拌速度为300r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,双螺杆挤出机中的温度为120℃~125℃,得到制造食品包装材料的粒料Ⅱ。
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
实施例2:本实施例提供一种食品包装材料,按照所述制备食品包装材料的方法制备,具体步骤如下:
(1)按质量份称取聚乳酸58份、聚乙烯醇50份、马来酸酐接枝相容剂18份、润滑剂6份、复合填料24份以及纳米二氧化钛4份并加入到配料容器中,其中复合填料为羧甲基纤维素钠与壳聚糖且其质量比为1:1,润滑剂为乙酰化单甘油脂肪酸酯与聚乙烯蜡且其质量比为1:2;在80℃~100℃条件下搅拌均匀,在物料Ⅰ的制备过程中,搅拌速度为350r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,双螺杆挤出机中的温度为130℃~135℃,得到制造食品包装材料的粒料Ⅱ。
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
实施例3:本实施例提供一种食品包装材料,按照上述制备食品包装材料的方法制备,具体步骤如下:
(1)按质量份称取聚乳酸60份、聚乙烯醇52份、马来酸酐接枝相容剂20份、润滑剂6份、复合填料25份以及纳米二氧化钛4份并加入到配料容器中,其中复合填料是羧甲基纤维素钠、壳聚糖、硬脂酸钙且其质量比为2:2:2,润滑剂为乙酰化单甘油脂肪酸酯与聚乙烯蜡且其质量比为1:3;在90℃~115℃条件下搅拌均匀,在物料Ⅰ的制备过程中,搅拌速度为380r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,双螺杆挤出机中的温度为135℃~140℃,得到制造食品包装材料的粒料Ⅱ。
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
实施例4:本实施例提供一种食品包装材料,按照上述制备食品包装材料的方法制备,具体步骤如下:
(1)按质量份称取聚乳酸63份、聚乙烯醇55份、马来酸酐接枝相容剂22份、润滑剂6份、复合填料30份以及纳米二氧化钛6份并加入到配料容器中,其中复合填料为羧甲基纤维素钠、壳聚糖、硬脂酸钙且其质量比为2:2.5:3,润滑剂为聚乙烯蜡、聚酰胺蜡的混合物,其质量比为1:1;在110℃~120℃条件下搅拌均匀,在物料Ⅰ的制备过程中,搅拌速度为400r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,双螺杆挤出机中的温度为140℃~150℃,得到制造食品包装材料的粒料Ⅱ。
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
实施例5:本实施例提供一种食品包装材料,按照上述制备食品包装材料的方法制备,具体步骤如下:
(1)按质量份称取聚乳酸65份、聚乙烯醇55份、马来酸酐接枝相容剂25份、润滑剂8份、复合填料30份以及纳米二氧化钛6份并加入到配料容器中,其中复合填料为羧甲基纤维素钠、壳聚糖、硬脂酸钙的质量比为2:3:5,所述润滑剂是聚乙烯蜡、聚酰胺蜡的混合物且其质量比为2:2.5;在115℃~125℃条件下搅拌均匀,在物料Ⅰ的制备过程中,搅拌速度为450r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,双螺杆挤出机中的温度为150℃~160℃,得到制造食品包装材料的粒料Ⅱ。
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
实施例6:本实施例提供一种食品包装材料,按照上述制备食品包装材料的方法制备,具体步骤如下:
(1)按质量份称取聚乳酸55份、聚乙烯醇55份、马来酸酐接枝相容剂15份、润滑剂6份、复合填料25份以及纳米二氧化钛6份并加入到配料容器中,其中复合填料为壳聚糖、硬脂酸钙且其质量比为1:1,润滑剂是聚乙烯蜡、聚酰胺蜡的混合物且其质量比为2:3;在 120℃~125℃条件下搅拌均匀,在物料Ⅰ的制备过程中,搅拌速度为500r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,双螺杆挤出机中的温度为170℃~190℃,得到制造食品包装材料的粒料Ⅱ。
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
对比例1:本实施例提供一种可降解抗菌食品包装材料,按照公开的中国发明专利CN201811286335.9制备;
对比例2:本实施例提供一种食品包装材料及其制备方法,按照公开的中国发明专利CN201610711294.8制备;
表1:实施例1~6制备的食品包装材料的各组分含量
Figure RE-GDA0002208470040000091
表2:对比例1制备的可降解抗菌食品包装材料和对比例2制备的一种食品包装材料的各组分含量
Figure RE-GDA0002208470040000101
将本发明的实施例1-6制备的可降解的食品包装材料与对比例1 的可降解抗菌食品包装材料、对比例2的食品包装材料分别从机械性能以及降解性能分方面做一个对比。机械性能按照GB13022-91标准进行测试。降解性能测试采用土壤掩埋法,将本发明的实施例1-6制备的可降解的食品包装材料与对比例1的可降解抗菌食品包装材料、对比例2的食品包装材料分别制成长、宽、厚为10cm、10cm、1cm 的板材,然后将每种材料分别选取10块板材作为试样,将试样置于干燥箱中,保持温度105℃,加热干燥直至质量恒定,称量质量,得到初始质量M0。土壤掩埋固定时间后取出,用去离子水和乙醇分两次清洗相应试样,干燥,称量质量,得到降解后的质量M1,计算试样降解质量ΔM和降解率W。计算公式如下:
ΔM=M0-M1 (1)
W=ΔM/M0×100% (2)
其中,包埋试样的土壤理化指标为:有机物28g·kg-1,有效氮 0.144g·kg-1,有效磷0.137g·kg-1,有效钾0.194g·kg-1,ph值 6.83。
表3:实施例1~6与对比例1、2产品的性能测试结果
Figure RE-GDA0002208470040000111
注:表3中可降解性能以固定时间(单位:小时/h)后得到的试样降解后的质量M1占试样的初始质量M0的百分比计,百分比越小说明试样被降解的物质越多,食品包装材料的可降解性能越好;反之则越差。
由表1~3可知,通过使用本发明的制备可降解食品包装材料的方法制备的六个实施例中的可降解食品包装材料,随着马来酸酐接枝相容剂的含量增加,可降解食品包装材料的机械性能增强,其拉伸强度、弯曲模量和冲击强度均逐渐增强,相应的,马来酸酐接枝聚合相容剂含量低的包装材料,因为分子聚合量较低,其可降解性能也较好,在1000h后完全降解,见表3中实施例1和实施例6的可降解食品包装材料降解性能;随着马来酸酐接枝相容剂含量的增加,聚合物分子量增加,制备的可降解食品包装材料的可降解性能也逐渐降低,见表 1和表3中实施例2~5的可降解食品包装材料的成分表和可降解性能,实施例1~6制备的可降解食品包装材料均比对比例1和2的降解性能好,实施例1~6制备的可降解食品包装材料降解1000h后的可降解的包装材料的质量占初始质量的百分比均小于对比例1和2的包装材料,且实施例1~6制备的可降解食品包装材料的机械性能也均强于对比例1和2的机械性能。
本发明的实施例的可降解食品包装材料的主要成分为聚乳酸和聚乙烯醇,在环境中均可降解,制成的接枝共聚物也具有良好的可降解性能,同时食品包装材料中的锐钛矿晶型的纳米二氧化钛是一种光触媒,在环境中的紫外光的辐射下,可以催化有机物如聚乳酸、聚乙烯醇的分解进而降解,解决现有食品包装材料难以降解的问题。通过马来酸酐接枝相容剂的接枝聚合提高聚乳酸和聚乙烯醇的相容性,增强了聚乳酸和聚乙烯醇之间的粘合力,同时聚乙烯醇和聚乳酸分子之间的氢键得到加强,改变聚乳酸和聚乙烯醇聚合的分子量,使得聚乳酸脆而易断的特性得到改善。复合填料可以在满足具有使用功能的前提下减少聚合原料的使用,节省成本,其中的羧甲基纤维素钠、壳聚糖在自然环境中也可以降解,不会污染环境;硬脂酸钙也容易被喜食脂肪类有机物的微生物降解。复合填料中的硬脂酸钙与润滑剂还可进一步增强聚乳酸和聚乙烯醇之间的相容性;其中聚乙烯醇的分子量在20000~180000,聚乳酸的分子量为200000~500000,具有较大范围的聚合物分子量可以制成适合不同性能要求的可降解食品包装材料。而润滑剂中的乙酰化单甘油脂肪酸酯、聚乙烯蜡、聚酰胺蜡等分子与聚乳酸和聚乙烯醇接枝聚合分子之间形成氢键进一步增强食品包装材料的机械性能。
本发明主要成分聚乳酸和聚乙烯醇在环境中均可降解,解决现有食品包装材料难以降解的问题。通过马来酸酐接枝相容剂的接枝聚合提高聚乳酸和聚乙烯醇的相容性,同时改变聚乳酸和据悉乙醇聚合的分子量,增强了聚乳酸和聚乙烯醇之间的机械性能,聚乙烯醇和聚乳酸分子之间的氢键得到加强,使得聚乳酸脆而易断的特性得到改善。复合填料可以在满足具有使用功能的前提下减少聚合原料的使用,节省成本。复合材料中的硬脂酸钙与润滑剂还可进一步增强聚乳酸和聚乙烯醇之间的相容性。
本发明的食品包装材料的方法,可以制备出洁净型可降解的食品包装材料。食品包装材料中含有锐钛矿型晶型的纳米二氧化钛使得包装材料表面具有一定的抗菌活性,杀死表面的微生物,防止这些微生物进入包材包装着的食品内部,使包材具有洁净的能力。通过使用两种可降解的有机物解决现有食品包装材料难以降解的问题,两种可降解的有机物接枝聚合加强材料的机械性能,解决现有食品包装材料机械强度低的问题。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种可降解的食品包装材料,其特征在于,由以下质量份的材料制成:聚乳酸55-65份,聚乙烯醇45-55份,马来酸酐接枝相容剂15-25份,纳米二氧化钛3-6份,复合填料20-30份,润滑剂5-8份,所述纳米二氧化钛为锐钛矿晶型,所述复合填料为羧甲基纤维素钠、壳聚糖、硬脂酸钙中的一种或几种,所述马来酸酐接枝相容剂为聚乳酸-g-聚乙烯醇接枝共聚物,所述润滑剂为乙酰化单甘油脂肪酸酯、聚乙烯蜡、聚酰胺蜡中的一种或几种;
所述的可降解的食品包装材料的制备方法,具体步骤如下:
(1)按质量份称取聚乳酸、聚乙烯醇、马来酸酐接枝相容物、润滑剂、复合填料以及纳米二氧化钛并加入到配料容器中,在80℃~125℃条件下搅拌均匀,搅拌速度为300-500r/min,然后冷却至80℃以下,得到初步混合的物料Ⅰ;
(2)将物料Ⅰ加入双螺杆挤出机,进行熔融、挤出拉条、冷却、切粒,得到制造食品包装材料的粒料Ⅱ,双螺杆挤出机中的温度为120℃~190℃;
(3)将制得的粒料Ⅱ加入压片机压成膜或板材,得到洁净型可降解的食品包材。
2.根据权利要求1所述的可降解的食品包装材料,其特征在于:所述聚乳酸为63份,所述聚乙烯醇为55份,所述马来酸酐接枝相容剂22份,所述纳米二氧化钛为6份,所述复合填料为30份,所述润滑剂为6份。
3.根据权利要求1所述的可降解的食品包装材料,其特征在于:所述聚乳酸为65份,所述聚乙烯醇为55份,所述马来酸酐接枝相容剂25份,所述纳米二氧化钛为6份,所述复合填料为30份,所述润滑剂为8份。
4.根据权利要求1所述的可降解的食品包装材料,其特征在于:所述润滑剂为乙酰化单甘油脂肪酸酯和聚酰胺蜡的混合物,其质量比为1:2~3。
5.根据权利要求1所述的可降解的食品包装材料,其特征在于:所述润滑剂为聚乙烯蜡、聚酰胺蜡的混合物,其质量比为2:2~3。
6.根据权利要求1所述的可降解的食品包装材料,其特征在于:所述润滑剂为乙酰化单甘油脂肪酸酯和聚乙烯蜡的混合物,其质量比为1:1~2。
7.根据权利要求1所述的可降解的食品包装材料,其特征在于:所述羧甲基纤维素钠、壳聚糖、硬脂酸钙的质量比为2:2~3:2~5。
CN201910615062.6A 2019-07-09 2019-07-09 一种可降解的食品包装材料及其制备方法 Active CN110423441B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111199432.6A CN113897040A (zh) 2019-07-09 2019-07-09 一种高机械强度可降解食品包装材料的制备方法
CN201910615062.6A CN110423441B (zh) 2019-07-09 2019-07-09 一种可降解的食品包装材料及其制备方法
CN202111199434.5A CN113817303B (zh) 2019-07-09 2019-07-09 一种高机械强度的可降解食品包装材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910615062.6A CN110423441B (zh) 2019-07-09 2019-07-09 一种可降解的食品包装材料及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202111199434.5A Division CN113817303B (zh) 2019-07-09 2019-07-09 一种高机械强度的可降解食品包装材料
CN202111199432.6A Division CN113897040A (zh) 2019-07-09 2019-07-09 一种高机械强度可降解食品包装材料的制备方法

Publications (2)

Publication Number Publication Date
CN110423441A CN110423441A (zh) 2019-11-08
CN110423441B true CN110423441B (zh) 2021-11-30

Family

ID=68409080

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201910615062.6A Active CN110423441B (zh) 2019-07-09 2019-07-09 一种可降解的食品包装材料及其制备方法
CN202111199434.5A Active CN113817303B (zh) 2019-07-09 2019-07-09 一种高机械强度的可降解食品包装材料
CN202111199432.6A Pending CN113897040A (zh) 2019-07-09 2019-07-09 一种高机械强度可降解食品包装材料的制备方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202111199434.5A Active CN113817303B (zh) 2019-07-09 2019-07-09 一种高机械强度的可降解食品包装材料
CN202111199432.6A Pending CN113897040A (zh) 2019-07-09 2019-07-09 一种高机械强度可降解食品包装材料的制备方法

Country Status (1)

Country Link
CN (3) CN110423441B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048102A (zh) * 2020-09-14 2020-12-08 谢强 一种环保食品包装塑料及其制备方法
CN112080118B (zh) * 2020-09-29 2022-09-09 中星中大印刷(深圳)有限公司 一种可降解聚乳酸塑料
CN114456562B (zh) * 2022-02-22 2024-05-17 深圳潘道医学检验实验室 一种可降解型病毒采样管及其制备方法
CN114573962B (zh) * 2022-04-01 2023-11-14 安徽海铭塑业有限公司 一种可降解食品包装材料
CN115322525B (zh) * 2022-10-11 2022-12-20 南通佰凯吉包装科技有限公司 一种多层复合透明包装袋及其生产工艺
CN115746523A (zh) * 2022-11-16 2023-03-07 深圳市鼎力盛科技有限公司 一种降解能力强的新材料气柱袋及其制备方法
CN115938518B (zh) * 2022-12-26 2024-03-19 苏州市恒福包装制品有限公司 一种可降解食品包装材料的制备工艺优化方法和系统
CN116082744B (zh) * 2023-03-15 2023-09-19 河北立亚包装科技有限公司 一种抑菌型生物降解保鲜膜及制备方法
CN116478464B (zh) * 2023-04-28 2024-08-30 郑州市彦峰塑料包装有限公司 一种可降解食品级包装膜及其制备方法
CN117126517B (zh) * 2023-08-24 2024-03-12 广东岭南大健康生态科技集团有限公司 一种环境可控降解地膜及其在除草中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429266C (zh) * 2005-11-16 2008-10-29 朱家牧 可环保塑料合成纸及其制备方法
CN101215411B (zh) * 2008-01-21 2010-07-07 南京大学 一种光降解抗菌聚乳酸材料及制备方法
KR101062012B1 (ko) * 2010-08-24 2011-09-05 주식회사 에버그린 왕겨 및 쌀겨를 함유한 생분해성, 광분해성 바이오 필름 및 이의 제조방법
GB201105455D0 (en) * 2011-03-31 2011-05-18 British American Tobacco Co Blends of a polylactic acid and a water soluble polymer
WO2014046321A1 (ko) * 2012-09-21 2014-03-27 (주)엘지하우시스 생분해성 판넬
CN103319865B (zh) * 2013-06-08 2016-03-02 上海博疆新材料科技有限公司 聚乳酸合金薄膜及应用
CN104530668B (zh) * 2014-12-17 2016-06-22 广州飞胜高分子材料有限公司 具有自清洁抗菌功能的3d打印材料及制备方法与应用
CN106883578A (zh) * 2017-03-28 2017-06-23 天津科技大学 一种抗菌可降解保鲜食品包装材料及其制备
CN109456582A (zh) * 2018-10-31 2019-03-12 安徽双平包装有限公司 一种可降解抗菌食品包装袋材料
CN109853083B (zh) * 2018-12-28 2022-05-31 青岛科凯达橡塑有限公司 一种水溶性可降解纤维及其制备方法

Also Published As

Publication number Publication date
CN110423441A (zh) 2019-11-08
CN113897040A (zh) 2022-01-07
CN113817303B (zh) 2023-12-12
CN113817303A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN110423441B (zh) 一种可降解的食品包装材料及其制备方法
Nagarkar et al. Polyvinyl alcohol: A comprehensive study
Wang et al. Properties of polyvinyl alcohol/xylan composite films with citric acid
Duan et al. Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films
Padil et al. Bioplastic fibers from gum arabic for greener food wrapping applications
Ninago et al. Enhancement of thermoplastic starch final properties by blending with poly (ɛ-caprolactone)
Yang et al. Preparation and characterization of starch-based bioplastic composites with treated oil palm empty fruit bunch fibers and citric acid
JP4584146B2 (ja) α−1,4−グルカンおよび/またはその修飾物を含む成型物およびその製造方法
JP2015518908A (ja) リグニンの化学修飾およびリグニン誘導体
CN111409346A (zh) 一种可降解薄膜及其制备方法
WO2013158945A1 (en) Compounded surface treated carboxyalkylated starch polycrylate composites
Liu et al. Freely moldable modified starch as a sustainable and recyclable plastic
JP2015518907A (ja) リグニンの化学修飾およびリグニン誘導体
Weiwei et al. Anaerobic biodegradation, physical and structural properties of normal and high-amylose maize starch films
Rajeswari et al. Current research on the blends of chitosan as new biomaterials
Zhang et al. Development of biodegradable polyamide 4/polyvinyl alcohol/poly (lactic acid) multilayer films with tunable water barrier property and superior oxygen barrier property
Rech et al. Recyclable Extrudable Biopolymer Composites from Alginate and Lignocellulosic Biomass Waste
Julinová et al. Lignin and starch as potential inductors for biodegradation of films based on poly (vinyl alcohol) and protein hydrolysate
CN114907680A (zh) 一种可回收型水溶降解发泡材料及其制备方法
JP2009221336A (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
Malucelli High barrier composite materials based on renewable sources for food packaging applications
CN114836012A (zh) 一种完全生物降解垃圾袋薄膜材料及垃圾袋薄膜的制备方法
Yue et al. Glandless cottonseed protein for environmentally friendly bioplastics
Toh et al. Influence of compounding methods on poly (vinyl) alcohol/sago pith waste biocomposites: mechanical and water absorption properties
Elgharbawy et al. Enhancing the biodegradability, water solubility, and thermal properties of polyvinyl alcohol through natural polymer blending: an approach toward sustainable polymer applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231110

Address after: 214000 No.498 Furong Zhong'er Road, Xishan Economic and Technological Development Zone, Wuxi City, Jiangsu Province, and No.25 Yunlin Chunxiang Road, Xishan District, Wuxi City, Jiangsu Province

Patentee after: WUXI KEYONE HOUSEWARE Co.,Ltd.

Address before: 528400 floor 2, building B, No. 18, Huanshan Road, Gonghua Industrial Zone, Torch Development Zone, Zhongshan City, Guangdong Province

Patentee before: ZHONGSHAN JINQUNRUI TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right