RU2528389C2 - Вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения - Google Patents
Вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения Download PDFInfo
- Publication number
- RU2528389C2 RU2528389C2 RU2012121909/04A RU2012121909A RU2528389C2 RU 2528389 C2 RU2528389 C2 RU 2528389C2 RU 2012121909/04 A RU2012121909/04 A RU 2012121909/04A RU 2012121909 A RU2012121909 A RU 2012121909A RU 2528389 C2 RU2528389 C2 RU 2528389C2
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- smk
- cellulose
- mass
- carbon
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 83
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000001913 cellulose Substances 0.000 claims abstract description 31
- 229920002678 cellulose Polymers 0.000 claims abstract description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 28
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 230000003197 catalytic effect Effects 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000010937 tungsten Substances 0.000 claims abstract 4
- 150000003657 tungsten Chemical class 0.000 claims abstract 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 239000000969 carrier Substances 0.000 claims description 8
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 229930006000 Sucrose Natural products 0.000 claims description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 5
- 239000005720 sucrose Substances 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000007833 carbon precursor Substances 0.000 claims 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims 3
- 235000012239 silicon dioxide Nutrition 0.000 claims 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 1
- 238000005255 carburizing Methods 0.000 claims 1
- 239000011302 mesophase pitch Substances 0.000 claims 1
- 239000005011 phenolic resin Substances 0.000 claims 1
- 229920001568 phenolic resin Polymers 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 2
- 239000012266 salt solution Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 206010007134 Candida infections Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- CBCIHIVRDWLAME-UHFFFAOYSA-N hexanitrodiphenylamine Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O CBCIHIVRDWLAME-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/22—Carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/084—Decomposition of carbon-containing compounds into carbon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/949—Tungsten or molybdenum carbides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/618—Surface area more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/638—Pore volume more than 1.0 ml/g
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nanotechnology (AREA)
Abstract
Изобретение относится к вольфрамкарбидному катализатору на мезопористом углеродном носителе для прямой каталитической конверсии целлюлозы в этиленгликоль, в котором носителем является мезопористый углерод; вольфрамкарбидные катализаторы диспергированы на поверхности или в каналах углеродного носителя; металлический компонент W составляет от 1 до 80% масс. катализатора и, в частности, от 30 до 42% масс. Также изобретение относится к способу получения катализатора пропиткой мезопористого углеродного носителя раствором соли вольфрама и никеля или вольфрама и применению катализатора. Технический результат заключается в получении катализатора для превращения целлюлозы в этиленгликоль с высоким выходом и селективностью. 3 н. и 7 з.п. ф-лы, 3 ил., 3 табл., 7 пр.
Description
Предпосылки создания изобретения
1. Область техники, к которой относится изобретение
Настоящее изобретение относится к катализаторам для прямой каталитической конверсии целлюлозы в этиленгликоль и, более конкретно, к вольфрамкарбидным катализаторам на мезопористом углеродном носителе и к их получению и применениям.
2. Предпосылки создания изобретения
Энергия является основой жизнеобеспечения и развития современного общества. Эксплуатация и использование чистой энергии влияет на поддерживаемое развитие национальной экономики и представляет собой основную гарантию стратегии национальной безопасности.
Биомасса представляет собой перспективный возобновляемый источник. Ее использование и разработка играет важную роль в разнообразии поддержания энергии, снижении зависимости от природной нефти и надежности поддержания энергии. Целлюлоза представляет собой наиболее распространенное вторичное генерирование источников биомассы. Она является легкодоступной и недорогостоящей, например из сельскохозяйственных отходов и отходов лесного хозяйства. Кроме того, целлюлоза является несъедобной и не является угрозой для пищевой безопасности человека. Поэтому задача, как превратить целлюлозу в высокоценную продукцию, представляет собой тему горячих исследований ученых многих наций.
Традиционные способы конверсии целлюлозы сфокусированы на гидролизе в минеральных кислотах или путем ферментативного расщепления. Указанные способы являются низкоэффективными и высокозагрязняющими, создающими серьезные проблемы. Для сравнения каталитическая конверсия целлюлозы, разработанная в последние годы, является высокоэффективным «зеленым» способом. Каталитическая конверсия целлюлозы представляет собой расщепление целлюлозы на полигидроксисоединения в присутствии катализатора в определенных условиях. Профессор Fukuoka в Японии использовал Pt/Al2O3 в качестве катализатора и получил 30% выход гекситов. Используя катализатор Ru/АУ, профессор H.C.Liu из Пекинского университета дополнительно улучшил выход гексита до 40% (CN 101058531). Профессор Y.Wang из Сямыньского университета достиг выхода гексита выше 50% при предварительной обработке целлюлозы в фосфорной кислоте, регенерировании осадков с использованием воды и затем при использовании Ru-катализатора на носителе из многостенных углеродных нанотрубок ((МСУНТ)(MWCNT)) в каталитической гидрогенизационной конверсии целлюлозы (CN 101121643). Однако поскольку в вышеуказанных случаях используются благородные металлы, указанные способы являются дорогостоящими и имеют низкую экономическую эффективность.
Недавно авторами настоящего изобретения разработан никельпромотированный вольфрамкарбидный катализатор с активированным углем в качестве носителя для каталитической конверсии целлюлозы в этиленгликоль в гидротермальных условиях. Реакция является высокоэффективной с хорошей селективностью, дающей такой высокий выход этиленгликоля как 61%. Однако введение никеля в катализатор ускоряет агрегацию карбида вольфрама. Кроме того, микроструктура активированного угля снижает диспергирование карбида вольфрама в катализаторе и ограничивает диффузию реагентов и продуктов.
Мезопористый углерод имеет относительно высокую площадь поверхности, большой объем пор, имеет высокую кислото- и щелочестойкость и высокую гидротермальную стабильность. Поэтому он широко используется в топливных элементах, датчиках, адсорбционной сепарации, катализе и т.д.
Известно, что активность и селективность катализатора относится к диспергированию активного компонента и диффузии реагентов на активных участках. Катализаторы на мезопористом углеродном носителе промотируют диспергирование активных металлов, увеличивают доступность пор, вносят вклад в молекулярную диффузию и, соответственно, увеличивают активность и селективность катализаторов. До настоящего времени отсутствуют сведения о рассмотрении применения карбида вольфрама на мезопористом углеродном носителе в каталитической конверсии целлюлозы до этиленгликоля.
Краткое описание изобретения
Задачей настоящего изобретения является создание способов получения катализаторов на мезопористом углеродном носителе и их применения. Катализаторы могут каталитически превращать целлюлозу в этиленгликоль в гидротермальных условиях с высокими выходом и селективностью.
Для достижения вышеуказанной задачи в соответствии с одним вариантом изобретения предусматривается катализатор, содержащий карбид вольфрама, нанесенный на трехмерный (3D) взаимосоединенный аморфный мезопористый углерод MC, MC-R, обозначенный как WCx/MC (x=0,5-1) и WCx/MC-R (x=0,5-1), и катализатор, содержащий карбид вольфрама, нанесенный на упорядоченный мезопористый углерод СМК-3, СМК-8, обозначенный как WCx/СМК-3 (x=0,5-1) и WCx/СМК-8 (x=0,5-1). Носителями катализаторов являются, соответственно, трехмерный (3D) взаимосоединенный аморфный мезопористый углерод MC, MC-R и упорядоченный мезопористый углерод СМК-3, СМК-8. Активным компонентом катализатора является WCx (x=0,5-1). Когда вводится никель, активным компонентом катализатора является Ni-WCx (x=0,5-1), где компонент металла W составляет от 1 до 80% масс. катализатора, предпочтительно 30-42% масс., компонент металла Ni составляет от 0,1 до 30% масс. катализатора и, предпочтительно, 2-5% масс.
Вышеописанные углеродные носители МС, СМК-3 и СМК-8 синтезируют с использованием способа нанолитья. В частности, 1 г твердой матрицы пропитывают 0,1-10 г сахарозы в растворе, содержащем 0,1-0,3 г концентрированной H2SO4 и 5-8 мл Н2О. Полученную смесь нагревают при 40-350°C в течение не менее 0,5 ч и, предпочтительно, нагревают при 95-110°C и 160-170°C в течение 6-8 ч соответственно. Конечный твердый материал карбонизируют при 800-900°C в течение 3-6 ч. Наконец, твердую матрицу удаляют в растворе HF или NaOH. Концентрацию кислоты или щелочи выбирают надлежащим образом для удаления матрицы без разрушения структуры каналов. После промывки деионизированной водой материал помещают в термошкаф для сушки при 60-120°C и получают трехмерный (3D) взаимосоединенный аморфный MC и упорядоченный СМК-3, СМК-8.
Вышеописанный носитель катализатора MC-R синтезируют способом нанолитья. В качестве жесткой матрицы используют коммерчески доступный силиказоль с диаметром 5-100 нм. Источником углерода является золь резорцина R и формальдегида F с мольным отношением R/F 0,1-2. Смесь R и F и силиказоль, где мольное отношение R/F составляет 0,1-20, перемешивают в течение не менее 10 мин. Смесь затем нагревают при 40-160°C в течение не менее 0,5 ч. Конечный твердый материал карбонизируют при 400-1000°C в восстановительной атмосфере в течение не менее 0,5 ч. Наконец, твердую матрицу удаляют с использованием раствора HF или NaOH. Концентрацию кислоты или щелочи выбирают надлежащим образом для удаления матрицы без разрушения структуры каналов. После промывки деионизированной водой материал сушат при 60-120°C с получением мезопористого углерода, называемого MC-R.
Катализатор получают пропиткой носителя солевым раствором активного компонента. В частности, растворимые соли активных компонентов в катализаторе взвешивают в соответствии с их соотношением и растворяют в деионизированной воде с получением раствора. Мезопористый углеродный носитель пропитывают указанным раствором. Предшественник, пропитанный активным компонентом, сушат при 40-160°C и карбюрируют в токе Н2 в течение не менее 1 ч. Катализатор без Ni карбюрируют при 850-1000°C, тогда как катализатор с Ni карбюрируют при 650-800°C.
Описанные выше катализаторы могут быть использованы в каталитическом гидрогенизационном расщеплении целлюлозы. Реакцию проводят в герметичном реакторе высокого давления с перемешиванием. Массовое отношение целлюлозы к воде находится в интервале от 1:200 до 1:1. Массовое отношение целлюлозы к катализатору находится в интервале от 1:1 до 100:1. Начальное давление водорода при комнатной температуре находится в интервале от 1 до 12 МПа. Температуру реакции увеличивают регулируемым образом до 120-300°C, и время реакции составляет не менее 10 мин.
Катализатор настоящего изобретения использует в качестве носителя мезопористый углерод с высокой площадью поверхности и большим объемом пор, который улучшает диспергирование активных компонентов и молекулярную диффузию реагентов и продуктов, что увеличивает активность и селективность катализаторов. Катализатор может превращать целлюлозу в этиленгликоль с высоким выходом и высокой селективностью в водороде в гидротермальных условиях. Исходный материал для катализатора настоящего изобретения является легкодоступным. Получение является простым. Он имеет большую перспективу.
По сравнению с недавно описанными вольфрамкарбидными катализаторами вольфрамкарбидный катализатор на мезопористом углеродном носителе имеет лучшие активность, селективность и стабильность.
Краткое описание чертежей
На фиг.1 представлены результаты рентгеноструктурного анализа порошка катализатора в примерах 3 и 4 и в сравнительном примере 1.
На фиг.2 представлены результаты СО хемосорбционного анализа катализатора в примерах 3 и 4 и в сравнительном примере 1.
На фиг.3 представлены результаты рентгеноструктурного анализа порошка различных катализаторов в примере 2.
Подробное описание вариантов изобретения
Пример 1
Получение МС и СМК-3 носителя способом твердой матрицы
1,0 г коммерчески доступного диоксида кремния, или SBA-15, пропитывают раствором, содержащим 1,25 г сахарозы и 0,14 г концентрированной H2SO4 в 5 мл Н2О. Полученную смесь помещают при температуре окружающей среды в течение 8-12 ч (12 ч в данном примере), сушат сначала при 100°C в течение 6 ч и затем при 170°C в течение 6 ч. Полученное порошкообразное вещество один раз снова пропитывают раствором, содержащим 0,8 г сахарозы и 0,09 г концентрированной H2SO4 в 5 мл Н2О, с последующими стадиями нагревания, как описано выше. Образец, полученный после стадий нагревания, карбонизируют при 900°C в N2 в течение 6 ч и затем охлаждают до комнатной температуры. Полученный таким образом образец помещают в 5% масс. раствор HF или 2М раствор NaOH при 60-80°C в течение 2-24 ч (24 ч в данном примере) для удаления матрицы диоксида кремния. После фильтрации, промывки и сушки при 80-120°C (120°C в данном примере) получают МС или СМЛ-3. Параметры пористой структуры полученных углеродных носителей сравнивают с параметрами пористой структуры активированного угля АУ в сравнительном примере 1, результаты представлены в таблице 1.
Таблица 1 Пористая структура различных углеродных носителей |
|||||
Носитель | SБЭТ (м2/г) | Sмикро (м2/г) | Vмикро (см3/г) | Vмезо (см3/г) | Dp (нм) |
мс | 1124 | 288 | 0,13 | 1,28 | 4,9 |
CMK-3 | 1376 | 91 | 0,03 | 1,60 | 3,7 |
АУ | 1102 | 748 | 0,34 | - | - |
Как показано в таблице 1, площади поверхности всех трех углеродных носителей являются подобными. Однако площадь поверхности МС и СМК-3 является приписываемой мезопорам, тогда как площадь поверхности АУ является приписываемой микропорам. Кроме того, мезопористый углерод имеет относительно большой объем мезопор и относительно узкое распределение пор. Средний размер пор МС составляет 4,9 нм, а средний размер пор СМК-3 составляет 3,7 нм.
Пример 2
Получение МС-R носителя способом твердой матрицы
Получают смешанный раствор 5,5 г резорцина (R) и 8,5 г формальдегида (F). 30 г 40% масс. силиказоля (Ludox HS-40y) смешивают с полученным RF-золем. Полученную смесь сначала обрабатывают при 50°C в течение 24 ч и затем обрабатывают при 90°C в течение 72 ч и затем карбонизируют при 900°C в N2 в течение 3 ч. В конце диоксид кремния промывают с использованием HF. После сушки при 80°C до утра получают MC-Rm (m представляет собой мольное отношение Si к R). Параметры пористой структуры MC-R-носителей с различным отношением Si/R представлены в таблице 2.
Таблица 2 Пористая структура MC-R носителей с различным отношением |
|||||
Si/R | SБЭТ (м2/г) | Sмикро (м2/г) | Vмикро (см3/г) | Vмезо (см3/г) | D (нм) |
MC-R4 | 1022 | 196 | 0,08 | 2,36 | 9,6 |
MC-R2 | 621 | 203 | 0,09 | 1,02 | 8,7 |
MC-R1 | 514 | 246 | 0,11 | 0,53 | 8,1 |
Пример 3
Получение катализатора WCx/MC (x=0,5-1) с использованием пропитки
1,0 г мезопористого углерода МС пропитывают водным раствором, содержащим 0,588 г метавольфрамата аммония ((МВА)(АМТ)) в 3-4 мл Н2О, с последующей сушкой при 120°C в термошкафу. Образец затем восстанавливают в токе Н2 120 мл/мин при регулируемом нагревании: от комнатной температуры до 550°C со скоростью 8,8°C/мин и затем до 900°C со скоростью 1°C/мин и выдерживают при этой температуре в течение 1 ч. Теоретическое содержание W в катализаторе составляет 30% масс.
Пример 4
Получение катализатора WCx/СМК-3 (x=0,5-1) с использованием пропитки
Способ получения является таким же, как описано в примере 3, за исключением того, что углеродным носителем является СМК-3, полученный в примере 1. Теоретическое содержание W в катализаторе составляет 30% масс.
Пример 5
Получение катализатора WCx/МС-60% масс. и WCx/СМК-8-10% масс. (x=0,5-1) с использованием пропитки
Способ получения является таким же, как описано в примере 3, за исключением того, что теоретическое содержание W в катализаторе составляет 60% масс. и 10% масс. соответственно.
Пример 6
Получение катализатора WCx/МС-R с использованием пропитки
Способ получения является таким же, как в примере 3, за исключением того, что углеродным носителем является MC-R, полученный в примере 2. Теоретическое содержание W в катализаторе составляет 30% масс.
Сравнительный пример 1
Получение катализатора WCx/АУ с использованием пропитки
Способ получения является таким же, как в примере 3, за исключением того, что углеродным носителем является обычный активированный уголь АУ, имеющий такую же площадь поверхности, как у МС. Теоретическое содержание W в катализаторе составляет 30% масс.
Как показано на рентгеноструктурных диаграммах на фиг.1, наиболее значительные пики карбида вольфрама на МС-носителе WCx/MC несомненно являются шире, чем пики карбида вольфрама, нанесенного на другие два углеродных носителя, указывая на меньший средний размер частиц карбида вольфрама на МС-носителе. Как показано на фиг.2, СО хемосорбция на катализаторах WCx/MC, WCx/СМК-3 и WCx/АУ составляет 39,72, 20,90 и 8,22 мкмоль/г, соответственно, что предполагает, что частицы карбида вольфрама лучше диспергируются на трехмерном (3D) взаимосоединенном мезопористом углеродном (МС) носителе.
Сравнительный пример 2
Получение катализаторов Ni-WCx/MC, Ni-WCx/СМК-3 и Ni-WCx/АУ с использованием совместной пропитки
1,0 г углеродного носителя пропитывают водным раствором, содержащим 0,588 г метавольфрамата аммония ((МВА)(АМТ)) и 0,157 г нитрата никеля в 3-4 мл Н2О, с последующей сушкой при 120°C в термошкафу. Предшественник катализатора затем карбюрируют в токе Н2 60 мл/мин при регулируемом нагревании: от комнатной температуры до 450°C со скоростью 8,8°C/мин и затем до 750°C со скоростью 1°C/мин и выдерживают при этой температуре в течение 1 ч. Теоретическое содержание W и Ni в катализаторе составляет 30% масс. и 2% масс. соответственно.
Как показано на фиг.3, пики на рентгеноструктурной диаграмме карбида вольфрама на никельпромотированных катализаторах являются резче, чем пики без введения Ni, указывая на то, что введение Ni способствует агрегации частиц карбида вольфрама.
Пример 7
Эксперименты по каталитическому расщеплению целлюлозы
1,0 г целлюлозы, 0,3 г катализатора, полученного, как описано выше, и 100 мл воды загружают в 300 мл реактор. Реактор заполняют водородом и вентилируют шесть раз для удаления воздуха. Затем давление водорода в реакторе увеличивают до 6 МПа. Смесь перемешивают при 1000 об/мин. Тем временем температура в реакторе повышается до 245°C. После взаимодействия в течение тридцати минут смесь в реакторе охлаждают до комнатной температуры и фильтруют с получением слоя надосадочной жидкости. Надосадочную жидкость анализируют с использованием высокоэффективной жидкостной хроматографии ((ВЭЖХ)(HPLC)) c кальциевой ионообменной колонкой и определяют с использованием датчика показателя преломления. Конверсию целлюлозы определяют по изменению массы сухого твердого вещества до и после реакции. Выход жидких продуктов рассчитывают по уравнению:
выход (5)=(масса продукта)/(масса целлюлозы)×100%.
Таблица 3 Каталитическая конверсия целлюлозы в присутствии различных катализаторов |
||||||
Катализатор | Конверсия (%) | |||||
ЭГ | Сор. | Ман. | Эр. | ПГ | ||
WCx/МС | 100 | 72,9 | 1,2 | 1,4 | 1,5 | 5,1 |
WCx/СМК-3 | 100 | 71,1 | 1,7 | 2,4 | 1,9 | 6,4 |
WCx/CMK-8-10% масс. | 100 | 54,1 | 1,0 | 2,2 | 1,5 | 5,2 |
WCx/AC | 100 | 47,5 | 0,6 | 1,1 | 1,1 | 3,6 |
WCx/MC-60% масс. | 100 | 70,2 | 1,8 | 1,6 | 1,9 | 4,8 |
WCx/MC-R4 | 100 | 52,4 | 0 | 0,6 | 1,2 | 6,2 |
WCx/MC-R2 | 100 | 53,1 | 1,1 | 1,3 | 1,6 | 6,7 |
WCx/MC-Rl | 99,5 | 57,9 | 2,3 | 1,4 | 1,3 | 4,9 |
Ni-WCx/MC | 100 | 74,4 | 2,2 | 3,0 | 2,3 | 4,5 |
Ni-WCx/CMK | 100 | 72,4 | 1,5 | 2,5 | 1,5 | 5,3 |
Ni-WCx/АУ | 100 | 61,7 | 5,4 | 3,9 | 4,2 | 3,4 |
Примечание: ЭГ, Сор., Ман., Эр. и ПГ представляют собой этиленгликоль, сорбит, маннит, эритрит и 1,2-пропиленгликоль соответственно. Кроме указанного в таблице 3 процентного содержания содержание W и Ni катализаторов составляет 30% масс. и 2% масс. соответственно |
Как показано в таблице 3, при использовании различных вольфрамкарбидных катализаторов на мезопористых углеродных носителях в данном изобретении целлюлоза расщепляется до этиленгликоля с высокой активностью и селективностью даже без никеля в качестве промотора. Выход этиленгликоля превышает 70%. Высокая активность вольфрамкарбидных катализаторов на мезопористых углеродных носителях может быть обусловлена мезопористой структурой МС носителя, которая улучшает диспергирование карбида вольфрама и перемещение молекул реагентов и продукта, таким образом приводя к значительно лучшей селективности. Введение никеля увеличивает выход этиленгликоля. С другой стороны, для катализаторов на мезопористом углеродном носителе введение никеля вызывает агрегацию частиц карбида вольфрама. Следовательно, увеличение выхода этиленгликоля является необычным.
Claims (10)
1. Вольфрамкарбидный катализатор на мезопористом углеродном носителе для прямой каталитической конверсии целлюлозы в этиленгликоль, в котором
носителем является мезопористый углерод;
вольфрамкарбидные катализаторы диспергированы на поверхности или в каналах углеродного носителя;
металлический компонент W составляет от 1 до 80% масс. катализатора и, в частности, от 30 до 42% масс.
носителем является мезопористый углерод;
вольфрамкарбидные катализаторы диспергированы на поверхности или в каналах углеродного носителя;
металлический компонент W составляет от 1 до 80% масс. катализатора и, в частности, от 30 до 42% масс.
2. Катализатор по п.1, в котором металлический компонент Ni промотора составляет от 0,1 до 30% масс. катализатора и, в частности, от 2 до 5% масс.
3. Катализатор по п.1, в котором носителями являются аморфный мезопористый углерод МС, MC-R и упорядоченный мезопористый углерод СМК-3, СМК-8.
4. Катализатор по п.1, в котором носитель синтезируют способом нанолитья; твердыми матрицами являются коммерческий силиказоль или силиказоль с диаметром 5-100 нм, упорядоченный SBA-15 и KIT-6; углеродными предшественниками являются сахароза, фенольная смола, мезофазный пек, фурфуриловый спирт или их смесь; 1 г твердой матрицы пропитывают 0,1-10 г углеродного предшественника, нагревают при 40-350°C в течение более 0,5 ч и карбонизируют при 400-1000°C в инертной атмосфере в течение более 0,5 ч, твердую матрицу удаляют раствором HF или NaOH, причем концентрацию кислоты или щелочи выбирают надлежащим образом для удаления матрицы без разрушения структуры канала; после фильтрации, промывки и сушки при 60-120°C получают мезопористые углероды с различной структурой.
5. Катализатор по п.4, в котором МС, СМК-3 и СМК-8 синтезируют с коммерческим силиказолем, упорядоченным SBA-15 и KIT-6 в качестве твердых матриц; 1 г твердой матрицы пропитывают 1,0-2,1 г сахарозы, 0,1-0,3 г концентрированной H2SO4 и 5-8 мл H2O, и полученную смесь сушат при 95-110°C в течение 6 ч и при 160-170°C в течение 6 ч; конечное твердое вещество карбонизируют при 800-900°C в N2 в течение 3-6 ч; твердую матрицу диоксида кремния удаляют 5% масс. раствором HF или 2М раствором NaOH при 60-80°C в течение 2-24 ч; после фильтрации, промывки и сушки при 80-120°C получают МС, СМК-3 и СМК-8.
6. Катализатор по п.4, в котором твердой матрицей является коммерческий диоксид кремния со средним диаметром 5-100 нм; углеродным предшественником является смешанный раствор резорцина (R) и формальдегида (F), причем отношение R/F составляет от 0,1 до 2; смешивают смесь резорцина (R) и формальдегида (F) с силиказолем в течение более 10 мин, причем отношение Si/R составляет от 0,1 до 20; полученную смесь обрабатывают при 40-160°C в течение более 0,5 ч, и затем твердое вещество карбонизируют при 400-1000°C в инертной атмосфере в течение более 0,5 ч; твердую матрицу диоксида кремния удаляют раствором HF или NaOH, причем концентрацию кислоты или щелочи выбирают надлежащим образом для удаления матрицы без разрушения структуры канала; после фильтрации, промывки и сушки при 60-120°C получают MC-R.
7. Способ получения катализатора по любому из пп.1-6, в котором катализатор получают пропиткой мезопористого углеродного носителя раствором соли вольфрама и никеля или вольфрама, сушкой при 40-140°C и карбюрированием в токе H2 в течение более 0,5 ч; причем катализатор без введения Ni карбюрируют при 850-1000°C, а катализатор с введением Ni карбюрируют при 650-800°C.
8. Способ по п.7, в котором углеродный носитель МС, СМК-3, СМК-8, MC-R пропитывают раствором соли вольфрама и никеля или вольфрама, сушат при 110-120°C и карбюрируют в токе H2 в течение более 1 ч; причем катализатор без Ni карбюрируют при 850-900°C, а катализатор с Ni карбюрируют при 700-750°C.
9. Применение катализатора по любому из пп.1-6 в прямой каталитической конверсии целлюлозы в этиленгликоль, причем реакция проводится в герметичном реакторе высокого давления с перемешиванием; массовое отношение целлюлозы к воде находится в интервале от 1:200 до 1:1; массовое отношение целлюлозы к катализатору находится в интервале от 1:1 до 100:1; начальное давление водорода при комнатной температуре составляет от 1 до 12 МПа; температура реакции составляет 120-300°C, и время реакции составляет более 10 мин.
10. Применение по п.9, где реакцию осуществляют в герметичном реакторе высокого давления с перемешиванием; массовое отношение целлюлозы к воде составляет 1:100; массовое отношение целлюлозы к катализатору составляет 10:3; начальное давление водорода при комнатной температуре составляет от 3 до 7 МПа; температура реакции составляет 180-250°C, и время реакции составляет 30-180 мин.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101882215A CN102049273B (zh) | 2009-10-27 | 2009-10-27 | 一种介孔炭担载的碳化钨催化剂及其制备和应用 |
CN200910188221.5 | 2009-10-27 | ||
PCT/CN2010/077981 WO2011050691A1 (zh) | 2009-10-27 | 2010-10-22 | 一种介孔炭担载的碳化钨催化剂及其制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012121909A RU2012121909A (ru) | 2013-12-10 |
RU2528389C2 true RU2528389C2 (ru) | 2014-09-20 |
Family
ID=43921322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012121909/04A RU2528389C2 (ru) | 2009-10-27 | 2010-10-22 | Вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения |
Country Status (11)
Country | Link |
---|---|
US (1) | US8889585B2 (ru) |
EP (1) | EP2495042B1 (ru) |
JP (1) | JP5426776B2 (ru) |
KR (1) | KR101396374B1 (ru) |
CN (1) | CN102049273B (ru) |
CA (1) | CA2774315C (ru) |
ES (1) | ES2699157T3 (ru) |
MX (1) | MX339773B (ru) |
RU (1) | RU2528389C2 (ru) |
WO (1) | WO2011050691A1 (ru) |
ZA (1) | ZA201202801B (ru) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101648140B (zh) * | 2008-08-14 | 2011-09-07 | 中国科学院大连化学物理研究所 | 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用 |
CN102049273B (zh) | 2009-10-27 | 2013-05-01 | 中国科学院大连化学物理研究所 | 一种介孔炭担载的碳化钨催化剂及其制备和应用 |
CN102190562B (zh) | 2010-03-17 | 2014-03-05 | 中国科学院大连化学物理研究所 | 一种多羟基化合物制乙二醇的方法 |
ITMI20111206A1 (it) * | 2011-06-30 | 2012-12-31 | Fond Cassa Di Risparmio Delle Province Lomba | Catalizzatori esenti da metalli preziosi adatti alla riduzione elettrochimica di ossigeno |
CN103608320A (zh) * | 2011-07-28 | 2014-02-26 | 环球油品公司 | 由糖类生产多元醇 |
US9776177B2 (en) | 2012-03-29 | 2017-10-03 | Wayne State University | Bimetal catalysts |
KR101468377B1 (ko) * | 2012-11-20 | 2014-12-02 | 한국화학연구원 | 합성가스로부터 함산소탄소화합물 제조를 위한 규칙적인 메조다공성 탄소계 촉매 및 이를 이용한 함산소탄소화합물의 제조방법 |
KR20140104636A (ko) * | 2013-02-20 | 2014-08-29 | 한국화학연구원 | 피셔 트롭시 합성용 코발트 촉매, 제조방법 및 이를 이용한 액체 탄화수소 제조방법 |
WO2014133236A1 (ko) * | 2013-02-28 | 2014-09-04 | 한국화학연구원 | 다공성 탄소 물질에 담지된 피셔 트롭시 합성용 촉매 및 그 제조방법 |
CN106795081B (zh) | 2014-05-19 | 2018-12-28 | 爱荷华谷类推广协会 | 由糖类连续制备乙二醇的方法 |
KR101533535B1 (ko) * | 2014-09-01 | 2015-07-03 | 성균관대학교산학협력단 | 폴리올로부터 글리콜 생산을 위한 텅스텐 카바이드 계열의 촉매 |
JP6483478B2 (ja) * | 2015-03-06 | 2019-03-13 | 日清紡ホールディングス株式会社 | 炭化タングステン系触媒及びその製造方法 |
CN105126758A (zh) * | 2015-09-11 | 2015-12-09 | 华东理工大学 | 一种血液净化用球形中孔炭的制备方法 |
CN106430209B (zh) * | 2016-09-19 | 2019-02-12 | 中冶东方工程技术有限公司 | 介孔纳米碳化钨的制备方法及产品 |
US10392567B2 (en) * | 2016-10-28 | 2019-08-27 | Alliance For Sustainable Energy, Llc | Catalysts and methods for converting biomass to liquid fuels |
CN107486246B (zh) * | 2017-09-12 | 2020-02-18 | 南京大学昆山创新研究院 | Wc多晶泡沫陶瓷催化剂、其制备方法及利用其催化废塑料与生物柴油产烃的方法 |
KR102346840B1 (ko) * | 2017-11-08 | 2022-01-03 | 주식회사 엘지에너지솔루션 | 다공성 탄소, 이를 포함하는 양극 및 리튬-황 이차전지 |
CN113636556B (zh) * | 2021-07-22 | 2022-11-18 | 武汉大学 | 一种超小碳化钼@碳复合材料及其制备方法和应用 |
KR102609729B1 (ko) | 2021-09-29 | 2023-12-04 | 포항공과대학교 산학협력단 | 텅스텐 용해를 이용한 OER용 다공성 Ni 촉매의 제조방법 |
KR20240107303A (ko) | 2022-12-29 | 2024-07-09 | 포항공과대학교 산학협력단 | Ni 및 Fe 보다 전기음성도가 낮은 금속으로 도핑된 니켈 아이언 기반 촉매, 그 제조 방법 및 알칼라인 수전해 시스템 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002028544A1 (en) * | 2000-09-29 | 2002-04-11 | Osram Sylvania Inc. | Supported tungsten carbide material |
RU2279313C2 (ru) * | 2000-07-12 | 2006-07-10 | Альбемарл Недерландс Б.В. | Смешанный металлический катализатор, содержащий горючее связующее |
CN101411975A (zh) * | 2007-10-19 | 2009-04-22 | 中国科学院大连化学物理研究所 | 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH532844A (de) | 1969-08-01 | 1973-01-15 | Siemens Ag | Verfahren zur Herstellung einer Wolframcarbid enthaltenden Elektrode für Brennstoffelemente |
US4155928A (en) | 1975-05-16 | 1979-05-22 | Phillips Petroleum Company | Methanation of carbon monoxide over tungsten carbide-containing catalysts |
US6297185B1 (en) | 1998-02-23 | 2001-10-02 | T/J Technologies, Inc. | Catalyst |
EP1920837A3 (en) * | 1999-01-12 | 2008-11-19 | Hyperion Catalysis International, Inc. | Carbide and oxycarbide based compositions and nanorods |
US6461539B1 (en) | 1999-10-18 | 2002-10-08 | Conoco Inc. | Metal carbide catalysts and process for producing synthesis gas |
JP2003117398A (ja) * | 2001-10-12 | 2003-04-22 | Toyota Motor Corp | Wc担持触媒及びその製造方法 |
CN1490252A (zh) * | 2002-10-16 | 2004-04-21 | 天津市环境保护科学研究所 | 纳滤膜工业废液处理及物质回收工艺设计方法 |
US7196122B2 (en) * | 2003-08-27 | 2007-03-27 | Korea Advanced Institute Of Science And Technology | Nanoporous organic polymer composite and preparation method thereof and its application for catalyst |
KR100825688B1 (ko) | 2006-04-04 | 2008-04-29 | 학교법인 포항공과대학교 | 나노다공성 텅스텐 카바이드 촉매 및 그의 제조방법 |
EP2016037B1 (en) | 2006-05-08 | 2015-10-28 | Virent, Inc. | Methods and systems for generating polyols |
JP2008215253A (ja) * | 2007-03-06 | 2008-09-18 | Asahi Kasei Corp | 排NOx浄化方法及び排NOx浄化装置 |
ES2817876T3 (es) * | 2007-03-08 | 2021-04-08 | Virent Inc | Síntesis de combustibles líquidos a partir de hidrocarburos oxigenados |
CN100513371C (zh) | 2007-05-28 | 2009-07-15 | 北京大学 | 利用纤维素生产山梨醇和甘露醇的方法 |
CN100564258C (zh) * | 2007-07-13 | 2009-12-02 | 北京工业大学 | 一种利用硬模板剂合成高比表面积介孔碳分子筛的方法 |
CN101121643B (zh) | 2007-08-09 | 2010-05-19 | 厦门大学 | 六元醇的制备方法 |
CN101428213B (zh) * | 2007-11-07 | 2011-04-20 | 中国科学院大连化学物理研究所 | 炭载类贵金属催化剂在纤维素加氢水解反应中的应用 |
JP2009173522A (ja) * | 2007-12-26 | 2009-08-06 | National Institute For Materials Science | メソポーラスカーボン(cnp−2)およびその製造方法 |
US8563124B2 (en) * | 2008-02-07 | 2013-10-22 | The Regents Of The University Of California | Carbon materials with interconnected pores |
US7910082B2 (en) * | 2008-08-13 | 2011-03-22 | Corning Incorporated | Synthesis of ordered mesoporous carbon-silicon nanocomposites |
CN101648140B (zh) * | 2008-08-14 | 2011-09-07 | 中国科学院大连化学物理研究所 | 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用 |
CN101723802B (zh) * | 2008-10-24 | 2013-06-19 | 中国科学院大连化学物理研究所 | 一种纤维素制乙二醇的方法 |
CN101735014B (zh) | 2008-11-26 | 2013-07-24 | 中国科学院大连化学物理研究所 | 一种多羟基化合物制乙二醇的方法 |
CN102049273B (zh) | 2009-10-27 | 2013-05-01 | 中国科学院大连化学物理研究所 | 一种介孔炭担载的碳化钨催化剂及其制备和应用 |
CN101869853B (zh) * | 2010-05-28 | 2012-07-11 | 中山大学 | 有序介孔碳/碳化钨复合材料与其负载型催化剂以及它们的制备方法 |
US8222462B2 (en) * | 2011-07-28 | 2012-07-17 | Uop Llc | Process for generation of polyols from saccharides |
US8410319B2 (en) * | 2011-07-28 | 2013-04-02 | Uop Llc | Continuous catalytic generation of polyols from cellulose with recycle |
US8323937B2 (en) * | 2011-07-28 | 2012-12-04 | Uop Llc | Continuous catalytic generation of polyols from cellulose |
US8222465B2 (en) | 2011-07-28 | 2012-07-17 | Uop Llc | Catalytic process for continuously generating polyols |
US20110312487A1 (en) | 2011-07-28 | 2011-12-22 | Uop Llc | Catalyst system for generation of polyols from saccharides |
US8222463B2 (en) | 2011-07-28 | 2012-07-17 | Uop Llc | Process for generation of polyols from saccharide containing feedstock |
US8222464B2 (en) | 2011-07-28 | 2012-07-17 | Uop Llc | Catalytic process for continuously generating polyols |
-
2009
- 2009-10-27 CN CN2009101882215A patent/CN102049273B/zh active Active
-
2010
- 2010-10-22 RU RU2012121909/04A patent/RU2528389C2/ru active
- 2010-10-22 ES ES10826054T patent/ES2699157T3/es active Active
- 2010-10-22 US US13/395,460 patent/US8889585B2/en active Active
- 2010-10-22 EP EP10826054.8A patent/EP2495042B1/en active Active
- 2010-10-22 CA CA2774315A patent/CA2774315C/en active Active
- 2010-10-22 MX MX2012003651A patent/MX339773B/es active IP Right Grant
- 2010-10-22 JP JP2012535607A patent/JP5426776B2/ja active Active
- 2010-10-22 KR KR1020127013491A patent/KR101396374B1/ko active IP Right Grant
- 2010-10-22 WO PCT/CN2010/077981 patent/WO2011050691A1/zh active Application Filing
-
2012
- 2012-04-17 ZA ZA2012/02801A patent/ZA201202801B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2279313C2 (ru) * | 2000-07-12 | 2006-07-10 | Альбемарл Недерландс Б.В. | Смешанный металлический катализатор, содержащий горючее связующее |
WO2002028544A1 (en) * | 2000-09-29 | 2002-04-11 | Osram Sylvania Inc. | Supported tungsten carbide material |
CN101411975A (zh) * | 2007-10-19 | 2009-04-22 | 中国科学院大连化学物理研究所 | 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用 |
Also Published As
Publication number | Publication date |
---|---|
KR20120072386A (ko) | 2012-07-03 |
EP2495042A1 (en) | 2012-09-05 |
MX339773B (es) | 2016-06-09 |
JP2013508148A (ja) | 2013-03-07 |
RU2012121909A (ru) | 2013-12-10 |
CN102049273A (zh) | 2011-05-11 |
US8889585B2 (en) | 2014-11-18 |
WO2011050691A1 (zh) | 2011-05-05 |
US20120178974A1 (en) | 2012-07-12 |
MX2012003651A (es) | 2012-05-08 |
CN102049273B (zh) | 2013-05-01 |
CA2774315A1 (en) | 2011-05-05 |
CA2774315C (en) | 2014-08-12 |
EP2495042B1 (en) | 2018-08-22 |
EP2495042A4 (en) | 2013-04-24 |
ZA201202801B (en) | 2013-02-27 |
JP5426776B2 (ja) | 2014-02-26 |
KR101396374B1 (ko) | 2014-05-19 |
ES2699157T3 (es) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2528389C2 (ru) | Вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения | |
Hamdy et al. | New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol | |
Chen et al. | Effective dispersion of MgO nanostructure on biochar support as a basic catalyst for glucose isomerization | |
Zhou et al. | In situ MnO x/N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes | |
Liu et al. | Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon | |
Zhang et al. | Na 2 HPO 4-modified NaY nanocrystallites: efficient catalyst for acrylic acid production through lactic acid dehydration | |
Cui et al. | Preserving the active Cu–ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol | |
US20090078913A1 (en) | Carbonaceous materials | |
Yang et al. | Utilization of biomass waste: Facile synthesis high nitrogen-doped porous carbon from pomelo peel and used as catalyst support for aerobic oxidation of 5-hydroxymethylfurfural | |
Alsultan et al. | Preparation of activated carbon from walnut shell doped la and Ca catalyst for biodiesel production from waste cooking oil | |
Xue et al. | Upgrading ethanol to higher alcohols via biomass-derived Ni/bio-apatite | |
Luo et al. | Effect of tungsten modification on zirconium phosphate-supported Pt catalyst for selective hydrogenolysis of glycerol to 1-propanol | |
JP5928894B2 (ja) | 多価アルコールの水素化分解用触媒、及び該触媒を使用する1,3−プロパンジオールの製造方法 | |
Zhang et al. | Effective conversion of cellulose to sorbitol catalyzed by mesoporous carbon supported ruthenium combined with zirconium phosphate | |
Jiang et al. | One-pot synthesis of 5-hydroxymethylfurfural from glucose over zirconium doped mesoporous KIT-6 | |
Wu et al. | Esterification of levulinic acid into hexyl levulinate over dodecatungstophosphoric acid anchored to Al-MCM-41 | |
Zhang et al. | An alumina‐coated UiO‐66 nanocrystalline solid superacid with high acid density as a catalyst for ethyl levulinate synthesis | |
Pothu et al. | Sustainable conversion of biodiesel-waste glycerol to acrolein over Pd-modified mesoporous catalysts | |
Park et al. | Decomposition of 4-phenoxyphenol to aromatics over palladium catalyst supported on activated carbon aerogel | |
Zhou et al. | A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co 3 O 4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation | |
Anutrasakda et al. | Performances of mesoporous silica-supported nickel phosphide nanocatalysts in the one-pot transformation of cellobiose to sorbitol | |
Longo et al. | Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation | |
Oton et al. | Catalytic acetalization of glycerol to biofuel additives over NiO and Co3O4 supported oxide catalysts: experimental results and theoretical calculations | |
Thithai et al. | Physicochemical properties of activated carbon produced from corn stover by chemical activation under various catalysts and temperatures | |
KR101298688B1 (ko) | 양이온 치환 헤테로폴리산을 포함한 활성 카본에어로젤에 담지된 귀금속 촉매 및 상기 촉매를 이용한 리그닌 화합물 분해 방법 |