RU2523092C2 - Способ и устройство для измерения геометрии профиля сферически изогнутых, в частности, цилиндрических тел - Google Patents
Способ и устройство для измерения геометрии профиля сферически изогнутых, в частности, цилиндрических тел Download PDFInfo
- Publication number
- RU2523092C2 RU2523092C2 RU2012143402/28A RU2012143402A RU2523092C2 RU 2523092 C2 RU2523092 C2 RU 2523092C2 RU 2012143402/28 A RU2012143402/28 A RU 2012143402/28A RU 2012143402 A RU2012143402 A RU 2012143402A RU 2523092 C2 RU2523092 C2 RU 2523092C2
- Authority
- RU
- Russia
- Prior art keywords
- laser
- measured object
- camera
- profile
- angle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Изобретение относится к методу измерения геометрии профиля цилиндрических тел в качестве измеряемых объектов с использованием метода двухмерного светового сечения, при котором с использованием, по меньшей мере, одного лазера проецируется веерообразная лазерная линия в качестве линии светового сечения на поверхность тела и отраженные от поверхности тела лучи воспринимаются, по меньшей мере, одной камерой для съемки поверхностей, причем лазер и камера расположены под углом триангуляции в нормальной плоскости по линии оси цилиндра. Согласно методу для измерения геометрии профиля лазер поворачивается вокруг оси цилиндра из нормальной плоскости, причем угол к нормальной плоскости выбирается таким, чтобы оптическая ось камеры для съемки поверхностей, направленная на поверхность цилиндра, находилась в области скользящих углов отраженных лучей. Технический результат - усиление отражения лазерных лучей в камеру и из критических краевых областей измеряемого объекта. 2 н. и 4 з.п. ф-лы, 2 ил.
Description
Область техники, к которой относится изобретение.
Изобретение относится к способу измерения геометрии профиля сферически изогнутых, в частности цилиндрических, тел согласно п.1 формулы изобретения, а также устройству для осуществления способа согласно п.3 формулы изобретения.
Изобретение относится, в частности, к оптическому измерению профиля, которое проводится бесконтактно методом светового сечения как одним и без того известных методов двухмерной триангуляции.
При этом в условиях происходящего относительного движения датчика и измеряемого объекта путем объединения последовательно снимаемых двухмерных «профильных сечений» может строиться трехмерный «комплексный профиль» измеряемого объекта, например такого, как труба.
Рассматриваемое в рамках настоящего изобретения измерение профиля базируется в своей одномерной форме на известной точечной триангуляции, при которой лазер и построчный определяющий местоположение детектор образуют сенсор триангуляции. Ось лазерного луча и оптическая ось детектора образуют плоскость, называемую далее «нормальной плоскостью», и расположены относительно друг друга под углом триангуляции. Обычно удаление измеряемого объекта от сенсора в направлении лазерного луча является измеряемым показателем. Этот способ известен, например, из DE 4037383 А1.
Двухмерное расширение точечной триангуляции является объектом настоящей патентной заявки. В этом, также в принципе известном, методе светового сечения точечный лазерный луч заменяется веером лазерного луча и одномерный строчечный детектор двухмерным плоским детектором.
Уровень техники.
В известном способе расширение происходит соответственно ортогонально и симметрично относительно плоскости, названной выше нормальной плоскостью. Соответствующая область измерения на измеряемом объекте отображается с помощью объектива на детекторе, причем объектив и детектор при этом образуют двухмерно работающую камеру для съемки поверхностей.
Веер лазерного луча при этом генерируется обычным способом размещенной перед выходящим точечным лазерным лучом дифракционной оптикой и таким образом отображает на измеряемом объекте линию, называемую «линией светового сечения».
При применении описанного метода на цилиндрических измеряемых объектах, например, но не обязательно, - на трубах, линия светового сечения обычно проходит ортогонально относительно оси трубы. При аксиальном продольном перемещении труб или соответствующем движении сенсора по мере проведения измерений, как уже было сказано выше, снимается трехмерный профиль геометрии трубы.
При проведении измерения светового сечения описанным образом проявляется характерный, обусловленный геометрией измеряемого объекта недостаток, который точное определение геометрии профиля по частям делает даже невозможным.
На фиг.1 схематически отражен касающийся этого уровень техники двухмерного измерения цилиндрической трубы с использованием светового сечения. Для измерения используется изображение веерообразно облученной в виде спроецированной лазерной линии 2 лазером 1 поверхности измеряемого объекта 4 на исполненном в виде камеры 3 детекторе.
Левая часть чертежа схематически показывает вид в продольного сечения, а правая часть чертежа поперечного сечения относительно продольной оси измеряемого объекта. Световые сечения лазера 1 и камеры 2 размещены при этом в нормальной плоскости по линии продольной оси измеряемого объекта, причем угол между осью веера 5 лазерного луча лазера 1 и оптической осью 6 камеры 3 в продольном сечении является углом триангуляции.
Недостатком при этом расположении является то, что при измерении в камеру 3 для оценки попадает только незначительная часть отраженной энергии лазерного луча. В частности, при проведении динамического измерения особое значение имеет энергия в расчете на один интервал времени экспозиции, что, в частности, при быстром относительном движении между камерой 3 и измерительным объектом 4 и в связи с этим неизбежно коротком времени экспозиции является критическим и может сделать трехмерное измерение профиля даже невозможным.
Этот недостаток измерения известным способом при применении на цилиндрических геометриях усиливается угловыми условиями по причине веерообразного расширения лазерного луча 2 и поэтому проявляется особенно сильно в краевых областях поля измерений, в частности, там, где в результате искривления поверхности камерой 3 улавливается еще меньшая часть отраженной энергии лазерного луча.
Недостатком является уменьшение интенсивности в краевых областях отображенной линии светового сечения и для отношения сигнал/шум при оценке сигнала и, тем самым, в итоге для точности измерения сигнала.
Повышение выходной мощности лазера, хотя и приводит к улучшению отношения сигнал/шум, связано с недостатком повышения затрат на лазер и защиту от лазера.
Принципиально также возможное увеличение времени экспозиции камеры исключается само собой при быстром относительном движении между сенсором и измеряемым объектом из-за увеличивающейся нерезкости за счет движения объекта.
Принципиально при наличии типичной характеристики рассеивания поверхности измеряемого объекта был бы также возможен более крутой угол зрения камеры (т.е. более крутой угол триангуляции), однако он уменьшил бы, в частности, разрешающую способность.
За счет трех выше названных мероприятий проблема неравномерного распределения интенсивности, однако, не была бы решена; при достаточной краевой интенсивности была бы даже опасность расплывания изображения в центральной области.
Раскрытие изобретения.
В основе настоящего изобретения поставлена задача создать легко реализуемый способ измерения способом двухмерного светового сечения геометрии профиля измеряемого объекта для сферических, в частности цилиндрических, тел, с помощью которого преодолевались бы отмеченные недостатки. Другая задача состоит в том, чтобы предложить соответствующее устройство.
Эта задача решается в изобретении отличительными признаками п.1 формулы изобретения. Предпочтительные варианты являются объектами зависимых пунктов.
Согласно изобретению для измерения геометрии профиля лазер из нормальной плоскости поворачивается вокруг оси цилиндра, причем угол к нормальной плоскости выбирается таким, чтобы оптическая ось камеры для съемки поверхностей относительно поверхности цилиндра находилась в области углов скольжения отраженных лучей.
На основе изобретения путем своеобразного пространственного расположения съемочной камеры и веерного лазерного луча с учетом характеристической геометрии измеряемого объекта легко реализуемым путем преодолеваются недостатки известных методов.
Предложенная инновация описывается здесь в качестве примера для измерительного объекта с цилиндрической геометрией, правда, ее можно переносить соответствующим образом на другие сферические геометрии, например профили боковой поверхности.
В то время как в известных осуществлениях метода светового сечения лазер и камера расположены в получившей выше определение нормальной плоскости по линии оси цилиндра, в предложенной инновации лазер специально поворачивается из этой плоскости вокруг оси цилиндра, поэтому лазер освещает поверхность под углом.
Предпочтительно при этом, если лазер и камера расположены так, что угол съемки относительно оси цилиндра находится в области углов скольжения для расположения оси веера лазерного луча и оптической оси съемочной камеры.
Угол скольжения при этом вообще обозначает угол, при котором матовые не идеально отражающие поверхности при определенном угле проявляют повышенное отражение света, т.е. «блестят». В отличие от известной измерительной техники в данном случае этот эффект используется для того, чтобы путем специального поворачивания лазера из нормальной плоскости усилить отражение лазерных лучей в камеру и из критических краевых областей измеряемого объекта.
Осуществление изобретения.
При поле измерений, симметричном относительно нормальной плоскости, как типичном случае применения предпочтительно применяются два симметрично расположенных лазера (фигура 2).
При одинаковой длине линии светового сечения на боковой поверхности цилиндра получают на основе предложенной инновационной компоновки согласно изображению поперечного сечения на фиг.2 увеличенную область регистрации, т.е. область измерений профиля. Лазер 1, 1' согласно изобретению из нормальной плоскости поворачивается вокруг оси цилиндра, причем угол триангуляции (проецируемый на нормальную плоскость) и тем самым также разрешающая способность по расстоянию при измерении профиля остаются прежними.
При сложении сплошной линии светового сечения из двух частей спроецированной на поверхности измеряемого объекта 4 лазерной линии 2' обе части располагаются по отношению друг к другу прямолинейно, причем отраженные от поверхности лучи воспринимаются расположенной между лазерами 1, 1' камерой 3 и передаются не изображенному на чертеже устройству обработки данных.
Компоновка с двумя лазерами с обеих сторон нормальной плоскости, в которой находится камера, оказывается также предпочтительной при распространении на многоканальное устройство, которым, например, можно снимать всю боковую поверхность цилиндра. Для использования необходимо одинаковое число камер и вееров лазерного луча. Необходимое количество каналов определяется в каждом конкретном случае, исходя из взаимодействия отражательной способности боковой поверхности цилиндра, мощности лазера и (необходимого) времени экспозиции.
Claims (6)
1. Способ измерения геометрии профилей сферически изогнутых, в частности цилиндрических, тел в качестве измеряемых объектов (4) с использованием двухмерного метода светового сечения, при котором в качестве линии светового сечения на поверхности тела, по меньшей мере, одним лазером (1, 1') отображают веерообразную лазерную линию (2, 2') и отраженные от поверхности тела лучи воспринимают, по меньшей мере, одной камерой (3) для съемки поверхностей, причем лазер (1, 1') и камера (3) расположены под углом триангуляции в нормальной плоскости по линии оси цилиндра и измеренные величины передают затем устройству для обработки данных для отображения геометрии профиля, отличающийся тем, что для измерения геометрии профиля лазер (1, 1') из нормальной плоскости поворачивают вокруг оси цилиндра из нормальной плоскости, причем угол к нормальной плоскости выбирают таким, чтобы оптическая ось (6) камеры для съемки поверхностей, направленная на поверхность цилиндра, находилась в области углов скольжения отраженных лучей.
2. Способ по п.1, отличающийся тем, что измерение геометрии профиля измеряемого объекта (4) происходит с использованием нескольких распределенных над боковой поверхностью измеряемого объекта лазеров (1, 1'), веерообразные лазерные линии (2, 2') которых находятся на одной линии и частично перекрывают друг друга, а отраженные от поверхности измеряемого объекта лазерные лучи детектируют расположенными в пространствах между лазерами камерами (3).
3. Способ по п.2, отличающийся тем, что при измерении боковой поверхности измеряемого объекта (4) используют одинаковое число лазеров (1, 1') и камер (3).
4. Устройство для измерения геометрии профиля сферически изогнутых тел, в частности цилиндрических тел, по любому из пп.1-3, состоящее, по меньшей мере, из одного проецирующего на измеряемый объект (4) веерообразную лазерную линию (2) лазера (1, 1') и, по меньшей мере, одной расположенной к нему под углом триангуляции камеры (3) для съемки поверхностей, детектирующей отраженное от поверхности измеряемого объекта (4) лазерное излучение, причем лазер (1, 1') и камера (3) расположены в нормальной плоскости по линии оси цилиндра и присоединены к обрабатывающему устройству для отображения геометрии профиля, отличающееся тем, что ось (5) веера лазерного луча выведена из нормальной плоскости и направлена на поверхность измеряемого объекта (4) под отклоняющимся от ортогонального углом, причем оптическая ось (6) камеры (3) для съемки поверхностей, направленная на поверхность цилиндра, находится в области углов скольжения отраженных лазерных лучей.
5. Устройство по п.4, отличающееся тем, что для измерения профиля над боковой поверхностью измеряемого объекта (4) установлено несколько распределенных над боковой поверхностью измеряемого объекта лазеров (1, 1'), веерообразные лазерные линии (2, 2') которых находятся на одной линии и частично перекрывают друг друга, а для детектирования отраженных от поверхности измеряемого объекта (4) лазерных лучей в пространствах между лазерами (1, 1') установлены камеры (3).
6. Устройство по п.5, отличающееся тем, что при измерении боковой поверхности измеряемого объекта (4) установлено одинаковое число лазеров (1, 1') и камер (3).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201010011217 DE102010011217A1 (de) | 2010-03-11 | 2010-03-11 | Verfahren und Vorrichtung zur Messung der Profilgeometrie von sphärisch gekrümmten, insbesondere zylindrischen Körpern |
DE102010011217.8 | 2010-03-11 | ||
PCT/DE2011/000117 WO2011110144A1 (de) | 2010-03-11 | 2011-02-02 | Verfahren und vorrichtung zur messung der profilgeometrie zylindrischen körpern |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012143402A RU2012143402A (ru) | 2014-04-20 |
RU2523092C2 true RU2523092C2 (ru) | 2014-07-20 |
Family
ID=44169128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012143402/28A RU2523092C2 (ru) | 2010-03-11 | 2011-02-02 | Способ и устройство для измерения геометрии профиля сферически изогнутых, в частности, цилиндрических тел |
Country Status (8)
Country | Link |
---|---|
US (1) | US9134116B2 (ru) |
EP (1) | EP2545340B1 (ru) |
JP (1) | JP5771632B2 (ru) |
KR (1) | KR101762664B1 (ru) |
CA (1) | CA2791913C (ru) |
DE (1) | DE102010011217A1 (ru) |
RU (1) | RU2523092C2 (ru) |
WO (1) | WO2011110144A1 (ru) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2489979B1 (de) * | 2011-02-19 | 2013-06-05 | Refractory Intellectual Property GmbH & Co. KG | Verfahren zur Erkennung und Vermessung von zylindrischen Oberflächen an feuerfesten keramischen Bauteilen in metallurgischen Anwendungen |
US8755925B2 (en) | 2011-11-18 | 2014-06-17 | Nike, Inc. | Automated identification and assembly of shoe parts |
US9451810B2 (en) | 2011-11-18 | 2016-09-27 | Nike, Inc. | Automated identification of shoe parts |
US10552551B2 (en) | 2011-11-18 | 2020-02-04 | Nike, Inc. | Generation of tool paths for shore assembly |
US8849620B2 (en) | 2011-11-18 | 2014-09-30 | Nike, Inc. | Automated 3-D modeling of shoe parts |
US8958901B2 (en) | 2011-11-18 | 2015-02-17 | Nike, Inc. | Automated manufacturing of shoe parts |
DE102011056421A1 (de) * | 2011-12-14 | 2013-06-20 | V&M Deutschland Gmbh | Verfahren zur Überwachung des Fertigungsprozesses von warmgefertigten Rohren aus Stahl |
DE102012007563B3 (de) | 2012-04-10 | 2013-05-29 | Salzgitter Mannesmann Line Pipe Gmbh | Vorrichtung zum Verbinden der Enden von Rohren aus Stahl mittels Orbitalschweißen |
CA2841464C (en) * | 2013-02-01 | 2016-10-25 | Centre De Recherche Industrielle Du Quebec | Apparatus and method for scanning a surface of an article |
US9333548B2 (en) * | 2013-08-12 | 2016-05-10 | Victaulic Company | Method and device for forming grooves in pipe elements |
JP6308807B2 (ja) * | 2014-02-28 | 2018-04-11 | 株式会社キーエンス | 検査装置、制御方法およびプログラム |
US10365370B2 (en) | 2016-10-31 | 2019-07-30 | Timothy Webster | Wear tolerant hydraulic / pneumatic piston position sensing using optical sensors |
EP3502672B1 (en) | 2017-12-20 | 2022-02-09 | Fundación Tecnalia Research & Innovation | Methods and systems for visual inspection |
DE102017130909A1 (de) * | 2017-12-21 | 2019-06-27 | Weber Maschinenbau Gmbh Breidenbach | Optische Messeinrichtung |
CN109489556B (zh) * | 2019-01-05 | 2020-09-08 | 中国航空制造技术研究院 | 一种用于飞机装配的接触式曲面法向测量装置及方法 |
EP3951313A1 (de) | 2020-08-05 | 2022-02-09 | SMS Group GmbH | Geradheitsmessung länglicher werkstücke in der metallverarbeitenden industrie |
CN112378476B (zh) * | 2020-11-17 | 2022-10-04 | 哈尔滨工业大学 | 大长径比卧式罐容积多站三维激光扫描内测装置及方法 |
CN114353673A (zh) * | 2022-01-26 | 2022-04-15 | 山东钢铁集团日照有限公司 | 一种激光三角法钢板优化测长装置 |
CN114719757B (zh) * | 2022-03-23 | 2024-01-30 | 太原科技大学 | 一种基于线结构光的钢板测长系统及其测量方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2005132837A (ru) * | 2003-03-25 | 2006-02-10 | Гутехоффнунгсхютте Радзатц Гмбх (De) | Способ бесконтактного динамического определения профиля твердого тела |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57144404A (en) * | 1981-03-02 | 1982-09-07 | Sumitomo Metal Ind Ltd | Method and device for measurement of size and shape of shape steel |
US4741621A (en) | 1986-08-18 | 1988-05-03 | Westinghouse Electric Corp. | Geometric surface inspection system with dual overlap light stripe generator |
DE3921956A1 (de) * | 1989-06-06 | 1990-12-13 | Eyetec Gmbh | Verfahren zur beruehrungslosen dickenmessung von faserigen, koernigen oder poroesen materialien sowie vorrichtung zur durchfuehrung des verfahrens |
US5015867A (en) * | 1989-08-30 | 1991-05-14 | Ppg Industries, Inc. | Apparatus and methods for measuring the diameter of a moving elongated material |
KR920704092A (ko) * | 1989-12-05 | 1992-12-19 | 원본미기재 | 물체의 광 측정을 위한 방법 및 장치 |
DE4037383A1 (de) | 1990-11-20 | 1992-05-21 | Mesacon Messtechnik | Verfahren zum kontinuierlichen beruehrungsfreien messen von profilen und einrichtung zur durchfuehrung des messverfahrens |
US5669871A (en) * | 1994-02-21 | 1997-09-23 | Olympus Optical Co., Ltd. | Endoscope measurement apparatus for calculating approximate expression of line projected onto object to measure depth of recess or the like |
DE19509631A1 (de) * | 1995-03-17 | 1996-09-19 | Helmut A Kappner | Verfahren und Einrichtung zum Erkennen und Sortieren von Getränkebehältern, insbesondere Flaschen und Flaschenkästen |
DK172161B1 (da) | 1995-03-28 | 1997-12-08 | Pedershaab As | Anlæg til støbning af rørgods |
AU5270596A (en) * | 1995-03-30 | 1996-10-16 | Pipetech Aps | System identification |
US6502984B2 (en) * | 1997-01-17 | 2003-01-07 | Canon Kabushiki Kaisha | Radiographic apparatus |
DE19849793C1 (de) * | 1998-10-28 | 2000-03-16 | Fraunhofer Ges Forschung | Vorrichtung und Verfahren zur berührungslosen Erfassung von Unebenheiten in einer gewölbten Oberfläche |
DE19949275A1 (de) * | 1999-10-12 | 2001-05-03 | Wolf Henning | Meßverfahren und Meßvorrichtung zur Vermessung der Form von Objekten |
DE10006663B4 (de) | 2000-02-15 | 2006-10-05 | Metronom Ag | Verfahren zur Vermessung von langwelligen Oberflächenstrukturen |
JP2003148936A (ja) * | 2002-10-30 | 2003-05-21 | Nippon Avionics Co Ltd | 光切断法による対象物の三次元計測方法 |
JP4354343B2 (ja) * | 2004-06-15 | 2009-10-28 | 株式会社トプコン | 位置測定システム |
DE102004057092A1 (de) * | 2004-11-25 | 2006-06-01 | Hauni Maschinenbau Ag | Messen des Durchmessers von stabförmigen Artikeln der Tabak verarbeitenden Industrie |
EP2105698A1 (en) * | 2005-04-11 | 2009-09-30 | Faro Technologies, Inc. | Three-dimensional coordinate measuring device |
JP4644540B2 (ja) * | 2005-06-28 | 2011-03-02 | 富士通株式会社 | 撮像装置 |
JP5207665B2 (ja) * | 2007-06-08 | 2013-06-12 | 株式会社トプコン | 測定システム |
DE102007026900A1 (de) * | 2007-06-11 | 2008-12-18 | Siemens Ag | Auswerten der Oberflächenstruktur von Bauelementen unter Verwendung von unterschiedlichen Präsentationswinkeln |
US7755754B2 (en) * | 2007-10-23 | 2010-07-13 | Gii Acquisition, Llc | Calibration device for use in an optical part measuring system |
EP2255158A4 (en) * | 2008-03-10 | 2014-01-22 | Timothy Webster | DETECTION OF THE POSITION OF A PISTON IN A HYDRAULIC SPINDLE USING A PHOTOGRAPHIC IMAGE SENSOR |
JP5302702B2 (ja) * | 2008-06-04 | 2013-10-02 | 株式会社神戸製鋼所 | タイヤ形状検査方法,タイヤ形状検査装置 |
US9739595B2 (en) * | 2008-12-11 | 2017-08-22 | Automated Precision Inc. | Multi-dimensional measuring system with measuring instrument having 360° angular working range |
JP5813651B2 (ja) * | 2009-11-26 | 2015-11-17 | ベルス・メステヒニーク・ゲーエムベーハー | 測定オブジェクトの形状を触覚光学式に決定するための方法および装置 |
BRPI1000301B1 (pt) * | 2010-01-27 | 2017-04-11 | Photonita Ltda | dispositivo óptico para medição e identificação de superfícies cilíndricas por deflectometria aplicado para identificação balística |
JP5725922B2 (ja) * | 2011-03-25 | 2015-05-27 | 株式会社トプコン | 測量システム及びこの測量システムに用いる測量用ポール及びこの測量システムに用いる携帯型無線送受信装置 |
-
2010
- 2010-03-11 DE DE201010011217 patent/DE102010011217A1/de not_active Ceased
-
2011
- 2011-02-02 JP JP2012556377A patent/JP5771632B2/ja not_active Expired - Fee Related
- 2011-02-02 WO PCT/DE2011/000117 patent/WO2011110144A1/de active Application Filing
- 2011-02-02 US US13/583,842 patent/US9134116B2/en not_active Expired - Fee Related
- 2011-02-02 CA CA2791913A patent/CA2791913C/en not_active Expired - Fee Related
- 2011-02-02 KR KR1020127025421A patent/KR101762664B1/ko active IP Right Grant
- 2011-02-02 EP EP11711750.7A patent/EP2545340B1/de not_active Not-in-force
- 2011-02-02 RU RU2012143402/28A patent/RU2523092C2/ru not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2005132837A (ru) * | 2003-03-25 | 2006-02-10 | Гутехоффнунгсхютте Радзатц Гмбх (De) | Способ бесконтактного динамического определения профиля твердого тела |
Also Published As
Publication number | Publication date |
---|---|
RU2012143402A (ru) | 2014-04-20 |
US20130063590A1 (en) | 2013-03-14 |
DE102010011217A1 (de) | 2011-09-15 |
KR20130052548A (ko) | 2013-05-22 |
EP2545340B1 (de) | 2017-12-13 |
JP2013522580A (ja) | 2013-06-13 |
CA2791913A1 (en) | 2011-09-15 |
WO2011110144A1 (de) | 2011-09-15 |
US9134116B2 (en) | 2015-09-15 |
EP2545340A1 (de) | 2013-01-16 |
KR101762664B1 (ko) | 2017-07-28 |
JP5771632B2 (ja) | 2015-09-02 |
CA2791913C (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2523092C2 (ru) | Способ и устройство для измерения геометрии профиля сферически изогнутых, в частности, цилиндрических тел | |
US10254193B2 (en) | Systems and methods for optical scanning of fluid transport pipelines | |
JP5931225B2 (ja) | 干渉計を用いて距離変化を算定するための方法 | |
AU2005268667B2 (en) | Method and apparatus for studying surface vibrations by moving speckle interferometer | |
CN102506716A (zh) | 面内位移和离面位移同时测量的激光散斑测量装置和方法 | |
TW201221901A (en) | Method and device for evaluating surface shape | |
JP2008292296A (ja) | 透明膜の膜厚測定方法およびその装置 | |
JP2009002823A (ja) | 3次元形状測定システム、及び、3次元形状測定方法 | |
CN202281596U (zh) | 面内位移和离面位移同时测量的激光散斑测量装置 | |
JP4864734B2 (ja) | 光変位センサー及びそれを用いた変位測定装置 | |
JP2008032669A5 (ru) | ||
JP5768349B2 (ja) | スリット光輝度分布設計方法および光切断凹凸疵検出装置 | |
JP5518187B2 (ja) | 変形計測方法 | |
RU2650840C1 (ru) | Лазерный профилометр для определения геометрических параметров профиля поверхности | |
JP5367292B2 (ja) | 表面検査装置および表面検査方法 | |
JP5375239B2 (ja) | 画像処理装置、長尺物用検査装置及びコンピュータプログラム | |
JP2008032669A (ja) | 光走査式平面外観検査装置 | |
JP4545580B2 (ja) | 面内方向変位計 | |
Burke | Inspection of reflective surfaces with deflectometry | |
Hattuniemi et al. | A calibration method of triangulation sensors for thickness measurement | |
Park et al. | Range resolution improvement of range-gated vision system in backscattering hazy environments | |
JP2006189390A (ja) | 光学式変位測定方法および装置 | |
TWI518329B (zh) | 光學式測風系統 | |
JP2015194347A (ja) | 距離測定装置および方法 | |
JP2012117988A5 (ru) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210203 |