RU2518818C2 - Способ непрерывного изготовления плоских зубчатых колес - Google Patents

Способ непрерывного изготовления плоских зубчатых колес Download PDF

Info

Publication number
RU2518818C2
RU2518818C2 RU2012136862/02A RU2012136862A RU2518818C2 RU 2518818 C2 RU2518818 C2 RU 2518818C2 RU 2012136862/02 A RU2012136862/02 A RU 2012136862/02A RU 2012136862 A RU2012136862 A RU 2012136862A RU 2518818 C2 RU2518818 C2 RU 2518818C2
Authority
RU
Russia
Prior art keywords
gear
flat gear
flat
tool
cutting tool
Prior art date
Application number
RU2012136862/02A
Other languages
English (en)
Other versions
RU2012136862A (ru
Inventor
Герман Й. ШТАДТФЕЛЬД
Original Assignee
Те Глисон Воркс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Те Глисон Воркс filed Critical Те Глисон Воркс
Publication of RU2012136862A publication Critical patent/RU2012136862A/ru
Application granted granted Critical
Publication of RU2518818C2 publication Critical patent/RU2518818C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F15/00Methods or machines for making gear wheels of special kinds not covered by groups B23F7/00 - B23F13/00
    • B23F15/06Making gear teeth on the front surface of wheels, e.g. for clutches or couplings with toothed faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F1/00Making gear teeth by tools of which the profile matches the profile of the required surface
    • B23F1/02Making gear teeth by tools of which the profile matches the profile of the required surface by grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F1/00Making gear teeth by tools of which the profile matches the profile of the required surface
    • B23F1/06Making gear teeth by tools of which the profile matches the profile of the required surface by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/02Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by grinding
    • B23F5/06Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by grinding the tool being a grinding disc with a plane front surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/10Gear cutting
    • Y10T409/101431Gear tooth shape generating
    • Y10T409/103816Milling with radial faced tool
    • Y10T409/104134Adapted to cut bevel gear
    • Y10T409/104293Adapted to cut bevel gear with means to continuously rotate work and means to co-form all teeth of gear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/10Gear cutting
    • Y10T409/101431Gear tooth shape generating
    • Y10T409/105883Using rotary cutter

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)

Abstract

Изобретение относится к изготовлению зубчатых колес. Устанавливают заготовку плоского зубчатого колеса, имеющую ось вращения. Устанавливают режущий инструмент, имеющий ось вращения и содержащий корпус в виде диска с одной или множеством режущих кромок, задающих один или множество заходов режущего лезвия, расположенных на кромке диска. Вращают режущий инструмент и заготовку плоского зубчатого колеса в соотношении два оборота режущего инструмента на один оборот заготовки плоского зубчатого колеса. Зацепляют режущий инструмент и заготовку плоского зубчатого колеса. Формируют боковые поверхности зуба на заготовке плоского зубчатого колеса посредством перемещения инструмента и заготовки плоского зубчатого колеса относительно друг друга. При формировании дополнительно вращают режущий инструмент вокруг оси вращения шестерни, сцепленной с заготовкой плоского зубчатого колеса, причем режущий инструмент описывает движение обката, при этом режущие кромки имитируют вращательное движение зуба шестерни, вращающейся в зацеплении с заготовкой плоского зубчатого колеса в процессе формирования. В результате обеспечивается обработка за приемлемое время и улучшение удаления стружки за счет смещения инструмента. 11 з.п. ф-лы, 13 ил.

Description

Настоящее изобретение относится к изготовлению зубчатых колес, и в частности к способу и инструменту для изготовления плоских зубчатых колес.
Плоские зубчатые колеса - это кольцевые зубчатые колеса, у которых угол конуса вершин (и угол конуса впадин) равен межосевому углу между плоским зубчатым колесом и сопряженной с ним деталью. Сопряженная деталь - это обычная цилиндрическая прямозубая или винтовая шестерня. У стандартных плоских зубчатых колес угол конуса вершин равен 90°, что соответствует межосевому углу, который тоже равен 90° (такие зубчатые колеса с углами, равными 90°, известны также как "коронные" зубчатые колеса).
На сегодняшний день способы производства плоских зубчатых колес являются сложными, со специальными инструментами, предназначенными для единственного конструктивного исполнения на станках, которые обычно являются модифицированными станками для производства цилиндрических зубчатых колес. Такие способы изготовления незакаленных плоских зубчатых колес включают в себя:
- нарезание червячной фрезой с использованием предназначенной для этого специальной червячной фрезы на цилиндрическом зубофрезерном станке, который модифицирован таким образом, чтобы осуществлять нарезание самой нижней периферийной частью фрезерного инструмента (вертикальная ось стола зубофрезерного станка);
- формирование с использованием зуборезного долбяка, отображающего сопряженную цилиндрическую шестерню, и фасонно-фрезерного станка, стол которого повернут (в отличие от фасонно-фрезерного станка для обычных цилиндрических зубчатых колес) на угол конуса впадин плоской зубчатой передачи (обычно 90°);
- способ фрезерования с помощью универсальной фрезерной головки с использованием концевой фрезы на 5-осном многоцелевом станке;
- шлифование из сплошного материала, с использованием способов шлифования, упомянутых ниже в разделе о чистовой обработке инструментом высокой твердости.
Известные на сегодня способы чистовой обработки инструментом высокой твердости плоских зубчатых колес включают в себя:
- непрерывную обкатку с использованием червячного шлифовального круга, червячный профиль режущей кромки которого идентичен профилю зуба шестерни, плоской зубчатой передачи, на круге большого диаметра и малой ширины, имеющем обычно от 1,5 до 2,5 витков резьбы (см. WO 98/02268, US 6390894 и US 6951501, раскрытие которых включено в этот документ посредством ссылки);
- однозаходную обкатку с использованием круга, профиль которого идентичен профилю зуба шестерни плоской зубчатой передачи;
- зуботочение с использованием зуборезного долбяка или специальной червячной фрезы;
- зуботочение с использованием концевой фрезы на 5-осном многоцелевом станке;
- хонингование с использованием модифицированной шестерни с абразивным слоем на поверхности зуба.
В настоящее время способы обработки незакаленных плоских зубчатых колес зависят от применяемых для конкретной работы специальных инструментов, которые являются дорогостоящими и неудобны касательно их применения для других работ или для оптимизации. Время обработки плоского зубчатого колеса на станке обычно значительно превышает время обработки цилиндрического или конического зубчатого колеса.
В двух наиболее распространенных способах чистовой обработки плоского зубчатого колеса используют либо инструменты с очень сложными геометрическими параметрами, которые сложно править и которые требуют для правки много времени (шлифование червячным шлифовальным кругом), либо сложную и требующую много времени обкатку, скомбинированную с продвижением по направлению ширины зубчатого венца (однозаходная обкатка).
Зуботочение с использованием специальной фрезы или зуборезного долбяка, изготовленных из твердого сплава, позволяет осуществлять обработку за приемлемое время, но требует инструмент, который является не только дорогим, но также малодоступным или не доступным вовсе.
Например, для хонингования плоского зубчатого колеса требуется закаленная, шлифованная и покрытая кубическим нитридом бора (КНБ) шестерня, которая является дорогостоящей, не гибкой в использовании и зависит от довольно большого смещения шестерни (равного требуемому смещению между плоским зубчатым колесом и сопряженной цилиндрической шестерней), необходимого для хорошего удаления стружки, что ограничивает применение плоских зубчатых передач с таким большим смещением.
Настоящее изобретение направлено на создание инструмента, представляющего плоскость, которая может быть направлена на заготовку (например, плоское зубчатое колесо) под углом, равным углу зацепления сопряженной шестерни плоской зубчатой передачи, и которая может вращаться вокруг оси мнимой шестерни для создания боковой поверхности зуба обрабатываемой детали. Инструмент согласно изобретению представляет собой торцовую фрезу, выполняющую непрерывное пошаговое движение, при котором направление движения фрезы и заготовки (например, плоского зубчатого колеса) совпадают, тем самым описывая гипоциклоидную траекторию движения, а передаточное отношение, равно двум оборотам фрезы на один оборот заготовки, которая производит прямые линии вдоль ширины зубчатого венца заготовки.
Настоящее изобретение поясняется чертежами, на которых представлено:
фиг.1 - двумерное сечение плоского зубчатого колеса и сопряженной с ним прямозубой цилиндрической шестерни;
фиг.2А и 2В - сферический зубофрезерный инструмент и цилиндрический зубофрезерный станок соответственно;
фиг.3 - плоское зубчатое колесо, где шестерня на фиг.1 заменена на зуборезный долбяк;
фиг.4 - червячный шлифовальный круг, который выправлен так, что в плоскости осевого сечения он дублирует профиль зубофрезерного инструмента на фиг.2А;
фиг.5 - вспомогательный шлифовальный круг, у которого шлифовальный профиль дублирует профиль зуба сопряженной шестерни плоского зубчатого колеса;
фиг.6 - двумерное сечение плоского зубчатого колеса и шлифовального круга (ось плоского зубчатого колеса лежит в плоскости сечения, а плоскость сечения перпендикулярна оси мнимой шестерни), а также содержится вынесенное изображение края шлифовального круга;
фиг.7 - принцип гипоциклического движения. В исходном положении наблюдаемое острие лезвия начинает резать от внутренней части заготовки. При повороте инструмента на угол ΔφTool, заготовка поворачивается на угол ΔφWork=0,5 ΔφTool. Относительная траектория между инструментом и заготовкой показана от точки "Начало фрезерования" до "Конец фрезерования" и, наконец, "Внешний перебег" в виде прямой линии;
фиг.8 - двумерный вид сбоку в разрезе или взаимное расположение между заготовкой, инструментом и мнимой образующей шестерней;
фиг.9 - двумерный вид сверху в разрезе или взаимное расположение между заготовкой, инструментом и мнимой образующей шестерней. Ось мнимой шестерни - это ось производящего зубчатого колеса. В то время как фреза и заготовка осуществляют быстрое пошаговое движение (для того чтобы создать прямые боковые линии, используя гипоциклический принцип), инструменту надо повернуться вокруг второй оси, оси производящего зубчатого колеса, которая совпадает с осью мнимой шестерни. Пунктирный контур инструмента показывает инструмент, наклоненный для того, чтобы предотвратить повреждения или обратное движение лезвия во впадине во время обратного движения;
фиг.10 - порождающая эвольвента относительно порождающей плоскости. Режущей кромке лезвия может быть придана форма, идентичная форме эвольвенты ножки зуба оригинальной шестерни, которая должна быть изготовлена и подогнана к ножке зуба плоского зубчатого колеса;
фиг.11 - взаимное расположение дисковой фрезы и плоского зубчатого колеса на произвольном 6-осном станке;
фиг.12 - заготовка, у которой угол начального конуса меньше 90°, размещенная относительно мнимого вспомогательного плоского зубчатого колеса, у которого угол начального конуса равен 90°.
Перед тем как будут подробно разъяснены какие-либо признаки и по крайней мере одна конструкция изобретения, следует учесть, что изобретение в своем применении не ограничено подробностями конструкции и взаимным расположением компонентов, изложенными в последующем описании или изображенными на чертежах. Изобретение может быть выполнено в виде других конструкций, а также может использоваться или осуществляться различными способами. Также следует учесть, что применяемые здесь фразеология и терминология используются в целях описания и не должны трактоваться как ограничение.
При использовании здесь терминов "включающий в себя", "имеющий" и "содержащий" и их вариаций подразумевается, что понятие охватывает перечисленные далее элементы и их эквиваленты, а также дополнительные элементы. Использованные для обозначения элементов способа или процесса буквы предназначены просто для идентификации элементов, при этом не подразумевается, что элементы должны быть выполнены в особом порядке.
Хотя при описании чертежей могут использоваться упоминания направлений - таких как верхний, нижний, направленный вверх, вниз, назад, низ, верх, перед, зад и т.д., эти упоминания сделаны относительно чертежей (при нормальном их просмотре) для удобства. Эти направления не должны приниматься буквально или ограничивать настоящее изобретение в каком-либо расположении или форме.
Применение плоских зубчатых колес для конкретных приложений сильно зависит от наличия эффективного и экономичного производственного процесса. На сегодняшний день нет экономичного процесса обработки незакаленных плоских зубчатых колец или чистовой обработки плоских зубчатых колес.
На фиг.1 показано двумерное сечение плоского зубчатого колеса 1 и сопряженной с ним прямозубой цилиндрической шестерни 2. В этом примере межосевой угол £ между осью плоского зубчатого колеса и осью шестерни равен 90°. Если межосевой угол £ больше 90°, то плоское зубчатое колесо становится зубчатым колесом с внутренними зубьями. В особом случае, когда межосевой угол равен 0°, плоская зубчатая пара видоизменяется в цилиндрическое кольцевое зубчатое колесо.
На фиг.2А показан сферический зубофрезерный инструмент. Режущие лезвия (режущие зубья) червячной фрезы 3 отображают зубья прямозубой шестерни, сгруппированные вокруг цилиндрического тела шестерни (секциями по 3 зуба). На фиг.2В показан также цилиндрический зубофрезерный станок с модифицированной фрезерной головкой 4, который позволяет нарезать зубья плоского зубчатого колеса 1 нижней частью червячной фрезы 3. Обычно используется однозаходная червячная фреза 3, для которой необходимо производить рабочее вращение на одном шаге для каждого оборота червячной фрезы 3. Червячная фреза 3 подается от внешнего края плоского зубчатого колеса к внутреннему. Во время подачи инструмента должна учитываться величина компенсации рабочего вращения в зависимости от угла в плане инструмента. Позицией 15 обозначен рабочий стол станка.
На фиг.3 показано плоское зубчатое колесо, где шестерня 2 на фиг.1 заменена зуборезным долбяком 5. У зуборезного долбяка 5 имеется множество режущих зубьев, соответствующих сопряженной шестерне (а также соответствующие мнимой шестерне) плоского зубчатого колеса. В плоскости, перпендикулярной оси зуборезного долбяка 5, режущий контур в точности повторяет лицевой контур мнимой шестерни. В процессе вращения зуборезного долбяка 5, находящегося в зацеплении с плоским зубчатым колесом 1, требуется ход по направлению оси режущего инструмента для удаления стружки.
На фиг.4 показан объемный вид червячного шлифовального круга 6, который выправлен так, что в плоскости осевого сечения он дублирует профиль зубофрезерного инструмента на фиг.1.
Во время вращения червячного шлифовального круга 6 искривленное положение профилей шлифующей резьбы аппроксимирует профиль вращающейся мнимой шестерни 7 в плоскости, определенной осью шлифовального круга и направлением хода. Для того чтобы имитировать всю ширину мнимой шестерни 7, шлифовальный круг должен подаваться в направлении оси мнимой шестерни 7 вдоль ширины зубчатого венца плоского зубчатого колеса 1. В случае однозаходного шлифовального круга заготовку необходимо поворачивать на один шаг для каждого вращения круга. Во время процесса подачи рабочее вращение изменяется на значение коррекции на погрешность шага.
На фиг.5 показан периферийный шлифовальный круг 6. Шлифовальный профиль дублирует профиль зуба сопряженной шестерни плоского зубчатого колеса 1. Этот профиль формирует одну точку профиля плоского зубчатого колеса 1 на каждой стороне шлифовального круга 6 (одно положение по крену и положение по ширине зубчатого венца). Если круг сдвигается в направлении мнимой шестерни 7, то между мнимой шестерней 7 и плоским зубчатым колесом 1 формируется линия контакта (с каждой стороны сформированного профиля). Для того чтобы полностью сформировать профиль зуба плоского зубчатого колеса 1, шлифовальный круг 6 должен поворачиваться вокруг оси мнимой шестерни 7 (во время рабочего хода). Если бы рабочий ход был бесконечно быстрым, а вращение вокруг оси мнимой шестерни 7 было бы бесконечно медленным, то была бы получена математически совершенная пара боковых поверхностей зуба плоского зубчатого колеса 1. На фиг.5 показано центральное положение по крену шлифовального круга 6 в процессе обкатки.
На фиг.6 показано двумерное сечение плоского зубчатого колеса 1 (ось плоского зубчатого колеса 1 лежит в плоскости сечения, а плоскость сечения перпендикулярна оси мнимой шестерни 7). Также показан вид на внешнюю часть шлифовального круга 6, который показан не в центральном положении по крену, как на фиг.5, а в начальном и конечном положениях по крену.
Как говорилось выше, способы обработки закаленных и незакаленных плоских зубчатых колес при известном уровне техники зависят от применяемых для конкретной работы специальных и сложных инструментов, которые являются дорогостоящими и неудобны касательно их применения для других работ или для оптимизации. В дополнение, процессы обработки и/или правки сложны и занимают много времени.
Автором было установлено, что в случае непрерывного пошагового движения, если скорость вращения фрезы в два раза больше скорости вращения заготовки, то диск инструмента, имеющий режущие лезвия, расположенные на его грани, причем режущие кромки лезвий направлены под углом к оси вращения дисковой фрезы, описывает плоскость в системе координат заготовки зубчатого колеса. Направления вращения заготовки и инструмента должны совпадать. Для того чтобы предотвратить повреждения во второй зоне нежелательных помех, фреза может быть направлена под углом к заготовке (плоскому зубчатому колесу).
Описанное гипоциклическое движение сформирует плоское производящее зубчатое колесо 1, у которого профили зубьев являются зеркальными отражениями режущих кромок инструмента. Было установлено, что фреза, вращающаяся вокруг своей оси, может дополнительно вращаться вокруг оси мнимой шестерни 7, что приведет к образованию одной или обеих боковых поверхностей ножки зуба плоского зубчатого колеса 1. На фиг.7 показана дисковая фреза. У диска на поверхности имеются режущие кромки, расположенные под углом к направлению оси дисковой фрезы, совпадающим с углом зацепления сопряженной шестерни (проходящей в плоскости, перпендикулярной направлению относительной скорости фрезерования). У инструмента 8 могут иметься чередующиеся внутренние и внешние лезвия. Режущие кромки внутреннего и внешнего лезвия образуют один зуб производящего зубчатого колеса, которое, находясь в центральном положении по крену, идеально описывает начальную линию зуба мнимой шестерни. Заготовка обозначена позицией 9. Диск инструмента необходимо поворачивать в каждое новое положение по крену вокруг оси мнимой шестерни на угол, вычисляемый путем деления числа зубьев плоского зубчатого колеса на число зубьев мнимой шестерни, умножения на нарастающий угол поворота рабочего зубчатого колеса и прибавления небольшого дополнительного количества вращения, которое размещает диск таким образом, что он имеет общую линию с эвольвентой в этом конкретном положении по крену. Позицией 10 обозначен вход обратного хода. Позицией 11 обозначено острие лезвия, внешний перебег. На фиг.7 показаны прямая линия 12 и конец фрезерования 13. Позицией 14 обозначено острие лезвия, начало фрезерования.
На фиг.9 показан двумерный вид плоского зубчатого колеса и диска инструмента. Диск инструмента представлен в центральном положении по крену. Обсуждаемая мнимая цилиндрическая шестерня представлена только в виде контура. Центр мнимой шестерни 7 расположен на оси производящего зубчатого колеса, перпендикулярной плоскости чертежа. Пунктирный контур инструмента показывает наклонное расположение инструмента 8, необходимое для того, чтобы предотвратить повреждение или контакт с инструментом во время обратного хода режущего лезвия. Начальная точка обратного хода также показана на фиг.9. Специалисту в этой области техники будет понятно, что пространственный угол наклона инструмента 8 вычисляется так же, как для спиральнозубых конических и гипоидных зубчатых колес, чтобы минимизировать искажения боковых поверхностей зубьев и изменения нижней линии при вращении инструмента вокруг оси, например, как показано на фиг.7.
Согласно предложенному в изобретении процессу предпочтительно, чтобы число зубьев плоского зубчатого колеса было в два раза больше числа заходов фрезы. Также возможно использовать половину числа лезвий во фрезе (или четверть, или одну восьмую и т.д.) Тем не менее, наименьшее число заходов фрезы равно единице, что приводит к низкой производительности, но дает очень универсальную фрезу. Число зубьев плоского зубчатого колеса 1 необходимо разделить на два для того, чтобы получить число заходов фрезы, дающих корректное отношение. В свою очередь это означает, что число зубьев плоского зубчатого колеса 1 предпочтительно должно быть четным. В случае нечетного числа зубьев плоского зубчатого колеса 1 может быть добавлен или вычтен один зуб для того, чтобы можно было разделить это новое число на два и получить целое число заходов фрезы. Например, в случае 41 зуба плоского зубчатого колеса это означает 42/2=21. Число заходов фрезы равно 21, что нельзя разделить на 2 и получить целый результат. Поэтому возможное число заходов фрезы равно 21 или один заход для каждого оборота фрезы. Преимущество округления заключается в том факте, что число заходов фрезы и число зубьев плоского зубчатого колеса не имеют общего знаменателя (принцип плавающего зуба). Недостаток округления заключается в том факте, что гипоциклоида отклонится от прямой линии. Отклонение образует приблизительно круглую выпуклость, которая является положительной на одной боковой поверхности зуба и отрицательной на другой боковой поверхности зуба. Если отрицательная выпуклость недопустима, то две противоположных боковых поверхности зуба могут быть нарезаны на плоском зубчатом колесе в противоположных положениях с использованием эффекта положительных выпуклостей на обеих боковых поверхностях зуба, однако для этого потребуется двойной цикл вращения.
Лезвия могут быть заточены под углом, равным углу зацепления сопряженной шестерни плоской зубчатой передачи. Предпочтительно, чтобы лезвия были направлены на кромку диска инструмента, учитывая направление движения инструмента относительно заготовки (например, исходя из центра ширины зубчатого венца, так как направление скорости постоянно изменяется вдоль кромки). Тем не менее, для этого необходимо, чтобы ось инструмента" была коллинеарна оси заготовки в случае плоского зубчатого колеса, у которого угол конуса вершины равен 90°. Коллинеарное расположение осей может привести к повреждению уже нарезанных впадин (например, во время второго пересечения ими ширины зубчатого венца). Для предотвращения повреждений могут быть применены малые углы наклона фрезы от доли градуса до 10° (с эквивалентной коррекцией угла лезвия). Побочным эффектом наклона фрезы является несоответствие боковых поверхностей зуба, которое либо является допустимым, либо может применяться в качестве желаемых коррекций боковых поверхностей зуба.
Ось мнимой шестерни 7 может быть расположена в мнимом или теоретическом базовом станке для нарезания зубчатых колец методом обката, например, описанном в патентах US №№4981402 или US 6712566, раскрытия которых включены в этот документ посредством ссылки, для того, чтобы отображать производящую цилиндрическую шестерню (производящую шестерню), где производящая шестерня и рабочая шестерня находятся в такой же взаимосвязи, как плоское зубчатое колесо и сопряженная цилиндрическая шестерня в их конечном применении (например, коробка передач). В то время как фреза поворачивается вокруг оси мнимой шестерни 7, заготовка 9 должна поворачиваться вокруг своей оси в соответствии с отношением между шестерней 7 и плоским зубчатым колесом 1 (т.е. передаточным числом цепи обката (Ra)). To есть
R a = Z Ш Z П З К                                      ( 1 )
Figure 00000001
где ZШ= число зубьев на шестерне;
ZПЗК= число зубьев на плоском зубчатом колесе.
Так как лезвия фрезы отображают обе боковые поверхности зуба прямосторонней зубчатой рейки, как отмечено выше, она не повторяет корректную производящую эвольвенту ножки зуба шестерни (фиг.10, производящая эвольвента относительно производящей плоскости). Это может быть достигнуто путем придания режущей кромке лезвия формы, идентичной форме эвольвенты ножки зуба оригинальной шестерни, которая должна быть изготовлена и подогнана к ножке зуба плоского зубчатого колеса. Другая возможность, позволяющая использовать упрощенные и универсальные режущие инструменты с прямой кромкой, - это внедрение переменного соотношения движения обката (например, модифицированного обката) в процессе формирования одной ножки зуба или использования одного или более активных наборов наладочных параметров станка, как, например, описанных в патенте США №5580298, раскрытие которого включено в этот документ посредством ссылки. Коэффициенты 4-го или большего порядка, относящиеся к углу обката, умножают на постоянное базовое передаточное число цепи обката между порождающей шестерней и заготовкой зубчатого колеса (плоским зубчатым колесом), что дает хорошее приближение эвольвенты мнимой производящей шестерни.
R a = R a 0 + R a 1 q + R a 2 q 2 + R a 3 q 3 + R a 4 q 4                             ( 2 )
Figure 00000002
где
Ra - передаточное число цепи обката (не константа)
q - угловая дистанция от центра обката
Ra0 - базовое передаточное число цепи обката (постоянное)
Ra1 - коэффициент первого порядка, умножаемый на угол поворота от центра обката
Ra2 - коэффициент второго порядка, умножаемый на квадрат угла поворота от центра обката
Ra3 - коэффициент третьего порядка, умножаемый на третью степень угла поворота от центра обката
Ra4 - коэффициент четвертого порядка, умножаемый на четвертую степень угла поворота от центра обката.
Радиус кривизны эвольвенты может быть вычислен в различных точках вдоль профиля формирующей шестерни. Коэффициент Ra2 второго порядка будет по существу определять кривизну эвольвенты в полюсе зубчатого зацепления. Коэффициент Ra3 третьего порядка примет в расчет постоянное изменение кривизны между основанием и вершиной зуба. Наибольшая часть непостоянного изменения кривизны эвольвенты может быть учтена путем определения коэффициента Ra4 четвертого порядка. Предпочтительным способом вычисления оптимального коэффициента является метод регрессии, который использует, например, "метод наименьших квадратов ошибки", чтобы минимизировать разницу межу корректной эвольвентой и влиянием коэффициентов на вращательное движение с целью сымитировать форму эвольвенты с помощью нелинейного отношения обката. Для повышения точности эвольвенты могут применяться коэффициенты более высоких, чем 4, порядков либо в кинематике станка может быть непосредственно применена математическая функция для эвольвенты. Пример вычисления величины коррекции между прямой линией и эвольвентой показан на фиг.10.
На фиг.10 показан двумерный чертеж, вид на лезвие, который также показывает положение оси мнимой шестерни и три положения контакта, отображающие нижнее, центральное и верхнее положение по крену. Позицией 17 обозначен центр мнимой шестерни. Корректная эвольвента мнимой шестерни изображена внутри лезвия, где эвольвента соприкасается с производящей плоскостью в точке контакта (линии контакта) центрального положения по крену. Функция эвольвенты может быть вычислена с использованием информации о мнимой шестерне, такой как угол зацепления и начальный диаметр. Точки производящей поверхности диска могут быть соединены с эвольвентой окружностями, центры которых находятся на оси мнимой шестерни. Длина дуги будет равна нулю только в полюсе зубчатого зацепления (центральном положении по крену). В любом другом положении дуга будет отражать точное значение небольшого дополнительного количества вращения (угол Δφ), которое либо используют для определения коэффициентов обката (уравнение (2)), либо накладывают на вращение диска инструмента вокруг оси мнимой шестерни во время обкатки. Также допускается придание внешнему профилю точной формы эвольвенты вместо прямой линии, перпендикулярной оси инструмента. В этом случае не требуется применять корректирующее вращение.
Предложенные в изобретении взаимное расположение и кинематические соотношения могут использоваться на мнимом базовом станке для нарезания зубчатых колец методом обката, как описано выше, или на других моделях и процедурах, которые так же применимы. Взаимные расположения на фиг.8 и 9 соотносятся с системой координат и взаимными расположениями инструмента, заготовки и оси производящего зубчатого колеса так же, как упомянутое передаточное отношение между заготовкой и инструментом непосредственно к опорному станку для нарезания зубчатых колес.
Процесс нарезания плоского зубчатого колеса, осуществляемый на мнимом базовом станке, можно преобразовать так, чтобы осуществлять его на механических станках с подходящими наборами наладочных параметров. Также возможно, в качестве предпочтительного варианта выполнения предлагаемого в изобретении процесса, преобразовать мнимый базовый станок (или любую другую модель) в таблицу положений осей и/или перемещений произвольного 5- или 6-осного станка, такого, например, как показанный на фиг.11 (например, патенты US №№4981402 или US 6712566). На фиг.11 показано взаимное расположение дисковой фрезы и плоского зубчатого колеса на произвольном 6-осном станке. Диаграммы на фиг.8 и 9, плюс отношение обката представляют собой всю информацию, необходимую для расчета таблицы положений осей. Специалисту в области техники будет понятно, что для создания правильных форм ножек зубьев на вращение инструмента необходимо наложить небольшое дополнительное количество вращения Δφ.
Другой аспект предложенного в изобретении способа заключается в том, что дисковая фреза формирует на осевой стороне только симметричную поверхность вращения. Это позволяет аппроксимировать эвольвенты ножек зубьев прямозубой шестерни. Ножки зубьев косозубых зубчатых колес наматываются на базовый цилиндр шестерни как спираль. Спиральная форма не может быть аппроксимирована с использованием вращающегося режущего диска с лезвиями, которые следуют по прямой линии относительно заготовки зубчатого колеса, что ограничивает предложенный в изобретении способ применением только к плоским зубчатым колесам, у которых в качестве сопряженной выступает прямозубая шестерня. Косозубые зубчатые колеса с очень маленьким углом наклона линии зубьев (например, менее 5°) покажут незначительные отклонения ножки и основания зуба, которые могут быть, по крайней мере частично, исправлены.
В рамках предложенного в изобретении способа допускаются межосевые углы между плоским зубчатым колесом и сопряженной шестерней от 0° (плоское зубчатое колесо становится цилиндрическим зубчатым колесом) и более 90° (плоское зубчатое колесо становится зубчатым колесом с внутренними зубьями). Плоские зубчатые колеса с внутренними зубьями ограничены возможными повреждениями, которые можно предотвратить путем наклона фрезы в определенных пределах (максимальный угол наклона составляет 10°). Такой наклон инструмента показан на фиг.9 в виде пунктирного контура инструмента. Также в рамках предложенного в изобретении способа может быть реализовано межосевое расстояние между плоским зубчатым колесом и сопряженной шестерней.
Дополнительно, зубчатые колеса, у которых угол начального конуса не равен 90°, а имеет значение между 90° и 0°, часто называют плоскими зубчатыми колесами, хотя они являются коническими. Причина заключается в том, что, как и истинные плоские зубчатые колеса в качестве сопряженной детали они зацепляются с цилиндрическим зубчатым колесом. Зубчатые колеса, у которых угол начального конуса не равен 90°, также могут быть изготовлены с использованием предложенного в изобретении способа. На фиг.12 показана заготовка зубчатого колеса, у которого угол начального конуса меньше 90°. Зубчатое колесо расположено относительно мнимого вспомогательного зубчатого колеса 16 (у которого угол начального конуса равен 90°). На фиг.12 показано, что заготовка 9 зубчатого колеса расположена так, чтобы его начальный конус был касательным к начальной плоскости вспомогательного зубчатого колеса 16. Заготовка 9 зубчатого колеса и вспомогательное зубчатое колесо 16 вращаются без проскальзывания их образующих начальной поверхности относительно друг друга. Этот принцип приводит к соотношению между угловыми скоростями фрезы и заготовки. А именно:
Figure 00000003
Если ωtool=2ωAux и γAux=90°,
то
Figure 00000004
где ωwork= угловая скорость заготовки зубчатого колеса;
ωAux= угловая скорость вспомогательного зубчатого колеса;
ωtool= угловая скорость инструмента;
γwork= угол начального конуса заготовки зубчатого колеса;
γAux= угол начального конуса вспомогательного зубчатого колеса.
Хотя изобретение описано на примере предпочтительных вариантов выполнения, следует учесть, что оно ими не ограничено. Настоящее изобретение предполагает модификации, которые будут очевидны специалистам в данной области техники, к которым предмет обсуждения имеет отношение без отклонений от сущности и объема прилагаемой формулы изобретения.

Claims (12)

1. Способ непрерывного пошагового изготовления плоского зубчатого колеса, имеющего заданное число зубьев, причем указанное плоское зубчатое колесо имеет множество впадин зубчатого венца, причем каждая впадина зубчатого венца содержит противоположные друг к другу первую и вторую боковые поверхности зуба, характеризующийся тем, что устанавливают заготовку плоского зубчатого колеса, имеющую ось вращения, устанавливают режущий инструмент, имеющий ось вращения и содержащий корпус в виде диска с одной или множеством режущих кромок, задающих один или множество заходов режущего лезвия, расположенных на кромке диска, вращают режущий инструмент и заготовку плоского зубчатого колеса в соотношении два оборота режущего инструмента на один оборот заготовки плоского зубчатого колеса, зацепляют режущий инструмент и заготовку плоского зубчатого колеса и формируют боковые поверхности зуба на заготовке плоского зубчатого колеса посредством перемещения инструмента и заготовки плоского зубчатого колеса относительно друг друга, причем при формировании дополнительно вращают режущий инструмент вокруг оси вращения шестерни, сцепленной с заготовкой плоского зубчатого колеса, причем режущий инструмент описывает движение обката, при этом режущие кромки имитируют вращательное движение зуба шестерни, вращающейся в зацеплении с заготовкой плоского зубчатого колеса в процессе формирования.
2. Способ по п.1, отличающийся тем, что заготовка плоского зубчатого колеса содержит четное число зубьев, при этом число зубьев равно удвоенному числу заходов режущего инструмента.
3. Способ по п.1, отличающийся тем, что заготовка плоского зубчатого колеса и режущий инструмент вращают в одном направлении вокруг их осей вращения соответственно.
4. Способ по п.1, отличающийся тем, что режущий инструмент наклоняют относительно заготовки плоского зубчатого колеса.
5. Способ по п.1, отличающийся тем, что режущий инструмент содержит внутренние и внешние режущие кромки.
6. Способ по п.1, отличающийся тем, что первая и вторая боковые поверхности зуба являются прямыми в направлении ширины зубчатого венца заготовки плоского зубчатого колеса.
7. Способ по п.1, отличающийся тем, что поверхности зуба заготовки плоского зубчатого колеса расположены под углом зацепления, а режущие кромки инструмента располагают под углом зацепления, равным углу зацепления заготовки плоского зубчатого колеса.
8. Способ по п.1, отличающийся тем, что режущие кромки имеют форму эвольвенты.
9. Способ по п.1, отличающийся тем, что движение обката является не постоянным отношением движения обката.
10. Способ по п.1, отличающийся тем, что угол начального конуса плоского зубчатого колеса равен 90 градусов.
11. Способ по п.1, отличающийся тем, что угол начального конуса плоского зубчатого колеса меньше 90 градусов.
12. Способ по п.1, отличающийся тем, что плоское зубчатое колесо является плоским зубчатым колесом с внутренними зубьями.
RU2012136862/02A 2010-01-29 2011-01-28 Способ непрерывного изготовления плоских зубчатых колес RU2518818C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29938610P 2010-01-29 2010-01-29
US61/299,386 2010-01-29
PCT/US2011/022858 WO2011094492A1 (en) 2010-01-29 2011-01-28 Continuous method for manufacturing face gears

Publications (2)

Publication Number Publication Date
RU2012136862A RU2012136862A (ru) 2014-03-10
RU2518818C2 true RU2518818C2 (ru) 2014-06-10

Family

ID=44021981

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012136862/02A RU2518818C2 (ru) 2010-01-29 2011-01-28 Способ непрерывного изготовления плоских зубчатых колес

Country Status (6)

Country Link
US (1) US9132493B2 (ru)
EP (1) EP2528705B1 (ru)
JP (1) JP5650762B2 (ru)
CN (1) CN102725089B (ru)
RU (1) RU2518818C2 (ru)
WO (1) WO2011094492A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5480683B2 (ja) * 2010-03-19 2014-04-23 本田技研工業株式会社 ヘリカル歯車の加工方法
DE102010023728A1 (de) * 2010-06-14 2011-12-15 Liebherr-Verzahntechnik Gmbh Verfahren zum Herstellen einer Mehrzahl von identischen Zahnrädern mittles abspanender Bearbeitung
CN102581387A (zh) * 2012-03-20 2012-07-18 唐进元 一种面齿轮加工方法
CN104096921B (zh) * 2013-04-12 2016-10-12 北京广宇大成数控机床有限公司 数控立式弧齿端齿盘磨齿机
US10016825B2 (en) * 2013-09-12 2018-07-10 The Gleason Works Internal bevel gear
CN103692026B (zh) * 2014-01-16 2017-01-11 哈尔滨理工大学 基于平面砂轮端面的正交面齿轮磨削加工方法
KR101913918B1 (ko) 2014-05-30 2018-10-31 미츠비시 쥬코우 고우사쿠 기카이 가부시키가이샤 스카이빙 가공용 커터
CN104500654B (zh) * 2014-11-26 2017-08-11 燕山大学 一种减变速一体化面齿轮副及其加工方法
EP3287221B1 (de) * 2016-08-23 2019-04-24 Klingelnberg AG Verfahren zur bearbeitung der zahnflanken von plankupplungs-werkstücken im semi-completing einzelteilverfahren
CN107309499B (zh) * 2017-07-19 2023-05-26 益阳康益机械发展有限公司 一种齿轮成型磨削加工机床
TWI645274B (zh) * 2017-09-12 2018-12-21 國立臺灣科技大學 工件加工方法及其加工系統
CN108188494A (zh) * 2017-12-22 2018-06-22 重庆文理学院 一种加工端面齿轮的铣刀及方法
KR20210127140A (ko) * 2019-02-15 2021-10-21 더 글리슨 웍스 고 감속 변속기를 구비한 전기 구동 장치
CN110253067B (zh) * 2019-07-09 2021-06-29 内蒙古民族大学 利用摆线旋分技术进行多边形零件加工的方法
EP4054782A1 (en) * 2019-11-05 2022-09-14 The Gleason Works Method of manufacturing a toothed bevel honing tool for honing a toothed bevel workpiece, a toothed bevel honing tool and method of honing bevel gears
CN113210551B (zh) * 2021-05-26 2024-08-23 洛阳科大越格数控机床有限公司 一种面齿轮滚轧加工方法
WO2024091841A1 (en) * 2022-10-27 2024-05-02 The Gleason Works Manufacturing gears with tip and/or root relief

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1662775A1 (ru) * 1987-03-09 1991-07-15 Предприятие П/Я В-8624 Способ изготовлени зубчатых колес
US6712566B2 (en) * 2001-02-16 2004-03-30 The Gleason Works Machine and method for producing bevel gears
US6951501B2 (en) * 2001-01-03 2005-10-04 The Boeing Company Method for forming a grinding worm for forming a conical face gear that meshes with a conical involute pinion
RU2275277C1 (ru) * 2004-11-24 2006-04-27 Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский и конструкторско-технологический институт подвижного состава Министерства путей сообщения Российской Федерации (ФГУП ВНИКТИ МПС России) Способ изготовления зубчатых колес

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020A (en) * 1843-03-30 Improvement in disengaging horses from carriages
US1349951A (en) * 1914-12-26 1920-08-17 Gleason Works Method of and machine for cutting gears or wheels
US1365433A (en) * 1918-03-14 1921-01-11 Skf Svenska Kullagerfab Ab Method of manufacturing bevel-gear wheels
US1385097A (en) * 1918-12-10 1921-07-19 Schmick Screw And Gear Company Gear-making machine
US1403113A (en) * 1919-02-25 1922-01-10 Geffroy Jules Herve Machine for cutting spiral bevel gears
CH96209A (de) * 1920-02-05 1922-09-16 Wingquist Sven Gustaf Verfahren und Maschine zum Schleifen von Zahnprofilen.
US1474500A (en) * 1920-10-22 1923-11-20 Skf Svenska Kullagerfab Ab Method of manufacturing gear wheels
US1609331A (en) * 1923-06-25 1926-12-07 Trbojevich Nikola Method of generating gears
US1863571A (en) * 1925-02-12 1932-06-21 H T Bradner Machine and process for generating gears
US1622555A (en) * 1925-05-11 1927-03-29 Gleason Works Method of producing gears
US1676419A (en) * 1925-06-22 1928-07-10 Gleason Works Method of and machine for producing gears
US1655080A (en) * 1926-02-19 1928-01-03 Gleason Works Method of producing gears
US1673540A (en) * 1926-05-10 1928-06-12 Gleason Works Method of producing hypoid gears
US1705887A (en) * 1927-03-01 1929-03-19 Gleason Works Method of generating hypoid gears
US1934754A (en) * 1931-03-23 1933-11-14 Wildhaber Ernest Method and means for forming gears
US2100705A (en) * 1934-05-08 1937-11-30 Gleason Works Method of producing tapered gears
US2372240A (en) * 1940-12-31 1945-03-27 Gleason Works Method of producing gears
CH250712A (de) * 1945-09-07 1947-09-15 Buehler Hermann Maschine zum Schleifen evolventenförmiger Zahnflanken von Zahnrädern mit gerader oder schräger Verzahnung nach dem Abwälzverfahren.
GB722030A (en) * 1951-12-10 1955-01-19 Denis Crichton Maxwell C B C B Improvements in generating involute or modified involute surfaces
DE1115104B (de) * 1954-02-20 1961-10-12 Oriental Gear Company Ltd Verfahren und Vorrichtung zur Herstellung eines Paares von bogenverzahnten Kegelraedern
US3060642A (en) * 1959-09-28 1962-10-30 Parsons & Marine Eng Turbine Means for generating involute gears
US3099939A (en) * 1960-06-17 1963-08-06 Gleason Works Gear generating machine
US3184988A (en) * 1963-02-12 1965-05-25 Joseph J Osplack Involute face gearing and involute internal conical gearing
SU880244A3 (ru) * 1978-08-18 1981-11-07 Мааг-Цанрэдер Унд-Машинен Аг (Фирма) Способ шлифовани зубчатых колес и станок дл его осуществлени
DE3752340T2 (de) 1987-08-24 2002-07-25 The Gleason Works, Rochester Mehrfachachsenzahnradwälzmaschine zur Herstellung von Kegelrädern und Hypoidrädern
NL8800472A (nl) * 1988-02-24 1989-09-18 Hankamp Bv Werkwijze voor het vervaardigen en/of nabewerken van kroonwielen.
DE3816270A1 (de) * 1988-05-12 1989-11-23 Pfauter Hermann Gmbh Co Verfahren zum diskontinuierlichen profilschleifen bzw. profilfraesen von zahnraedern
JPH0271919A (ja) * 1988-09-01 1990-03-12 Koganei Seiki Seisakusho:Kk かさ歯車歯面の仕上げ装置
NL9002611A (nl) * 1990-11-29 1992-06-16 Crown Gear Bv Gereedschap voor het vervaardigen van kroonwielen, alsmede werkwijze voor het vervaardigen van een dergelijk gereedschap.
US5175962A (en) * 1991-09-05 1993-01-05 The Gleason Works Method of and apparatus for machining spur and helical gears
NL9300617A (nl) * 1993-04-08 1994-11-01 Crown Gear Bv Werkwijze voor het vervaardigen van een kroonwiel.
IT1272087B (it) * 1993-12-17 1997-06-11 Fiatavio Spa Metodo e macchina per la realizzazione di ruote dentate.
US5580298A (en) 1994-09-27 1996-12-03 The Gleason Works Method of producing tooth flank surface modifications
EP0847320B1 (en) 1995-08-31 2002-10-30 The Gleason Works Method of and apparatus for truing cutter heads
US6146253A (en) * 1996-04-23 2000-11-14 Mcdonnell Douglas Helicopter Company Apparatus and method for precision grinding face gear
US5823857A (en) * 1996-04-23 1998-10-20 Mcdonnell Douglas Helicopter Company Apparatus and method for precision grinding of face gears
US5895180A (en) 1997-09-05 1999-04-20 The Gleason Works Method of determining cutting blade positional errors in face hobbing cutters
US5941124A (en) 1998-04-03 1999-08-24 Mcdonnell Douglas Corporation Face gearing with conical involute pinion
JP2000052144A (ja) * 1998-08-11 2000-02-22 Ishikawajima Harima Heavy Ind Co Ltd カービックカップリングの製作方法及び装置
US6390894B1 (en) 1998-12-21 2002-05-21 Derlan Aerospace Canada Face gear manufacturing method and apparatus
JP4545906B2 (ja) * 2000-09-04 2010-09-15 本田技研工業株式会社 歯溝加工方法
JP2009509793A (ja) * 2005-10-04 2009-03-12 ザ グリーソン ワークス 直歯傘歯車の製造
JP4895649B2 (ja) * 2006-03-20 2012-03-14 アイシン精機株式会社 フェースギヤ歯面をもつ部材の製造方法
WO2009157988A1 (en) 2008-06-23 2009-12-30 The Gleason Works Manufacturing bevel gears
US8485865B2 (en) * 2008-08-13 2013-07-16 Rolls-Royce Corporation Grinding wheel and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1662775A1 (ru) * 1987-03-09 1991-07-15 Предприятие П/Я В-8624 Способ изготовлени зубчатых колес
US6951501B2 (en) * 2001-01-03 2005-10-04 The Boeing Company Method for forming a grinding worm for forming a conical face gear that meshes with a conical involute pinion
US6712566B2 (en) * 2001-02-16 2004-03-30 The Gleason Works Machine and method for producing bevel gears
RU2275277C1 (ru) * 2004-11-24 2006-04-27 Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский и конструкторско-технологический институт подвижного состава Министерства путей сообщения Российской Федерации (ФГУП ВНИКТИ МПС России) Способ изготовления зубчатых колес

Also Published As

Publication number Publication date
US20120328383A1 (en) 2012-12-27
CN102725089B (zh) 2016-11-09
EP2528705B1 (en) 2013-10-23
JP2013517954A (ja) 2013-05-20
RU2012136862A (ru) 2014-03-10
US9132493B2 (en) 2015-09-15
JP5650762B2 (ja) 2015-01-07
WO2011094492A1 (en) 2011-08-04
CN102725089A (zh) 2012-10-10
EP2528705A1 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
RU2518818C2 (ru) Способ непрерывного изготовления плоских зубчатых колес
RU2542040C2 (ru) Способ и инструмент для изготовления плоских зубчатых колес
US8967013B2 (en) Optimization of face cone element for spiral bevel and hypoid gears
Simon Influence of tooth errors and misalignments on tooth contact in spiral bevel gears
US8573087B2 (en) Hypoid gears with low shaft angles
JPWO2006109838A1 (ja) コルヌ螺旋歯形歯車
CN109482984B (zh) 一种成型法摆线齿锥齿轮的磨齿方法
JP2006212733A (ja) 研ぎ直し可能な任意歯形を有するピニオンカッタの二番面加工用砥石
KR20160091272A (ko) 대각 창성 방법에 의한 워크피스의 기어 제조 기계 가공을 위한 방법 및 장치
Máté et al. Synthesis of a Profile Errorless Involute Shaper Cutter with Cylindrical Rake Face
JP6314160B2 (ja) かさ歯車の創成のためのスライドローリング方法
US3720989A (en) Gear cutting methods
JP4606042B2 (ja) ピニオンカッタの刃形輪郭設計方法
JP6453890B2 (ja) インターナルベベルギヤ
JP2017052083A (ja) 修整された表面形状を有する歯付のワークピースを製造する方法
US2669904A (en) Method of generating face and tapered gears with bowed formation
CN114769737A (zh) 一种少齿数齿轮成型磨削加工方法
US1689565A (en) Method of and machine for generating worm gears and the like
RU2347650C1 (ru) Способ нарезания зубчатых колес с модифицированной формой зубьев
US1725037A (en) Method of forming tapered gears
US11826842B2 (en) Independent pressure angle corrections for power skiving
US2505269A (en) Method of producing gears
Wasif A new approach to CNC programming for accurate multi-axis face-milling of hypoid gears
Rao et al. Spur Gears
JPH04146022A (ja) 歯車の面取り方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210129