RU2482212C2 - Высокопрочный стальной сплав с высокой ударной вязкостью - Google Patents

Высокопрочный стальной сплав с высокой ударной вязкостью Download PDF

Info

Publication number
RU2482212C2
RU2482212C2 RU2011106360/02A RU2011106360A RU2482212C2 RU 2482212 C2 RU2482212 C2 RU 2482212C2 RU 2011106360/02 A RU2011106360/02 A RU 2011106360/02A RU 2011106360 A RU2011106360 A RU 2011106360A RU 2482212 C2 RU2482212 C2 RU 2482212C2
Authority
RU
Russia
Prior art keywords
alloy
max
steel according
molybdenum
vanadium
Prior art date
Application number
RU2011106360/02A
Other languages
English (en)
Other versions
RU2011106360A (ru
Inventor
Пол М. НОВОТНЫ
Original Assignee
Си-Ар-Эс Холдингс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Си-Ар-Эс Холдингс, Инк. filed Critical Си-Ар-Эс Холдингс, Инк.
Publication of RU2011106360A publication Critical patent/RU2011106360A/ru
Application granted granted Critical
Publication of RU2482212C2 publication Critical patent/RU2482212C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области металлургии, а именно к высокопрочной стали, используемой для изготовления изделий, применяемых в различных областях техники. Сталь содержит, мас.%: углерод 0,35-0,55, марганец 0,6-1,2, кремний 0,9-2,5, фосфор 0,01 макс, серу 0,001 макс, хром 0,75-2,0, никель 3,3-7,0, медь 0,5-0,6, кобальт 0,01 макс, Мо и/или W, при условии, что Mo+1/2W составляет 0,4-1,3, V и/или Nb, при условии, что V+(5/9)×Nb составляет 0,2-1,0, железо и обычные загрязнения - остальное. Для компонентов стали выполняется следующее соотношение: 2≤(%Si+%Cu)/(%V+(5/9)×%Nb)≤14. Сталь обладает высокой ударной вязкостью и стойкостью к отпуску. 2 н. и 18 з.п. ф-лы, 2 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к высокопрочным стальным сплавам с высокой ударной вязкостью и, в частности, к сплаву, который может быть отпущен при значительно более высокой температуре без большой потери предела прочности при растяжении. Изобретение также относится к отпущенному изделию из стали с высокой прочностью и высокой ударной вязкостью.
Уровень техники
Известны дисперсионно-твердеющие мартенситные стали, которые обеспечивают сочетание очень высокой прочности и вязкости разрушения. К известным сталям относят таковые, описанные в USP 4706525 и USP 5087415. Первая известна как сплав AF1410 и вторую сбывают под зарегистрированной торговой маркой AERMET. Сочетание очень высокой прочности и ударной вязкости, обеспечиваемое этими сплавами, является следствием их составов, которые включают значительные количества никеля, кобальта и молибдена, элементы, которые обычно относят к наиболее дорогостоящим среди имеющихся в распоряжении легирующих элементов. Поэтому эти стали сбывают со значительной наценкой в сравнении с другими сплавами, не содержащими подобные элементы.
В последнее время был разработан сплав стали, который обеспечивает сочетание высокой прочности и высокой ударной вязкости без необходимости внесения легирующих добавок, таких как кобальт и молибден. Одна такая сталь описана в US 7067019. Сталь, описанная в этом патенте, представляет собой сталь CuNiCr, твердеющую на воздухе, которая не содержит кобальт и молибден. При испытаниях было показано, что сталь, описанная в патенте '019, обеспечивает предел прочности при растяжении примерно 280 ksi (килофунт или 1000 фунтов на квадратный дюйм) наряду с вязкостью разрушения примерно 90 ksi√in (килофунт на квадратный дюйм, умноженные на квадратный корень из дюйма). Для достижения подобного сочетания прочности и ударной вязкости сплав закаливают и отпускают. Температура отпуска ограничена примерно не более чем до 400°F для того, чтобы избежать размягчения сплава и соответствующей потери прочности.
Сплав, описанный в патенте '019, не является нержавеющей сталью, и поэтому его необходимо плакировать для обеспечения стойкости к коррозии. Спецификации на материалы для применения сплава в авиакосмической промышленности требуют, чтобы сплав нагревали при 375°F по меньшей мере в течение 23 часов после плакирования с целью удаления водорода, адсорбировавшегося в ходе процесса плакирования. Водород следует удалить, так как он приводит к охрупчиванию сплава и отрицательно влияет на его ударную вязкость. Так как отпуск этого сплава проводят при 400°F, тепловая обработка после плакирования в течение 23 часов при 375°F приводит к избыточному отпуску деталей, изготовленных из этого сплава, так что невозможно обеспечить предел прочности при растяжении по меньшей мере 280 ksi. Желательно было бы иметь сплав CuNiCr, который можно закалить и отпустить для обеспечения предела прочности при растяжении по меньшей мере 280 ksi и вязкости разрушения примерно 90 ksi√in и поддерживать это сочетание прочности и ударной вязкости при нагреве примерно 375°F по меньшей мере 23 часа с последующими закалкой и отпуском.
Сущность изобретения
Задача по устранению вышеуказанных недостатков известных сплавов в значительной степени решается с помощью сплава, предлагаемого в настоящем изобретении. В соответствии с одним вариантом осуществления изобретения предлагается стальной сплав с высокой прочностью, высокой ударной вязкостью, имеющий следующие широкие и предпочтительные составы в массовых процентах.
Элемент Широкий Предпочтительный
С 0,35-0,55 0,37-0,50
Мn 0,6-1,2 0,7-0,9
Si 0,9-2,5 1,3-2,1
Р 0,01 макс. 0,005 макс.
S 0,001 макс. 0,0005 макс.
Сr 0,75-2,0 1,2-1,5
Ni 3,5-7,0 3,7-4,5
Мо+1/2 W 0,4-1,3 0,5-1,1
Сu 0,5-0,6 0,5-0,6
Со 0,01 макс. 0,01 макс.
V+(5/9)×Nb 0,2-1,0 0,2-1,0
Fe Остаток Остаток
В остаток включены обычные загрязнения, обнаруживаемые в промышленных сортах стальных сплавов, полученных для одинаковых областей применения и с одинаковыми свойствами. В пределах вышеуказанных диапазонов массовых процентов кремний, медь и ванадий сбалансированы следующим образом:
2≤(%Si+%Cu)/%V+(5/9))×%Nb)≤14.
Вышеприведенное распределение по таблице предложено как обычное краткое изложение и не предназначено для ограничения нижнего и верхнего значений диапазонов отдельных элементов для применения в сочетании друг с другом или ограничения диапазонов элементов для применения исключительно в сочетании друг с другом. Таким образом, можно применить один или более диапазонов с одним или более другими диапазонами для остальных элементов, К тому же, можно применить минимум или максимум для элемента с широким или предпочтительным составом с минимумом или максимумом для того же элемента в другом предпочтительном или промежуточном составе. Кроме того, сплав по настоящему изобретению может включать, по существу состоять из или состоять из составных элементов, описанных выше и во всем объеме этой заявке. Здесь и везде в этом описании термин "процент" или символ "%" означает массовый процент, если не определено иначе.
В соответствии с другим вариантом осуществления изобретения предлагается изделие из закаленного и отпущенного стального сплава с очень высокой прочностью и вязкостью разрушения. Изделие изготовлено из сплава, имеющего вышеприведенный широкий или предпочтительный состав в массовых процентах. Изделие из сплава по этому варианту осуществления изобретения, кроме того, характеризуется отпуском при температуре примерно от 500 до 600°F.
Подробное описание осуществления изобретения
Предлагаемый в настоящем изобретении сплав включает по меньшей мере примерно 0,35% и предпочтительно по меньшей мере примерно 0,37% углерода. Углерод способствует высокой прочности сплава и способности к закаливанию. Углерод также благоприятствует стойкости этого сплава к размягчению в ходе отпуска. Слишком большое содержание углерода неблагоприятно действует на ударную вязкость сплава. Поэтому углерод ограничивают примерно не более чем до 0,55%, еще лучше примерно не более чем до 0,50% и предпочтительно примерно не более чем до 0,45%.
В предлагаемом сплаве присутствует по меньшей мере примерно 0,6%, еще лучше по меньшей мере примерно 0,7% и предпочтительно по меньшей мере примерно 0,8% марганца, главным образом для раскисления сплава. Было установлено, что марганец также благоприятствует высокой прочности сплава. При слишком высоком содержании марганца в процессе закалки и резкого охлаждения может наблюдаться нежелательное количество удержанного аустенита, что неблагоприятно влияет на высокую прочность сплава. Поэтому сплав содержит не более чем примерно 1,2% и предпочтительно не более чем примерно 0,9% марганца.
Кремний благоприятствует способности к закаливанию и стойкости сплава к размягчению в ходе отпуска. Поэтому сплав содержит по меньшей мере примерно 0,9% кремния и предпочтительно по меньшей мере примерно 1,3% кремния. Слишком много кремния неблагоприятно действует на твердость, прочность и пластичность сплава. Чтобы избежать этих неблагоприятных влияний, кремний в предлагаемом сплаве ограничивают примерно не более чем до 2,5% и предпочтительно примерно не более чем до 2,1%.
Сплав содержит по меньшей мере примерно 0,75% хрома, так как хром способствует способности к закаливанию, высокой прочности и стойкости сплава к размягчению в ходе отпуска. Предпочтительно, сплав содержит по меньшей мере примерно 1,0% и еще лучше по меньшей мере примерно 1,2% хрома. Более чем примерно 2% хрома в сплаве неблагоприятно влияет на ударную вязкость и пластичность сплава. Предпочтительно хром ограничивают примерно не более чем до 1,5% в предлагаемом сплаве и еще лучше примерно не более чем до 1,35%.
В соответствии с предлагаемым изобретением никель благоприятствует хорошей ударной вязкости сплава. Поэтому сплав содержит по меньшей мере примерно 3,5% никеля и предпочтительно по меньшей мере примерно 3,7% никеля. Выигрыш от больших количеств никеля отрицательно сказывается на стоимости сплава, не давая значительного преимущества. Чтобы ограничить высокую стоимость сплава, содержание никеля в сплаве ограничивают примерно не более чем до 7% и предпочтительно примерно не более чем до 4,5%.
Молибден образует карбид, что благоприятно для стойкости сплава к размягчению в ходе отпуска. Присутствие молибдена увеличивает температуру отпуска сплава, так что вторичный эффект закалки достигается при примерно 500°F. Молибден также способствует прочности и вязкости разрушения сплава. Преимущества, обеспечиваемые молибденом, проявляются, когда сплав содержит по меньшей мере примерно 0,4% молибдена и предпочтительно по меньшей мере примерно 0,5% молибдена. Подобно никелю, молибден не дает роста преимущества в свойствах, связанных со значительным увеличением стоимости из-за добавки больших количеств молибдена. По этой причине сплав содержит не более чем примерно 1,3% молибдена и предпочтительно не более чем примерно 1,1% молибдена. В предлагаемом сплаве молибден можно заменить некоторым количеством или полностью вольфрамом. Молибден заменяют вольфрамом в соотношении 2:1. Если сплав содержит меньше примерно 0,01% молибдена, вводят примерно 0,8-2,6%, предпочтительно примерно от 1,0 до 2,2% вольфрама для улучшения стойкости сплава к размягчению в ходе отпуска, прочности и ударной вязкости сплава.
Предлагаемый сплав предпочтительно содержит по меньшей мере примерно 0,5% меди, которая способствует способности к закаливанию и ударной вязкости сплава. Слишком много меди может привести к осаждению нежелательного количества свободной меди в матрице сплава и неблагоприятно повлиять на вязкость разрушения сплава. Поэтому в предлагаемом сплаве присутствует не более чем примерно 0,6% меди.
Ванадий способствует высокой прочности и хорошей способности сплава к закаливанию. Ванадий также образует карбид и промотирует образование карбидов, которые помогают обеспечить измельчение зерен в сплаве, что благоприятствует стойкости сплава к размягчению при отпуске и вторичному закаливанию сплава. По этим причинам сплав предпочтительно содержит по меньшей мере примерно 0,25% ванадия. Слишком большое содержание ванадия отрицательно влияет на прочность сплава из-за образования больших количеств карбидов в сплаве, которые выводят углерод из материала матрицы сплава. Соответственно, сплав содержит не более чем примерно 0,35% ванадия. Ниобий может заменить некоторое количество или полностью ванадий в предлагаемом сплаве, так как подобно ванадию ниобий соединяется с углеродом с образованием карбидов М4С13, которые благоприятствуют стойкости сплава к размягчению в ходе отпуска и способности сплава к закаливанию. Ниобий, содержащийся в сплаве, заменяет ванадий в соотношении 1,8:1. Когда ванадий ограничен примерно не более чем до 0,01%, сплав содержит примерно от 0,2 до 1,0% ниобия.
Предлагаемый сплав может также содержать небольшое количество кальция примерно до 0,005%, удержанное из добавок в процессе плавки сплава для удаления серы, что благоприятствует вязкости разрушения сплава.
Кремний, медь, ванадий и ниобий, если он присутствует, предпочтительно сбалансированы в пределах их вышеуказанных диапазонов массовых процентов с целью благоприятствования новому сочетанию прочности и ударной вязкости, характеризующему данный сплав. Более конкретно соотношение (%Si+%Cu)/(%V+(5/9)×%Nb) предпочтительно составляет примерно от 2 до 14, еще лучше примерно от 6 до 12. Полагают, что если количества кремния, меди и ванадия, присутствующие в сплаве, сбалансированы в соответствии с этим соотношением, то границы блоков сплава укрепляются в результате предотвращения образования на них хрупких фаз и случайных элементов.
Остатком сплава являются по существу железо и обычные загрязнения, обнаруживаемые в промышленных сортах подобных сплавов и сталей. В этом отношении сплав предпочтительно содержит не более чем примерно 0,01%, еще лучше не более чем примерно 0,005% фосфора и не более чем примерно 0,001%, еще лучше не более чем примерно 0,0005% серы. Сплав предпочтительно содержит не более чем примерно 0,01% кобальта. Титан может присутствовать на уровне остаточного продукта из добавок для раскисления и предпочтительно ограничен примерно не более чем до 0,01%.
В пределах вышеприведенных диапазонов массовых процентов элементы можно сбалансировать для обеспечения разных уровней предела прочности при растяжении. Так, например, было установлено, что состав сплава, содержащего примерно 0,38% С, 0,84% Мn, 1,51% Si, 1,25% Cr, 3,78% Ni, 0,50% Mo, 0,55% Сu, 0,29% V, остаток по существу Fe, обеспечивает предел прочности при растяжении выше 290 ksi в сочетании с КIc вязкостью разрушения больше чем 80 ksi√in после отпуска при примерно 500°F в течение 3 часов. Было установлено, что состав сплава, содержаего примерно 0,40% С, 0,84% Мn, 1,97% Si, 1,26% Cr, 3,78% Ni, 1,01% Mo, 0,56% Сu, 0, 30% V, остаток по существу Fe, обеспечивает предел прочности при растяжении более 310 ksi в сочетании с К вязкостью разрушения более 60 ksi√in после отпуска при примерно 500°F в течение 3 часов. Кроме того, было установлено, что состав сплава, содержащего примерно 0,50% С, 0,69% Мn, 1,38% Si, 1,30% Cr, 3,99% Ni, 0,50% Mo, 0,55% Сu, 0,29% V, остаток по существу Fe, обеспечивает предел прочности при растяжении более 340 ksi в сочетании с KIc вязкостью разрушения более 30 ksi√in после отпуска при примерно 300°F в течение 2,5 часов плюс 2,5 часа.
Для изготовления сплава в соответствии с предлагаемым изобретением не требуется специальная техника плавки. Сплав преимущественно представляет собой продукт вакуумно-индукционной плавки ВИП, и при необходимости в случае ответственных применений его очищают с применением вакуум-дугового переплава ВДП. Полагают, что этот сплав можно также плавить в электрической дуге в воздухе. После плавки в воздухе сплав предпочтительно очищают с помощью электрошлакового переплава ЭШП или ВДП.
Сплав, предлагаемый в настоящем изобретении, предпочтительно подвергают горячей обработке, начиная с температуры примерно 2100°F с образованием разных промежуточных форм продукта, таких как бруски и стержни. Сплав предпочтительно подвергают горячей обработке путем аустенизации от примерно 1585°F до примерно 1635°F в течение примерно 30-45 минут. Затем сплав охлаждают в воздухе или подвергают резкому охлаждению в масле с температуры аустенизации. Сплав предпочтительно подвергают глубокому охлаждению до -100°F или -320°F в течение по меньшей мере примерно одного часа и затем нагревают в воздухе. Сплав предпочтительно отпускают при примерно 500°F в течение примерно 3 часов и затем охлаждают в воздухе. Сплав можно отпускать при температуре до 600°F, если не требуется оптимальное сочетание прочности и ударной вязкости.
Предлагаемый в изобретении сплав имеет широкий диапазон применений. Очень высокая прочность и хорошая вязкость разрушения сплава делают его пригодным для изготовления деталей металлорежущих станков и также конструктивных элементов летательных аппаратов, включая шасси самолета. Предлагаемый в изобретении сплав также пригоден для изготовления деталей автомобилей, включая, но этим не ограничиваясь, детали конструкции, приводной вал, рессоры и коленчатые валы. Полагают, что сплав также пригоден для изготовления броневых плит, листовых металлов и стержней.
Рабочие примеры
Для оценки было проведено семь 35-фунтовых ВИП плавок. Составы плавок в массовых процентах представлены в нижеследующей таблице 1. Все плавки были проведены с применением ультрачистых сырьевых материалов и кальция в качестве обессеривающей добавки. Плавки разливали в 4-дюймовые квадратные литейные формы. Литейные формы были выкованы в 2 1/4-дюймовые стержни квадратного сечения с начальной температуры примерно 2100°F. Стержни были разрезаны на более короткие образцы, и половину более коротких стержней далее выковали в 1-дюймовые стержни квадратного сечения также с начальной температуры 2100°F. 1-Дюймовые стержни были разрезаны на еще более короткие образцы, которые были выкованы в 3/4-дюймовые стержни квадратного сечения с начальной температуры 2100°F.
Стержни квадратного сечения в 3/4 дюйма и остальные стержни квадратного сечения в 2 1/4 дюйма были подвергнуты отжигу при 1050°F в течение 6 часов и затем охлаждены в воздухе до комнатной температуры. Из 3/4-дюймовых стержней каждой плавки приготовили стандартные образцы для испытания на растяжение и стандартные образцы для испытания Чарпи на удар с V-образным надрезом (Charpy V-notch impact testing). Из 2 1/4-дюймовых стержней квадратного сечения каждой плавки приготовили стандартные компактные натяжные блоки для испытания на вязкость разрушения. Все образцы были подвергнуты термообработке при 1585°F в течение 30 минут и затем воздушному охлаждению. Затем опытные образцы охладили при -100°F в течение одного часа и нагрели в воздухе до комнатной температуры. После этого резервные образцы каждой плавки были подвергнуты отпуску при одной из трех разных температур: 400, 500 и 600°F с выдержкой их при каждой температуре в течение 3 часов. После этого отпущенные образцы охладили в воздухе до комнатной температуры.
Figure 00000001
Результаты механического испытания, испытания Чарпи на удар с V-образным надрезом и испытания на вязкость разрушения на отпущенных образцах представлены в нижеследующей таблице II, включая 0,2%-ный условный предел текучести (Y.S.), предел прочности при растяжении (U.T.S.) в ksi, процент удлинения (Elong.), процент уменьшения площади (R.A.), энергию удара в испытании Чарпи на удар с V-образным надрезом (CVN I.E.) в футах-фунтах (ft-lbs) и вязкость разрушения К в ksi√in.
Figure 00000002
Figure 00000003
Данные, представленные в таблице II, показывают, что состав плавки 1484 в массовых процентах, соответствующий сплаву, описанному в настоящем документе, является единственным составом сплава, который обеспечивает предел прочности при растяжении 280 ksi и вязкость разрушения по меньшей мере 90 ksi√in после отпуска при 500°F.
Термины и выражения, применяемые в настоящем документе, используют как описательные, а не ограничительные. В намерение не входит применение этих терминов и выражений, исключающих любые эквиваленты показанных и описанных характерных признаков или их частей. Признается возможность разных модификаций в пределах изобретения, описанного и заявленного в настоящем документе.

Claims (20)

1. Высокопрочная сталь с высокой ударной вязкостью и стойкостью к отпуску, характеризующаяся тем, что она включает, мас.%:
С 0,35-0,55 Mn 0,6-1,2 Si 0,9-2,5 Р 0,01 макс. S 0,001 макс. Cr 0,75-2,0 Ni 3,3-7,0 Cu 0,5-0,6 Со 0,01 макс.

Мо и/или W, при условии, что Mo+1/2W составляет 0,4-1,3;
V и/или Nb, при условии, что V+(5/9)×Nb составляет 0,2-1,0;
и остальное железо и обычные загрязнения, и при этом
2≤(%Si+%Cu)/(%V+(5/9)×%Nb)≤14.
2. Сталь по п.1, отличающаяся тем, что Mo+1/2W составляет 0,5-1,1% и при этом
6≤(Si+%Cu)/(%V+(5/9)×%Nb)≤12.
3. Сталь по п.1, отличающаяся тем, что она включает 0,4-1,3% молибдена и 0,25-0,35% ванадия.
4. Сталь по п.1, отличающаяся тем, что она включает 0,8-2,6% вольфрама, менее 0,01% молибдена, 0,342-1,0% ниобия и 0,01% макс., ванадия.
5. Сталь по п.1, отличающаяся тем, что она включает 0,5-1,1% молибдена и 0,25-0,35% ванадия.
6. Сталь по п.1, отличающаяся тем, что она включает 1,0-2,2% вольфрама, менее 0,01% молибдена, 0,342-1,0% ниобия и 0,01% макс., ванадия.
7. Сталь по п.1, отличающаяся тем, что она включает по меньшей мере 0,37% углерода.
8. Сталь по п.7, отличающаяся тем, что она включает не более 0,45% углерода.
9. Сталь по п.1, отличающаяся тем, что она включает по меньшей мере 1,3% кремния.
10. Сталь по п.1, отличающаяся тем, что она включает не более 2,1% кремния.
11. Сталь по п.1, отличающаяся тем, что она включает по меньшей мере 3,7% никеля.
12. Сталь по п.1, отличающаяся тем, что она включает не более 4,2% никеля.
13. Сталь по п.1, отличающаяся тем, что она включает по меньшей мере 1,2% хрома.
14. Сталь по п.13, отличающаяся тем, что она включает не более 1,35% хрома.
15. Сталь по п.1, отличающаяся тем, что она включает, мас.%:
С 0,37-0,50 Mn 0,7-0,9 Si 1,3-2,1 Р 0,005 макс. S 0,0005 макс. Cr 1,0-1,5 Ni 3,7-4,5 Cu 0,5-0,6 Со 0,01 макс.,

причем Мо+1/2W составляет 0,5-1,1%;
V+(5/9)×Nb составляет 0,2-1,0%;
и остальное железо и обычные загрязнения, и при этом
6≤(%Si+%Cu)/(%V+(5/9)×%Nb)≤12.
16. Сталь по п.1, отличающаяся тем, что она включает, мас.%:
углерод 0,37-0,45 марганец 0,7-0,9 кремний 1,3-2,1 фосфор 0,005 макс. сера 0,0005 макс. хром 1,2-1,35 никель 3,7-4,2 молибден 0,5-1,1 медь 0,5-0,6 кобальт 0,01 макс. ванадий 0,25-0,35

остальное железо и обычные загрязнения, и при этом
6≤(%Si+%Cu)/%V≤12.
17. Сталь по п.1, отличающаяся тем, что она включает, мас.%:
углерод 0,35-0,5 марганец 0,6-1,2 кремний 0,9-2,5 фосфор 0,01 макс. сера 0,001 макс. хром 1,0-1,5 никель 3,5-4,5 молибден 0,4-1,3 медь 0,5-0,6 кобальт 0,01 макс. ванадий 0,25-0,35

остальное железо и обычные загрязнения, и при этом
2≤(%Si+%Cu)/%V≤14.
18. Сталь по п.1, отличающаяся тем, что она включает, мас.%:
С 0,35-0,50 Mn 0,6-1,2 Si 0,9-2,5 Р 0,01 макс. S 0,001 макс. Cr 0,75-2,0 Ni 3,4-4,5 Mo <0,01 W 0,8-2,6 Cu 0,5-0,6 Со 0,01 макс. Nb 0,342-1,0 V 0,01 макс.

остальное железо и обычные загрязнения, и при этом
2≤(%Si+%Cu)/%Nb≤14.
19. Сталь по п.1, отличающаяся тем, что она включает, мас.%:
С 0,37-0,50 Mn 0,7-0,9 Si 1,3-2,1 Р 0,005 макс. S 0,0005 макс. Cr 1,0-1,5 Ni 3,7-4,5 Mo <0,01 W 1,0-2,2 Cu 0,5-0,6 Co 0,01 макс. Nb 0,342-1,0 V 0,01 макс.

остальное железо и обычные загрязнения, и при этом
6≤(%Si+%Cu)/%Nb≤12.
20. Изделие из высокопрочной стали с высокой ударной вязкостью и стойкостью к отпуску, отличающееся тем, что оно изготовлено из стали по любому из пп.1-19.
RU2011106360/02A 2008-07-24 2009-06-17 Высокопрочный стальной сплав с высокой ударной вязкостью RU2482212C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8324908P 2008-07-24 2008-07-24
US61/083,249 2008-07-24
US17209809P 2009-04-23 2009-04-23
US61/172,098 2009-04-23
PCT/US2009/047636 WO2010011447A2 (en) 2008-07-24 2009-06-17 High strength, high toughness steel alloy

Publications (2)

Publication Number Publication Date
RU2011106360A RU2011106360A (ru) 2012-08-27
RU2482212C2 true RU2482212C2 (ru) 2013-05-20

Family

ID=41066613

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011106360/02A RU2482212C2 (ru) 2008-07-24 2009-06-17 Высокопрочный стальной сплав с высокой ударной вязкостью

Country Status (13)

Country Link
US (4) US20100018613A1 (ru)
EP (1) EP2313535B8 (ru)
JP (1) JP5868704B2 (ru)
KR (1) KR101363674B1 (ru)
CN (1) CN102165086B (ru)
AR (1) AR072388A1 (ru)
BR (1) BRPI0911732B1 (ru)
CA (1) CA2731754C (ru)
IL (1) IL210783A0 (ru)
MX (1) MX2011000918A (ru)
RU (1) RU2482212C2 (ru)
TW (1) TWI440723B (ru)
WO (1) WO2010011447A2 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110165011A1 (en) * 2008-07-24 2011-07-07 Novotny Paul M High strength, high toughness steel alloy
JP6225105B2 (ja) 2011-04-15 2017-11-01 フェデラル−モーグル・リミテッド・ライアビリティ・カンパニーFederal−Mogul Llc ピストンの製造方法
DE102012111679A1 (de) * 2012-01-19 2013-07-25 Gesenkschmiede Schneider Gmbh Niedrig legierter Stahl und damit hergestellte Bauteile
US9499890B1 (en) 2012-04-10 2016-11-22 The United States Of America As Represented By The Secretary Of The Navy High-strength, high-toughness steel articles for ballistic and cryogenic applications, and method of making thereof
CN103451568A (zh) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 高碳不锈钢叶轮轴不锈钢材料及其制造方法
CN104674121B (zh) * 2015-03-10 2017-03-08 山东钢铁股份有限公司 一种高抗弹性装甲用钢板及其制造方法
KR102245002B1 (ko) 2020-02-28 2021-04-27 동우 화인켐 주식회사 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
KR102242170B1 (ko) 2020-02-28 2021-04-20 동우 화인켐 주식회사 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2021208181A1 (zh) * 2020-04-14 2021-10-21 北京科技大学 一种低温高韧高温高强及高淬透性热模钢及制备技术
CN113249645B (zh) * 2021-04-13 2022-02-25 北京科技大学 一种高延性超高强韧钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU922173A1 (ru) * 1980-04-22 1982-04-23 Московский Ордена Трудового Красного Знамени Институт Стали И Сплавов Штампова сталь
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1101828A1 (en) * 1993-02-26 2001-05-23 Nippon Steel Corporation High-strength bainitic steel rails with excellent rolling-contact fatigue resistance
EP0912773B1 (en) * 1996-06-25 2001-10-31 Uddeholm Tooling Aktiebolag Use of a steel for cutting tool holders
RU2194776C2 (ru) * 1998-01-14 2002-12-20 Ниппон Стил Корпорейшн Рельсы из бейнитной стали с высокими сопротивлением усталостному разрушению поверхности и износостойкостью
JP2003105485A (ja) * 2001-09-26 2003-04-09 Nippon Steel Corp 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法
US7067019B1 (en) * 2003-11-24 2006-06-27 Malltech, L.L.C. Alloy steel and article made therefrom
RU2297460C1 (ru) * 2006-04-05 2007-04-20 Закрытое акционерное общество "Ижевский опытно-механический завод" Способ приготовления протяженного, преимущественно цилиндрического, изделия из конструкционной высокопрочной стали, изделие из конструкционной высокопрочной стали

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713905A (en) * 1970-06-16 1973-01-30 Carpenter Technology Corp Deep air-hardened alloy steel article
JPH0765141B2 (ja) * 1985-09-18 1995-07-12 日立金属株式会社 熱間加工用工具鋼
JPH04143253A (ja) * 1990-10-04 1992-05-18 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼
US5458703A (en) * 1991-06-22 1995-10-17 Nippon Koshuha Steel Co., Ltd. Tool steel production method
CN1088998A (zh) * 1992-12-31 1994-07-06 北京科技大学 高韧性高强度石油管用钢
JPH06248347A (ja) * 1993-02-26 1994-09-06 Nippon Steel Corp ベイナイト組織を呈し耐表面損傷性に優れた高強度レールの製造法
JP2912123B2 (ja) * 1993-07-22 1999-06-28 新日本製鐵株式会社 耐表面損傷性に優れた高強度・高靭性ベイナイト系レールの製造法
FR2727431B1 (fr) * 1994-11-30 1996-12-27 Creusot Loire Procede d'elaboration d'un acier au titane et acier obtenu
US6187261B1 (en) * 1996-07-09 2001-02-13 Modern Alloy Company L.L.C. Si(Ge)(-) Cu(-)V Universal alloy steel
JP3457498B2 (ja) * 1997-04-17 2003-10-20 新日本製鐵株式会社 高強度pc鋼棒およびその製造方法
JPH10299803A (ja) * 1997-04-22 1998-11-13 Kobe Steel Ltd 耐環境脆性の良好な高強度ばね
EP0928835A1 (en) * 1998-01-07 1999-07-14 Modern Alloy Company L.L.C Universal alloy steel
FR2780418B1 (fr) * 1998-06-29 2000-09-08 Aubert & Duval Sa Acier de cementation a temperature de revenu eleve, procede pour son obtention et pieces formees avec cet acier
JP2003027181A (ja) * 2001-07-12 2003-01-29 Komatsu Ltd 高靭性耐摩耗用鋼
US6746548B2 (en) * 2001-12-14 2004-06-08 Mmfx Technologies Corporation Triple-phase nano-composite steels
ATE477350T1 (de) * 2003-01-24 2010-08-15 Ellwood Nat Forge Company Eglin stahl- eine niedriglegierte hochfeste zusammensetzung
KR100528120B1 (ko) * 2003-04-24 2005-11-15 예병준 주강합금 및 이를 소재로 한 고강도, 고인성의 오스템퍼드고탄소강의 제조방법
JP5344454B2 (ja) * 2005-11-21 2013-11-20 独立行政法人物質・材料研究機構 温間加工用鋼、その鋼を用いた温間加工方法、およびそれにより得られる鋼材ならびに鋼部品
JP2008138241A (ja) * 2006-11-30 2008-06-19 Jfe Steel Kk 耐疲労損傷性及び耐食性に優れたパーライト鋼レールおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU922173A1 (ru) * 1980-04-22 1982-04-23 Московский Ордена Трудового Красного Знамени Институт Стали И Сплавов Штампова сталь
EP1101828A1 (en) * 1993-02-26 2001-05-23 Nippon Steel Corporation High-strength bainitic steel rails with excellent rolling-contact fatigue resistance
EP0912773B1 (en) * 1996-06-25 2001-10-31 Uddeholm Tooling Aktiebolag Use of a steel for cutting tool holders
RU2194776C2 (ru) * 1998-01-14 2002-12-20 Ниппон Стил Корпорейшн Рельсы из бейнитной стали с высокими сопротивлением усталостному разрушению поверхности и износостойкостью
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
JP2003105485A (ja) * 2001-09-26 2003-04-09 Nippon Steel Corp 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法
US7067019B1 (en) * 2003-11-24 2006-06-27 Malltech, L.L.C. Alloy steel and article made therefrom
RU2297460C1 (ru) * 2006-04-05 2007-04-20 Закрытое акционерное общество "Ижевский опытно-механический завод" Способ приготовления протяженного, преимущественно цилиндрического, изделия из конструкционной высокопрочной стали, изделие из конструкционной высокопрочной стали

Also Published As

Publication number Publication date
CA2731754A1 (en) 2010-01-28
CN102165086B (zh) 2017-02-08
IL210783A0 (en) 2011-03-31
BRPI0911732B1 (pt) 2018-07-24
US20100018613A1 (en) 2010-01-28
KR20110036628A (ko) 2011-04-07
KR101363674B1 (ko) 2014-02-14
JP2011529137A (ja) 2011-12-01
WO2010011447A2 (en) 2010-01-28
WO2010011447A3 (en) 2010-03-18
BRPI0911732A2 (pt) 2015-10-06
CN102165086A (zh) 2011-08-24
US20130146182A1 (en) 2013-06-13
TWI440723B (zh) 2014-06-11
MX2011000918A (es) 2011-04-11
EP2313535B1 (en) 2021-07-28
EP2313535B8 (en) 2021-09-29
US20180030579A1 (en) 2018-02-01
US20190249281A1 (en) 2019-08-15
AR072388A1 (es) 2010-08-25
US10472706B2 (en) 2019-11-12
RU2011106360A (ru) 2012-08-27
EP2313535A2 (en) 2011-04-27
TW201009095A (en) 2010-03-01
CA2731754C (en) 2015-11-03
JP5868704B2 (ja) 2016-02-24

Similar Documents

Publication Publication Date Title
RU2482212C2 (ru) Высокопрочный стальной сплав с высокой ударной вязкостью
US9957594B2 (en) High strength, high toughness steel alloy
KR101696967B1 (ko) 고강도 고인성 강합금
US20070113931A1 (en) Ultra-high strength martensitic alloy
KR101191763B1 (ko) 강도와 파괴인성이 우수한 w함유 이차 경화형 합금강 및 그 제조 방법