RU2471016C1 - Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способ получения и применения - Google Patents

Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способ получения и применения Download PDF

Info

Publication number
RU2471016C1
RU2471016C1 RU2011116886/02A RU2011116886A RU2471016C1 RU 2471016 C1 RU2471016 C1 RU 2471016C1 RU 2011116886/02 A RU2011116886/02 A RU 2011116886/02A RU 2011116886 A RU2011116886 A RU 2011116886A RU 2471016 C1 RU2471016 C1 RU 2471016C1
Authority
RU
Russia
Prior art keywords
water
soluble
dipping
sheet steel
zinc coating
Prior art date
Application number
RU2011116886/02A
Other languages
English (en)
Other versions
RU2011116886A (ru
Inventor
Пин ЮАНЬ
Тайсюн ГО
Цюань СЮЙ
Дань ЮЙ
Юн ЧЖАНГ
Чжэфэн СЮЙ
Илинь ЧЖОУ
Original Assignee
Паньган Груп Стил Ванадиум энд Титанниум Ко., Лтд.
ПаньГан Груп Рисерч Инститьют Ко., Лтд.
ПаньГан Груп Паньчжихуа Айрон энд Стил Рисерч Инститьют Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Паньган Груп Стил Ванадиум энд Титанниум Ко., Лтд., ПаньГан Груп Рисерч Инститьют Ко., Лтд., ПаньГан Груп Паньчжихуа Айрон энд Стил Рисерч Инститьют Ко., Лтд. filed Critical Паньган Груп Стил Ванадиум энд Титанниум Ко., Лтд.
Publication of RU2011116886A publication Critical patent/RU2011116886A/ru
Application granted granted Critical
Publication of RU2471016C1 publication Critical patent/RU2471016C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Изобретение относится к области химической обработки поверхности, в частности к пассиватору для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способу получения предложенного пассиватора, а также листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, обработанной предложенным пассиватором, и способу пассивации листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав. Предложенный пассиватор для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, содержит 2-6 вес. частей водорастворимого молибдата, 4-12 вес. частей водорастворимой соли марганца, 50-100 вес. частей основного силикатного золя и 50-100 вес. частей водорастворимой органической смолы. Предложенный пассиватор является экологически безопасным, так как не содержит хрома или любых других ионов тяжелых металлов, которые могут загрязнять окружающую среду, и имеет низкую температуру пленкообразования (70-150°С), хорошую коррозионную стойкость и высокую водостойкость, при этом улучшает внешний вид листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и повышает смазочные свойства пленки. 4 н. и 6 з.п. ф-лы, 3 пр.

Description

Область изобретения
Настоящее изобретение относится к области химической обработки поверхности и, в частности к пассиватору для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способу получения и применения.
Предпосылки создания изобретения
В связи с хорошей коррозионной стойкостью и устойчивостью к высокотемпературному окислению листовой стали с алюмю-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в настоящее время такая сталь применяется не только в области строительных материалов, а находит все более широкое применение в более высокотехнологичных областях, таких как бытовая техника. Во влажной среде, слой алюмо-цинкового сплава подвергается коррозии и на его поверхности могут образоваться «белая» ржавчина или черные пятна, нанося ущерб качеству поверхности и коррозионной стойкости листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав. В целях дальнейшего повышения коррозионной стойкости листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, ее поверхность обычно пассивируют.
Например, в заявке на изобретение CN 101332692А описана листовая сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, не содержащая хрома, и способ её получения. Покрытие стального листа достигается в основном фтортитанатом аммония и мета-ванадатом аммония в сочетании с пассивацией соединениями фосфора. Однако пропитывающий реагент в этом методе является полностью неорганическим, пленка тонкая и не дает никакого улучшения основе, ее самосмазывающая способность низка, а использование ванадия также вызывает проблемы в отношении защиты окружающей среды.
Другой пример представлен в заявке на изобретение CN 1247777А, которая описывает способ обработки листа с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав хром-содержащими органически смолами. Пленка смолы, образующаяся на поверхности листа с алюмо-цинковым покрытием, может предотвратить образование повреждений в процессе формования, но наличие хрома приведет к загрязнению окружающей среды.
В качестве другого примера, в заявке на изобретение CN 1511908А описана композиция из водорастворимой смолы, используемая для обработки покрытого алюмо-цинковым сплавом стального листа. Композиция содержит анионный вододиспергированный полиуретан, сшивающий агент на основе силана и водорастворимые соединения циркония. Температура сушки составляет 70~220°С. Тем не менее, водорастворимые соединения циркония (аммиакат карбоната циркония), используемые в данном способе, имеют плохую термическую стабильность и быстро разлагаются при температуре 60°С; кроме того, этот способ также использует сшивающий агент на основе силана, что дополнительно увеличивает стоимость этого способа.
Краткое описание изобретения
Техническая задача, на решение которой направлено настоящее изобретение, состоит в том, чтобы обеспечить пассиватор для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, не загрязняющий окружающую среду и имеющий низкую стоимость.
В соответствии с данным изобретением исходные вещества для пассиватора для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, включают: 2~6 вес. частей водорастворимого молибдата, 4~12 вес. части водорастворимой соли марганца, 50~100 вес. частей основного силикатного золя (кремнезоля) и 50~100 вес. частей водорастворимой органической смолы.
Описанные ранее растворимые в воде молибдаты могут быть выбраны из любого подходящего молибдата, такого как: молибдат натрия, молибдат аммония или молибдат калия.
Вышеописанные растворимые в воде соли марганца могут быть выбраны из любой подходящей растворимой в воде соли марганца, такой как: дигидрофосфат марганца, сульфат марганца, хлорид марганца и нитрат марганца.
Если концентрация основного силикатного золя будет слишком низка, то это отразится на устойчивости к коррозии и водостойкости пассиватора; если концентрация будет слишком высока, то образовавшийся пассивирующий слой будет содержать избыток диоксида кремния, и поверхность пассивирующего слоя будет белой. Чтобы пассиватор согласно настоящему изобретению для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, давал наилучший эффект, предпочтительно использовать основный силикатный золь, содержащий 20-40% диоксида кремния.
Водорастворимая органическая смола может быть выбрана из любой из подходящих водорастворимых органических смол, таких как: эмульсия водорастворимой стирол-акриловой смолы, эмульсия водорастворимой силикон-акриловой смолы и эмульсия водорастворимой акриловой смолы. Все смолы имеют температуру стеклования (Тс)<50° и могут улучшить процесс формования, устойчивость к коррозии и водоустойчивость слоя, образованного пассиватором согласно настоящему изобретению.
Стирол-акриловая смола может быть выбрана из любой из существующих стирол-акриловых смол, которые могут быть использованы для нанесения покрытий. Ее молекулярный вес может варьироваться в очень большом диапазоне. Например, средневесовая молекулярная масса стирол-акриловой смолы может быть 200-3000, желательно 200-1000 и наиболее предпочтительно 300-800.
Стирол-акриловая смола содержит структурные звенья, образованные из мономеров на основе стирола, и структурные звенья, образованные из мономеров на основе акрила и/или мономеров на основе акрилата. Мольное соотношение между структурными звеньями может варьироваться в широком диапазоне. Например, мольное соотношение между структурными звеньями, образованными из мономеров на основе стирола, и структурных звеньев, образованных из мономеров на основе акрила и/или мономеров на основе акрилата, может быть 1:0.02-50.
Мономерами на основе стирола могут быть один или несколько мономеров, выбранных из: стирола, 2-метилстирола, 3-метилстирола, 4-трет-бутилстирола, 2,4-диметилстирола, α-метил-4-метилстирола.
Мономерами на основе акрила могут быть один или несколько мономеров, выбранных из: акриловой кислоты, метакриловой кислоты и триметакриловой кислоты.
Мономерами на основе акрилата могут быть один или несколько мономеров, выбранных из метилакрилата, этилакрилата, н-бутил акрилата, изо-бутилакрилата, н-октил акрилата, 2-этилгексилакрилата, гидрокси-этил акрилата, гидрокси-пронил акрилата, глицидил акрилата, метилметакрилата, этилметакрилата, н-бутилметакрилата, гексил метакрилата, н-октил акрилата, лаурат метакрилата, октадецил метакрилата, гидроксиэтилметакрилата, гидроксипропил метакрилата, глицидилметакрилата и тригидроксиметилпропил триметилакрилата.
Эмульсия стирол-акриловой смолы, которая отвечает вышеприведенным условиям, коммерчески доступна, например: ху-108b стирол-акриловая эмульсия производства Cuangzhou Chaolong Chemical Technology Co., Ltd. и А-101 стирол-акриловая эмульсия производства Nantong Lianbang Chemical Co., Ltd.
Стирол-акриловая смола, которая отвечает вышеприведенным условиям, может быть получена обычными методами полимеризации, например: в присутствии катализатора, мономеры стирола, и акриловые и/или акрилатные мономеры подвергаются эмульсионной сополимеризации. Могут быть использованы обычные катализаторы и условия сополимеризации.
Водорастворимая кремний-акриловая эмульсия - это эмульсия, содержащая силикон-акриловую смолу. Силикон-акриловая смола может быть любой силикон-акриловой смолой, которая может быть использована для нанесения покрытий. Ее молекулярная масса может варьироваться в широком диапазоне. Например, средневесовая молекулярная масса кремний акриловой смолы может быть 200-3000, желательно 200-1000 и наиболее предпочтительно 300-800.
Силикон-акриловая смола может содержать структурные звенья, образованные из кремнийорганических мономеров, и структурные звенья, образованные из мономеров на основе акрила и/или мономеров на основе акрилата мономеров. Мольное соотношение между структурными звеньями может варьироваться в широком диапазоне. Например, мольное соотношение между структурными звеньями, образованными из кремнийорганических мономеров, и структурными звеньями, образованными из мономеров на основе акрила и/или мономеров на основе акрилата, может быть 1:0,02-50.
Кремнийорганическими мономерами могут быть один или несколько мономеров, выбранных из: метил хлорсилана, фенил хлорсилана, метилвинилхлорсилана, этил трихлорсилана, пропил трихлорсилана, винил трихлорсилана и γ-хлорпропил трихлорсилана.
Мономерами на основе акрила могут быть один или несколько мономеров, выбранных из: акриловой кислоты, метакриловой кислоты и триметакриловой кислоты; один или несколько акрилатных мономеров могут быть выбраны из: метилакрилата, этилакрилата, н-бутил акрилата, изо-бутилакрилата, н-октил акрилата, 2-этилгексилакрилата, гидрокси-этил акрилата, гидрокси-пропил акрилата, гицидил акрилата, метилметакрилата, этилметакрилата, н-бутилметакрилата, н-гексил метакрилата, н-октил акрилата, лаурат метакрилата, октадецил метакрилата, гидроксиэтилметакрилата, гидроксипропил метакрилата, глицидилметакрилата и тригидроксиметилпропил триметилакрилата.
Силикон-акриловая смола, которая отвечает вышеописанным условиям, коммерчески доступна, например: CD-528 силикон-акриловая эмульсия производства Nantong Shengda Chemical Co., Ltd.
Силикон-акриловая смола, которая отвечает вышеописанным условиям, может также быть получена обычными методами полимеризации. Например, кремнийорганические мономеры и мономеры на основе акрила и/или мономеры на основе акрилата сополимеризуют в растворителе в присутствии катализатора. Могут быть использованы обычные катализаторы, растворители и условия сополимеризации.
Стирол-акриловая смола и силикон-акриловая смола могут быть в виде или водной эмульсии, или водной дисперсии. Количество водорастворимых органических смол определяется в пересчете на сухой вес. В водной эмульсии, содержание смолы может составлять 40-60 от общей массы эмульсии.
Водорастворимая акриловая смола полимеризуется из мономеров на основе акрила. Мономером на основе акрила может быть один или несколько из: акриловой кислоты, метакриловой кислоты и триметакриловой кислоты. Ее молекулярная масса может варьироваться в очень большом диапазоне. Например, средневесовая молекулярная масса водорастворимой акриловой смолы может быть 2000-300000, желательно, 8000-11000.
Водорастворимая акриловая смола, которая отвечает вышеописанным условиям, является коммерчески доступной, например, ЕА3842 водорастворимая акриловая смола производства Jiangsu Sanmu Group Co., Ltd.
Водорастворимая акриловая смола, которая отвечает вышеописанным условиям, может быть также получена обычными методами полимеризации, например: сополимеризацией акриловых мономеров в растворителе, в присутствии катализатора. Могут быть использованы обычные катализаторы, растворители и условия полимеризации.
Настоящее изобретение также обеспечивает способ получения вышеописанного пассиватора для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав. Способ включает следующие стадии:
а. Добавление и растворение в деионизованной воде 2-6 вес. частей водорастворимого молибдата и 4~12 вес. частей водорастворимой соли марганца;
б. Добавление 50~100 вес. частей основного силикатного золя в раствор, полученный на предыдущей стадии, и тщательное перемешивание;
в. Добавление 50~100 вес. частей водорастворимой органической смолы в раствор, полученный на стадии б, и тщательное перемешивание;
г. Доведение pH раствора, полученного на стадии в, до 5~8, используя фосфорную кислоту, так, что образуется пассиватор для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав.
Кроме того, вышеприведенный водорастовримый молибдат может быть выбран из любого молибдата, такого как: молибдат натрия, молибдат аммония и молибдат калия.
Вышеописанной растворимой в воде солью марганца может быть любая водорастворимая соль марганца, такая как: дигидрофосфат марганца, сульфат марганца, хлорид марганца и нитрата марганца, марганец дигидрофосфат предпочтителен.
Предпочтительным основным силикатным золем является основный силикатный золь, содержащий 20~40% диоксида кремния. Вышеописанная водорастворимая органическая смола может быть выбрана из следующих: водорастворимая стирол-акриловая смола, водорастворимая силикон-акриловая эмульсия и водорастворимая акриловая смола.
Требуемые концентрации пассиватора для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, полученного на стадии г, следующие: концентрация молибдата 2-6 г/л, концентрация растворимой в воде соли марганца 4~12 г/л, концентрация основного силикатного золя 50~100 г/л и концентрация растворимой в воде органической смолы - 50~100 г/л.
То есть, из расчета на 1 л пассиватора для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, количество молибдата составляет 2~6 г, количество растворимой в воде соли марганца составляет 4~12 г, количество основного силикатного золя составляет 50~100 г, количество растворимой в воде органической смолы составляет 50~100 г, количество деионизированной воды достаточное для доведения объема пассиватора для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, до 1 л. Водорастовримая органическая смола, как правило, используется в виде водной эмульсии. Концентрация водорастворимой органической смолы в пассиваторе определяется в пересчете на содержание сухого вещества в водной эмульсии. Иными словами, произведение концентрации водной эмульсии и концентрации сухого вещества в водной эмульсии представляет собой концентрацию водорастворимой органической смолы.
Настоящее изобретение также предоставляет листовую сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и обработанную с помощью вышеописанного пассиватора.
Кроме того, данное изобретение также обеспечивает способ пассивации листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав. Метод использует вышеописанный пассиватор для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, используется выше.
Кроме того, вышеописанный способ пассивации для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, включает следующие этапы: во-первых, листовая сталь, с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, обезжиривается и зачищается, затем пассиватор для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, наносится на поверхность листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, а затем высушивается при нагревании (стандартная температура: 70~150°С). Не существует никаких определенных ограничений на способ нанесения и количество пассиватора. Например, может быть использовано нанесение покрытия валиками. Используемое количество пассиватора может быть такое, что количество высушенной пленки составит 50-5000 мг/м2, желательно 100-3000 мг/м2 и наиболее предпочтительно 500-2000 мг/м2.
Пассиватор, согласно настоящему изобретению, для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, имеет следующие преимущества: он не содержит хрома или любых других ионов тяжелых металлов, которые могут загрязнять окружающую среду, так что является экологически безопасным, имеет низкую температуру пленкообразования (70~150°C), хорошую коррозионную стойкость и высокую водостойкость и при этом может улучшить внешний вид листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и повысить смазочные свойства пленки. Пассиватор, согласно настоящему изобретению, для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, характеризуется простотой процесса производства, низкой стоимостью и простотой в использовании, обеспечивает новые возможности в данной области и имеет широкие перспективы применения.
Подробное описание изобретения.
Ниже приведены более конкретные варианты реализации настоящего изобретения. Однако настоящее изобретение не ограничивается приведенными примерами.
Пример 1.
Добавили 2 г молибдата аммония в 500 мл деионизированной воды и перемешивали до растворения;
При перемешивании добавили 4 г марганца дигидрофосфата и перемешивали до растворения;
Добавили 80 г основного силикатного золя, содержащего 25.14% диоксида кремния, и равномерно перемешивали;
Добавили 90 г водорастворимой акриловой смолы (ЕА3842, водорастворимая акриловая смола производства Jiangsu Sanmu Group Co., Ltd., содержание сухого остатка 60±1%);
Довели общий объем до 1 л добавлением деионизированной воды;
Используя фосфорную кислоту, довели pH раствора до 5, и получили пассиватор согласно настоящему изобретению для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав.
Используя ролик, на обезжиренную и зачищенную поверхность листа с алюмо-цинковым покрытием нанесли пассиватор, согласно настоящему изобретению, для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав и высушили при нагревании до 90°C до образования бесцветной и прозрачной пассивирующей пленки. Толщина пленки: 960 мг/м2.
Взяли вышеописанную пассивированную листовую сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и смазанную маслом непассивированную листовую сталь, с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в качестве образцов для проведения испытаний методом нейтрального солевого тумана и методом контроля водостойкости.
Получены следующие результаты:
(1) При использовании метода нейтрального солевого тумана черная ржавчина появлялась на поверхности образцов смазанной непассивированной листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в среднем через 8 часов, в то время как на поверхности образцов пассивированной листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, черная ржавчина появлялась в среднем через 88 часов;
(2) по каплям добавили около 2 мл кипящей воды (100°С) на поверхность горизонтально расположенного образца и наблюдали следы после 24 часов естественной сушки. Ни на образцах пассивированной листовой стали, ни на образцах непассивированной листовой стали, смазанной маслом, следы воды не обнаружили, что говорит о хорошей водостойкости покрытий.
Пример 2.
Добавили 4 г молибдата аммония в 500 мл деионизированной воды и перемешивали до растоворения;
При перемешивании добавили 8 г марганца дигидрофосфата и перемешивали до растоворения;
Добавили 100 г основного силикатного золя, содержащего 26.84% диоксида кремния, и равномерно перемешивали;
Добавили 160 г водорастворимой стирол-акриловой эмульсии (А-101, стирол-акриловая эмульсия производства Nantong Lianbang Chemical Со., Ltd., содержание сухого вещества 47±1%);
Довели общий объем до 1 л добавлением деионизированной воды;
Используя фосфорную кислоту, довели pH раствора до 6, и получили пассиватор по настоящему изобретению для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав.
Используя ролик, на обезжиренную и зачищенную поверхность листа с алюмо-цинковым покрытием нанесли пассиватор, согласно настоящему изобретению, для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и высушили при нагревании до 80°C до образования бесцветной и прозрачной пассивирующей пленки. Толщина пленки: 1000 мг/м2.
Взяли вышеописанную пассивированную листовую сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и смазанную маслом непассивированную листовую сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в качестве образцов для проведения испытаний методом нейтрального солевого тумана и методом контроля водостойкости.
Получены следующие результаты:
(1) При использовании метода нейтрального солевого тумана черная ржавчина появлялась на поверхности образцов смазанной непассивированной листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в среднем через 8 часов, в то время как на поверхности образцов пассивированной листовой стали с алюмо-нинковым покрытием, полученным способом окунания в подогретый пропиточный состав, черная ржавчина появлялась в среднем через 92 часа;
(2) по каплям добавили около 2 мл кипящей воды (100°C) на поверхность горизонтально расположенного образца, и наблюдали следы после 24 часов естественной сушки. Ни на образцах пассивированной листовой стали, ни на образцах непассивированной листовой стали, смазанной маслом, следы воды не обнаружили, что говорит о хорошей водостойкости покрытий.
Пример 3.
Добавили 6 г молибдата натрия в 500 мл деионизированной воды и перемешивали до растворения;
При перемешивании добавили 12 г марганца дигидрофосфата и перемешивали до растворения;
Добавили 100 г основного силикатного золя, содержащего 26,84% диоксида кремния, и равномерно перемешивали;
Добавили 200 г водорастворимой силикон-акриловой эмульсии (SD-528, силикон-акриловые эмульсии производства Nantong Shengda Chemical Co., Ltd., содержание сухого остатка 45±2%);
Довели общий объем до 1 л добавлением деионизированной воды;
Довели pH раствора до 6, с помощью фосфорной кислоты, с получением пассиватора согласно настоящему изобретению для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав.
На обезжиренную и зачищенную поверхность листа с алюмо-цинковым покрытием с помощью ролика нанесли пассиватор согласно настоящему изобретению для листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и высушили при нагревании до 70°C до образования бесцветной и прозрачной пассивирующей пленки. Толщина пленки: 1200 мг/м2.
Взяли вышеописанную пассивированную листовую сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и смазанную маслом непассивированную листовую сталь с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в качестве образцов для проведения испытаний методом нейтрального солевого тумана и методом контроля водостойкости.
Получены следующие результаты:
(1) При использовании метода нейтрального солевого тумана черная ржавчина появлялась на поверхности образцов смазанной непассивированной листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, в среднем через 8 часов, в то время как на поверхности образцов пассивированной листовой стали с алюмо-цинковым покрытием, полученным способом окунания в подогретый пропиточный состав, черная ржавчина появляется в среднем через 84 часа;
(2) по каплям добавили около 2 мл кипящей воды (100°C) на поверхность горизонтально расположенного образца, и наблюдали следы после 24 часов естественной сушки. Ни на образцах пассивированной листовой стали, ни на образцах непассивированной листовой стали, смазанной маслом, следы воды не обнаружили, что говорит о хорошей водостойкости покрытий.

Claims (10)

1. Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, содержащий 2-6 вес.ч. водорастворимого молибдата, 4-12 вес.ч. водорастворимой соли марганца, 50-100 вес.ч. основного силикатного золя и 50-100 вес.ч. водорастворимой органической смолы.
2. Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, по п.1, отличающийся тем, что водорастворимый молибдат является по меньшей мере одним из следующих веществ: молибдат натрия, молибдат аммония и молибдат калия, водорастоворимая соль марганца является по меньшей мере одним из следующих веществ: фосфат марганца, сульфат марганца, хлорид марганца и нитрат марганца.
3. Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, по п.1 или 2, отличающийся тем, что основной силикатный золь является основным силикатным золем, содержащим 20-40 вес.% диоксида кремния.
4. Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, по п.1 или 2, отличающийся тем, что водорастворимая органическая смола является по меньшей мере одной из следующих: водорастворимой стирол-акриловой смолой, водорастворимой силикон-акриловой эмульсией и водорастворимой акриловой смолой.
5. Способ получения пассиватора для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, включающий следующие стадии:
а) добавление и растворение 2-6 вес.ч. водорастворимого молибдата и 4-12 вес.ч. водорастворимой соли марганца в деионизованной воде,
б) добавление 50-100 вес.ч. основного силикатного золя в раствор, полученный на стадии а), и тщательное перемешивание,
в) добавление 50-100 вес.ч. водорастворимой органической смолы в раствор, полученный на стадии б), и тщательное перемешивание,
г) доведение рН раствора, полученного на стадии в), до 5-8, используя фосфорную кислоту, с получением пассиватора для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав.
6. Способ по п.5, отличающийся тем, что водорастворимый молибдат является по меньшей мере одним из следующих: молибдат натрия, молибдат аммония и молибдат калия, водорастворимая соль марганца является по меньшей мере одной из следующих: фосфат марганца, сульфат марганца, хлорид марганца и нитрат марганца, основный силикатный золь является основным силикатным золем, содержащим 20-40 вес.% диоксида кремния, водорастворимая органическая смола является по меньшей мере одной из следующих: водорастворимой стирол-акриловой смолой, водорастворимой силикон-акриловой эмульсией и водорастворимой акриловой смолой.
7. Способ по п.5 или 6, отличающийся тем, что в пассиваторе для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, полученном на стадии г), концентрация водорастворимого молибдата составляет 2-6 г/л, концентрация водорастворимой соли марганца составляет 4-12 г/л, концентрация основного силикатного золя составляет 50-100 г/л, и концентрация водорастворимой органической смолы составляет 50-100 г/л.
8. Листовая сталь с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, обработанная пассиватором для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, по любому из пп.1-4.
9. Способ пассивации листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, включающий обработку листовой стали пассиватором для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, по любому из пп.1-4.
10. Способ по п.9, отличающийся тем, что сначала листовую сталь с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, обезжиривают и зачищают, затем пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, наносят на поверхность листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, и затем высушивают при нагревании.
RU2011116886/02A 2009-08-21 2010-04-07 Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способ получения и применения RU2471016C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910305921.8 2009-08-21
CN2009103059218A CN101629288B (zh) 2009-08-21 2009-08-21 热镀铝锌板用钝化处理剂及其制备方法
PCT/CN2010/071589 WO2011020328A1 (zh) 2009-08-21 2010-04-07 热镀铝锌板用钝化处理剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
RU2011116886A RU2011116886A (ru) 2012-11-10
RU2471016C1 true RU2471016C1 (ru) 2012-12-27

Family

ID=41574565

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011116886/02A RU2471016C1 (ru) 2009-08-21 2010-04-07 Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способ получения и применения

Country Status (6)

Country Link
US (1) US8728628B2 (ru)
JP (1) JP5346387B2 (ru)
CN (1) CN101629288B (ru)
DE (1) DE112010003357T5 (ru)
RU (1) RU2471016C1 (ru)
WO (1) WO2011020328A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629288B (zh) 2009-08-21 2011-06-22 攀钢集团钢铁钒钛股份有限公司 热镀铝锌板用钝化处理剂及其制备方法
CN103031042B (zh) 2011-09-28 2015-06-24 攀钢集团攀枝花钢铁研究院有限公司 一种金属防护涂料及热镀锌金属材料及热镀铝锌金属材料
CN102719820A (zh) * 2012-06-21 2012-10-10 大连三达奥克化学股份有限公司 长型焊接钢管喷涂涂装前单槽无排放综合处理剂及制备方法
CN103805977A (zh) * 2012-11-08 2014-05-21 上海丰野表面处理剂有限公司 一种用于处理镀锡钢板的无铬钝化液
CN104178757B (zh) * 2014-08-08 2017-01-18 东北大学 一种热镀锌钢板无铬复合钝化剂及其制备和使用方法
CN105951068A (zh) * 2016-05-26 2016-09-21 安徽开林新材料股份有限公司 一种20MnSiV钢表面钝化处理剂及其加工工艺
CN110809637A (zh) * 2017-07-04 2020-02-18 深圳市长宏泰科技有限公司 除油除锈钝化三合一钝化剂、钢铁件及其钝化处理方法
CN114030246A (zh) * 2021-11-03 2022-02-11 浙江剑占科技有限公司 一种高强度高牢固度彩石瓦及其生产工艺
CN114540804B (zh) * 2022-02-24 2023-07-25 河北源清环保科技有限公司 基于氨基改性聚硅氧烷的无铬钝化液及其制备方法
CN114605854A (zh) * 2022-03-11 2022-06-10 旭贞新能源科技(上海)有限公司 一种具有超级憎水性能及超低表面能的防腐涂层
CN114951934B (zh) * 2022-04-06 2024-04-16 攀钢集团攀枝花钢铁研究院有限公司 钝化镀锌板的点焊方法
CN114951933A (zh) * 2022-04-06 2022-08-30 攀钢集团攀枝花钢铁研究院有限公司 环保钝化镀锌板的点焊方法
CN114921775A (zh) * 2022-05-16 2022-08-19 浙江遂昌奥美化工科技有限公司 一种环保型皮膜剂及其制备方法
CN115505913B (zh) * 2022-11-03 2023-11-14 广州市钫立新材料科技有限公司 钢铁钝化剂及钝化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092598A1 (en) * 2000-05-31 2001-12-06 Henkel Corporation Agent and method for treating metal surfaces
KR20040108110A (ko) * 2003-06-16 2004-12-23 주식회사 포스코 내식성 및 도막밀착성이 우수한 아연도금강판 제조방법
EA008802B1 (ru) * 2003-06-05 2007-08-31 Метал Коутингс Интернэшнл Инк. Композиции и способы чернения и придания коррозионно-стойких свойств цинку или другим активным металлам
RU2358035C2 (ru) * 2002-12-24 2009-06-10 Шеметалл Гмбх Способ получения тонкого ингибирующего коррозию покрытия на металлической поверхности
WO2009084849A2 (en) * 2007-12-27 2009-07-09 Posco Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389502B2 (ja) 1998-06-26 2003-03-24 日鉄鋼板株式会社 表面被覆アルミニウム−亜鉛合金めっき鋼板
CN1158407C (zh) * 2000-04-04 2004-07-21 华南理工大学 用于保护镀锌层的无铬钝化液及其涂覆方法
JP3851106B2 (ja) * 2000-05-11 2006-11-29 日本パーカライジング株式会社 金属表面処理剤、金属表面処理方法及び表面処理金属材料
JP2001329379A (ja) * 2000-05-17 2001-11-27 Nippon Parkerizing Co Ltd 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
JP4078044B2 (ja) * 2001-06-26 2008-04-23 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
KR100428562B1 (ko) * 2001-09-07 2004-04-28 주식회사 씨케이페인트 아연도금 강판용 표면처리 조성물 및 이를 이용하여처리된 아연도금강판
CN1166453C (zh) 2002-10-08 2004-09-15 北京大学 铜铝-铈铝复合氧化物三效fcc助剂及其制备方法
JP3865693B2 (ja) 2002-12-26 2007-01-10 日本ペイント株式会社 アルミニウム−亜鉛合金メッキ鋼板処理用水性樹脂組成物、被覆方法及びアルミニウム−亜鉛合金メッキ鋼板
CN101332692A (zh) 2007-06-25 2008-12-31 宝山钢铁股份有限公司 一种热镀铝锌无铬钝化处理钢板及其工艺
JP4646966B2 (ja) * 2007-12-13 2011-03-09 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
CN101629288B (zh) * 2009-08-21 2011-06-22 攀钢集团钢铁钒钛股份有限公司 热镀铝锌板用钝化处理剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092598A1 (en) * 2000-05-31 2001-12-06 Henkel Corporation Agent and method for treating metal surfaces
RU2358035C2 (ru) * 2002-12-24 2009-06-10 Шеметалл Гмбх Способ получения тонкого ингибирующего коррозию покрытия на металлической поверхности
EA008802B1 (ru) * 2003-06-05 2007-08-31 Метал Коутингс Интернэшнл Инк. Композиции и способы чернения и придания коррозионно-стойких свойств цинку или другим активным металлам
KR20040108110A (ko) * 2003-06-16 2004-12-23 주식회사 포스코 내식성 및 도막밀착성이 우수한 아연도금강판 제조방법
WO2009084849A2 (en) * 2007-12-27 2009-07-09 Posco Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same

Also Published As

Publication number Publication date
WO2011020328A1 (zh) 2011-02-24
US8728628B2 (en) 2014-05-20
CN101629288B (zh) 2011-06-22
JP2012514690A (ja) 2012-06-28
DE112010003357T5 (de) 2012-05-31
US20120135267A1 (en) 2012-05-31
JP5346387B2 (ja) 2013-11-20
CN101629288A (zh) 2010-01-20
RU2011116886A (ru) 2012-11-10

Similar Documents

Publication Publication Date Title
RU2471016C1 (ru) Пассиватор для листовой стали с алюмоцинковым покрытием, полученным способом окунания в подогретый пропиточный состав, способ получения и применения
CN101717930B (zh) 可以提高金属表面防腐性能的环保型纳米水性硅烷处理剂
AU2004215240C1 (en) Method for coating metallic surfaces with a silane-rich composition
AU2009329626B2 (en) Surface treatment agent for galvanized steel sheet, galvanized steel sheet and production method thereof
CA2578965C (en) Method and composition for forming a non-chrome conversion coating on steel surface
CN108300988A (zh) 一种快速成膜的复合无铬钝化剂及制备方法
CA2106953A1 (en) Metal treatment
CN101418443A (zh) 连续热浸镀锌钢板用的无铬钝化液
EA028053B1 (ru) Способ обработки поверхности покрытого цинк-алюминий-магниевым сплавом стального листа
CN105734547A (zh) 一种环保型金属表面处理剂及其制备方法
CN107043930A (zh) 一种环保新型陶化剂及其制备方法
KR100765068B1 (ko) 가공성이 우수한 크롬 프리 수지 용액 조성물 및 이를이용한 표면처리 강판
CA3212945A1 (en) Chemical conversion coating agent, surface-treated metal and surface treatment method
JP6577559B2 (ja) 耐食性及び潤滑性に優れたコーティング組成物及びそれを用いたコーティング鋼板
CN104451634B (zh) 铝及铝合金钝化液、制备方法及其使用方法
CN106894009B (zh) 一种环氧基poss改性的金属表面前处理剂及其制备方法、应用
WO2012082353A2 (en) Process and seal coat for improving paint adhesion
CN105063596A (zh) 一种铝型材涂装前无铬钝化处理液及其制备方法
CN106521471A (zh) 一种铝合金表面环保型成膜剂及其制备方法
WO2009143140A1 (en) Cross linking thin organic coating resins to substrates through polyfunctional bridging molecules
JP2002036427A (ja) 樹脂系耐食性層を有する金属材
EP2880108A1 (en) Organic-inorganic hybrid coating solution composition and organic-inorganic hybrid coated steel sheet
CN110054966B (zh) 一种基于离子交联的自沉积涂膜处理剂及其制备方法和应用
JPH1161432A (ja) 無機/有機複合表面処理金属板
JPS61133277A (ja) めつき線材の薄膜防錆皮膜形成用塗布組成物

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180408