RU2435795C9 - Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками - Google Patents

Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками Download PDF

Info

Publication number
RU2435795C9
RU2435795C9 RU2008134511/04A RU2008134511A RU2435795C9 RU 2435795 C9 RU2435795 C9 RU 2435795C9 RU 2008134511/04 A RU2008134511/04 A RU 2008134511/04A RU 2008134511 A RU2008134511 A RU 2008134511A RU 2435795 C9 RU2435795 C9 RU 2435795C9
Authority
RU
Russia
Prior art keywords
bii
compounds
koh
biii
hydrogen atoms
Prior art date
Application number
RU2008134511/04A
Other languages
English (en)
Other versions
RU2435795C2 (ru
RU2008134511A (ru
Inventor
Штефан БАУЕР
Штефан МАЙЕР
Original Assignee
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Се filed Critical Басф Се
Publication of RU2008134511A publication Critical patent/RU2008134511A/ru
Publication of RU2435795C2 publication Critical patent/RU2435795C2/ru
Application granted granted Critical
Publication of RU2435795C9 publication Critical patent/RU2435795C9/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • C08G18/2835Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds having less than 5 ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Abstract

Изобретение относится к способу получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками на базе воспроизводимого сырья, используемых во многих областях техники, в частности в салонах автомобилей, в предметах мебели и матрацах или для шумоизоляции. Способ заключается во взаимодействии а) полиизоцианатов со b) смесью полиолов и с) вспенивающими агентами. Смесь полиолов b) состоит из bi) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мг KОН/г, bii) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг KОН/г, и biii) соединениями с, по меньшей мере, одной и максимум двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг KОН/г, причем каждый из компонентов bi) и bii) содержит, по меньшей мере, одно соединение, содержащее возобновляемое сырье или продукты его взаимодействия. Технический результат - получение вязкоупругих полиуретановых пластифицированных пенопластов, которые изготавливаются на основе возобновляемого сырья, имеют хорошие механические свойства, незначительный запах и малые выбросы в атмосферу, а также обладают хорошей длительной стабильностью, в частности, при хранении во влажной теплой атмосфере. 12 з.п. ф-лы, 1 табл.

Description

Изобретение относится к способу получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками при использовании полиэфирполиолов на базе воспроизводимого сырья, в частности касторового масла.
Полиуретановые пластифицированные пенопласты используют во многих областях техники, в частности при обивке мебели или для шумоизоляции. Их получение осуществляют обычно путем взаимодействия полиизоцианатов с соединениями, имеющими, по меньшей мере, два активных атома водорода изоцианатных групп, в присутствии агентов вспенивания, а также, при необходимости, в присутствии катализаторов и обычных вспомогательных веществ и/или добавок.
Исходя из экологических причин рынок требует нарастающего количества пенопластов, которые содержат воспроизводимое сырье. При изготовлении полиуретана воспроизводимое сырье может в перспективе также составить альтернативу исходным продуктам, получаемым нефтехимическим способом. Пенопласты получают в основном путем использования природных соединений, содержащих гидроксильные группы, или полиолов, которые производят путем присоединения к этим соединениям алкиленоксидов.
Примерами соединений, полученных из воспроизводящего сырья, являются касторовое масло, полигидроксижирная кислота, касторовая кислота, модифицированные гидроксильными группами масла, такие как, например, масло из виноградной косточки, масло из черного тмина, масло из тыквенного семени, масло из семян огуречника, соевое масло, масло из зародышей пшеницы, рапсовое масло, подсолнечное масло, арахисовое масло, масло из абрикосовых косточек, масло из фисташковых косточек, миндальное масло, оливковое масло, масло из ореха макадамия, масло авокадо, облепиховое масло, масло кунжута, конопляное масло, масло ядра ореха лещины, масло ослинника, масло шиповника, конопляное масло, масло бодяка (чертополоха), масло грецкого ореха, модифицированные гидроксильными группами жирные кислоты и сложные эфиры жирных кислот на основе миристинолеиновой кислоты, пальмитолеиновой кислоты, масляной кислоты, вацценовой кислоты, петрозелиновой кислоты, гадолеиновой кислоты, эруковой кислоты, нервоновой кислоты, линолевой кислоты и линоленовой кислоты, стеаридоновой кислоты, арахидоновой кислоты, тимнодоновой кислоты, клупанодоновой кислоты, сервоновой кислоты. При этом наибольшее техническое значение имеет касторовое масло и гидрированное касторовое масло.
Взаимодействие соединений из воспроизводящего сырья с алкиленоксидами может осуществляться обычным и известным способом.
Из международной заявки WO 00/44813 известно получение полиэфирных спиртов путем алкоксилирования касторового масла при использовании полиметаллцианидных соединений, часто также называемых DMS-катализаторами.
Из международной заявки WO 04/20497 известно использование полиэфирных спиртов, которые были изготовлены посредством присоединения алкиленоксидов к природным соединениям, в частности к касторовому маслу, для получения полиуретановых пластифицированных пенопластов с уменьшенным потускнением (Fogging). Подобные пенопласты находят применение, в частности, во внутреннем устройстве автомобилей.
Особый класс материалов среди полиуретановых пластифицированных пенопластов представляют вязкоупругие пенопласты.
В рамках настоящего изобретения вязкоупругим называют пенопласт в том случае, когда он в процессе испытания на прочность при кручении в соответствии со стандартом DIN 53445 имеет коэффициент потерь, составляющий более чем 0,15, предпочтительным образом, более чем 0,2. Далее, предпочтительным является положение, когда пенопласты согласно изобретению демонстрируют вязкоупругую характеристику в широком интервале температур, т.е. от -20°С до +50°С, но, по меньшей мере, от 0 до +40°С.
Вязкоупругим пенопласт можно также называть в том случае, когда он имеет эластичность по отскоку, которая замерена в соответствии со стандартом DIN EN ISO 8307 и составляет менее чем 30%, а предпочтительным образом, от 2 до 25%, особенно предпочтительным образом, от 3 до 20%.
В частности, предпочтение отдается тому, что пенопласт согласно настоящему изобретению соответствует как указанным выше критериям в части коэффициента потерь, так и критериям в части эластичности по отскоку.
В случае вязкоупругих пенопластов согласно изобретению с описанными выше коэффициентами затухания речь идет о так называемых "уставших" пенопластах.
Подобные пенопласты используют, в частности, для звукоизоляции, а также для изготовления матрацев или подушек. В этих случаях применения также очень важно, чтобы пенопласты обладали хорошей устойчивостью к старению, в частности, при хранении во влажной теплой атмосфере. Далее, расщепление уретановых связей, которое может привести к образованию ароматических аминов, должно четким образом подавляться.
Следовательно, задача настоящего изобретения состоит в том, чтобы предоставить в распоряжение вязкоупругие полиуретановые пластифицированные пенопласты, которые изготавливаются на основе воспроизводящего сырья, имеют хорошие механические свойства, незначительный запах и малые выбросы в атмосферу, а также обладают хорошей длительной стабильностью, в частности, при хранении во влажной теплой атмосфере.
Неожиданным образом эта задача была решена, когда при получении полиуретановых пластифицированных пенопластов использовали по меньшей мере два полиола на основе воспроизводимого сырья с различными гидроксильными числами.
Таким образом, объектом настоящего изобретения является способ получения вязкоупругих полиуретановых пластифицированных пенопластов на основе воспроизводимого сырья путем взаимодействия
a) полиизоцианатов с
b) соединениями, имеющими активные атомы водорода по отношению к изоцианатным группам, которые содержат:
bi) соединения, по меньшей мере, с двумя активными атомами водорода по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мг KOH/г, и
bii) соединения, по меньшей мере, с двумя активными атомами водорода по отношению к изоцианатным группам и гидроксильным числом, составляющим от 100 до 800 мг KOH/г, и
biii) соединения, по меньшей мере, с одной, максимум с двумя, активными атомами водорода по отношению к изоцианатным группам и гидроксильным числом, составляющим от 100 до 800 мг KOH/г, и
c) агентами вспенивания,
отличающийся тем, что компоненты (bi) и (bii) содержат соответственно по меньшей мере, одно соединение, содержащее воспроизводимое сырье или его продукты взаимодействия.
Объектом заявки являются далее получаемые в соответствии с этим способом вязкоупругие полиуретановые пластифицированные пенопласты.
Далее, объектом изобретения является применение вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками при изготовлении мебели и матрацев для внутренней отделки салонов автомобиля, в частности для задней заливки автомобильных ковриков.
Доля воспроизводимого сырья в пене составляет, предпочтительным образом, по меньшей мере 20, особое предпочтение отдается значению выше 30 и, в частности, выше 40 мас.%.
При этом компоненты (bi) и (bii) могут состоять также исключительно из соединений воспроизводимого сырья.
Предпочтительным образом, компонент b) состоит на 5-45 мас.%, в частности 10-25 мас.%, из bi), на 30-90 мас.%, в особенности на 50-80 мас.% из bii) и на 5-40 мас.%, в частности 10-30 мас.% из bii), причем процентные данные относятся к сумме, которую составляют bi), bii) и biii).
В качестве соединений воспроизводимого сырья используется, в частности, описанное выше воспроизводимое или модифицированное воспроизводимое сырье, такое как масла, жирные кислоты и сложные эфиры кислот жирного ряда, которые имеют, по меньшей мере, среднюю ОН-функциональность, равную от 2 до 16, преимущественно от 2 до 8, и совершенно особое преимущество имеют значения от 2 до 4.
Соединения из воспроизводимого сырья выбираются, предпочтительным образом, из группы, содержащей касторовое масло, полигидроксижирную кислоту, касторовую кислоту, модифицированные гидроксильными группами масла, как, например, масло из виноградной косточки, масло из черного тмина, масло из тыквенного семени, масло из семян огуречника, соевое масло, масло из зародышей пшеницы, рапсовое масло, подсолнечное масло, арахисовое масло, масло из абрикосовых косточек, масло из фисташковых косточек, миндальное масло, оливковое масло, масло из ореха макадамия, масло авокадо, облепиховое масло, масло кунжута, конопляное масло, масло ядра ореха лещины, масло ослинника, масло шиповника, конопляное масло, масло бодяка (чертополоха), масло грецкого ореха, модифицированные гидроксильными группами жирные кислоты и сложные эфиры жирных кислот на основе миристинолеиновой кислоты, пальмитолеиновой кислоты, масляной кислоты, вацценовой кислоты, петрозелиновой кислоты, гадолеиновой кислоты, эруковой кислоты, нервоновой кислоты, линолевой кислоты и линоленовой кислоты, стеаридоновой кислоты, арахидоновой кислоты, тимнодоновой кислоты, клупанодоновой кислоты, сервоновой кислоты.
Продуктами соединений, химически модифицированными гидроксильными группами, которые представлены в торговле, являются, например, Merginat® PV 204, 206 и 235, или полигидроксижирная кислота PHF 110 фирмы "Гамбургер Фэттхеми".
Предпочтительным образом, в качестве соединения из воспроизводимого сырья используют касторовое масло и/или гидрированное касторовое масло.
Взаимодействие соединений из воспроизводимого сырья с алкиленоксидами может осуществляться обычным и известным способом В основном исходное соединение смешивают с катализатором, и эту смесь подвергают взаимодействию с алкиленоксидами. Присоединение алкиленоксидов осуществляют в большинстве случаев в общепринятых условиях при температурах, лежащих в интервале от 60 до 180°С, предпочтение же отдается температурному интервалу от 90 до 140°С, в частности температурному интервалу от 100 до 130°С, и при давлении, значения которого лежат в диапазоне от 0 до 20 бар, предпочтение же отдается интервалу значений давления от 0 до 10 бар и, в частности, интервалу значений давления от 0 до 5 бар. В качестве алкиленоксидов используют, предпочтительным образом, этиленоксид, пропиленоксид или любую смесь этих соединений.
В качестве катализаторов находят применение, предпочтительно, основные соединения, при этом самое большое техническое значение имеет гидроксид калия. Кроме того, полиметаллцианидные соединения, часто обозначаемые так же, как DMC-катализаторы, находят свое применение в виде катализаторов, как это, например, изложено в европейских патентах ЕР 654302, ЕР 862947, международных заявках WO 99/16775, WO 00/74845, WO 00/74843 и WO 00/4844.
В качестве алкиленоксидов могут находить применение все известные алкиленоксиды, например этиленоксид, пропиленоксид, бутиленоксид, стиролоксид. В частности, в качестве алкиленоксидов используют этиленоксид, пропиленоксид и смеси из названных соединений.
Из немецкого патента DE 10240186 известно, что полиметаллцианидные соединения, часто называемые также DMC-катализаторами, особенно хорошо подходят для алкоксилирования воспроизводимого сырья, как, например, касторового масла. Эти получаемые таким образом полиолы имеют, предпочтительным образом, содержание циклических сложных эфиров кислоты жирного ряда, равное максимально 10 част. на млн, и поэтому отличаются своими очень низкими эмиссионными характеристиками.
Соединения bi) имеют, предпочтительным образом, гидроксильное число, составляющее от 20 до 100 мг/KOH при вязкости, значения которой находятся в интервале от 400 до 6000 ммпуаз · сек. Предпочтительным образом, применение находят полиэфиролы на основе касторового масла с гидроксильным числом, лежащим в интервале от 30 до 80, а предпочтение отдается интервалу от 45 до 60 мг KOH/г. Они имеют, предпочтительным образом, содержание первичных гидроксильных групп менее 10, предпочтительным образом менее 5 мас.%, относительно массы полиэфирполиола. В частности, присоединение алкиленоксидов происходит с помощью DMC-катализа.
Соединения bii) имеют, предпочтительным образом, гидроксильное число, составляющее от 100 до 800 мг/KOH. В качестве соединений из воспроизводимого сырья находят применение, в частности, описанное выше, воспроизводимое или модифицированное воспроизводимое сырье, как, например, масла, жирные кислоты и сложные эфиры кислот жирного ряда. При необходимости, они могут подвергаться взаимодействию с алкиленоксидами, такими как этиленоксид, пропиленоксид или любые смеси этих соединений при использовании подходящих катализаторов. В качестве соединения bii) особенно предпочтительным образом используют касторовое масло.
Компоненты bi) и bii) могут иметь, кроме соединения из воспроизводимого сырья, при необходимости, и другие полиолы, в частности полиэфирные спирты, которые могут быть получены в соответствии с известными способами, в основном путем каталитического присоединения алкиленоксидов, в частности этиленоксида и/или пропиленоксида, к Н-функциональным инициирующим субстанциям или путем конденсации тетрагидрофурана. В качестве Н-функциональных инициирующих субстанций используют, в частности, многофункциональные спирты и/или амины. Предпочтительное применение находят вода, двухатомные спирты, например этиленгликоль, пропиленгликоль или бутандиолы, трехатомные спирты, например глицерин или триметилолпропан, а также многоатомные спирты, такие как пентаэритрит, сахарные спирты, например зукроза, глюкоза или сорбит. Используемые, предпочтительным образом, амины представляют собой алифатические амины с атомами углерода в количестве до 10, например этилендиамин, диэтилентриамин, пропилендиамин, а также аминоспирты, такие как этаноламин или диэтаноламин. В качестве алкиленоксидов используют, предпочтительным образом, этиленоксид и/или пропиленоксид, при этом полиэфирные спирты, которые находят применение при получении полиуретановых пластифицированных пенопластов, очень часто имеют на конце цепи этиленоксидный блок. В качестве катализаторов при присоединении алкиленоксидов применение находят, в частности, основные соединения, при этом, однако, гидроксид калия наиболее технически предпочтителен. Если содержание ненасыщенных составных частей в полиэфирных спиртах должно быть незначительным, то в качестве катализаторов для получения этих полиэфирных спиртов могут использоваться также DMC-катализаторы.
Для определенных областей использования, в частности для повышения твердости полиуретановых пластифицированных пенопластов, могут находить применение в качестве дополнения также так называемые полиолы, модифицированные полимерами. Подобные полиолы могут быть, например, получены с помощью проходящей в правильном положении, т.е. in situ, полимеризации мономеров, которые являются ненасыщенными в части этилена, представляют собой, предпочтительным образом, стирол и/или акрилонитрил в полиэфирных спиртах. К полиэфирным спиртам, модифицированным полимерами, относятся также полиэфирные полиолы, содержащие дисперсии поликарбамида, которые, предпочтительным образом, получают путем взаимодействия аминов с изоцианатами в полиолах.
В качестве соединения biii) пригодны также моноолы и диолы с числом гидроксильных групп, равным от 100 до 800 мг KОН/г. Особое преимущество имеет применение полиалкиленгликолей, бензилового спирта, моноспиртов С4-С18, оксоспиртоэтоксилатов С8-С18, как, например, Lutensol® A.N, АО, АР, AT, F, ON, TO, XL, ХР, АР-марки БАСФ АГ. Совершенно особым образом применяются полипропиленоксиды, такие как Lupranol 1000, 1100 и 1200, а также моноолы, как, например, Lutensol® A4N, AО3 ON 30, ON 40, ТО2, ТО3, ХА 30, ХА 40, XP 30, XP 40, XL 40 и бензиловый спирт.
Получение вязкоупругих полиуретановых пластифицированных пенопластов в соответствии с изобретением может осуществляться при использовании обычных и известных способов.
По поводу исходных соединений, которые используют в способе по изобретению, в отдельности можно сказать следующее
В качестве полиизоцианатов а) в способе по изобретению находят применение все изоцианаты, имеющие две или более изоцианатных групп в молекуле. При этом могут использоваться как алифатические изоцианаты, такие как гексаметиленовый диизоцианат (HDI), так и изофороновый диизоцианат (IPDI), или же, предпочтительным образом, ароматические диизоцианаты, такие как толуиленовый диизоцианат (TDI), дифенилметановый диизоцианат (MDI) или смеси из дифенилметанового диизоцианата и полиметилен-полифениленовых полиизоцианатов (сырые/неочищенные MDI), при этом предпочтение отдается TDI и MDI, а особенно предпочтительным является TDI. А совершенно особым преимуществом пользуется смесь из 80 мас.% 2,4- и 20 мас.% 2,6-толуилендиизоцианата. Имеется также возможность использования изоцианатов, которые были модифицированы путем встраивания уретановых, уретдионовых, изоциануратовых, аллофанатовых, уретониминовых и других групп, представляют собой так называемые модифицированные изоцианаты. Предпочтительными форполимерами являются MDI-форполимеры с содержанием NCO, которое составляет от 20 до 35%, или соответственно их смеси с полиэтилен-полифениленовыми полиизоцианатами (сырой MDI).
Используемые в соответствии с изобретением полиэфирные спирты bi), bii) и biii) могут находить применение как таковые или в комбинации с другими соединениями, имеющими, по меньшей мере, два активных атома водорода по отношению к изоцианатным группам.
В качестве соединений, по меньшей мере, с двумя активными атомами водорода b), которые могут быть использованы вместе с полиэфирными спиртами bi), bii) biii), которые имеют в данном случае применение в соответствии с изобретением, принимаются в расчет, в частности, полиэфирные спирты и, предпочтительным образом, полиэфирные спирты с функциональностью, равной 2-16, в частности 2-8, предпочтительным образом 2-4, и средним молекулярным весом Mw в интервале значений от 400 до 20 000 г/мол, предпочтительным образом от 1000 до 80000 г/мол.
К соединениям, имеющим, по меньшей мере, два активных атома водорода b), относятся также средства удлинения цепи и вещество, образующее поперечные связи в соединении. В качестве средства удлинения цепочки и сшивающего вещества находят применение, предпочтительным образом, 2- и 3-функциональные спирты с молекулярным весом в интервале значений от 62 до 800 г/мол, в частности в диапазоне от 60 до 200 г/мол. Примерами являются этиленгликоль, пропиленгликоль, диэтиленгликоль, триэтиленгликоль, дипропиленгликоль, трипропиленгликоль, низкомолекулярные полипропилен- и полиэтиленоксиды, такие как, например, Lupranol® 1200, бутадиол-1,4, глицерин или триметилолпропан. В качестве сшивающего вещества могут использоваться также диамины, сорбит, глицерин, алканоламины. В случае, если используются средства удлинения цепочки и сшивающее вещество, то их количество составляет, предпочтительным образом, до 5 мас.% по отношению к массе соединений, имеющих, по меньшей мере, два активных атома водорода.
Способ согласно изобретению осуществляют в основном в присутствии активаторов, например третичных аминов, или органических металлических соединений, в частности соединений олова. В качестве соединений олова применяют, предпочтительным образом, двухвалентные соли жирных кислот, как, например, диоктоат олова и олово-органические соединения, как, например, дибутиловый дилаурат олова.
В качестве агента вспенивания с), который используют для получения полиуретановых пластифицированных пенопластов, применяют, предпочтительным образом, воду, которая вступает во взаимодействие с изоцианатными группами с выделением в свободном виде диоксида углерода. Преимущество имеет вода в количестве от 0,5 до 6 мас.%, а особое преимущество имеет вода в количестве от 1,5 до 5,0 мас.%, по отношению к массе компоненты b). Вместе с водой или вместо воды могут также использоваться действующие физически агенты вспенивания например диоксид углерода, например н-, изо- или циклопентан, циклогексан, или галогенированные углеводороды, такие как тетрафторэтан, пентафторпропан, гептафторпропан, пентафторбутан, гексафторбутан или дихлормонофторэтан. При этом количество физических агентов вспенивания находится, предпочтительным образом, в диапазоне между 1 и 15 мас.%, в частности от 1 до 10%, а количество воды находится, предпочтительным образом, в интервале от 0,5 и 10 мас.%, в частности от 1 до 5 мас.%. Преимущество имеет диоксид углерода в качестве физического агента вспенивания, а особое преимущество имеет диоксид углерода в комбинации с водой.
Для получения полиуретановых пластифицированных пенопластов в соответствии с изобретением могут обычным образом использоваться также стабилизаторы, а также вспомогательные вещества и добавки.
Что касается стабилизаторов, то речь может идти, прежде всего, о полиэфир-силоксанах, предпочтительным образом о растворимых в воде полиэфирсилоксанах. Эти соединения, в общем и целом, имеют такую конструкцию, что длинноцепочечный сополимеризат из этилен- и пропиленоксида связан с полидиметилсилоксановым остатком. Прочие стабилизаторы пены описаны в патентных заявках США - US-A-2834748, 2917480, а также US-A-3629308.
Взаимодействие осуществляют, при необходимости, в присутствии вспомогательных веществ и добавок, таких как наполнители, регуляторы ячейкообразования, поверхностно-активные соединения и/или огнезащитные средства. Предпочтительными огнезащитными средствами являются жидкие огнезащитные средства, полученные на основе галогена и фосфора, такие как трихлорпропилфосфат, трихлорэтилфосфат и не содержащие галогена огнезащитные средства, такие как Exolit® ОР 560 (Clariant International Ltd.).
Дополнительную информацию об используемых исходных веществах, катализаторах, а также вспомогательных веществах и добавках можно найти, например, в справочнике по искусственным материалам (Kunststoffandbuch), в томе 7, в разделе "Полиуретаны", издательство "Карл-Хан-зер-Ферлаг", Мюнхен, первое издание 1966 г., второе издание 1983 и третье издание 1993 г.
Для получения полиуретанов согласно изобретению органические полиизоцианаты подвергают взаимодействию с соединениями, имеющими, по меньшей мере, два активных атома водорода, в присутствии названных агентов вспенивания, а также, при необходимости, в присутствии катализаторов и вспомогательных веществ и/или добавок.
При получении полиуретанов согласно изобретению смешивают вместе изоцианат и составную часть полиола, причем в большинстве случаев в таком количестве, что эквивалентное соотношение изоцианатных групп к сумме активных атомов водорода составляет 0,7-1,25, предпочтительным образом 0,8-1,2.
Получение полиуретановых пенопластов осуществляют, предпочтительным образом, в соответствии со способом "oneshot", например, с помощью технологий высокого и низкого давления. Пенопласты могут изготавливаться в открытых или закрытых металлических формах или посредством непрерывного нанесения реакционной смеси на движущуюся ленту автоматической линии для получения пеноблоков.
Особое преимущество при получении формованных пластифицированных пенопластов состоит в том, чтобы работы велись в соответствии с так называемым двухкомпонентным способом, в процессе которого происходит изготовление и вспенивание полиольных и изоцианатных составных частей. Смешивание составных частей происходит, предпочтительным образом, при температуре, значение которой находится в интервале от 15 до 90°С, предпочтительным образом, в интервале от 20 до 60°С, а особое преимущество имеет температурный интервал от 20 до 35°С, после чего полученную смесь помещают в форму или соответственно на движущуюся ленту автоматической линии. Температура внутри формы составляет в большинстве случаев от 20 до 110°С, а предпочтение отдается температурному интервалу от 30 до 60°С, особое же преимущество имеет область температур между 35 и 55°С.
Пластифицированные пенопласты в блоках могут быть изготовлены на автоматических установках, работающих в периодическом или непрерывном режиме, как, например, по методам 'Planiblock', 'Maxfoam', 'Draka-Petzetakis'.
Полиуретановые пластифицированные пенопласты, для изготовления которых используют полиэфирполиолы из воспроизводимого сырья, которое изготавливается с помощью DMC-катализа, по сравнению с продуктами, у которых полиэфирполиолы, используемые в соответствии с изобретением, были изготовлены из воспроизводимого сырья с помощью основных катализаторов, отличаются запахом, ставшим существенно меньше, Fogging-значениями, также ставшими существенно меньше, значимо уменьшившимся трещинообразованием, а также улучшенным значением остаточной деформации сжатия до и после старения. Далее, пенопласты, получаемые в соответствии с изобретением, обладают высокой степенью открытости ячеек, что, например, проявляется в повышенной воздухопроницаемости.
Остаточная деформация сжатия блочных полиуретановых пластифицированных пенопластов составляет максимально 10%, после старения в соответствии со стандартом DIN EN ISO 2440 максимально 20%.
Воздухопроницаемость вязкоупругих полиуретановых пластифицированных пенопластов, полученных согласно изобретению, составляет, предпочтительным образом, по меньшей мере, 10 дм3/мин, особенно предпочтительным образом более 30 и, в частности, более 50 дм3/мин.
Вязкоупругие полиуретановые пластифицированные пенопласты обладают очень хорошей стойкостью к старению, в частности, также и в условиях, когда одновременно действуют тепло и влага. Они являются гидрофобными и устойчивыми к набуханию. Доля ароматических аминов, в частности 2,4 и 2,6-толуолдиамина или MDA в пенопласте, меньше чем 1 часть на млн и не увеличивается даже после длительного срока хранения.
Применение полиуретановых пластифицированных пенопластов в соответствии с изобретением осуществляют, предпочтительным образом, в салонах автомобилей, а также в предметах мебели и матрацах.
Изобретение поясняется более подробно нижеследующими примерами.
Получение вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками
Примеры 1-4
Исходные продукты, приведенные в таблице, были использованы при взаимодействии в количественных соотношениях, приведенных в таблице.
Все составные части, кроме изоцианата, сначала были объединены путем интенсивного перемешивания с образованием единого полиольного компонента. После этого в условиях перемешивания добавили изоцианат, а реакционную смесь вылили в открытую форму, где она и превратилась в полиуретановый пенопласт. Характеристические величины полученных пенистых слоев приведены в таблице 1.
В соответствии с названными нормами, инструкциями по проведению работ и контрольных испытаний были определены следующие характеристические величины:
Объемный вес в кг/м3 DIN EN ISO 845
VOC цикл рицинолевой кислоты в частях на млн РВ VWL 709
FOG цикл рицинолевой кислоты в частях на млн РВ VWL 709
Воздухопроницаемость в дм3/мин DIN EN ISO 7231
Твердость сжатия, 40% деформации в kПа DIN EN ISO 2439
Твердость вдавливания, 25% деформации DIN EN ISO 2439
Твердость вдавливания, 40% деформации DIN EN ISO 2439
Твердость вдавливания, 65% деформации DIN EN ISO 2439
Продольная деформация в % согласно DIN EN ISO 1798
Предел прочности при растяжении в kПа DIN EN ISO 1798
Эластичность по отскоку в % DIN EN ISO 8307
Остаточная деформация сжатия в % DIN EN ISO 3386
Wet-Compression-Set Инструкция по выполнению работ АА U10-131-041 от 06.02.02
Определение параметра 'Wet-Compression-Set' осуществляли в соответствии с Инструкцией по выполнению работ АА U10-131-041 от 06.02.02.
С помощью штангенциркуля или, соответственно, измерительного прибора контактного типа определяют высоту предварительно замаркированного места испытуемого пенного образца, имеющего размеры 50 мм × 50 мм × 25 мм. После этого испытуемые образцы укладывают между двумя нажимными плитами и, используя дистанционный элемент размером 7,5 мм, с помощью зажимного приспособления сдавливают вместе до получения нужной высоты.
Вылеживание в климатическом шкафу при температуре 50°С и относительной влажности воздуха, равной 95%, начинается сразу же после зажима. Спустя 22 часа испытуемые пенные образцы в течение короткого промежутка времени извлекают из зажимного приспособления и временно на 30 минут укладывают на поверхность, имеющую незначительную мощность нагрева, а именно на поднос, для снятия внутренних напряжений при нахождении в нормальных климатических условиях. Вслед за этим с помощью тех же самых средств измерения определяют остаточную высоту на замаркированном месте.
Параметр 'Wet-Compression-Set' относится к деформации и рассчитывается так, как это приведено ниже:
Wet-Compression-Set=ho-hr*100/(ho-7,5 мм), %,
где ho - исходная высота, мм;
hr - остаточная высота испытуемого образца, мм.
Таблица 1
OHZ Пример 1 Пример 2 Пример 3 Пример 4
Lurpanol® BALANCE 50 50 26 17 17 18
Касторовое масло, качество DAB 160,5 60 72 72 67
Lutensol® ХА 40 150 7 14 14 11
Lurpanol®1000 55 7 7 7 4
DABCO® В 198 0 0,60
Tegostab® BF 2270 0 0,60 0,60
Tegostab® BF 2370 1,0
Niax® A1 560 0,26 0,35 0,5
Dabco® 33 LV 425,8 0,17 0,25 0,4
Dabco® NE500 280 0,44
Dabco® NE600 270 0,26
Kosmos® 29 0 0,26 0,17
Kosmos® EF 0,26
Kosmos® 54 314 0,26 0,26
Ingastab® NE500 0 0,40 0,40 0,40 0,40
Вода (дополн.) 6233 1,72 1,72 1,72 2,00
Lupranat T 80A-Index 105 105 105
Lupranat® M20W и Lupranat®M1 3:1, Index 85
Время иниц. в сек 12 12 8 8
Время иниц. в сек 180 180 120 170
Об. вес в кг/м3 47,4 47,9 51,8 52,3
Твердость высадки 25%, деформация в kПа 1,6 1,3 1,3 1,1
Твердость высадки 40%, деформация в kПа 2,1 1,7 1,7 1,15
Твердость высадки 65%, деформация в kПа 4,8 4,1 4,3 2,1
Прочность на растяжение в kПа 67 65 73 54
Удлинение в % 154 151 154 70
Остат. деформация в % 3,9 4,7 4,1 3,0
Wet-Compression-Set 13 14 12 12
Эластичность по отскоку в % 14 8 8 7
Воздухопропуск в дм3/мин 40 70 50 50
Биомасса в мас.% в пенопласте 48 47 47 48
Твердость высадки, 40% деформ. в kПа 1,4 1,2
Стойкость к действию тепла согласно DIN EN ISO 2240, 1 цикл 5 час, 120°С
Прочность на растяжение в kПа 56 60
Растяжение в % 175 170
Остаточная деформация сжатия в % 8,0 9,1
2,4-TDA-содержание в частях на млн <1 <1 <1
2,6-TDA-содержание в частях на млн <1 <1 <1
MDA-содержание в частях на млн <1
Пояснения к таблице
Lurpanol® BALANCE 50 Полиэтерол на основании касторового масла с гидроксильным числом, равным 50 мг KОН/г и вязкостью, равной 725 ммпуаз · сек (БАСФ Акциенгезельшафт), полученный с помощью DMC-катализа.
Lupranol® 1000 полипропиленгликоль с гидроксильным числом, равным 55 мг KОН/г, и вязкостью, равной 325 ммпуаз · сек (БАСФ Акциенгезельшафт),
Касторовое масло, качество DAB фирма Альбердингк-Болей
Lutensol® XA 40 С 10-оксоалкогольэтиоксилат + 4 ЕО
Dabco® 33LV 1,4-диазабицикло-[2,2,2]-октан (33%) в дипропиленгликоле (67%) (Air Products and Chemicals, Inc.)
Niax ® A1: бис-(2-Диметиламиноэтил)этер (70%) в дипропиленгликоле 30%), (Crompton Corporation)
Dabco® NE 500 и 600 Встраиваемые аминные катализаторы (фирма Air Products and Chemicals, Inc.)
Kosmos® 29 Соль олова II этилгексановой кислоты (Дегусса АГ)
Kosmos® EF и 54 Встраиваемые оловянные или соответственно цинковые катализаторы (Дегусса АГ)
Tegostab® BF 2270 и BF 2370 Силиконовые стабилизаторы (Дегусса АГ)
DABCO® 198 Силиконовый стабилизатор (фирмы Air Products and Chemicals, Inc.)
Ingastab® PUR 68 Антиоксидант, не содержащий амина, фирмы ЦИБА АГ
Lupranat® Т 80 A: Смесь 2,4-толуилендиизоцианата и 2,6-толуилендиизоцианата в соотношении 80:20 (БАСФ Акциенгезельшафт)
Lupranat® M20W Смесь из дифенилметандиизоцианатполиметиленполифениленполиизоцианатов
Lupranat * MI Смесь в соотношении 1:1 из 2,4'-дифенилметандиизоцианата и 4,4'-дифенилметандиизоцианата (БАСФ АГ)
TDA Толуолдиамин
MDA Метилендифенилдиамин

Claims (13)

1. Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками на базе воспроизводимого сырья путем взаимодействия
a) полиизоцианатов со
b) смесью полиолов, состоящей из
bi) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мг КОН/г,
и
bii) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г,
и
biii) соединениями с, по меньшей мере, одной, и максимум двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г,
c) и вспенивающими агентами,
отличающийся тем, что каждый из компонентов bi) и bii) содержит, по меньшей мере, одно соединение, содержащее возобновляемое сырье или продукты его взаимодействия.
2. Способ по п.1, отличающийся тем, что компонент b) состоит на 5-45 мас.%, из bi), на 30-90 мас.%, из bii) и на 5-40 мас.%, из biii), в каждом случае по отношению к сумме компонентов bi), bii) и biii).
3. Способ по п.1, отличающийся тем, что в качестве компонента bi) используют продукты взаимодействия касторового масла с алкиленоксидами.
4. Способ по п.1, отличающийся тем, что в качестве компонента bii) используют касторовое масло.
5. Способ по п.1, отличающийся тем, что компонент b) состоит на 10-25 мас.%, из bi), на 50-80 мас.%, из bii) и на 10-30 мас.%, из biii), в каждом случае по отношению к сумме компонентов bi), bii) и biii).
6. Способ по п.1, отличающийся тем, что в качестве компонента bi) используют полиэфирполиолы, полученные путем присоединения алкиленоксидов к соединениям из возобновляемого сырья при использовании DMC-катализаторов, с содержанием циклических сложных эфиров кислот жирного ряда, составляющим максимум 10 частей на млн.
7. Способ по п.1, отличающийся тем, что в качестве соединения biii) используют моноолы и/или диолы, имеющие число гидроксильных групп от 100 до 800 мг КОН/г.
8. Способ по п.1, отличающийся тем, что в качестве полиизоцианата предпочтительно используют смесь из 80 мас.% 2,4-толуилендиизоцианата и 20 мас.% 2,6-толуилендиизоцианата.
9. Способ по п.1, отличающийся тем, что в качестве вспенивающего агента предпочтительно используют воду.
10. Способ по п.1, отличающийся тем, что воздухопроницаемость вязкоупругих полиуретановых пластифицированных блочных пенопластов составляет, по меньшей мере, 10 дм3/мин.
11. Способ по п.1, отличающийся тем, что остаточная деформация сжатия полиуретановых пластифицированных блочных пенопластов составляет максимально 7%.
12. Способ по п.1, отличающийся тем, что остаточная деформация сжатия полиуретановых пластифицированных блочных пенопластов составляет максимально после старения, в соответствии с DIN EN ISO 2440, максимально 15%.
13. Способ по п.1, отличающийся тем, что доля возобновляемого сырья составляет, по меньшей мере, 20 мас.%, по отношению к полиуретановому пенопласту.
RU2008134511/04A 2006-01-27 2007-01-16 Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками RU2435795C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06100959 2006-01-27
EP06100959.3 2006-01-27
PCT/EP2007/050367 WO2007085548A1 (de) 2006-01-27 2007-01-16 Verfahren zur herstellung von offenzelligen viskoelastischen polyurethan-weichschaumstoffen

Publications (3)

Publication Number Publication Date
RU2008134511A RU2008134511A (ru) 2010-03-10
RU2435795C2 RU2435795C2 (ru) 2011-12-10
RU2435795C9 true RU2435795C9 (ru) 2013-02-27

Family

ID=37964731

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008134511/04A RU2435795C9 (ru) 2006-01-27 2007-01-16 Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками

Country Status (15)

Country Link
US (1) US20100227938A1 (ru)
EP (1) EP1981926B1 (ru)
JP (1) JP2009524718A (ru)
KR (1) KR20080099252A (ru)
CN (1) CN101374877B (ru)
AR (1) AR059472A1 (ru)
AT (1) ATE432304T1 (ru)
DE (1) DE502007000788D1 (ru)
DK (1) DK1981926T3 (ru)
ES (1) ES2324319T3 (ru)
PL (1) PL1981926T3 (ru)
PT (1) PT1981926E (ru)
RU (1) RU2435795C9 (ru)
TW (1) TW200730552A (ru)
WO (1) WO2007085548A1 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0713268B1 (pt) * 2006-07-04 2018-02-14 Huntsman International Llc Processo para produzir uma espuma de poliuretano em bloco, viscoelástica e flexível, espuma viscoelástica, e, composição de poliol
JP5371760B2 (ja) 2006-09-21 2013-12-18 ダウ グローバル テクノロジーズ エルエルシー 高い通気量を有する粘弾性フォーム
WO2008154009A1 (en) * 2007-06-11 2008-12-18 Textile Rubber & Chemical Company Polyurethane coated non-flooring products and methods for making same
US20090029097A1 (en) * 2007-06-11 2009-01-29 Riddle Dennis L Flooring products and methods
AU2008293536A1 (en) * 2007-08-27 2009-03-05 Dow Global Technologies Inc. Catalysis of viscoelastic foams with bismuth salts
WO2009032894A1 (en) * 2007-09-07 2009-03-12 Dow Global Technologies Inc. Use of natural oil based compounds of low functionality to enhance foams
EP2050865B1 (de) * 2007-10-15 2014-11-26 Bayer Intellectual Property GmbH Bodenbedeckung mit viskoelastischen Dämpfungseigenschaften
CN101848955B (zh) * 2007-11-09 2012-09-19 三井化学株式会社 多元醇组合物、发泡用组合物和聚氨酯泡沫
KR101586509B1 (ko) 2008-01-29 2016-01-19 바스프 에스이 폴리에테르 알코올의 제조 방법
CN101959959B (zh) * 2008-02-27 2013-12-11 拜耳材料科技股份有限公司 含有蓖麻油的粘弹性聚氨酯泡沫
DE102008014032A1 (de) 2008-03-13 2009-09-17 Bayer Materialscience Ag Viskoelastischer Polyurethanschaumstoff mit Rizinusöl
DE102008030940A1 (de) * 2008-07-02 2010-01-14 Otto Bock Schaumstoffwerke Gmbh Geschlossenzelliger Polyurethan-Weichschaum und Verfahren zu seiner Herstellung
CN102264788B (zh) 2008-10-24 2014-03-19 巴斯夫欧洲公司 制备粘弹性柔性聚氨酯泡沫体的方法
KR20120029392A (ko) 2009-05-19 2012-03-26 인비스타 테크놀러지스 에스.에이.알.엘. 폴리올 조성물, 수지 블렌드 조성물, 스프레이 조성물, 및 각각의 사용 방법, 및 각각의 제조 방법
US20110034580A1 (en) * 2009-08-07 2011-02-10 ATI Industries, Inc. Carbon-Negative Bio-Plastic Furniture
FR2958649B1 (fr) * 2010-04-07 2012-05-04 Arkema France Copolymere a blocs issu de matieres renouvelables et procede de fabrication d'un tel copolymere a blocs
CA2800374C (en) * 2011-02-11 2016-01-05 Jiangsu Healthcare Co., Ltd An mdi system non-temperature sensitive memory sponge suitable for flat foam foaming process
EP2527381A1 (de) * 2011-05-26 2012-11-28 Basf Se Hochelastische Polyurethanschaumstoffe, enthaltend Ricinusöl
US9150684B2 (en) 2011-05-26 2015-10-06 Basf Se High resilience polyurethane foams comprising castor oil
EP2599810A1 (de) 2011-12-02 2013-06-05 Basf Se Waschbare, viskoelastische Polyurethanweichschaumstoffe
CN106459338A (zh) * 2014-04-30 2017-02-22 霍尼韦尔国际公司 软质开孔热固性泡沫和发泡剂及其制造方法
EP3294786A4 (en) * 2015-05-15 2019-02-27 Stepan Company ETHOXYLATED VEGETABLE OILS IN LOW DENSITY SPRAY FOAM FORMULATIONS
BG67068B1 (bg) * 2016-01-07 2020-04-30 „Тед - Бед“ Еад Пенополиуретанов състав
WO2017199931A1 (ja) * 2016-05-17 2017-11-23 東ソー株式会社 ハロアルケン発泡ポリウレタン製造用のアミン触媒組成物
WO2017207538A1 (de) 2016-06-01 2017-12-07 Covestro Deutschland Ag Visko-elastischer dämpfungskörper und verfahren zu seiner herstellung
CN105968308A (zh) * 2016-06-28 2016-09-28 苏州井上高分子新材料有限公司 一种抗老化型聚氨酯低气味泡沫组合物
US20190254439A1 (en) 2016-11-04 2019-08-22 Covestro Deutschland Ag Visco-elastic damping element based on visco-elastic materials
JP2020526646A (ja) * 2017-07-11 2020-08-31 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag ハロゲン非含有難燃剤を含む軟質フォーム
CN109535381A (zh) * 2018-12-06 2019-03-29 上海应用技术大学 一种低voc聚氨酯汽车仪表板的制作工艺
CN110734535A (zh) * 2019-10-31 2020-01-31 长春一汽富晟汽车毯业有限公司 一种聚氨酯发泡的乘用车地毯及其制备方法
CN115698114A (zh) 2020-06-22 2023-02-03 巴斯夫欧洲公司 粘弹性弹性体聚氨酯泡沫、其制备方法及其用途
CN114031741B (zh) * 2021-11-29 2023-06-02 山东一诺威聚氨酯股份有限公司 高性能聚氨酯慢回弹护具组合料及护具的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2213564A1 (en) * 1996-08-26 1998-02-26 Bayer Aktiengesellschaft Foamable polyurethane preparations which exhibit good flow behavior, anda process for producing foamed polyurethane moldings
DE19960779A1 (de) * 1999-12-16 2001-07-05 Bayer Ag Verfahren zur Herstellung von weichen bis halbharten Polyurethanintegralschaumstoffen
DE10009649A1 (de) * 2000-03-01 2001-09-06 Basf Ag Offenzellige Polyurethan-Hartschaumstoffe
US6316514B1 (en) * 1999-05-29 2001-11-13 Basf Aktiengesellschaft Production of sound-damping and energy-absorbing polyurethane foams
RU2237678C2 (ru) * 1999-02-13 2004-10-10 Байер Акциенгезельшафт Мелкопористые, водовспененные жесткие пенополиуретаны
US20050070620A1 (en) * 2003-09-30 2005-03-31 Ron Herrington Flexible polyurethane foams prepared using modified vegetable oil-based polyols
US20060167125A1 (en) * 2002-08-28 2006-07-27 Basf Aktiengesellschaft Method for the production of low-emission polyurethane soft foams

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942330A1 (de) * 1989-12-21 1991-06-27 Basf Ag Verfahren zur herstellung von flexiblen polyurethan-weichschaumstoffen mit viskoelastischen, koerperschalldaempfenden eigenschaften und hierzu verwendbare polyoxyalkylen-polyol-mischungen
US5248703A (en) * 1992-03-13 1993-09-28 Basf Corporation Rigid polyurethane foams containing lithium salts for energy absorbing applications
TW293827B (ru) * 1992-04-20 1996-12-21 Takeda Pharm Industry Co Ltd
US5382602A (en) * 1993-06-09 1995-01-17 Duffy; Robert D. Flexible slabstock polyurethane foam formulation for a rapid-cool process
KR100335874B1 (ko) * 1993-07-19 2002-11-20 미츠이 다께다 케미칼 가부시키가이샤 단열재및그것의제조방법
US5464562A (en) * 1995-04-24 1995-11-07 Basf Corporation Polyoxyalkylene polyether monool polyurethane foam additive
UA61089C2 (ru) * 1996-11-08 2003-11-17 Хантсмен Ай Сі Ай Кемікалз, Ллс Способ получения жестких и эластичных пенополиуретановых вспененных материалов
US5721284A (en) * 1996-12-20 1998-02-24 The Dow Chemical Company Open-celled rigid polyurethane foam
AU7264798A (en) * 1997-05-06 1998-11-27 Magla World-Wide L.L.C. Flexible, substantially open celled polyurethane foam and method of making same
US5919395A (en) * 1997-10-30 1999-07-06 Shell Oil Company Polyol combination
DE19924804C5 (de) * 1999-05-29 2009-02-12 Basf Se Verfahren zur Herstellung von schallabsorbierenden Polyurethanschäumen mit adhäsiver Oberfläche
US6348161B1 (en) * 2000-08-03 2002-02-19 Basf Corporation Polyol composition containing a hydrocarbon blowing agent
DE10105559A1 (de) * 2001-02-06 2002-08-08 Basf Ag Verfahren zur Herstellung von niedrigdichten hydrophilen Polyurethanweichschaumstoffen
DE10105560A1 (de) * 2001-02-06 2002-08-08 Basf Ag Verfahren zur Herstellung von Polyurethanweichschäumen
DE10111823A1 (de) * 2001-03-13 2002-09-26 Basf Ag Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
CN1257203C (zh) * 2001-04-27 2006-05-24 亨茨曼国际有限公司 用于制备粘弹性泡沫的方法
JP4856360B2 (ja) * 2001-11-29 2012-01-18 ハンツマン・インターナショナル・エルエルシー 粘弾性ポリウレタン
US6734220B2 (en) * 2002-08-27 2004-05-11 Foamex L.P. Fine cell, high density viscoelastic polyurethane foams
US6653363B1 (en) * 2002-12-04 2003-11-25 Foamex, L.P. Low energy-loss, high firmness, temperature sensitive polyurethane foams
US20050239915A1 (en) * 2003-12-18 2005-10-27 Biopolymers, Llc Systems and preparations for bio-based polyurethane foams
CN1554686A (zh) * 2003-12-24 2004-12-15 中国科学院广州化学研究所 聚氨酯硬质泡沫材料
US20050176839A1 (en) * 2004-02-10 2005-08-11 Huzeir Lekovic Low density acoustic foams based on biopolymers
US20050210595A1 (en) * 2004-03-23 2005-09-29 Di Stasio Anthony A Mattress having reticulated viscoelastic foam
DE102004017294A1 (de) * 2004-04-05 2005-10-20 Basf Ag Verfahren zur Herstellung von Polyurethan-Schaumstoffen
DE102004048728A1 (de) * 2004-10-05 2006-04-06 Basf Ag Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen
JP2008539314A (ja) * 2005-04-25 2008-11-13 カーギル インコーポレイテッド オリゴマーポリオールを含むポリウレタン発泡体
US7700661B2 (en) * 2005-05-05 2010-04-20 Sleep Innovations, Inc. Prime foam containing vegetable oil polyol
DE102005058090A1 (de) * 2005-12-05 2007-06-06 Basf Ag Verfahren zur Herstellung von viskoelastischen Polyurethan-Weichschaumstoffen
US20070293594A1 (en) * 2006-06-15 2007-12-20 Ladislau Heisler Viscoelastic polyurethane foam and process for its manufacture
WO2008058913A1 (de) * 2006-11-15 2008-05-22 Basf Se Verfahren zur herstellung von polyurethan-weichschaumstoffen
CN101959959B (zh) * 2008-02-27 2013-12-11 拜耳材料科技股份有限公司 含有蓖麻油的粘弹性聚氨酯泡沫

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2213564A1 (en) * 1996-08-26 1998-02-26 Bayer Aktiengesellschaft Foamable polyurethane preparations which exhibit good flow behavior, anda process for producing foamed polyurethane moldings
RU2237678C2 (ru) * 1999-02-13 2004-10-10 Байер Акциенгезельшафт Мелкопористые, водовспененные жесткие пенополиуретаны
US6316514B1 (en) * 1999-05-29 2001-11-13 Basf Aktiengesellschaft Production of sound-damping and energy-absorbing polyurethane foams
DE19960779A1 (de) * 1999-12-16 2001-07-05 Bayer Ag Verfahren zur Herstellung von weichen bis halbharten Polyurethanintegralschaumstoffen
DE10009649A1 (de) * 2000-03-01 2001-09-06 Basf Ag Offenzellige Polyurethan-Hartschaumstoffe
US20060167125A1 (en) * 2002-08-28 2006-07-27 Basf Aktiengesellschaft Method for the production of low-emission polyurethane soft foams
US20050070620A1 (en) * 2003-09-30 2005-03-31 Ron Herrington Flexible polyurethane foams prepared using modified vegetable oil-based polyols

Also Published As

Publication number Publication date
RU2435795C2 (ru) 2011-12-10
EP1981926A1 (de) 2008-10-22
WO2007085548A1 (de) 2007-08-02
TW200730552A (en) 2007-08-16
KR20080099252A (ko) 2008-11-12
EP1981926B1 (de) 2009-05-27
ES2324319T3 (es) 2009-08-04
CN101374877B (zh) 2011-05-04
US20100227938A1 (en) 2010-09-09
RU2008134511A (ru) 2010-03-10
JP2009524718A (ja) 2009-07-02
ATE432304T1 (de) 2009-06-15
DE502007000788D1 (de) 2009-07-09
CN101374877A (zh) 2009-02-25
PL1981926T3 (pl) 2009-10-30
DK1981926T3 (da) 2009-08-31
AR059472A1 (es) 2008-04-09
PT1981926E (pt) 2009-06-05

Similar Documents

Publication Publication Date Title
RU2435795C9 (ru) Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками
US20060167125A1 (en) Method for the production of low-emission polyurethane soft foams
JP5628024B2 (ja) 高弾性発泡体
JP5905892B2 (ja) 低密度高弾性軟質ポリウレタンフォームの製造方法
WO2009020774A1 (en) Polyol blends and their use in making polymers
US10793692B2 (en) Viscoelastic flexible foams comprising hydroxyl-terminated prepolymers
KR100441926B1 (ko) 폴리우레탄엘라스토머
US20200157306A1 (en) Isocyanate-functional polymer components and polyurethane articles formed from recycled polyurethane articles and associated methods for forming same
WO2007144272A1 (de) Offenzellige viskoelastische polyurethan-weichschaumstoffe
US20170283542A1 (en) Flame retardant slabstock polyurethane foam composition
US8389775B2 (en) Process for preparing polyether alcohols
EP2069417B1 (en) Polyurethane foams made from hydroxymethyl-containing polyester polyols and tertiary amine-containing polyols
US20010023263A1 (en) Production of polyurethane foams
JP7459081B2 (ja) エラストマーポリウレタンフォームおよびその生成方法
JP2023528832A (ja) 改善された自己消火性火災試験性能を有する連続気泡軟質ポリウレタン発泡体
US20170247494A1 (en) Flame retardant slabstock polyurethane foam composition
CA2999863A1 (en) High-resiliency polyurethane foam
WO2012148798A1 (en) Polyurethanes obtained from hydroxyalkanoate crosslinking agents
EP4032926A1 (en) Processes for making molded flexible foams and flexible foams produced thereby
EP4032925A1 (en) Processes for making molded flexible foams and flexible foams produced thereby
CN113795530A (zh) 具有降低的冷流效应的聚氨酯泡沫材料及其生产方法

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 34-2011

TH4A Reissue of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140117