US20050210595A1 - Mattress having reticulated viscoelastic foam - Google Patents

Mattress having reticulated viscoelastic foam Download PDF

Info

Publication number
US20050210595A1
US20050210595A1 US10/806,869 US80686904A US2005210595A1 US 20050210595 A1 US20050210595 A1 US 20050210595A1 US 80686904 A US80686904 A US 80686904A US 2005210595 A1 US2005210595 A1 US 2005210595A1
Authority
US
United States
Prior art keywords
foam
mattress
viscoelastic
reticulated
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/806,869
Inventor
Anthony Di Stasio
Lawrence Lavelle
Guido Borgart
Barry Lucas
Stephen Barger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VITAFOAM Inc
Original Assignee
VITAFOAM Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VITAFOAM Inc filed Critical VITAFOAM Inc
Priority to US10/806,869 priority Critical patent/US20050210595A1/en
Assigned to VITAFOAM, INC. reassignment VITAFOAM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BORGART, GUIDO, BARGER, STEPHEN L., LUCAS, BARRY JAMES, DI STASIO, ANTHONY A., LAVELLE, JR., LAWRENCE P.
Publication of US20050210595A1 publication Critical patent/US20050210595A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/15Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays consisting of two or more layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C21/00Attachments for beds, e.g. sheet holders, bed-cover holders; Ventilating, cooling or heating means in connection with bedsteads or mattresses
    • A47C21/04Devices for ventilating, cooling or heating
    • A47C21/042Devices for ventilating, cooling or heating for ventilating or cooling
    • A47C21/046Devices for ventilating, cooling or heating for ventilating or cooling without active means, e.g. with openings or heat conductors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/142Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities
    • A47C27/144Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities inside the mattress or cushion
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/142Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities
    • A47C27/146Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities on the outside surface of the mattress or cushion
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/148Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays of different resilience

Definitions

  • the present invention relates to foam mattresses, and specifically foam mattresses made, at least in part, from reticulated, viscoelastic foam.
  • Foam mattresses generally have been well known for many years. Standard polyurethane foam materials provide good cushion. The specific polyurethane material may be varied to make a mattress softer or firmer. Traditional polyurethane foam mattresses are known for their springy and bouncy nature.
  • viscoelastic foam Another well-known material for use in foam mattresses is viscoelastic foam.
  • This foam also referred to as “memory/slow recovery” foam, has low resilience and naturally shapes or conforms to a person's body. This particular foam material is also effective to dampen sound and vibration.
  • viscoelastic foam is very popular for use as a mattress or component thereof, a major drawback to it is its inability to “breathe”. A person may overheat and excessively perspire, because there is insufficient ventilation in the foam to allow air and moisture flow. Also, the slow recovery aspect of the foam may make turning over difficult or getting out of a bed difficult.
  • the viscoelastic foam is also very sensitive to temperature and humidity.
  • Foam mattresses are also known that have multiple layers and/or zones that are made up of different foam materials. In this way, different foams are directed to specific purposes such as support or softness. Many of these multiple zone and multiple layer mattresses are one-sided (cannot be flipped) or uni-directional (cannot be turned around).
  • a foam mattress that includes a reticulated, viscoelastic foam.
  • the mattress may have multiple zones and multiple layers.
  • the reticulated nature of the viscoelastic foam allows a user to enjoy the benefits of the softness and conformability of a viscoelastic foam and also an unprecedented breathability.
  • a foam mattress comprises a reticulated, viscoelastic foam, wherein the viscoelastic foam is comprised of at least about 15% by weight of a viscoelastic polyol.
  • the foam mattress may comprise a plurality of layers of foam, and one of the layers may comprise the reticulated, viscoelastic foam.
  • the foam mattress may also comprise a plurality of zones of foam, and one of the zones of foam may comprise the reticulated viscoelastic foam.
  • the mattress may comprise three or more layers of foam, and an outside layer comprises the reticulated, viscoelastic foam.
  • the outside layer of the mattress may cover substantially the entire length and width of the mattress.
  • a first layer may comprise a reticulated viscoelastic foam and a second layer may comprise a reticulated polyurethane foam, and the reticulated viscoelastic and reticulated polyurethane foams are adhered to each other.
  • the viscoelastic foam may be comprised of about 15% to about 75% by weight of viscoelastic polyol, or, in another example, about 60% to about 70% by weight of viscoelastic polyol.
  • the foam mattress may comprise at least three layers of foam and/or at least three zones of foam.
  • the mattress may have a symmetrical layer construction and/or a symmetrical zone construction.
  • the foam mattress may comprise five layers of foam, wherein the outside layers of foam comprise latex, the layers immediately adjacent the outside layers comprise viscoelastic foam, and a central layer comprises reticulated polyurethane foam.
  • FIG. 1 is a side elevation view of an embodiment of a symmetric, multiple zone, five-layer foam mattress.
  • FIG. 2 is a side-elevation view of a three-layer, multiple zone foam mattress.
  • FIG. 3 is a side elevation view of another three-layer, multiple zone foam mattress.
  • the foam mattress discussed herein include the use of a reticulated, viscoelastic foam alone and as a component in a composite mattress. By the process of reticulation, a viscoelastic foam can achieve enhanced ventilation properties, thereby making it more attractive for use as a mattress or a part thereof.
  • viscoelastic foam means foam formed using a viscoelastic polyol, and specifically at least about 15% by weight of the viscoelastic polyol in the finished foam. Less than about 15% by weight of viscoelastic polyol does not process well, and it is believed that the resulting foam does not have significant viscoelastic properties. Weight percent ranges of viscoelastic polyol in the finished foam include about 15% to about 75%, and, for a further example, about 60% to about 70%.
  • reticulated viscoelastic foam means a viscoelastic foam that has been subjected to a reticulation process.
  • Reticulation is a means by which the thin window membranes are removed from a foam to create an open cell structure that is opened to air and moisture flow.
  • the process of reticulation involves placing a block of foam into a reticulation chamber, evacuating the chamber under vacuum to remove the air from the chamber and from within the foam, filling the chamber and foam with hydrogen and oxygen to a fuel loading of a predetermined ratio of hydrogen/oxygen to a specific pressure, and then igniting the fuel mixture to create an explosive wave that removes the membranes of the foam by pressure and heat.
  • the reticulation process also increases the strength properties of the foam.
  • Viscoelastic or “memory/slow recovery” foams have a number of very unique performance characteristics. This high quality foam tends to be low resilience, shape or body conforming, and able to dampen both sound and vibration or shock. In addition, this material is sensitive to both temperature and humidity conditions in the ambient environment.
  • foams can be produced by a number of different chemical approaches.
  • these formulations will certainly include a high hydroxyl polyether polyol and a number of potential isocyanate compounds to include MDI, TDI (80/20) and TDI (65/35) and blends thereof.
  • the products are usually foamed at low isocyanate index with special silicone surfactants to control cell structure and unique additives to operate in a mixture very different from conventional polyether urethane materials.
  • These specialty silicone additives will assist in the cell opening process as well as control the overall structure of the urethane cells.
  • the low index will promote cell opening as well as restrain the foam from shrinkage on curing.
  • the formulation at a low isocyanate index will also give the resultant foam a very improved level of softness and feel for bedding applications, especially if some performance additives are used to promote these properties. Since the available isocyanate is limited or “under indexed,” this promotes a competition for these molecules between the water and the polyol system thereby making the formulation technique very different from conventional urethanes.
  • the driving formulation criteria are to specifically control the viscosity (recovery time) of the product to customize the foam's use in bedding platforms. Temperature sensitivity is always an issue as the intent is to have a foam product that operates or maintains its desired firmness in a broad range of ambient temperature conditions. The feel, recovery and firmness of these products can be markedly affected by slight variations in bedroom temperature. If the formulation of the viscoelastic foam is not uniquely adjusted for bedding applications, the viscous nature of the material will also change with time and prolonged use in sleep platform.
  • An exemplary viscoelastic foam component is a product from Bayer (VE-1000), which has good formulating latitude with 80/20 TDI at 100 index.
  • VE-1000 a product from Bayer
  • other viscoelastic polyols may be used and are known to those of skill in the art.
  • the viscoelastic foam produced using the VE-1000 viscoelastic polyol had excellent shaping conformance and very reduced sensitivity to ambient temperature conditions.
  • This viscoelastic polyol can be used with conventional polyether polyol materials such as ARCOL F-3022, F-3222, F-3040, or P-2000 (Boyer Ultracell Polyl 2000).
  • These polyol streams can be mixed with a conventional high solids polymer polyol material like HS-100, which has been the standard of the industry for many years, to produce a firmer version of the viscoelastic material for high-end mattress compositions.
  • the other additive unique to this viscoelastic product is a foam modifier DP-1022 (Lyondell Chemical) that assists the overall performance of the foam over a wide range of foam densities and firmness.
  • the balance of the formulation for the viscoelastic foam may be composed of standard chemical raw materials that are used in conventional polyether foams, which include silicone surfactant, amine catalyst and flame retardant additives.
  • Viscoelastic foams have a unique isocyanate-reaction composition.
  • the mixture typically has a polyester or polyoxyalkylene monol and a polyester or poloxyalkylene triol, usually with a chain extending material or a cross-linker.
  • the monol (polyether or polyester), has one hydroxyl group on each molecule and an average equivalent weight greater than 1000.
  • the average molecular weight of these materials is greater than 1000.
  • the monol has an average equivalent weight greater than 1500, and in another example an equivalent weight greater than 2000.
  • the hydroxyl number for these materials would be at least about 56 mg KOH/g.
  • the viscoelastic polyols are usually produced by the reaction of a monoalcohol with multiple equivalents of an epoxide material like ethylene oxide (EO) or propylene oxide (PO) and mixtures thereof.
  • EO ethylene oxide
  • PO propylene oxide
  • These monols can have any desired arrangement of oxyalkylene units where they are PO polymers, EO-capped materials, blocked EO-PO copolymers, random EO-PO copolymers or PO polymers that are finished with a mixture of PO and EO to arrive at the desired hydroxyl content.
  • the all PO version of the above monols that have hydroxyl numbers less than or equal to 56 mg KOH/gm., significantly expand the processing window for making these viscoelastic foam materials. If one were to “EO tip” the above monols, with a mixture of EO and PO and produce a material with 15 to 50% primary hydroxyl groups, the foam properties and processing of these viscoelastic foams would be significantly improved.
  • the “EO-Capped” version of these monols with high (80% or greater) primary hydroxyl content are classified as reactive monols and show very high reactivity with isocyanate species. Although all PO monols are great for improved processing latitude, they can tend to make the viscoelastic foam very slick or oily to the touch.
  • the reactive monols can alleviate this oily feel and provide viscoelastic foam with excellent feel and recovery.
  • the polyester or polyoxyalkylene monol (viscoelastic polyol) is used in a range of at least about 15% to 70% by weight of the foam mixture based on the amount of isocyanate available in the mixture, with the most another example being a range of 25-50% by weight.
  • This isocyanate-polyol mixture has polyols with functionalities of at least 2 or greater with, for example, a hydroxyl functionality in the range of 3 to 6.
  • the triol materials are one of the species for the viscoelastic foam products discussed here. These polyols have average equivalent weights that are less than 600 or less than 400.
  • the hydroxyl number of these polyols is approximately 94 mg KOH/gm with in one example materials at a hydroxyl number greater than 140 mg KOH/gm.
  • polyols in this case are polyoxyalkylene materials (prepared in a similar manner to monols above but with two or more active hydrogen sites) and are present at a load of 30 to 85% by weight of the isocyanate mixture but may also be suited for mattress applications at 40 to 70% by weight of the foam mixture.
  • the viscoelastic foam formulations may have either a chain extender or cross linker material to provide increased strength. These materials will be used in the range of 0.1 to 5.0% by weight or alternatively, 0.5 to 3.0% by weight. On a molecular weight basis these chain extenders or cross linkers should be less than 300 g/mole or alternatively, less than 200 g/mole.
  • the isocyanate will have two or more free —NCO groups per molecule, and those that are common to the flexible urethane foam industry include TDI (80/20), TDI (65/35) and MDI (conventional and polymeric), and HDI.
  • the isocyanate component may also be a blend of some or all of the materials noted in the above isocyanate reference.
  • an index for superb quality viscoelastic materials is an isocyanate index below about 110. In one example, the index is about 100.
  • the following data demonstrates some of the physical properties that are about the same and that are different between various foams that are used in commercial mattresses.
  • the foams are viscoelastic, high resiliency, and conventional formulations.
  • the greatest property difference noted is the resilience of the viscoelastic product. With the foam characteristics of slow recovery, body conforming nature, vibration dampening and temperature sensitivity, it can be seen that the viscoelastic product is significantly different from the HR and Conventional materials that have been used in commercial bedding in the past. In an overall view of property characteristics, the HR and conventional urethane foams do not exhibit any of the unique characteristics of the viscoelastic material. These unique properties are a function of the high hydroxyl polyol and polyol blends used along with low index combinations of TDI, MDI and some other specialty isocyanate. In some very unique cases some distinctive silicone surfactants are employed as well as some strength additives to complete the formulation matrix that is different than the conventional flexible urethane system.
  • a viscoelastic foam as described earlier herein is subjected to a reticulation process in order to increase the “breathability” of the foam.
  • An intrinsic characteristic of viscoelastic foam is its relative high density and fine cell structure. Reticulation of a viscoelastic foam is obtained by using known thermal reticulation processes that have been used for fine cell, white foam materials. These thermal reticulation processes have enough energy to reticulate the viscoelastic foam. The thermal reticulation processes also have inherent provisions to reduce the amount of scorch that can occur as a result of the combustion nature of the reticulation process in white foams by adjusting the oxygen/hydrogen level during the fuel fill. Specific processes parameters will vary depending on each type of foam that may be used. These process parameters are known to those of skill in the reticulation art.
  • Visco-Elastic Foam Physical Test Results Reticulated Non-Reticulated Density 3.39 3.43 25% CFD, psi 0.17 0.17 Ball Rebound 10% 11% Tensile Strength, psi 7.8 8.5 Elongation 170% 220% Tear Strength, psi 0.7 0.8 Air Flow, cfm 0.96 4 All tests completed according to ASTM D 3574-91
  • the significant change in physical properties relates to the air and liquid flow through the foam.
  • the resulting improvement in the air flow in the reticulated viscoelastic foam is greater than four times over an existing, non-reticulated viscoelastic foam.
  • FIGS. 1-3 illustrate three examples of foam mattresses 10 , 100 and 200 respectively, that include a reticulated viscoelastic foam.
  • Each of these mattresses has multiple layers 50 and multiple zones 40 .
  • the term “multi-layer mattress” includes a mattress that has more than one layer of material across its length and width in the context of the thickness or depth of the mattress. As shown in FIG. 1 , there are five layers 50 across the depth of the mattress 10 .
  • the layers 50 of the mattress 10 are distinguished from the “zones” 40 of the mattress in that the zones are the longitudinal sections that are shown. As demonstrated in FIG. 1 , the mattress 10 has seven zones 40 . In other words, the zones 40 are the cross sections of the longitudinal length of the mattress 10 where different foam materials may be used.
  • the mattresses described in the following, and as shown in the figures, are foam mattresses that incorporates different foam components adhered to each other in order to obtain improved ventilation, durability, and comfort for the mattress.
  • the difference between the mattresses shown in FIGS. 1, 2 and 3 relate to the number of layers and to the configuration of the inner sections of the zones in the mattresses.
  • the top or outside layer 20 and 20 ′ in FIG. 1 and 120 and 220 in FIGS. 2 and 3 of the mattress 10 , 100 and 200 is formed of a latex material.
  • the latex is flexible and durable and has an open cell structure which ventilates well.
  • the purpose of the top layer 20 and 20 ′ in FIG. 1 and 120 and 220 in FIGS. 2 and 3 of the mattress 10 , 100 and 200 is for comfort and suppleness.
  • An example of an acceptable latex is referred to as a Talalay® Latex. This latex is incorporated as a complete layer that covers the entire length and width of a mattress.
  • a reticulated viscoelastic foam for instance the Novacomfort® foam that has been reticulated, is incorporated into two different sections 26 and 26 ′ in FIG. 1 and 126 and 227 in FIGS. 2 and 3 in the second layer of the mattresses shown in FIGS. 1-3 .
  • the foam is incorporated for use under the parts of the body where pressure may otherwise build up, for instance the shoulders.
  • a high resiliency foam (HR 10548—Vita-Interfoam, B.V.) is used to support the hip zone 27 and 27 ′ in FIG. 1 and 127 and 227 in FIGS. 2 and 3 of the mattress.
  • a high density polyurethane foam is used in the zones 25 and 25 ′ in FIG. 1 and 125 and 225 in FIGS. 2 and 3 of the mattress for the lumbar and head and foot.
  • An acceptable high density foam is a Pantera® 2130HD foam.
  • the central layer 30 of the mattress shown in FIG. 1 (and the bottom layer 130 and 230 of the mattresses shown in FIGS. 2 and 3 ) is a reticulated polyurethane foam having a course structure and open cells.
  • the open structure allows for the circulation of air and escape of moisture from the mattress as shown by the arrows in FIG. 1 . It also enhances temperature distribution through maximum ventilation.
  • An example of a commercial polyurethane foam acceptable for this use is a Calipore® foam (Caligen Foam, Ltd.) Or EZ-Dri/FilterCrest (Crest Foam Industries).
  • this central layer 30 of Calipore® or open cell polyurethane foam may include a heating element 31 to better dry out and improve the air flow of the mattress.
  • Each of the mattresses 10 , 100 and 200 shown in FIGS. 1-3 includes a symmetrical zone 40 construction.
  • the mattress may be turned around head to foot in an ordinary rotation by a user.
  • the mattress 10 is further symmetrical across the layers 50 .
  • the mattress 10 may be conveniently flipped or turned around as a result of its symmetry across both its depth and its length.
  • the mattress 10 shown in FIG. 1 is 200 mm thick (approximately 8 inches).
  • a heating system 31 is incorporated in the middle layer 30 to dry the mattress 10 from the inside and keep it warm during cold nights.

Abstract

A foam mattress includes a reticulated, viscoelastic foam that makes up the mattress in whole or in part. The reticulated nature of the viscoelastic foam allows a user to enjoy the benefits of softness and conformability of a viscoelastic foam and also an improved breathability. The foam mattress may include a plurality of zones of foam and/or a plurality of layers of foam, where one of the layers may be reticulated urethane for improved breathability and humidity resistance, as well as heat dissipation.

Description

  • The present invention relates to foam mattresses, and specifically foam mattresses made, at least in part, from reticulated, viscoelastic foam.
  • BACKGROUND OF THE INVENTION
  • Foam mattresses generally have been well known for many years. Standard polyurethane foam materials provide good cushion. The specific polyurethane material may be varied to make a mattress softer or firmer. Traditional polyurethane foam mattresses are known for their springy and bouncy nature.
  • Another well-known material for use in foam mattresses is viscoelastic foam. This foam, also referred to as “memory/slow recovery” foam, has low resilience and naturally shapes or conforms to a person's body. This particular foam material is also effective to dampen sound and vibration. While viscoelastic foam is very popular for use as a mattress or component thereof, a major drawback to it is its inability to “breathe”. A person may overheat and excessively perspire, because there is insufficient ventilation in the foam to allow air and moisture flow. Also, the slow recovery aspect of the foam may make turning over difficult or getting out of a bed difficult. The viscoelastic foam is also very sensitive to temperature and humidity.
  • Foam mattresses are also known that have multiple layers and/or zones that are made up of different foam materials. In this way, different foams are directed to specific purposes such as support or softness. Many of these multiple zone and multiple layer mattresses are one-sided (cannot be flipped) or uni-directional (cannot be turned around).
  • SUMMARY
  • Accordingly, it is an object of the present invention to overcome the foregoing drawbacks and to provide a foam mattress that includes a reticulated, viscoelastic foam. The mattress may have multiple zones and multiple layers. The reticulated nature of the viscoelastic foam allows a user to enjoy the benefits of the softness and conformability of a viscoelastic foam and also an unprecedented breathability.
  • In one example, a foam mattress comprises a reticulated, viscoelastic foam, wherein the viscoelastic foam is comprised of at least about 15% by weight of a viscoelastic polyol. The foam mattress may comprise a plurality of layers of foam, and one of the layers may comprise the reticulated, viscoelastic foam. The foam mattress may also comprise a plurality of zones of foam, and one of the zones of foam may comprise the reticulated viscoelastic foam. The mattress may comprise three or more layers of foam, and an outside layer comprises the reticulated, viscoelastic foam. The outside layer of the mattress may cover substantially the entire length and width of the mattress. In a multiple layer mattress, a first layer may comprise a reticulated viscoelastic foam and a second layer may comprise a reticulated polyurethane foam, and the reticulated viscoelastic and reticulated polyurethane foams are adhered to each other. The viscoelastic foam may be comprised of about 15% to about 75% by weight of viscoelastic polyol, or, in another example, about 60% to about 70% by weight of viscoelastic polyol. In further examples, the foam mattress may comprise at least three layers of foam and/or at least three zones of foam. The mattress may have a symmetrical layer construction and/or a symmetrical zone construction. Still further alternatively, the foam mattress may comprise five layers of foam, wherein the outside layers of foam comprise latex, the layers immediately adjacent the outside layers comprise viscoelastic foam, and a central layer comprises reticulated polyurethane foam.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side elevation view of an embodiment of a symmetric, multiple zone, five-layer foam mattress.
  • FIG. 2 is a side-elevation view of a three-layer, multiple zone foam mattress.
  • FIG. 3 is a side elevation view of another three-layer, multiple zone foam mattress.
  • DETAILED DESCRIPTION
  • The foam mattress discussed herein include the use of a reticulated, viscoelastic foam alone and as a component in a composite mattress. By the process of reticulation, a viscoelastic foam can achieve enhanced ventilation properties, thereby making it more attractive for use as a mattress or a part thereof.
  • For the purposes of discussion herein, the term “viscoelastic foam” means foam formed using a viscoelastic polyol, and specifically at least about 15% by weight of the viscoelastic polyol in the finished foam. Less than about 15% by weight of viscoelastic polyol does not process well, and it is believed that the resulting foam does not have significant viscoelastic properties. Weight percent ranges of viscoelastic polyol in the finished foam include about 15% to about 75%, and, for a further example, about 60% to about 70%.
  • The term “reticulated viscoelastic foam” means a viscoelastic foam that has been subjected to a reticulation process. Reticulation is a means by which the thin window membranes are removed from a foam to create an open cell structure that is opened to air and moisture flow. The process of reticulation involves placing a block of foam into a reticulation chamber, evacuating the chamber under vacuum to remove the air from the chamber and from within the foam, filling the chamber and foam with hydrogen and oxygen to a fuel loading of a predetermined ratio of hydrogen/oxygen to a specific pressure, and then igniting the fuel mixture to create an explosive wave that removes the membranes of the foam by pressure and heat. In addition to creating an open cell structure that allows flow through the foam, the reticulation process also increases the strength properties of the foam.
  • Viscoelastic Formulation Technology
  • Viscoelastic or “memory/slow recovery” foams have a number of very unique performance characteristics. This high quality foam tends to be low resilience, shape or body conforming, and able to dampen both sound and vibration or shock. In addition, this material is sensitive to both temperature and humidity conditions in the ambient environment.
  • These foams can be produced by a number of different chemical approaches. In general these formulations will certainly include a high hydroxyl polyether polyol and a number of potential isocyanate compounds to include MDI, TDI (80/20) and TDI (65/35) and blends thereof. The products are usually foamed at low isocyanate index with special silicone surfactants to control cell structure and unique additives to operate in a mixture very different from conventional polyether urethane materials. These specialty silicone additives will assist in the cell opening process as well as control the overall structure of the urethane cells. The low index will promote cell opening as well as restrain the foam from shrinkage on curing. The formulation at a low isocyanate index will also give the resultant foam a very improved level of softness and feel for bedding applications, especially if some performance additives are used to promote these properties. Since the available isocyanate is limited or “under indexed,” this promotes a competition for these molecules between the water and the polyol system thereby making the formulation technique very different from conventional urethanes.
  • With the formulation challenges of viscoelastic foam materials, the processing latitude is one of the most critical. This latitude being very “fine edge” really makes the processing of this foam drastically different from conventional urethanes, and the chemical technology that is used can significantly alter the performance of the product. The foams that result can vary significantly in density as well as firmness. Therefore these foams require very different chemical and or processing approaches as compared to conventional urethane foam. The driving formulation criteria are to specifically control the viscosity (recovery time) of the product to customize the foam's use in bedding platforms. Temperature sensitivity is always an issue as the intent is to have a foam product that operates or maintains its desired firmness in a broad range of ambient temperature conditions. The feel, recovery and firmness of these products can be markedly affected by slight variations in bedroom temperature. If the formulation of the viscoelastic foam is not uniquely adjusted for bedding applications, the viscous nature of the material will also change with time and prolonged use in sleep platform.
  • An exemplary viscoelastic foam component is a product from Bayer (VE-1000), which has good formulating latitude with 80/20 TDI at 100 index. Of course, other viscoelastic polyols may be used and are known to those of skill in the art. The viscoelastic foam produced using the VE-1000 viscoelastic polyol had excellent shaping conformance and very reduced sensitivity to ambient temperature conditions. This viscoelastic polyol can be used with conventional polyether polyol materials such as ARCOL F-3022, F-3222, F-3040, or P-2000 (Boyer Ultracell Polyl 2000). These polyol streams can be mixed with a conventional high solids polymer polyol material like HS-100, which has been the standard of the industry for many years, to produce a firmer version of the viscoelastic material for high-end mattress compositions. The other additive unique to this viscoelastic product is a foam modifier DP-1022 (Lyondell Chemical) that assists the overall performance of the foam over a wide range of foam densities and firmness. The balance of the formulation for the viscoelastic foam may be composed of standard chemical raw materials that are used in conventional polyether foams, which include silicone surfactant, amine catalyst and flame retardant additives.
  • The following table lists the formulating materials that give viscoelastic foam its unique properties and the function they contribute to the material. The range levels are well within the formulation expertise of those who are familiar with the formulation criteria for conventional flexible urethane foam.
    Component Range (pph) Primary Function
    VE-1000 50-100 Viscous Character
    F-3022 0-50 Elastic Character
    HS-100 0-50 Firmness
    P-2000 0-50 Firmness
    DP-1022 0-3  Damping Character & Strength
    TDI (80/20) Index 75-110 Firmness

    Pph = parts per hundred parts polyol
  • Low Density Viscoelastic Formulation Examples
    Grade
    3 pcf 2.8 pcf 3.4 pcf
    Component 12 IFD 15 IFD 24 IFD
    VE-1000 70 75 65
    F-3022 30 25
    HS-100 35
    DP-1022 2.0 1.5 1.5
    TDI (80/20) Index 95 100 1.5
  • The table above shows how manipulation of the key viscoelastic components could be done to alter the density and IFD of some respective low-density materials. A similar set of examples can be developed for High Density materials as well where viscoelastic characteristics are required.
  • Viscoelastic foams have a unique isocyanate-reaction composition. The mixture typically has a polyester or polyoxyalkylene monol and a polyester or poloxyalkylene triol, usually with a chain extending material or a cross-linker. The monol (polyether or polyester), has one hydroxyl group on each molecule and an average equivalent weight greater than 1000. The average molecular weight of these materials is greater than 1000. In one example, the monol has an average equivalent weight greater than 1500, and in another example an equivalent weight greater than 2000. The hydroxyl number for these materials would be at least about 56 mg KOH/g.
  • The viscoelastic polyols (like VE-1000) are usually produced by the reaction of a monoalcohol with multiple equivalents of an epoxide material like ethylene oxide (EO) or propylene oxide (PO) and mixtures thereof. These monols can have any desired arrangement of oxyalkylene units where they are PO polymers, EO-capped materials, blocked EO-PO copolymers, random EO-PO copolymers or PO polymers that are finished with a mixture of PO and EO to arrive at the desired hydroxyl content.
  • The all PO version of the above monols, that have hydroxyl numbers less than or equal to 56 mg KOH/gm., significantly expand the processing window for making these viscoelastic foam materials. If one were to “EO tip” the above monols, with a mixture of EO and PO and produce a material with 15 to 50% primary hydroxyl groups, the foam properties and processing of these viscoelastic foams would be significantly improved. The “EO-Capped” version of these monols with high (80% or greater) primary hydroxyl content are classified as reactive monols and show very high reactivity with isocyanate species. Although all PO monols are great for improved processing latitude, they can tend to make the viscoelastic foam very slick or oily to the touch. The reactive monols can alleviate this oily feel and provide viscoelastic foam with excellent feel and recovery. The polyester or polyoxyalkylene monol (viscoelastic polyol) is used in a range of at least about 15% to 70% by weight of the foam mixture based on the amount of isocyanate available in the mixture, with the most another example being a range of 25-50% by weight. This isocyanate-polyol mixture has polyols with functionalities of at least 2 or greater with, for example, a hydroxyl functionality in the range of 3 to 6. The triol materials are one of the species for the viscoelastic foam products discussed here. These polyols have average equivalent weights that are less than 600 or less than 400. The hydroxyl number of these polyols is approximately 94 mg KOH/gm with in one example materials at a hydroxyl number greater than 140 mg KOH/gm.
  • Other polyols in this case are polyoxyalkylene materials (prepared in a similar manner to monols above but with two or more active hydrogen sites) and are present at a load of 30 to 85% by weight of the isocyanate mixture but may also be suited for mattress applications at 40 to 70% by weight of the foam mixture.
  • In addition to the monol and polyol components, the viscoelastic foam formulations may have either a chain extender or cross linker material to provide increased strength. These materials will be used in the range of 0.1 to 5.0% by weight or alternatively, 0.5 to 3.0% by weight. On a molecular weight basis these chain extenders or cross linkers should be less than 300 g/mole or alternatively, less than 200 g/mole.
  • The isocyanate will have two or more free —NCO groups per molecule, and those that are common to the flexible urethane foam industry include TDI (80/20), TDI (65/35) and MDI (conventional and polymeric), and HDI. The isocyanate component may also be a blend of some or all of the materials noted in the above isocyanate reference. Although good quality viscoelastic foams can be produced in the broad range of isocyanate index for conventional urethanes (85-130), an index for superb quality viscoelastic materials is an isocyanate index below about 110. In one example, the index is about 100.
  • The following data demonstrates some of the physical properties that are about the same and that are different between various foams that are used in commercial mattresses. The foams are viscoelastic, high resiliency, and conventional formulations.
  • Foam Property Data Commercial Mattress Foams Viscoelastic-HR-Conventional
  • PROPERTY VISCOELASTIC HR CONVENTIONAL
    Density (lbs/cu.ft) 2.8 pcf 2.5 pcf 2.33 pcf
    Resilience (%) 11 58 53
    Elongation (%) 159 150 348
    Tear (pli) 0.8 1.30 1.86
    75% HACS % 5.6 10.7 4.2
  • The greatest property difference noted is the resilience of the viscoelastic product. With the foam characteristics of slow recovery, body conforming nature, vibration dampening and temperature sensitivity, it can be seen that the viscoelastic product is significantly different from the HR and Conventional materials that have been used in commercial bedding in the past. In an overall view of property characteristics, the HR and conventional urethane foams do not exhibit any of the unique characteristics of the viscoelastic material. These unique properties are a function of the high hydroxyl polyol and polyol blends used along with low index combinations of TDI, MDI and some other specialty isocyanate. In some very unique cases some distinctive silicone surfactants are employed as well as some strength additives to complete the formulation matrix that is different than the conventional flexible urethane system.
  • Reticulated Viscoelastic Foam
  • A viscoelastic foam as described earlier herein is subjected to a reticulation process in order to increase the “breathability” of the foam. An intrinsic characteristic of viscoelastic foam is its relative high density and fine cell structure. Reticulation of a viscoelastic foam is obtained by using known thermal reticulation processes that have been used for fine cell, white foam materials. These thermal reticulation processes have enough energy to reticulate the viscoelastic foam. The thermal reticulation processes also have inherent provisions to reduce the amount of scorch that can occur as a result of the combustion nature of the reticulation process in white foams by adjusting the oxygen/hydrogen level during the fuel fill. Specific processes parameters will vary depending on each type of foam that may be used. These process parameters are known to those of skill in the reticulation art.
  • Analysis has been performed to fully demonstrate the effect of the thermal reticulation process on a viscoelastic foam. The attached table sets forth the physical properties associated with a regular, commercially-available foam (Novacomfort®—Vita). The viscoelastic polyol in this particular foam amounts to approximately 60% of the weight of the finished foam.
    Visco-Elastic Foam Physical Test Results
    Reticulated Non-Reticulated
    Density 3.39 3.43
    25% CFD, psi 0.17 0.17
    Ball Rebound  10%  11%
    Tensile Strength, psi 7.8 8.5
    Elongation 170% 220%
    Tear Strength, psi 0.7 0.8
    Air Flow, cfm 0.96 4

    All tests completed according to ASTM D 3574-91
  • As demonstrated in this table, the significant change in physical properties relates to the air and liquid flow through the foam. The resulting improvement in the air flow in the reticulated viscoelastic foam is greater than four times over an existing, non-reticulated viscoelastic foam.
  • Comfort Zone Mattress
  • FIGS. 1-3 illustrate three examples of foam mattresses 10, 100 and 200 respectively, that include a reticulated viscoelastic foam. Each of these mattresses has multiple layers 50 and multiple zones 40. For the purposes herein, the term “multi-layer mattress” includes a mattress that has more than one layer of material across its length and width in the context of the thickness or depth of the mattress. As shown in FIG. 1, there are five layers 50 across the depth of the mattress 10. The layers 50 of the mattress 10 are distinguished from the “zones” 40 of the mattress in that the zones are the longitudinal sections that are shown. As demonstrated in FIG. 1, the mattress 10 has seven zones 40. In other words, the zones 40 are the cross sections of the longitudinal length of the mattress 10 where different foam materials may be used.
  • The mattresses described in the following, and as shown in the figures, are foam mattresses that incorporates different foam components adhered to each other in order to obtain improved ventilation, durability, and comfort for the mattress. The difference between the mattresses shown in FIGS. 1, 2 and 3 relate to the number of layers and to the configuration of the inner sections of the zones in the mattresses. In each case, the top or outside layer 20 and 20′ in FIG. 1 and 120 and 220 in FIGS. 2 and 3 of the mattress 10, 100 and 200 is formed of a latex material. The latex is flexible and durable and has an open cell structure which ventilates well. The purpose of the top layer 20 and 20′ in FIG. 1 and 120 and 220 in FIGS. 2 and 3 of the mattress 10, 100 and 200 is for comfort and suppleness. An example of an acceptable latex is referred to as a Talalay® Latex. This latex is incorporated as a complete layer that covers the entire length and width of a mattress.
  • A reticulated viscoelastic foam, for instance the Novacomfort® foam that has been reticulated, is incorporated into two different sections 26 and 26′ in FIG. 1 and 126 and 227 in FIGS. 2 and 3 in the second layer of the mattresses shown in FIGS. 1-3. The foam is incorporated for use under the parts of the body where pressure may otherwise build up, for instance the shoulders.
  • A high resiliency foam (HR 10548—Vita-Interfoam, B.V.) is used to support the hip zone 27 and 27′ in FIG. 1 and 127 and 227 in FIGS. 2 and 3 of the mattress.
  • A high density polyurethane foam is used in the zones 25 and 25′ in FIG. 1 and 125 and 225 in FIGS. 2 and 3 of the mattress for the lumbar and head and foot. An acceptable high density foam is a Pantera® 2130HD foam.
  • The central layer 30 of the mattress shown in FIG. 1 (and the bottom layer 130 and 230 of the mattresses shown in FIGS. 2 and 3) is a reticulated polyurethane foam having a course structure and open cells. The open structure allows for the circulation of air and escape of moisture from the mattress as shown by the arrows in FIG. 1. It also enhances temperature distribution through maximum ventilation. An example of a commercial polyurethane foam acceptable for this use is a Calipore® foam (Caligen Foam, Ltd.) Or EZ-Dri/FilterCrest (Crest Foam Industries). In alternative embodiments, this central layer 30 of Calipore® or open cell polyurethane foam may include a heating element 31 to better dry out and improve the air flow of the mattress.
  • Each of the mattresses 10, 100 and 200 shown in FIGS. 1-3 includes a symmetrical zone 40 construction. In other words, the mattress may be turned around head to foot in an ordinary rotation by a user.
  • In FIG. 1, the mattress 10 is further symmetrical across the layers 50. In this way, the mattress 10 may be conveniently flipped or turned around as a result of its symmetry across both its depth and its length. In one example, the mattress 10 shown in FIG. 1 is 200 mm thick (approximately 8 inches). There are five layers 50. There are seven unique zones 40 designed to follow the contour of the body (head/foot, shoulder, lumbar, hip, lumber, shoulder, head/foot). A heating system 31 is incorporated in the middle layer 30 to dry the mattress 10 from the inside and keep it warm during cold nights.
  • While the invention has been described with reference to specific embodiments thereof, it will be understood that numerous variations, modifications and additional embodiments are possible, and all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the invention.

Claims (14)

1. A foam mattress comprising a reticulated, viscoelastic foam, wherein the viscoelastic foam is comprised of at least about fifteen percent by weight of a viscoelastic polyol.
2. A foam mattress as described in claim 1, wherein the foam mattress comprises a plurality of layers of foam, and one of the layers comprises the reticulated, viscoelastic foam.
3. A mattress as described in claim 1, wherein the foam mattress comprises a plurality of zones of foam, and one of the zones comprises the reticulated, viscoelastic foam.
4. The mattress as described in claim 1, wherein the mattress comprises three or more layers of foam, and an outside layer comprises the reticulated, viscoelastic foam.
5. The mattress as described in claim 4, wherein the outside layer covers substantially the entire length and width of the mattress.
6. The mattress as described in claim 2, wherein a second layer comprises a reticulated polyurethane foam, and the reticulated viscoelastic and reticulated polyurethane foams are adhered to each other.
7. The mattress as described in claim 1, wherein the viscoelastic foam is comprised of about 15% to about 75% by weight of viscoelastic polyol.
8. The mattress as described in claim 1, wherein the viscoelastic foam is comprised of about 60% to about 70% by weight of viscoelastic polyol.
9. The mattress as described in claim 2, further wherein the mattress comprises a plurality of zones of foam.
10. The mattress as described in claim 9, wherein the foam mattress comprises at least three layers of foam and at least three zones of foam.
11. The mattress as described in claim 10, wherein the foam mattress has a symmetrical layer construction.
12. The mattress as described in claim 10, wherein the foam mattress has a symmetrical zone construction.
13. The mattress as described in claim 11, wherein the foam mattress has a symmetrical zone construction.
14. The mattress as described in claim 1, wherein the foam mattress comprises five layers of foam, and wherein the outside layers of foam comprise latex, the layers immediately adjacent the outside layers comprise the viscoelastic foam, and a central layer comprises reticulated polyurethane foam.
US10/806,869 2004-03-23 2004-03-23 Mattress having reticulated viscoelastic foam Abandoned US20050210595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/806,869 US20050210595A1 (en) 2004-03-23 2004-03-23 Mattress having reticulated viscoelastic foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/806,869 US20050210595A1 (en) 2004-03-23 2004-03-23 Mattress having reticulated viscoelastic foam

Publications (1)

Publication Number Publication Date
US20050210595A1 true US20050210595A1 (en) 2005-09-29

Family

ID=34987962

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/806,869 Abandoned US20050210595A1 (en) 2004-03-23 2004-03-23 Mattress having reticulated viscoelastic foam

Country Status (1)

Country Link
US (1) US20050210595A1 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050278852A1 (en) * 2004-06-12 2005-12-22 Wahrmund Gary M High air flow foam bedding products
US20060048304A1 (en) * 2004-09-07 2006-03-09 Boyd Dennis M Knock down foam bed
US20060288491A1 (en) * 2005-06-24 2006-12-28 Mikkelsen Tom D Reticulated material body support and method
US20070044245A1 (en) * 2005-09-01 2007-03-01 The Spring Air Company Mattress with triple zone topper
US7240386B1 (en) * 2004-05-20 2007-07-10 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
DE102005063188A1 (en) * 2005-12-30 2007-07-12 Siegfried Merz Mattress for bed, has several intrinsic flexible mattress cores and heating unit that are provided within cover, where mattress is heated with heating unit so that moisture in inner part of mattress is dried up in daytime
WO2007085548A1 (en) * 2006-01-27 2007-08-02 Basf Se Method for the production of open-cell viscoelastic soft polyurethane foams
US20070209120A1 (en) * 2005-08-29 2007-09-13 Clark John D Discrete orthoganol support system
US20070287761A1 (en) * 2006-06-12 2007-12-13 Jared Denis Bender Catalyst compositions for improving polyurethane foam performance
WO2008086861A1 (en) * 2007-01-15 2008-07-24 Recticel Schlafkomfort Gmbh Mattress
US7461894B2 (en) 2005-11-21 2008-12-09 Nightgear Llc Seating accessory
US20090089933A1 (en) * 2007-10-09 2009-04-09 Sealy Technology, Llc Pressure dispersion support systems
US7707670B2 (en) 2003-10-14 2010-05-04 Tempur-Pedic Management, Inc. Pillow top for a cushion
US20100325806A1 (en) * 2007-10-09 2010-12-30 Sealy Technology, Llc Pressure dispersion support systems
US20110136930A1 (en) * 2006-08-10 2011-06-09 Dow Global Technologies LLC (Formerly known as Dow Global Technologies Inc.) Method for preparing viscoelastic polyurethane foam
US20110156459A1 (en) * 2005-11-21 2011-06-30 Nightgear Llc Seating pad assembly for use with transportation seat
US20110197368A1 (en) * 2010-02-17 2011-08-18 Tarazona De La Asuncion Ramiro Incorporated in a manufacturing system of pressure or impact receiving bodies, determining for a direction-wise cushioning
US8025964B2 (en) 1994-06-03 2011-09-27 Tempur World, Llc Laminated visco-elastic support
US20110252572A1 (en) * 2010-04-19 2011-10-20 Leigh Morrison Multi-layer multi-material foam mattresses
US20110256369A1 (en) * 2008-12-22 2011-10-20 Stephen Switzer Thin-layered alternating material body support and method of manufacturing same
US20120124753A1 (en) * 2010-11-19 2012-05-24 Zinus Inc. Zoned foam mattress with alternating lateral regions of HD foam and memory foam
US20120233784A1 (en) * 2011-03-15 2012-09-20 Wood Robert L Multiple zone gel cushion
CN102762133A (en) * 2010-02-19 2012-10-31 井上株式会社 Cushion pad and method for manufacturing same
US20130025070A1 (en) * 2011-07-29 2013-01-31 Dreamwell, Ltd. Mattress assembly with high airflow
WO2013119250A1 (en) * 2012-02-10 2013-08-15 Tempur-Pedic Management, Inc. Mattress having reduced motion transfer
US20130269113A1 (en) * 2012-04-16 2013-10-17 Robert Wood Composite flexible frame mattress
WO2014105047A1 (en) * 2012-12-28 2014-07-03 Tempur-Pedic Management, Llc. Foam block mattress assemblies
US20150018443A1 (en) * 2010-02-26 2015-01-15 Peterson Chemical Technology, Inc. Cushioning Foams Containing Reflective Particulates With Visually Distinguishable Reflective Surfaces to Create a Unique Appearance
US20150082549A1 (en) * 2012-05-03 2015-03-26 Simon Cairns Bedding systems
US8997279B1 (en) 2004-05-20 2015-04-07 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
WO2015103130A1 (en) * 2013-12-31 2015-07-09 Tempur-Pedic Management, Llc An alignment system for a bed assembly
WO2015103177A1 (en) * 2013-12-31 2015-07-09 Tempur-Pedic Management, Llc Cover assemblies for mattresses
WO2015103186A1 (en) * 2013-12-31 2015-07-09 Tempur-Pedic Management, Llc Cover assemblies for mattresses
US9138064B2 (en) 2013-01-18 2015-09-22 Fxi, Inc. Mattress with combination of pressure redistribution and internal air flow guides
WO2015164222A1 (en) * 2014-04-21 2015-10-29 Casper Sleep Inc. Improved mattress
US9192245B2 (en) 2011-07-29 2015-11-24 Dreamwell, Ltd. Mattress and side rail assemblies having high airflow
WO2016018703A1 (en) * 2014-07-28 2016-02-04 Tempur-Pedic Management, Llc Mattress assembly including mattress overlay and multiple covers
US9289072B2 (en) 2013-01-18 2016-03-22 Fxi, Inc. Compressible or retractable support for air blower cavity of air flow mattress
US9392875B2 (en) 2013-01-18 2016-07-19 Fxi, Inc. Body support system with combination of pressure redistribution and internal air flow guide(s) for withdrawing heat and moisture away from body reclining on support surface of body support system
KR20170003944A (en) 2014-04-30 2017-01-10 허니웰 인터내셔널 인코포레이티드 Flexible, open-cell thermoset foams and blowing agents and methods for making same
US9675189B2 (en) 2013-12-31 2017-06-13 Tempur-Pedic Management, Llc Cover assemblies for mattresses
US20170164761A1 (en) * 2015-12-12 2017-06-15 Level Sleep Llc Efficient mattress having low pressure and alignment
US9750656B1 (en) 2012-01-10 2017-09-05 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in the trendelenburg position and apparatus therefor including a kit
US9949882B2 (en) 2014-05-30 2018-04-24 Prime Medical, LLC Tapered operating room table pad
US9962009B2 (en) 2014-04-21 2018-05-08 Casper Sleep Inc. Mattress
US9980578B2 (en) 2012-07-27 2018-05-29 Tempur-Pedic Management, Llc Body support cushion having multiple layers of phase change material
CN108968506A (en) * 2018-08-09 2018-12-11 郭婷婷 Plant-fiber mattress
US20180352980A1 (en) * 2017-04-07 2018-12-13 Louis A. Casali, JR. Textile with Cooling Technology Applied Thereto and Methods Thereof
US10285890B1 (en) 2012-01-10 2019-05-14 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the Trendelenburg position and apparatus therefor including a kit
USD862104S1 (en) 2018-03-21 2019-10-08 Casper Sleep Inc. Platform bed frame
US20190365117A1 (en) * 2018-06-05 2019-12-05 E & E Co., Ltd. Reversible multi-layer mattress pad
WO2020008401A1 (en) * 2018-07-04 2020-01-09 New Zealand Comfort Group Limited A mattress or topper with heat dissipation configuration and method of manufacture
JP2020022859A (en) * 2019-11-15 2020-02-13 パラマウントベッド株式会社 Gatch bed mattress
US10582780B2 (en) * 2012-09-20 2020-03-10 Kickball Concepts, Llc Mattress with user adjustable comfort features
NL2021803B1 (en) 2018-10-12 2020-05-13 Perzona Int B V MATTRESS BASE, COMPOSITION OF A MATTRESS BASE AND A MATTRESS AND A METHOD FOR PROVIDING THIS COMPOSITION
USD885640S1 (en) 2018-10-23 2020-05-26 Casper Sleep Inc. Lamp assembly
US10688004B2 (en) 2016-02-08 2020-06-23 Prime Medical, LLC Overlay support pad for medical bean bag device
US10694864B2 (en) 2018-03-01 2020-06-30 Comfort Concepts Llc Seating pad with woven cover
US10736300B2 (en) 2016-08-16 2020-08-11 Casper Sleep Inc. Dog mattress
USD897133S1 (en) 2015-11-16 2020-09-29 Casper Sleep Inc. Duvet cover
USD908398S1 (en) 2019-08-27 2021-01-26 Casper Sleep Inc. Mattress
US10912699B2 (en) 2012-01-10 2021-02-09 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the trendelenburg position and apparatus therefor including a kit
USD921531S1 (en) 2019-09-10 2021-06-08 Casper Sleep Inc. Zipper
US11039514B2 (en) 2018-01-08 2021-06-15 Caster Sleep Inc. Interactive portable lighting system
USD927889S1 (en) 2019-10-16 2021-08-17 Casper Sleep Inc. Mattress layer
US11116326B2 (en) 2017-08-14 2021-09-14 Casper Sleep Inc. Mattress containing ergonomic and firmness-regulating endoskeleton
US20220031086A1 (en) * 2020-07-30 2022-02-03 Emma Sleep Gmbh Foam core for a mattress and mattress
US11241100B2 (en) 2018-04-23 2022-02-08 Casper Sleep Inc. Temperature-regulating mattress
US11266525B2 (en) 2016-01-21 2022-03-08 Xodus Medical, Inc. Patient warming device for surgical procedures

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US213360A (en) * 1879-03-18 Improvement in ventilated pillows, mattresses
US376094A (en) * 1888-01-10 X b bubt
US929449A (en) * 1908-10-13 1909-07-27 Paul Klimowicz Mattress.
US3209380A (en) * 1964-12-31 1965-10-05 Watsky Benjamin Rigid mattress structure
US3604025A (en) * 1969-04-18 1971-09-14 Sears Roebuck & Co Foam bedding
US3846857A (en) * 1972-03-10 1974-11-12 Neurological Res And Dev Group Multi-section variable density mattress
US4525886A (en) * 1982-02-03 1985-07-02 Auping B. V. Body support adapted to differing volume to weight ratios
US4682378A (en) * 1983-08-02 1987-07-28 Auping B.V. Body support, such as a mattress
US4768251A (en) * 1987-03-30 1988-09-06 Convo Corporation Mattress pad
US4796316A (en) * 1986-11-13 1989-01-10 Dunlop France Mattress with aeration cavities
US4825488A (en) * 1988-04-13 1989-05-02 Bedford Peter H Support pad for nonambulatory persons
US5111542A (en) * 1988-04-04 1992-05-12 Farley David L Anatomically conformable foam support pad
US5134735A (en) * 1990-11-05 1992-08-04 E. R. Carpenter Company, Inc. Mattress cushion with multiple zones
US5136740A (en) * 1990-05-11 1992-08-11 Eugene Kraft Varying firmness mattress
US5231717A (en) * 1989-08-23 1993-08-03 Leggett & Platt, Incorporated Bedding system
US5325552A (en) * 1993-07-12 1994-07-05 Fong Lin S Ventilated mattress structure
US5604021A (en) * 1994-12-23 1997-02-18 Ohio Mattress Company Licensing And Components Group Multi-layer support pad having regions of differing firmness
US5787534A (en) * 1992-06-16 1998-08-04 Hargest; Thomas S. Sudden infant death syndrome prevention apparatus and method and patient surface
US5797154A (en) * 1997-04-30 1998-08-25 Foamex L.P. Contoured pillow
US5960496A (en) * 1998-07-14 1999-10-05 Boyd; Dennis Mattress system
US5991949A (en) * 1995-08-15 1999-11-30 Foamex L.P. Hoseless air bed
US6055690A (en) * 1995-11-01 2000-05-02 Koenig; J. Frank Sleeping pad, beddings and bumpers to improve respiratory efficiency and environmental temperature of an infant and reduce the risks of sudden infant death syndrome (SIDS) and asphyxiation
US6159574A (en) * 1994-06-03 2000-12-12 Fagerdala World Foams Ab Laminated visco-elastic support
US6202239B1 (en) * 1998-02-25 2001-03-20 Select Comfort Corp. Multi-zone support
US20010029632A1 (en) * 2000-03-14 2001-10-18 Parvin Eddie L. Posturized foam ply for use in a bedding or seating product
US20020178503A1 (en) * 1995-11-30 2002-12-05 Reeder Ryan A. Mattress structure
US20030135930A1 (en) * 2002-01-21 2003-07-24 Varese Emanuele Piccolomini Clementini Adami Mattress with diversified density

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US213360A (en) * 1879-03-18 Improvement in ventilated pillows, mattresses
US376094A (en) * 1888-01-10 X b bubt
US929449A (en) * 1908-10-13 1909-07-27 Paul Klimowicz Mattress.
US3209380A (en) * 1964-12-31 1965-10-05 Watsky Benjamin Rigid mattress structure
US3604025A (en) * 1969-04-18 1971-09-14 Sears Roebuck & Co Foam bedding
US3846857A (en) * 1972-03-10 1974-11-12 Neurological Res And Dev Group Multi-section variable density mattress
US4525886A (en) * 1982-02-03 1985-07-02 Auping B. V. Body support adapted to differing volume to weight ratios
US4682378A (en) * 1983-08-02 1987-07-28 Auping B.V. Body support, such as a mattress
US4796316A (en) * 1986-11-13 1989-01-10 Dunlop France Mattress with aeration cavities
US4768251A (en) * 1987-03-30 1988-09-06 Convo Corporation Mattress pad
US5111542A (en) * 1988-04-04 1992-05-12 Farley David L Anatomically conformable foam support pad
US4825488A (en) * 1988-04-13 1989-05-02 Bedford Peter H Support pad for nonambulatory persons
US5231717A (en) * 1989-08-23 1993-08-03 Leggett & Platt, Incorporated Bedding system
US5136740A (en) * 1990-05-11 1992-08-11 Eugene Kraft Varying firmness mattress
US5134735A (en) * 1990-11-05 1992-08-04 E. R. Carpenter Company, Inc. Mattress cushion with multiple zones
US5787534A (en) * 1992-06-16 1998-08-04 Hargest; Thomas S. Sudden infant death syndrome prevention apparatus and method and patient surface
US5325552A (en) * 1993-07-12 1994-07-05 Fong Lin S Ventilated mattress structure
US6159574A (en) * 1994-06-03 2000-12-12 Fagerdala World Foams Ab Laminated visco-elastic support
US5604021A (en) * 1994-12-23 1997-02-18 Ohio Mattress Company Licensing And Components Group Multi-layer support pad having regions of differing firmness
US5991949A (en) * 1995-08-15 1999-11-30 Foamex L.P. Hoseless air bed
US6055690A (en) * 1995-11-01 2000-05-02 Koenig; J. Frank Sleeping pad, beddings and bumpers to improve respiratory efficiency and environmental temperature of an infant and reduce the risks of sudden infant death syndrome (SIDS) and asphyxiation
US20020178503A1 (en) * 1995-11-30 2002-12-05 Reeder Ryan A. Mattress structure
US5797154A (en) * 1997-04-30 1998-08-25 Foamex L.P. Contoured pillow
US6202239B1 (en) * 1998-02-25 2001-03-20 Select Comfort Corp. Multi-zone support
US5960496A (en) * 1998-07-14 1999-10-05 Boyd; Dennis Mattress system
US6256821B1 (en) * 1998-07-14 2001-07-10 Dennis Boyd Mattress system
US20010029632A1 (en) * 2000-03-14 2001-10-18 Parvin Eddie L. Posturized foam ply for use in a bedding or seating product
US6658683B2 (en) * 2000-03-14 2003-12-09 L&P Property Management Company Posturized foam ply for use in a bedding or seating product
US20030135930A1 (en) * 2002-01-21 2003-07-24 Varese Emanuele Piccolomini Clementini Adami Mattress with diversified density

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034445B2 (en) 1994-06-03 2011-10-11 Tempur-Pedic Management, Inc. Laminated visco-elastic support
US8025964B2 (en) 1994-06-03 2011-09-27 Tempur World, Llc Laminated visco-elastic support
US7707670B2 (en) 2003-10-14 2010-05-04 Tempur-Pedic Management, Inc. Pillow top for a cushion
US7467435B1 (en) 2004-05-20 2008-12-23 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
US8997279B1 (en) 2004-05-20 2015-04-07 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
US7950084B1 (en) 2004-05-20 2011-05-31 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
US7650658B1 (en) 2004-05-20 2010-01-26 King Koll Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
US8739339B1 (en) 2004-05-20 2014-06-03 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
US7240386B1 (en) * 2004-05-20 2007-07-10 King Koil Licensing Company, Inc. Multi-layer mattress with an air filtration foundation
US20050278852A1 (en) * 2004-06-12 2005-12-22 Wahrmund Gary M High air flow foam bedding products
US20060048304A1 (en) * 2004-09-07 2006-03-09 Boyd Dennis M Knock down foam bed
WO2007002290A3 (en) * 2005-06-24 2007-07-26 Tempur World Llc Reticulated material body support and method
US7469437B2 (en) * 2005-06-24 2008-12-30 Tempur-Pedic Management, Inc. Reticulated material body support and method
US20060288491A1 (en) * 2005-06-24 2006-12-28 Mikkelsen Tom D Reticulated material body support and method
US8418297B2 (en) 2005-06-24 2013-04-16 Tempur-Pedic Management, Llc Reticulated material body support and method
US20070209120A1 (en) * 2005-08-29 2007-09-13 Clark John D Discrete orthoganol support system
US20070044245A1 (en) * 2005-09-01 2007-03-01 The Spring Air Company Mattress with triple zone topper
US20110156459A1 (en) * 2005-11-21 2011-06-30 Nightgear Llc Seating pad assembly for use with transportation seat
US8342603B2 (en) 2005-11-21 2013-01-01 Nightgear Llc Seat assembly
US20090121529A1 (en) * 2005-11-21 2009-05-14 Nightgear Llc Seating accessory
US7731282B2 (en) 2005-11-21 2010-06-08 Nightgear Llc Seating accessory
US7731283B2 (en) 2005-11-21 2010-06-08 Nightgear Llc Seating accessory
US7789461B2 (en) * 2005-11-21 2010-09-07 Nightgear Llc Seating accessory
US20090127901A1 (en) * 2005-11-21 2009-05-21 Nightgear Llc Seating accessory
US7461894B2 (en) 2005-11-21 2008-12-09 Nightgear Llc Seating accessory
US20090039693A1 (en) * 2005-11-21 2009-02-12 Nightgear Llc Seating accessory
US20110163144A1 (en) * 2005-11-21 2011-07-07 Nightgear Llc Seat assembly
DE102005063188A1 (en) * 2005-12-30 2007-07-12 Siegfried Merz Mattress for bed, has several intrinsic flexible mattress cores and heating unit that are provided within cover, where mattress is heated with heating unit so that moisture in inner part of mattress is dried up in daytime
WO2007085548A1 (en) * 2006-01-27 2007-08-02 Basf Se Method for the production of open-cell viscoelastic soft polyurethane foams
US20070287761A1 (en) * 2006-06-12 2007-12-13 Jared Denis Bender Catalyst compositions for improving polyurethane foam performance
US10023683B2 (en) * 2006-06-12 2018-07-17 Evonik Degussa Gmbh Catalyst compositions for improving polyurethane foam performance
US20110136930A1 (en) * 2006-08-10 2011-06-09 Dow Global Technologies LLC (Formerly known as Dow Global Technologies Inc.) Method for preparing viscoelastic polyurethane foam
WO2008086861A1 (en) * 2007-01-15 2008-07-24 Recticel Schlafkomfort Gmbh Mattress
US7845035B2 (en) * 2007-10-09 2010-12-07 Sealy Technology Llc Pressure dispersion support systems
US20090089933A1 (en) * 2007-10-09 2009-04-09 Sealy Technology, Llc Pressure dispersion support systems
US20100325806A1 (en) * 2007-10-09 2010-12-30 Sealy Technology, Llc Pressure dispersion support systems
US20110256369A1 (en) * 2008-12-22 2011-10-20 Stephen Switzer Thin-layered alternating material body support and method of manufacturing same
US20110197368A1 (en) * 2010-02-17 2011-08-18 Tarazona De La Asuncion Ramiro Incorporated in a manufacturing system of pressure or impact receiving bodies, determining for a direction-wise cushioning
CN102762133A (en) * 2010-02-19 2012-10-31 井上株式会社 Cushion pad and method for manufacturing same
EP2537445A4 (en) * 2010-02-19 2014-03-19 Inoue Mtp Kk Cushion pad and method for manufacturing same
EP2537445A1 (en) * 2010-02-19 2012-12-26 Inoac Corporation Cushion pad and method for manufacturing same
US20150018443A1 (en) * 2010-02-26 2015-01-15 Peterson Chemical Technology, Inc. Cushioning Foams Containing Reflective Particulates With Visually Distinguishable Reflective Surfaces to Create a Unique Appearance
US20110252572A1 (en) * 2010-04-19 2011-10-20 Leigh Morrison Multi-layer multi-material foam mattresses
US20120124753A1 (en) * 2010-11-19 2012-05-24 Zinus Inc. Zoned foam mattress with alternating lateral regions of HD foam and memory foam
US20120233784A1 (en) * 2011-03-15 2012-09-20 Wood Robert L Multiple zone gel cushion
WO2012145320A1 (en) * 2011-04-19 2012-10-26 Sealy Technology Llc Multi-layer multi-material foam mattresses
US9192245B2 (en) 2011-07-29 2015-11-24 Dreamwell, Ltd. Mattress and side rail assemblies having high airflow
US20130025070A1 (en) * 2011-07-29 2013-01-31 Dreamwell, Ltd. Mattress assembly with high airflow
US9949883B1 (en) 2012-01-10 2018-04-24 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the trendelenburg position and apparatus therefor including a kit
US9931262B2 (en) 2012-01-10 2018-04-03 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in the trendelenburg position and apparatus therefor including a kit
US9750656B1 (en) 2012-01-10 2017-09-05 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in the trendelenburg position and apparatus therefor including a kit
US10045902B1 (en) 2012-01-10 2018-08-14 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the trendelenburg position and apparatus therefor including a kit
US10098800B2 (en) 2012-01-10 2018-10-16 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the Trendelenburg position and apparatus therefor including a kit
US10322050B1 (en) 2012-01-10 2019-06-18 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the Trendelenburg position and apparatus therefor including a kit
US10912699B2 (en) 2012-01-10 2021-02-09 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the trendelenburg position and apparatus therefor including a kit
US9782287B2 (en) 2012-01-10 2017-10-10 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in the Trendelenburg position and apparatus therefor including a kit
US10285890B1 (en) 2012-01-10 2019-05-14 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the Trendelenburg position and apparatus therefor including a kit
WO2013119250A1 (en) * 2012-02-10 2013-08-15 Tempur-Pedic Management, Inc. Mattress having reduced motion transfer
US20130269113A1 (en) * 2012-04-16 2013-10-17 Robert Wood Composite flexible frame mattress
US20150082549A1 (en) * 2012-05-03 2015-03-26 Simon Cairns Bedding systems
US10765228B2 (en) 2012-07-27 2020-09-08 Tempur World, Llc Body support cushion having multiple layers of phase change material
US9980578B2 (en) 2012-07-27 2018-05-29 Tempur-Pedic Management, Llc Body support cushion having multiple layers of phase change material
US10582780B2 (en) * 2012-09-20 2020-03-10 Kickball Concepts, Llc Mattress with user adjustable comfort features
WO2014105047A1 (en) * 2012-12-28 2014-07-03 Tempur-Pedic Management, Llc. Foam block mattress assemblies
US9289072B2 (en) 2013-01-18 2016-03-22 Fxi, Inc. Compressible or retractable support for air blower cavity of air flow mattress
US10154933B2 (en) 2013-01-18 2018-12-18 Fxi, Inc. Compressible or retractable support for air blower cavity of air flow mattress
US9138064B2 (en) 2013-01-18 2015-09-22 Fxi, Inc. Mattress with combination of pressure redistribution and internal air flow guides
US9392875B2 (en) 2013-01-18 2016-07-19 Fxi, Inc. Body support system with combination of pressure redistribution and internal air flow guide(s) for withdrawing heat and moisture away from body reclining on support surface of body support system
US10477975B2 (en) 2013-01-18 2019-11-19 Fxi, Inc. Mattress with combination of pressure redistribution and internal air flow guides
JP2017501821A (en) * 2013-12-31 2017-01-19 テンピュール−ペディック・マネジメント・リミテッド・ライアビリティ・カンパニー Cover assembly for mattress
CN105979824A (en) * 2013-12-31 2016-09-28 泰普尔-派迪克管理有限责任公司 An alignment system for a bed assembly
CN105979822A (en) * 2013-12-31 2016-09-28 泰普尔-派迪克管理有限责任公司 Cover assemblies for mattresses
US9601034B2 (en) 2013-12-31 2017-03-21 Tempur-Pedic Management, Llc Cover assemblies for mattresses
US9675189B2 (en) 2013-12-31 2017-06-13 Tempur-Pedic Management, Llc Cover assemblies for mattresses
WO2015103186A1 (en) * 2013-12-31 2015-07-09 Tempur-Pedic Management, Llc Cover assemblies for mattresses
WO2015103177A1 (en) * 2013-12-31 2015-07-09 Tempur-Pedic Management, Llc Cover assemblies for mattresses
WO2015103130A1 (en) * 2013-12-31 2015-07-09 Tempur-Pedic Management, Llc An alignment system for a bed assembly
US9997089B2 (en) 2013-12-31 2018-06-12 Tempur-Pedic Management, Llc Cover assemblies for mattresses
CN106170228A (en) * 2014-04-21 2016-11-30 佳思铂眠公司 Improvement formula mattress
AU2015250044B2 (en) * 2014-04-21 2019-12-12 Casper Sleep Inc. Improved mattress
US11202517B2 (en) 2014-04-21 2021-12-21 Casper Sleep Inc. Mattress
US11622636B2 (en) 2014-04-21 2023-04-11 Casper Sleep Inc. Mattress
WO2015164222A1 (en) * 2014-04-21 2015-10-29 Casper Sleep Inc. Improved mattress
CN109008429A (en) * 2014-04-21 2018-12-18 佳思铂眠公司 Improvement formula mattress
EP3133960A4 (en) * 2014-04-21 2018-03-21 Casper Sleep Inc. Improved mattress
EP3427614A1 (en) * 2014-04-21 2019-01-16 Casper Sleep Inc. Improved mattress
US9888785B2 (en) 2014-04-21 2018-02-13 Casper Sleep Inc. Mattress
US9962009B2 (en) 2014-04-21 2018-05-08 Casper Sleep Inc. Mattress
US9661934B2 (en) 2014-04-21 2017-05-30 Casper Sleep Inc. Mattress
KR20170003944A (en) 2014-04-30 2017-01-10 허니웰 인터내셔널 인코포레이티드 Flexible, open-cell thermoset foams and blowing agents and methods for making same
US9949882B2 (en) 2014-05-30 2018-04-24 Prime Medical, LLC Tapered operating room table pad
WO2016018703A1 (en) * 2014-07-28 2016-02-04 Tempur-Pedic Management, Llc Mattress assembly including mattress overlay and multiple covers
USD897133S1 (en) 2015-11-16 2020-09-29 Casper Sleep Inc. Duvet cover
US20170164761A1 (en) * 2015-12-12 2017-06-15 Level Sleep Llc Efficient mattress having low pressure and alignment
US10709256B2 (en) * 2015-12-12 2020-07-14 Level Sleep Llc Efficient mattress having low pressure and alignment
US11266525B2 (en) 2016-01-21 2022-03-08 Xodus Medical, Inc. Patient warming device for surgical procedures
US10688004B2 (en) 2016-02-08 2020-06-23 Prime Medical, LLC Overlay support pad for medical bean bag device
US10736300B2 (en) 2016-08-16 2020-08-11 Casper Sleep Inc. Dog mattress
US20180352980A1 (en) * 2017-04-07 2018-12-13 Louis A. Casali, JR. Textile with Cooling Technology Applied Thereto and Methods Thereof
US11116326B2 (en) 2017-08-14 2021-09-14 Casper Sleep Inc. Mattress containing ergonomic and firmness-regulating endoskeleton
US11039514B2 (en) 2018-01-08 2021-06-15 Caster Sleep Inc. Interactive portable lighting system
US10694864B2 (en) 2018-03-01 2020-06-30 Comfort Concepts Llc Seating pad with woven cover
USD862104S1 (en) 2018-03-21 2019-10-08 Casper Sleep Inc. Platform bed frame
USD904784S1 (en) 2018-03-21 2020-12-15 Casper Sleep Inc. Platform bed frame
US11241100B2 (en) 2018-04-23 2022-02-08 Casper Sleep Inc. Temperature-regulating mattress
US20190365117A1 (en) * 2018-06-05 2019-12-05 E & E Co., Ltd. Reversible multi-layer mattress pad
WO2020008401A1 (en) * 2018-07-04 2020-01-09 New Zealand Comfort Group Limited A mattress or topper with heat dissipation configuration and method of manufacture
CN108968506A (en) * 2018-08-09 2018-12-11 郭婷婷 Plant-fiber mattress
EP3698675A1 (en) 2018-10-12 2020-08-26 Perzona International B.V. Mattress base, assembly of a mattress base and a mattress and a method for providing this assembly
NL2021803B1 (en) 2018-10-12 2020-05-13 Perzona Int B V MATTRESS BASE, COMPOSITION OF A MATTRESS BASE AND A MATTRESS AND A METHOD FOR PROVIDING THIS COMPOSITION
USD915660S1 (en) 2018-10-23 2021-04-06 Casper Sleep Inc. Lamp assembly
USD885640S1 (en) 2018-10-23 2020-05-26 Casper Sleep Inc. Lamp assembly
USD919333S1 (en) 2019-08-27 2021-05-18 Casper Sleep Inc. Mattress
USD908398S1 (en) 2019-08-27 2021-01-26 Casper Sleep Inc. Mattress
USD990935S1 (en) 2019-08-27 2023-07-04 Casper Sleep Inc. Mattress
USD992933S1 (en) 2019-08-27 2023-07-25 Casper Sleep Inc. Mattress
USD992932S1 (en) 2019-08-27 2023-07-25 Casper Sleep Inc. Mattress
USD993673S1 (en) 2019-08-27 2023-08-01 Casper Sleep Inc. Mattress
USD921531S1 (en) 2019-09-10 2021-06-08 Casper Sleep Inc. Zipper
USD932809S1 (en) 2019-10-16 2021-10-12 Casper Sleep Inc. Mattress layer
USD927889S1 (en) 2019-10-16 2021-08-17 Casper Sleep Inc. Mattress layer
JP2020022859A (en) * 2019-11-15 2020-02-13 パラマウントベッド株式会社 Gatch bed mattress
US20220031086A1 (en) * 2020-07-30 2022-02-03 Emma Sleep Gmbh Foam core for a mattress and mattress
US11819135B2 (en) * 2020-07-30 2023-11-21 Emma Sleep Gmbh Foam core for a mattress and mattress

Similar Documents

Publication Publication Date Title
US20050210595A1 (en) Mattress having reticulated viscoelastic foam
US8209804B2 (en) Customizable mattress topper system
US6653363B1 (en) Low energy-loss, high firmness, temperature sensitive polyurethane foams
EP3064627B1 (en) Elastic network structure with excellent quietness and lightweight properties
US20070197675A1 (en) Low-resilience highly air-permeable polyurethane foam and use thereof
US20040098806A1 (en) Shaped body, in particular for a seat cushion
US9970140B2 (en) Network structure having excellent compression durability
CN105270227B (en) cushion pad
WO2011069928A2 (en) Process for the preparation of flexible polyurethane foam and foam obtained thereby.
CN102153722A (en) Slow-resilience polyether polyol and method for manufacturing slow-resilience soft foam therewith
CN105615365A (en) Cushion pad
US20170101040A1 (en) Soft polyurethane foam molded article and seat pad
RU2020102865A (en) SOFT POLYURETHANE FOAMS WITH IMPROVED BREATHABILITY
JP5459436B1 (en) Network structure with excellent thermal dimensional stability
JP2008113798A (en) Cushion material
JP7368102B2 (en) Polyurethane foam and its manufacturing method
JP2006326274A (en) Cushioning material
JP2005059358A (en) Laminated foam and its manufacturing method
US20190300672A1 (en) Sponge for oil-water separation and composition for making the same
JP5028715B2 (en) Cushion material
JP5756266B2 (en) Polyurethane foam for mattress and mattress using the polyurethane foam
JP6069447B1 (en) Flexible polyurethane foam
CN107920665A (en) Flexibel polyurethane expansion-molded article and seat cushion
JP4805644B2 (en) Polyol composition for flexible polyurethane foam, flexible polyurethane foam and method for producing the same
JP2008036273A (en) Seat cushion

Legal Events

Date Code Title Description
AS Assignment

Owner name: VITAFOAM, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DI STASIO, ANTHONY A.;LAVELLE, JR., LAWRENCE P.;BORGART, GUIDO;AND OTHERS;REEL/FRAME:016025/0196;SIGNING DATES FROM 20041027 TO 20041104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION