RU2435795C2 - Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками - Google Patents
Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками Download PDFInfo
- Publication number
- RU2435795C2 RU2435795C2 RU2008134511/04A RU2008134511A RU2435795C2 RU 2435795 C2 RU2435795 C2 RU 2435795C2 RU 2008134511/04 A RU2008134511/04 A RU 2008134511/04A RU 2008134511 A RU2008134511 A RU 2008134511A RU 2435795 C2 RU2435795 C2 RU 2435795C2
- Authority
- RU
- Russia
- Prior art keywords
- bii
- compounds
- koh
- biii
- hydrogen atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/6696—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/283—Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
- C08G18/2835—Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds having less than 5 ether groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/36—Hydroxylated esters of higher fatty acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/82—Post-polymerisation treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/005—< 50kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0058—≥50 and <150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2350/00—Acoustic or vibration damping material
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Изобретение относится к способу получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками на базе воспроизводимого сырья, используемых во многих областях техники, в частности в салонах автомобилей, в предметах мебели и матрацах или для шумоизоляции. Способ заключается во взаимодействии а) полиизоцианатов со b) смесью полиолов и с) вспенивающими агентами. Смесь полиолов b) состоит из bi) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мгКОН/г, bii) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г, и biii) соединениями с, по меньшей мере, одной и максимум двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г, причем каждый из компонентов bi) и bii) содержит, по меньшей мере, одно соединение, содержащее возобновляемое сырье или продукты его взаимодействия. Технический результат - получение вязкоупругих полиуретановых пластифицированных пенопластов, которые изготавливаются на основе возобновляемого сырья, имеют хорошие механические свойства, незначительный запах и малые выбросы в атмосферу, а также обладают хорошей длительной стабильностью, в частности, при хранении во влажной теплой атмосфере. 12 з.п. ф-лы, 1 табл.
Description
Изобретение относится к способу получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками при использовании полиэфирполиолов на базе воспроизводимого сырья, в частности касторового масла.
Полиуретановые пластифицированные пенопласты используют во многих областях техники, в частности при обивке мебели или для шумоизоляции. Их получение осуществляют обычно путем взаимодействия полиизоцианатов с соединениями, имеющими, по меньшей мере, два активных атома водорода изоцианатных групп, в присутствии агентов вспенивания, а также, при необходимости, в присутствии катализаторов и обычных вспомогательных веществ и/или добавок.
Исходя из экологических причин рынок требует нарастающего количества пенопластов, которые содержат воспроизводимое сырье. При изготовлении полиуретана воспроизводимое сырье может в перспективе также составить альтернативу исходным продуктам, получаемым нефтехимическим способом. Пенопласты получают в основном путем использования природных соединений, содержащих гидроксильные группы, или полиолов, которые производят путем присоединения к этим соединениям алкиленоксидов.
Примерами соединений, полученных из воспроизводящего сырья, являются касторовое масло, полигидроксижирная кислота, касторовая кислота, модифицированные гидроксильными группами масла, такие как, например, масло из виноградной косточки, масло из черного тмина, масло из тыквенного семени, масло из семян огуречника, соевое масло, масло из зародышей пшеницы, рапсовое масло, подсолнечное масло, арахисовое масло, масло из абрикосовых косточек, масло из фисташковых косточек, миндальное масло, оливковое масло, масло из ореха макадамия, масло авокадо, облепиховое масло, масло кунжута, конопляное масло, масло ядра ореха лещины, масло ослинника, масло шиповника, конопляное масло, масло бодяка (чертополоха), масло грецкого ореха, модифицированные гидроксильными группами жирные кислоты и сложные эфиры жирных кислот на основе миристинолеиновой кислоты, пальмитолеиновой кислоты, масляной кислоты, вацценовой кислоты, петрозелиновой кислоты, гадолеиновой кислоты, эруковой кислоты, нервоновой кислоты, линолевой кислоты и линоленовой кислоты, стеаридоновой кислоты, арахидоновой кислоты, тимнодоновой кислоты, клупанодоновой кислоты, сервоновой кислоты. При этом наибольшее техническое значение имеет касторовое масло и гидрированное касторовое масло.
Взаимодействие соединений из воспроизводящего сырья с алкиленоксидами может осуществляться обычным и известным способом.
Из международной заявки WO 00/44813 известно получение полиэфирных спиртов путем алкоксилирования касторового масла при использовании полиметаллцианидных соединений, часто также называемых DMS-катализаторами.
Из международной заявки WO 04/20497 известно использование полиэфирных спиртов, которые были изготовлены посредством присоединения алкиленоксидов к природным соединениям, в частности к касторовому маслу, для получения полиуретановых пластифицированных пенопластов с уменьшенным потускнением (Fogging). Подобные пенопласты находят применение, в частности, во внутреннем устройстве автомобилей.
Особый класс материалов среди полиуретановых пластифицированных пенопластов представляют вязкоупругие пенопласты.
В рамках настоящего изобретения вязкоупругим называют пенопласт в том случае, когда он в процессе испытания на прочность при кручении в соответствии со стандартом DIN 53445 имеет коэффициент потерь, составляющий более чем 0,15, предпочтительным образом, более чем 0,2. Далее, предпочтительным является положение, когда пенопласты согласно изобретению демонстрируют вязкоупругую характеристику в широком интервале температур, т.е. от -20°С до +50°С, но, по меньшей мере, от 0 до +40°С.
Вязкоупругим пенопласт можно также называть в том случае, когда он имеет эластичность по отскоку, которая замерена в соответствии со стандартом DIN EN ISO 8307 и составляет менее чем 30%, а предпочтительным образом, от 2 до 25%, особенно предпочтительным образом, от 3 до 20%.
В частности, предпочтение отдается тому, что пенопласт согласно настоящему изобретению соответствует как указанным выше критериям в части коэффициента потерь, так и критериям в части эластичности по отскоку.
В случае вязкоупругих пенопластов согласно изобретению с описанными выше коэфиициентами затухания речь идет о так называемых "уставших" пенопластах.
Подобные пенопласты используют, в частности, для звукоизоляции, а также для изготовления матрацев или подушек. В этих случаях применения также очень важно, чтобы пенопласты обладали хорошей устойчивостью к старению, в частности, при хранении во влажной теплой атмосфере. Далее, расщепление уретановых связей, которое может привести к образованию ароматических аминов, должно четким образом подавляться.
Следовательно, задача настоящего изобретения состоит в том, чтобы предоставить в распоряжение вязкоупругие полиуретановые пластифицированные пенопласты, которые изготавливаются на основе воспроизводящего сырья, имеют хорошие механические свойства, незначительный запах и малые выбросы в атмосферу, а также обладают хорошей длительной стабильностью, в частности, при хранении во влажной теплой атмосфере.
Неожиданным образом эта задача была решена, когда при получении полиуретановых пластифицированных пенопластов использовали по меньшей мере два полиола на основе воспроизводимого сырья с различными гидроксильными числами.
Таким образом, объектом настоящего изобретения является способ получения вязкоупругих полиуретановых пластифицированных пенопластов на основе воспроизводимого сырья путем взаимодействия
a) полиизоцианатов с
b) соединениями, имеющими активные атомы водорода по отношению к изоцианатным группам, которые содержат:
bi) соединения, по меньшей мере, с двумя активными атомами водорода по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мг KOH/г, и
bii) соединения, по меньшей мере, с двумя активными атомами водорода по отношению к изоцианатным группам и гидроксильным числом, составляющим от 100 до 800 мг KOH/г, и
biii) соединения, по меньшей мере, с одной, максимум с двумя, активными атомами водорода по отношению к изоцианатным группам и гидроксильным числом, составляющим от 100 до 800 мг KOH/г, и
c) агентами вспенивания,
отличающийся тем, что компоненты (bi) и (bii) содержат соответственно по меньшей мере, одно соединение, содержащее воспроизводимое сырье или его продукты взаимодействия.
Объектом заявки являются далее получаемые в соответствии с этим способом вязкоупругие полиуретановые пластифицированные пенопласты.
Далее, объектом изобретения является применение вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками при изготовлении мебели и матрацев для внутренней отделки салонов автомобиля, в частности для задней заливки автомобильных ковриков.
Доля воспроизводимого сырья в пене составляет, предпочтительным образом, по меньшей мере 20, особое предпочтение отдается значению выше 30 и, в частности, выше 40 мас.%.
При этом компоненты (bi) и (bii) могут состоять также исключительно из соединений воспроизводимого сырья.
Предпочтительным образом, компонент b) состоит на 5-45 мас.%, в частности 10-25 мас.%, из bi), на 30-90 мас.%, в особенности на 50-80 мас.% из bii) и на 5-40 мас.%, в частности 10-30 мас.% из bii), причем процентные данные относятся к сумме, которую составляют bi), bii) и biii).
В качестве соединений воспроизводимого сырья используется, в частности, описанное выше воспроизводимое или модифицированное воспроизводимому сырье, такое как масла, жирные кислоты и сложные эфиры кислот жирного ряда, которые имеют, по меньшей мере, среднюю ОН-функциональность, равную от 2 до 16, преимущественно от 2 до 8, и совершенно особое преимущество имеют значения от 2 до 4.
Соединения из воспроизводимого сырья выбираются, предпочтительным образом, из группы, содержащей касторовое масло, полигидроксижирную кислоту, касторовую кислоту, модифицированные гидроксильными группами масла, как, например, масло из виноградной косточки, масло из черного тмина, масло из тыквенного семени, масло из семян огуречника, соевое масло, масло из зародышей пшеницы, рапсовое масло, подсолнечное масло, арахисовое масло, масло из абрикосовых косточек, масло из фисташковых косточек, миндальное масло, оливковое масло, масло из ореха макадамия, масло авокадо, облепиховое масло, масло кунжута, конопляное масло, масло ядра ореха лещины, масло ослинника, масло шиповника, конопляное масло, масло бодяка (чертополоха), масло грецкого ореха, модифицированные гидроксильными группами жирные кислоты и сложные эфиры жирных кислот на основе миристинолеиновой кислоты, пальмитолеиновой кислоты, масляной кислоты, вацценовой кислоты, петрозелиновой кислоты, гадолеиновой кислоты, эруковой кислоты, нервоновой кислоты, линолевой кислоты и линоленовой кислоты, стеаридоновой кислоты, арахидоновой кислоты, тимнодоновой кислоты, клупанодоновой кислоты, сервоновой кислоты.
Продуктами соединений, химически модифицированными гидроксильными группами, которые представлены в торговле, являются, например, Merginat® PV 204, 206 и 235, или полигидроксижирная кислота PHF 110 фирмы "Гамбургер Фэттхеми".
Предпочтительным образом, в качестве соединения из воспроизводимого сырья используют касторовое масло и/или гидрированное касторовое масло.
Взаимодействие соединений из воспроизводимого сырья с алкиленоксидами может осуществляться обычным и известным способом В основном исходное соединение смешивают с катализатором, и эту смесь подвергают взаимодействию с алкиленоксидами. Присоединение алкиленоксидов осуществляют в большинстве случаев в общепринятых условиях при температурах, лежащих в интервале от 60 до 180°С, предпочтение же отдается температурному интервалу от 90 до 140°С, в частности температурному интервалу от 100 до 130°С, и при давлении, значения которого лежат в диапазоне от 0 до 20 бар, предпочтение же отдается интервалу значений давления от 0 до 10 бар и, в частности, интервалу значений давления от 0 до 5 бар. В качестве алкиленоксидов используют, предпочтительным образом, этиленоксид, пропиленоксид или любую смесь этих соединений.
В качестве катализаторов находят применение, предпочтительно, основные соединения, при этом самое большое техническое значение имеет гидроксид калия. Кроме того, полиметаллцианидные соединения, часто обозначаемые так же, как DMC-катализаторы, находят свое применение в виде катализаторов, как это, например, изложено в европейских патентах ЕР 654302, ЕР 862947, международных заявках WO 99/16775, WO 00/74845, WO 00/74843 и WO 00/4844.
В качестве алкиленоксидов могут находить применение все известные алкиленоксиды, например этиленоксид, пропиленоксид, бутиленоксид, стиролоксид. В частности, в качестве алкиленоксидов используют этиленоксид, пропиленоксид и смеси из названных соединений.
Из немецкого патента DE 10240186 известно, что полиметаллцианидные соединения, часто называемые также DMC-катализаторами, особенно хорошо подходят для алкоксилирования воспроизводимого сырья, как, например, касторового масла. Эти получаемые таким образом полиолы имеют, предпочтительным образом, содержание циклических сложных эфиров кислоты жирного ряда, равное максимально 10 част. на млн, и поэтому отличаются своими очень низкими эмиссионными характеристиками.
Соединения bi) имеют, предпочтительным образом, гидроксильное число, составляющее от 20 до 100 мг/KOH при вязкости, значения которой находятся в интервале от 400 до 6000 ммпуаз · сек. Предпочтительным образом, применение находят полиэфиролы на основе касторового масла с гидроксильным числом, лежащим в интервале от 30 до 80, а предпочтение отдается интервалу от 45 до 60 мг KOH/г. Они имеют, предпочтительным образом, содержание первичных гидроксильных групп менее 10, предпочтительным образом менее 5 мас.%, относительно массы полиэфирполиола. В частности, присоединение алкиленоксидов происходит с помощью DMC-катализа.
Соединения bii) имеют, предпочтительным образом, гидроксильное число, составляющее от 100 до 800 мг/KOH. В качестве соединений из воспроизводимого сырья находят применение, в частности, описанное выше, воспроизводимое или модифицированное воспроизводимое сырье, как, например, масла, жирные кислоты и сложные эфиры кислот жирного ряда. При необходимости, они могут подвергаться взаимодействию с алкиленоксидами, такими как этиленоксид, пропиленоксид или любые смеси этих соединений при использовании подходящих катализаторов. В качестве соединения bii) особенно предпочтительным образом используют касторовое масло.
Компоненты bi) и bii) могут иметь, кроме соединения из воспроизводимого сырья, при необходимости, и другие полиолы, в частности полиэфирные спирты, которые могут быть получены в соответствии с известными способами, в основном путем каталитического присоединения алкиленоксидов, в частности этиленоксида и/или пропиленоксида, к Н-функциональным инициирующим субстанциям или путем конденсации тетрагидрофурана. В качестве Н-функциональных инициирующих субстанций используют, в частности, многофункциональные спирты и/или амины. Предпочтительное применение находят вода, двухатомные спирты, например этиленгликоль, пропиленгликоль или бутандиолы, трехатомные спирты, например глицерин или триметилолпропан, а также многоатомные спирты, такие как пентаэритрит, сахарные спирты, например зукроза, глюкоза или сорбит. Использемые, предпочтительным образом, амины представляют собой алифатические амины с атомами углерода в количестве до 10, например этилендиамин, диэтилентриамин, пропилендиамин, а также аминоспирты, такие как этаноламин или диэтаноламин. В качестве алкиленоксидов используют, предпочтительным образом, этиленоксид и/или пропиленоксид, при этом полиэфирные спирты, которые находят применение при получении полиуретановых пластифицированных пенопластов, очень часто имеют на конце цепи этиленоксидный блок. В качестве катализаторов при присоединении алкиленоксидов применение находят, в частности, основные соединения, при этом, однако, гидроксид калия наиболее технически предпочтителен. Если содержание ненасыщенных составных частей в полиэфирных спиртах должно быть незначительным, то в качестве катализаторов для получения этих полиэфирных спиртов могут использоваться также DMC-катализаторы.
Для определенных областей использования, в частности для повышения твердости полиуретановых пластифицированных пенопластов, могут находить применение в качестве дополнения также так называемые полиолы, модифицированные полимерами. Подобные полиолы могут быть, например, получены с помощью проходящей в правильном положении, т.е. in situ, полимеризации мономеров, которые являются ненасыщенными в части этилена, представляют собой, предпочтительным образом, стирол и/или акрилонитрил в полиэфирных спиртах. К полиэфирным спиртам, модифицированным полимерами, относятся также полиэфирные полиолы, содержащие дисперсии поликарбамида, которые, предпочтительным образом, получают путем взаимодействия аминов с изоцианатами в полиолах.
В качестве соединения biii) пригодны также моноолы и диолы с числом гидроксильных групп, равным от 100 до 800 мгKОН/г. Особое преимущество имеет применение полиалкиленгликолей, бензилового спирта, моноспиртов С4-С18, оксоспиртоэтоксилатов С8-С18, как, например, Lutensol®. A.N, АО, АР, AT, F, ON, TO, XL, ХР, АР-марки БАСФ АГ. Совершенно особым образом применяются полипропиленоксиды, такие как Lupranol 1000, 1100 и 1200, а также моноолы, как, например, Lutensol® A4N, A03 ON 30, ON 40, Т02, Т03, ХА 30, ХА 40, XP 30, XP 40, XL 40 и бензиловый спирт.
Получение вязкоупругих полиуретановых пластифицированных пенопластов в соответствии с изобретением может осуществляться при использовании обычных и известных способов.
По поводу исходных соединений, которые используют в способе по изобретению, в отдельности можно сказать следующее
В качестве полиизоцианатов а) в способе по изобретению находят применение все изоцианаты, имеющие две или более изоцианатных групп в молекуле. При этом могут использоваться как алифатические изоцианаты, такие как гексаметиленовый диизоцианат (HDI), так и изофороновый диизоцианат (IPDI), или же, предпочтительным образом, ароматические диизоцианаты, такие как толуиленовый диизоцианат (TDI), дифенилметановый диизоцианат (MDI) или смеси из дифенилметанового диизоцианата и полиметилен-полифениленовых полиизоцианатов (сырые/неочищенные MDI), при этом предпочтение отдается TDI и MDI, а особенно предпочтительным является TDI. А совершенно особым преимуществом пользуется смесь из 80 мас.% 2,4- и 20 мас.% 2,6-толуилендиизоцианата. Имеется также возможность использования изоцианатов, которые были модифицированы путем встраивания уретановых, уретдионовых, изоциануратовых, аллофанатовых, уретониминовых и других групп, представляют собой так называемые модифицированные изоцианаты. Предпочтительными форполимерами являются MDI-форполимеры с содержанием NCO, которое составляет от 20 до 35%, или соответственно их смеси с полиэтилен-полифениленовыми полиизоцианатами (сырой MDI).
Используемые в соответствии с изобретением полиэфирные спирты bi), bii) и biii) могут находить применение как таковые или в комбинации с другими соединениями, имеющими, по меньшей мере, два активных атома водорода по отношению к изоцианатным группам.
В качестве соединений, по меньшей мере, с двумя активными атомами водорода b), которые могут быть использованы вместе с полиэфирными спиртами bi), bii) biii), которые имеют в данном случае применение в соответствии с изобретением, принимаются в расчет, в частности, полиэфирные спирты и, предпочтительным образом, полиэфирные спирты с функциональностью, равной 2-16, в частности 2-8, предпочтительным образом 2-4, и средним молекулярным весом Mw в интервале значений от 400 до 20 000 г/мол, предпочтительным образом от 1000 до 80000 г/мол.
К соединениям, имеющим, по меньшей мере, два активных атома водорода b), относятся также средства удлинения цепи и вещество, образующее поперечные связи в соединении. В качестве средства удлинения цепочки и сшивающего вещества находят применение, предпочтительным образом, 2- и 3-функциональные спирты с молекулярным весом в интервале значений от 62 до 800 г/мол, в частности в диапазоне от 60 до 200 г/мол. Примерами являются этиленгликоль, пропиленгликоль, диэтиленгликоль. триэтиленгликоль, дипропиленгликоль, трипропиленгликоль, низкомолекулярные полипропилен-и полиэтиленоксиды, такие как, например, Lupranol® 1200, бутадиол-1,4, глицерин или триметилолпропан. В качестве сшивающего вещества могут использоваться также диамины, сорбит, глицерин, алканоламины. В случае, если используются средства удлинения цепочки и сшивающее вещество, то их количество составляет, предпочтительным образом, до 5 мас.% по отношению к массе соединений, имеющих, по меньшей мере, два активных атома водорода.
Способ согласно изобретению осуществляют в основном в присутствии активаторов, например третичных аминов, или органических металлических соединений, в частности соединений олова. В качестве соединений олова применяют, предпочтительным образом, двухвалентные соли жирных кислот, как, например, диоктоат олова и олово-органические соединения, как, например, дибутиловый дилаурат олова.
В качестве агента вспенивания с), который используют для получения полиуретановых пластифицированных пенопластов, применяют, предпочтительным образом, воду, которая вступает во взаимодействие с изоцианатными группами с выделением в свободном виде диоксида углерода. Преимущество имеет вода в количестве от 0,5 до 6 мас.%, а особое преимущество имеет вода в количестве от 1,5 до 5,0 мас.%, по отношению к массе компоненты b). Вместе с водой или вместо воды могут также использоваться действующие физически агенты вспенивания например диоксид углерода, например н-, изо- или циклопентан, циклогексан, или галогенированные углеводороды, такие как тетрафторэтан, пентафторпропан, гептафторпропан, пентафторбутан, гексафторбутан или дихлормонофторэтан. При этом количество физических агентов вспенивания находится, предпочтительным образом, в диапазоне между 1 и 15 мас.%, в частности от 1 до 10%, а количество воды находится, предпочтительным образом, в интервале от 0,5 и 10 мас.%, в частности от 1 до 5 мас.%. Преимущество имеет диоксид углерода в качестве физического агента вспенивания, а особое преимущество имеет диоксид углерода в комбинации с водой.
Для получения полиуретановых пластифицированных пенопластов в соответствии с изобретением могут обычным образом использоваться также стабилизаторы, а также вспомогательные вещества и добавки.
Что касается стабилизаторов, то речь может идти, прежде всего, о полиэфир-силоксанах, предпочтительным образом о растворимых в воде полиэфирсилоксанах. Эти соединения, в общем и целом, имеют такую конструкцию, что длинноцепочечный сополимеризат из этилен- и пропиленоксида связан с полидиметилсилоксановым остатком. Прочие стабилизаторы пены описаны в патентных заявках США - US-A-2834748, 2917480, а также US-A-3629308.
Взаимодействие осуществляют, при необходимости, в присутствии вспомогательных веществ и добавок, таких как наполнители, регуляторы ячейкообразования, поверхностно-активные соединения и/или огнезащитные средства. Предпочтительными огнезащитными средствами являются жидкие огнезащитные средства, полученные на основе галогена и фосфора, такие как трихлорпропилфосфат, трихлорэтилфосфат и не содержащие галогена огнезащитные средства, такие как Exolit® ОР 560 (Clariant International Ltd.).
Дополнительную информацию об используемых исходных веществах, катализаторах, а также вспомогательных веществах и добавках можно найти, например, в справочнике по искусственным материалам (Kunststoffandbuch), в томе 7, в разделе "Полиуретаны", издательство "Карл-Хан-зер-Ферлаг", Мюнхен, первое издание 1966 г., второе издание 1983 и третье издание 1993 г.
Для получения полиуретанов согласно изобретению органические полиизоцианаты подвергают взаимодействию с соединениями, имеющими, по меньшей мере, два активных атома водорода, в присутствии названных агентов вспенивания, а также, при необходимости, в присутствии катализаторов и вспомогательных веществ и/или добавок.
При получении полиуретанов согласно изобретению смешивают вместе изоцианат и составную часть полиола, причем в большинстве случаев в таком количестве, что эквивалентное соотношение изоцианатных групп к сумме активных атомов водорода составляет 0,7-1,25, предпочтительным образом 0,8-1,2.
Получение полиуретановых пенопластов осуществляют, предпочтительным образом, в соответствии со способом "oneshot", например, с помощью технологий высокого и низкого давления. Пенопласты могут изготавливаться в открытых или закрытых металлических формах или посредством непрерывного нанесения реакционной смеси на движущуюся ленту автоматической линии для получения пеноблоков.
Особое преимущество при получении формованных пластифицированных пенопластов состоит в том, чтобы работы велись в соответствии с так называемым двухкомпонентным способом, в процессе которого происходит изготовление и вспенивание полиольных и изоцианатных составных частей. Смешивание составных частей происходит, предпочтительным образом, при температуре, значение которой находится в интервале от 15 до 90°С, предпочтительным образом, в интервале от 20 до 60°С, а особое преимущество имеет температурный интервал от 20 до 35°С, после чего полученную смесь помещают в форму или соответственно на движущуюся ленту автоматической линии. Температура внутри формы составляет в большинстве случаев от 20 до 110°С, а предпочтение отдается температурному интервалу от 30 до 60°С, особое же преимущество имеет область температур между 35 и 55°С.
Пластифицированные пенопласты в блоках могут быть изготовлены на автоматических установках, работающих в периодическом или непрерывном режиме, как, например, по методам 'Planiblock', 'Maxfoam', 'Draka-Petzetakis'.
Полиуретановые пластифицированные пенопласты, для изготовления которых используют полиэфирполиолы из воспроизводимого сырья, которое изготавливается с помощью DMC-катализа, по сравнению с продуктами, у которых полиэфирполиолы, используемые в соответствии с изобретением, были изготовлены из воспроизводимого сырья с помощью основных катализаторов, отличаются запахом, ставшим существенно меньше, Fogging-значениями, также ставшими существенно меньше, значимо уменьшившимся трещинообразованием, а также улучшенным значением остаточной деформации сжатия до и после старения. Далее, пенопласты, получаемые в соответствии с изобретением, обладают высокой степенью открытости ячеек, что, например, проявляется в повышенной воздухопроницаемости.
Остаточная деформация сжатия блочных полиуретановых пластифицированных пенопластов составляет максимально 10%, после старения в соответствии со стандартом DIN EN ISO 2440 максимально 20%.
Воздухопроницаемость вязкоупругих полиуретановых пластифицированных пенопластов, полученных согласно изобретению, составляет, предпочтительным образом, по меньшей мере, 10 дм3/мин, особенно предпочтительным образом более 30 и, в частности, более 50 дм3/мин.
Вязкоупругие полиуретановые пластифицированные пенопласты обладают очень хорошей стойкостью к старению, в частности, также и в условиях, когда одновременно действуют тепло и влага. Они являются гидрофобными и устойчивыми к набуханию. Доля ароматических аминов, в частности 2,4 и 2,6-толуолдиамина или MDA в пенопласте, меньше чем 1 часть на млн и не увеличивается даже после длительного срока хранения.
Применение полиуретановых пластифицированных пенопластов в соответствии с изобретением осуществляют, предпочтительным образом, в салонах автомобилей, а также в предметах мебели и матрацах.
Изобретение поясняется более подробно нижеследующими примерами.
Получение вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками
Примеры 1-4
Исходные продукты, приведенные в таблице, были использованы при взаимодействии в количественных соотношениях, приведенных в таблице.
Все составные части, кроме изоцианата, сначала были объединены путем интенсивного перемешивания с образованием единого полиольного компонента. После этого в условиях перемешивания добавили изоцианат, а реакционную смесь вылили в открытую форму, где она и превратилась в полиуретановый пенопласт. Характеристические величины полученных пенистых слоев приведены в таблице.
В соответствии с названными нормами, инструкциями по проведению работ и контрольных испытаний были определены следующие характеристические величины:
Объемный вес в кг/м3 | DIN EN ISO 845 |
VOC цикл рицинолевой кислоты в частях на млн | РВ VWL 709 |
FOG цикл рицинолевой кислоты в в частях на млн | РВ VWL 709 |
Воздухопроницаемость в дм3/мин | DIN EN ISO 7231 |
Твердость сжатия, 40% деформации в kПа | DIN EN ISO 2439 |
Твердость вдавливания, 25% деформации | DIN EN ISO 2439 |
Твердость вдавливания, 40% деформации | DIN EN ISO 2439 |
Твердость вдавливания, 65% деформации | DIN EN ISO 2439 |
Продольная деформация в % согласно | DIN EN ISO 1798 |
Предел прочности при растяжении в kПа | DIN EN ISO 1798 |
Эластичность по отскоку в % | DIN EN ISO 8307 |
Остаточная деформация сжатия в % | DIN EN ISO 3386 |
Wet-Compression-Set | Инструкция по выполнению работ АА U10-131-041 от 06.02.02 |
Определение параметра 'Wet-Compression-Set' осуществляли в соответствии с Инструкцией по выполнению работ АА U10-131-041 от 06.02.02.
С помощью штангенциркуля или, соответственно, измерительного прибора контактного типа определяют высоту предварительно замаркированного места испытуемого пенного образца, имеющего размеры 50 мм × 50 мм × 25 мм. После этого испытуемые образцы укладывают между двумя нажимными плитами и, используя дистанционный элемент размером 7,5 мм, с помощью зажимного приспособления сдавливают вместе до получения нужной высоты.
Вылеживание в климатическом шкафу при температуре 50°С и относительной влажности воздуха, равной 95%, начинается сразу же после зажима. Спустя 22 часа испытуемые пенные образцы в течение короткого промежутка времени извлекают из зажимного приспособления и временно на 30 минут укладывают на поверхность, имеющую незначительную мощность нагрева, а именно на поднос, для снятия внутренних напряжений при нахождении в нормальных климатических условиях. Вслед за этим с помощью тех же самых средств измерения определяют остаточную высоту на замаркированном месте.
Параметр 'Wet-Compression-Set' относится к деформации и рассчитывается так, как это приведено ниже:
Wet-Compression-Set=ho-hr*100/(ho-7,5 мм), %,
где ho - исходная высота, мм;
hr - остаточная высота испытуемого образца, мм.
OHZ | Пример 1 | Пример 2 | Пример 3 | Пример 4 | ||
Lurpanol® BALANCE 50 | 50 | 26 | 17 | 17 | 18 | |
Касторовое масло, качество DAB | 160,5 | 60 | 72 | 72 | 67 | |
Lutensol® ХА 40 | 150 | 7 | 14 | 14 | 11 | |
Lurpanol®1000 | 55 | 7 | 7 | 7 | 4 | |
DABCO® В 198 | 0 | 0,60 | ||||
Tegostab® BF 2270 | 0 | 0,60 | 0,60 | |||
Tegostab® BF 2370 | 1,0 | |||||
Niax® A1 | 560 | 0,26 | 0,35 | 0,5 | ||
Dabco® 33 LV | 425,8 | 0,17 | 0,25 | 0,4 | ||
Dabco® NE500 | 280 | 0,44 | ||||
Dabco® NE600 | 270 | 0,26 | ||||
Kosmos® 29 | 0 | 0,26 | 0,17 | |||
Kosmos® EF | 0,26 | |||||
Kosmos® 54 | 314 | 0,26 | 0,26 | |||
Ingastab® NE500 | 0 | 0,40 | 0,40 | 0,40 | 0,40 | |
Вода (дополн.) | 6233 | 1,72 | 1,72 | 1,72 | 2,00 | |
Lupranat T SOA-Index | 105 | 105 | 105 | |||
Lupranat® M20W и Lupranat®M1 3:1, Index | 85 | |||||
Время иниц. в сек | 12 | 12 | 8 | 8 | ||
Время иниц. в сек | 180 | 180 | 120 | 170 | ||
Об. вес в кг/м3 | 47,4 | 47,9 | 51,8 | 52,3 | ||
Твердость высадки 25%, деформация в kПа | 1,6 | 1,3 | 1,3 | 1,1 | ||
Твердость высадки 40%, деформация в kПа | 2,1 | 1,7 | 1,7 | 1,15 | ||
Твердость высадки 65%, деформация в kПа | 4,8 | 4,1 | 4,3 | 2,1 | ||
Прочность на растяжение в kПа | 67 | 65 | 73 | 54 | ||
Удлинение в % | 154 | 151 | 154 | 70 | ||
Остат. Деформация в % | 3,9 | 4,7 | 4,1 | 3,0 | ||
Wet-Compression-Set | 13 | 14 | 12 | 12 | ||
Эластичность по отскоку в % | 14 | 8 | 8 | 7 | ||
Воздухопропуск в дм3/мин | 40 | 70 | 50 | 50 | ||
Биомасса в мас.% в пенопласте | 48 | 47 | 47 | 48 | ||
Твердость высадки, 40% деформ. в kПа | 1,4 | 1,2 | ||||
Стойкость к действию тепла согласно DIN EN ISO 2240. 1 цикл 5 час, 120°С | ||||||
Прочность на растяжение в kПа | 56 | 60 | ||||
Растяжение в % | 175 | 170 | ||||
Остаточная деформация сжатия в % | 8,0 | 9,1 | ||||
2,4-TDA-содержание в частях на млн | <1 | <1 | <1 | |||
2,6-TDA-содержание в частях на млн | <1 | <1 | <1 | |||
MDA-содержание в частях на млн | <1 | |||||
Пояснения к таблице | ||||||
Lurpanol® BALANCE 50 | Полиэтерол на основании касторового масла с гидроксильным числом, равным 50 мгКОН/г и вязкостью, равной 725 ммпуаз · сек (БАСФ Акциенгезельшафт), полученный с помощью DMC-катализа. | |||||
Lupranol® 1000 | полипропиленгликоль с гидроксильным числом, равным 55 мгКОН/г, и вязкостью, равной 325 ммпуаз · сек (БАСФ Акциенгезельшафт), | |||||
Касторовое масло, качество DAB | фирма Альбердингк-Болей | |||||
Lutensol® XA 40 | С 10-оксоалкогольэтиоксилат + 4 ЕО | |||||
Dabco® 33LV | 1,4-диазабицикло-[2,2,2]-октан (33%) в дипропиленгликоле (67%) (Air Products and Chemicats, Inc.) |
Niax ® A1: | бис-(2-Диметиламиноэтил)этер (70%) в дипропиленгликоле 30%), (Crompton Corporatton) |
Dabco® NE 500 и 600 | Встраиваемые аминные катализаторы (фирма Air Products and Chemicats, Inc.) |
Kosmos® 29 | Соль олова II этилгексановой кислоты (Дегусса АГ) |
Kosmos® EF и 54 | Встраиваемые оловянные или соответственно цинковые катализаторы (Дегусса АГ) |
Tegostab® BF 2270 и BF 2370 | Силиконовые стабилизаторы (Дегусса АГ) |
DABCO® 198 | Силиконовый стабилизатор (фирмы Air Products and Chemicats, Inc.) |
Ingastab® PUR 68 | Антиоксидант, не содержащий амина, фирмы ЦИБА АГ |
Lupranat® Т 80 A: | Смесь 2,4-толуилендиизоцианата и 2,6-толуилендиизоцианата в соотношении 80:20 (БАСФ Акциенгезельшафт) |
Lupranat® M20W | Смесь из дифенилметандиизоцианатполиметиленполифениленполиизоцианатов |
Lupranat * MI | Смесь в соотношении 1:1 из 2,4'-дифенилметандиизоцианата и 4,4'-дифенилметандиизоцианата (БАСФ АГ) |
TDA | Толуолдиамин |
MDA | Метилендифенилдиамин |
Claims (13)
1. Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками на базе воспроизводимого сырья путем взаимодействия
a) полиизоцианатов со
b) смесью полиолов, состоящей из
bi) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мг КОН/г,
и
bii) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г,
и
biii) соединениями с, по меньшей мере, одной, и максимум двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г,
c) и вспенивающими агентами,
отличающийся тем, что каждый из компонентов bi) и bii) содержит, по меньшей мере, одно соединение, содержащее возобновляемое сырье или продукты его взаимодействия.
a) полиизоцианатов со
b) смесью полиолов, состоящей из
bi) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 20 до 100 мг КОН/г,
и
bii) соединений с, по меньшей мере, двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г,
и
biii) соединениями с, по меньшей мере, одной, и максимум двумя атомами водорода, активными по отношению к изоцианатным группам, и гидроксильным числом, составляющим от 100 до 800 мг КОН/г,
c) и вспенивающими агентами,
отличающийся тем, что каждый из компонентов bi) и bii) содержит, по меньшей мере, одно соединение, содержащее возобновляемое сырье или продукты его взаимодействия.
2. Способ по п.1, отличающийся тем, что компонент b) состоит на 5-45 мас.%, из bi), на 30-90 мас.%, из bii) и на 5-40 мас.%, из biii), в каждом случае по отношению к сумме компонентов bi), bii) и biii).
3. Способ по п.1, отличающийся тем, что в качестве компонента bi) используют продукты взаимодействия касторового масла с алкиленоксидами.
4. Способ по п.1, отличающийся тем, что в качестве компонента bii) используют касторовое масло.
5. Способ по п.1, отличающийся тем, что компонент b) состоит на 10-25 мас.%, из bi), на 50-80 мас.%, из bii) и на 10-30 мас.%, из biii), в каждом случае по отношению к сумме компонентов bi), bii) и biii).
6. Способ по п.1, отличающийся тем, что в качестве компонента bi) используют полиэфирполиолы, полученные путем присоединения алкиленоксидов к соединениям из возобновляемого сырья при использовании DMC-катализаторов, с содержанием циклических сложных эфиров кислот жирного ряда, составляющим максимум 10 частей на млн.
7. Способ по п.1, отличающийся тем, что в качестве соединения biii) используют моноолы и/или диолы, имеющие число гидроксильных групп от 100 до 800 мг КОН/г.
8. Способ по п.1, отличающийся тем, что в качестве полиизоцианата предпочтительно используют смесь из 80 мас.% 2,4-толуилендиизоцианата и 20 мас.% 2,6-толуилендиизоцианата.
9. Способ по п.1, отличающийся тем, что в качестве вспенивающего агента предпочтительно используют воду.
10. Способ по п.1, отличающийся тем, что воздухопроницаемость вязкоупругих полиуретановых пластифицированных блочных пенопластов составляет, по меньшей мере, 10 дм3/мин.
11. Способ по п.1, отличающийся тем, что остаточная деформация сжатия полиуретановых пластифицированных блочных пенопластов составляет максимально 7%.
12. Способ по п.1, отличающийся тем, что остаточная деформация сжатия полиуретановых пластифицированных блочных пенопластов составляет максимально после старения, в соответствии с DIN EN ISO 2440, максимально 15%.
13. Способ по п.1, отличающийся тем, что доля возобновляемого сырья составляет, по меньшей мере, 20 мас.%, по отношению к полиуретановому пенопласту.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06100959.3 | 2006-01-27 | ||
EP06100959 | 2006-01-27 | ||
PCT/EP2007/050367 WO2007085548A1 (de) | 2006-01-27 | 2007-01-16 | Verfahren zur herstellung von offenzelligen viskoelastischen polyurethan-weichschaumstoffen |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2008134511A RU2008134511A (ru) | 2010-03-10 |
RU2435795C2 true RU2435795C2 (ru) | 2011-12-10 |
RU2435795C9 RU2435795C9 (ru) | 2013-02-27 |
Family
ID=37964731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008134511/04A RU2435795C9 (ru) | 2006-01-27 | 2007-01-16 | Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками |
Country Status (15)
Country | Link |
---|---|
US (1) | US20100227938A1 (ru) |
EP (1) | EP1981926B1 (ru) |
JP (1) | JP2009524718A (ru) |
KR (1) | KR20080099252A (ru) |
CN (1) | CN101374877B (ru) |
AR (1) | AR059472A1 (ru) |
AT (1) | ATE432304T1 (ru) |
DE (1) | DE502007000788D1 (ru) |
DK (1) | DK1981926T3 (ru) |
ES (1) | ES2324319T3 (ru) |
PL (1) | PL1981926T3 (ru) |
PT (1) | PT1981926E (ru) |
RU (1) | RU2435795C9 (ru) |
TW (1) | TW200730552A (ru) |
WO (1) | WO2007085548A1 (ru) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE449119T1 (de) * | 2006-07-04 | 2009-12-15 | Huntsman Int Llc | Verfahren zur herstellung von viskoelastischen schaumstoffen |
CN101573392B (zh) | 2006-09-21 | 2012-06-20 | 陶氏环球技术有限责任公司 | 具有高气流量的粘弹性泡沫 |
US20090029097A1 (en) * | 2007-06-11 | 2009-01-29 | Riddle Dennis L | Flooring products and methods |
WO2008154009A1 (en) * | 2007-06-11 | 2008-12-18 | Textile Rubber & Chemical Company | Polyurethane coated non-flooring products and methods for making same |
CN101842404B (zh) * | 2007-08-27 | 2014-06-18 | 陶氏环球技术有限责任公司 | 具有铋化合物的基于天然油的柔性聚氨酯泡沫的催化剂 |
MX2010002620A (es) * | 2007-09-07 | 2010-05-21 | Dow Global Technologies Inc | Uso de compuestos con base en aceite natural de baja funcionalidad para mejorar espumas. |
EP2050865B1 (de) * | 2007-10-15 | 2014-11-26 | Bayer Intellectual Property GmbH | Bodenbedeckung mit viskoelastischen Dämpfungseigenschaften |
US8188156B2 (en) * | 2007-11-09 | 2012-05-29 | Mitsui Chemicals, Inc. | Polyol composition, foaming composition and polyurethane foam |
BRPI0907096A2 (pt) | 2008-01-29 | 2015-07-07 | Basf Se | Processos para preparar poliéter álcoois e para produzir poliuretanos, e, poliéter álcool |
DE102008014032A1 (de) | 2008-03-13 | 2009-09-17 | Bayer Materialscience Ag | Viskoelastischer Polyurethanschaumstoff mit Rizinusöl |
WO2009106240A2 (de) * | 2008-02-27 | 2009-09-03 | Bayer Materialscience Ag | Viskoelastischer polyurethanschaumstoff mit rizinusöl |
DE102008030940A1 (de) * | 2008-07-02 | 2010-01-14 | Otto Bock Schaumstoffwerke Gmbh | Geschlossenzelliger Polyurethan-Weichschaum und Verfahren zu seiner Herstellung |
KR101660999B1 (ko) * | 2008-10-24 | 2016-09-28 | 바스프 에스이 | 점탄성 폴리우레탄 연질 폼의 제조 방법 |
CN102428120A (zh) | 2009-05-19 | 2012-04-25 | 因温斯特技术公司 | 多元醇组合物,树脂共混物组合物,喷发组合物,及其各自的使用方法,及其各自的制备方法 |
US20110034580A1 (en) * | 2009-08-07 | 2011-02-10 | ATI Industries, Inc. | Carbon-Negative Bio-Plastic Furniture |
FR2958649B1 (fr) * | 2010-04-07 | 2012-05-04 | Arkema France | Copolymere a blocs issu de matieres renouvelables et procede de fabrication d'un tel copolymere a blocs |
US9315613B2 (en) | 2011-02-11 | 2016-04-19 | Jiangsu Healthcare Co., Ltd. | Nontemperature sensitive memory foam of MDI system suitable for horizontal foaming process |
EP2527381A1 (de) * | 2011-05-26 | 2012-11-28 | Basf Se | Hochelastische Polyurethanschaumstoffe, enthaltend Ricinusöl |
US9150684B2 (en) | 2011-05-26 | 2015-10-06 | Basf Se | High resilience polyurethane foams comprising castor oil |
EP2599810A1 (de) | 2011-12-02 | 2013-06-05 | Basf Se | Waschbare, viskoelastische Polyurethanweichschaumstoffe |
KR20170003944A (ko) * | 2014-04-30 | 2017-01-10 | 허니웰 인터내셔널 인코포레이티드 | 가요성 오픈-셀 열경화성 포움 및 블로잉제, 및 이것들을 제조하기 위한 방법 |
CA2986015A1 (en) * | 2015-05-15 | 2016-11-24 | Stepan Company | Ethoxylated vegetable oils in low density spray foam formulations |
BG67068B1 (bg) * | 2016-01-07 | 2020-04-30 | „Тед - Бед“ Еад | Пенополиуретанов състав |
JP6926660B2 (ja) * | 2016-05-17 | 2021-08-25 | 東ソー株式会社 | ハロアルケン発泡ポリウレタン製造用のアミン触媒組成物 |
WO2017207538A1 (de) | 2016-06-01 | 2017-12-07 | Covestro Deutschland Ag | Visko-elastischer dämpfungskörper und verfahren zu seiner herstellung |
CN105968308A (zh) * | 2016-06-28 | 2016-09-28 | 苏州井上高分子新材料有限公司 | 一种抗老化型聚氨酯低气味泡沫组合物 |
EP3535501A1 (de) | 2016-11-04 | 2019-09-11 | Covestro Deutschland AG | Visko-elastischer dämpfungskörper auf basis viskoelastischer materialien |
JP2020526646A (ja) * | 2017-07-11 | 2020-08-31 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | ハロゲン非含有難燃剤を含む軟質フォーム |
CN109535381A (zh) * | 2018-12-06 | 2019-03-29 | 上海应用技术大学 | 一种低voc聚氨酯汽车仪表板的制作工艺 |
CN110734535A (zh) * | 2019-10-31 | 2020-01-31 | 长春一汽富晟汽车毯业有限公司 | 一种聚氨酯发泡的乘用车地毯及其制备方法 |
EP4168464A1 (en) | 2020-06-22 | 2023-04-26 | Basf Se | Viscoelastic elastomeric polyurethane foams, process for preparing them and use thereof |
CN114031741B (zh) * | 2021-11-29 | 2023-06-02 | 山东一诺威聚氨酯股份有限公司 | 高性能聚氨酯慢回弹护具组合料及护具的制备方法 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3942330A1 (de) * | 1989-12-21 | 1991-06-27 | Basf Ag | Verfahren zur herstellung von flexiblen polyurethan-weichschaumstoffen mit viskoelastischen, koerperschalldaempfenden eigenschaften und hierzu verwendbare polyoxyalkylen-polyol-mischungen |
US5248703A (en) * | 1992-03-13 | 1993-09-28 | Basf Corporation | Rigid polyurethane foams containing lithium salts for energy absorbing applications |
TW293827B (ru) * | 1992-04-20 | 1996-12-21 | Takeda Pharm Industry Co Ltd | |
US5382602A (en) * | 1993-06-09 | 1995-01-17 | Duffy; Robert D. | Flexible slabstock polyurethane foam formulation for a rapid-cool process |
KR100335874B1 (ko) * | 1993-07-19 | 2002-11-20 | 미츠이 다께다 케미칼 가부시키가이샤 | 단열재및그것의제조방법 |
US5464562A (en) * | 1995-04-24 | 1995-11-07 | Basf Corporation | Polyoxyalkylene polyether monool polyurethane foam additive |
DE19634392A1 (de) * | 1996-08-26 | 1998-03-05 | Bayer Ag | Schäumfähige Polyurethanzubereitungen mit gutem Fließverhalten sowie ein Verfahren zur Herstellung geschäumter Polyurethan-Formteile |
UA61089C2 (ru) * | 1996-11-08 | 2003-11-17 | Хантсмен Ай Сі Ай Кемікалз, Ллс | Способ получения жестких и эластичных пенополиуретановых вспененных материалов |
US5721284A (en) * | 1996-12-20 | 1998-02-24 | The Dow Chemical Company | Open-celled rigid polyurethane foam |
WO1998050446A1 (en) * | 1997-05-06 | 1998-11-12 | Magla World-Wide L.L.C. | Flexible, substantially open celled polyurethane foam and method of making same |
US5919395A (en) * | 1997-10-30 | 1999-07-06 | Shell Oil Company | Polyol combination |
DE19905989A1 (de) * | 1999-02-13 | 2000-08-17 | Bayer Ag | Feinzellige, wassergetriebene Polyurethanhartschaumstoffe |
DE19924804C5 (de) * | 1999-05-29 | 2009-02-12 | Basf Se | Verfahren zur Herstellung von schallabsorbierenden Polyurethanschäumen mit adhäsiver Oberfläche |
DE19924802B4 (de) * | 1999-05-29 | 2008-02-28 | Basf Ag | Verfahren zur Herstellung von schalldämpfenden und energieabsorbierenden Polyurethanschäumen |
DE19960779A1 (de) * | 1999-12-16 | 2001-07-05 | Bayer Ag | Verfahren zur Herstellung von weichen bis halbharten Polyurethanintegralschaumstoffen |
DE10009649A1 (de) * | 2000-03-01 | 2001-09-06 | Basf Ag | Offenzellige Polyurethan-Hartschaumstoffe |
US6348161B1 (en) * | 2000-08-03 | 2002-02-19 | Basf Corporation | Polyol composition containing a hydrocarbon blowing agent |
DE10105560A1 (de) * | 2001-02-06 | 2002-08-08 | Basf Ag | Verfahren zur Herstellung von Polyurethanweichschäumen |
DE10105559A1 (de) * | 2001-02-06 | 2002-08-08 | Basf Ag | Verfahren zur Herstellung von niedrigdichten hydrophilen Polyurethanweichschaumstoffen |
DE10111823A1 (de) * | 2001-03-13 | 2002-09-26 | Basf Ag | Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen |
JP4167076B2 (ja) * | 2001-04-27 | 2008-10-15 | ハンツマン・インターナショナル・エルエルシー | 粘弾性フォームの製造方法 |
EP1456269B1 (en) * | 2001-11-29 | 2016-07-20 | Huntsman International Llc | Viscoelastic polyurethanes |
US6734220B2 (en) * | 2002-08-27 | 2004-05-11 | Foamex L.P. | Fine cell, high density viscoelastic polyurethane foams |
DE10240186A1 (de) * | 2002-08-28 | 2004-03-11 | Basf Ag | Verfahren zur Herstellung von emissionsarmen Polyurethan-Weichschaumstoffen |
US6653363B1 (en) * | 2002-12-04 | 2003-11-25 | Foamex, L.P. | Low energy-loss, high firmness, temperature sensitive polyurethane foams |
US8293808B2 (en) * | 2003-09-30 | 2012-10-23 | Cargill, Incorporated | Flexible polyurethane foams prepared using modified vegetable oil-based polyols |
US20050239915A1 (en) * | 2003-12-18 | 2005-10-27 | Biopolymers, Llc | Systems and preparations for bio-based polyurethane foams |
CN1554686A (zh) * | 2003-12-24 | 2004-12-15 | 中国科学院广州化学研究所 | 聚氨酯硬质泡沫材料 |
US20050176839A1 (en) * | 2004-02-10 | 2005-08-11 | Huzeir Lekovic | Low density acoustic foams based on biopolymers |
US20050210595A1 (en) * | 2004-03-23 | 2005-09-29 | Di Stasio Anthony A | Mattress having reticulated viscoelastic foam |
DE102004017294A1 (de) * | 2004-04-05 | 2005-10-20 | Basf Ag | Verfahren zur Herstellung von Polyurethan-Schaumstoffen |
DE102004048728A1 (de) * | 2004-10-05 | 2006-04-06 | Basf Ag | Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen |
EP1888666B1 (en) * | 2005-04-25 | 2017-06-21 | Cargill, Incorporated | Polyurethane foams comprising oligomeric polyols |
US7700661B2 (en) * | 2005-05-05 | 2010-04-20 | Sleep Innovations, Inc. | Prime foam containing vegetable oil polyol |
DE102005058090A1 (de) * | 2005-12-05 | 2007-06-06 | Basf Ag | Verfahren zur Herstellung von viskoelastischen Polyurethan-Weichschaumstoffen |
US20070293594A1 (en) * | 2006-06-15 | 2007-12-20 | Ladislau Heisler | Viscoelastic polyurethane foam and process for its manufacture |
ES2366931T3 (es) * | 2006-11-15 | 2011-10-26 | Basf Se | Procedimiento para la obtención de espumas blandas de poliuretano. |
WO2009106240A2 (de) * | 2008-02-27 | 2009-09-03 | Bayer Materialscience Ag | Viskoelastischer polyurethanschaumstoff mit rizinusöl |
-
2007
- 2007-01-16 DK DK07703882T patent/DK1981926T3/da active
- 2007-01-16 CN CN2007800034951A patent/CN101374877B/zh not_active Expired - Fee Related
- 2007-01-16 RU RU2008134511/04A patent/RU2435795C9/ru not_active IP Right Cessation
- 2007-01-16 PL PL07703882T patent/PL1981926T3/pl unknown
- 2007-01-16 ES ES07703882T patent/ES2324319T3/es active Active
- 2007-01-16 DE DE502007000788T patent/DE502007000788D1/de active Active
- 2007-01-16 WO PCT/EP2007/050367 patent/WO2007085548A1/de active Application Filing
- 2007-01-16 PT PT07703882T patent/PT1981926E/pt unknown
- 2007-01-16 KR KR1020087018631A patent/KR20080099252A/ko not_active Application Discontinuation
- 2007-01-16 EP EP07703882A patent/EP1981926B1/de not_active Not-in-force
- 2007-01-16 JP JP2008551754A patent/JP2009524718A/ja active Pending
- 2007-01-16 US US12/161,343 patent/US20100227938A1/en not_active Abandoned
- 2007-01-16 AT AT07703882T patent/ATE432304T1/de active
- 2007-01-25 AR ARP070100327A patent/AR059472A1/es active IP Right Grant
- 2007-01-26 TW TW096103069A patent/TW200730552A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
US20100227938A1 (en) | 2010-09-09 |
AR059472A1 (es) | 2008-04-09 |
ATE432304T1 (de) | 2009-06-15 |
CN101374877A (zh) | 2009-02-25 |
DE502007000788D1 (de) | 2009-07-09 |
JP2009524718A (ja) | 2009-07-02 |
KR20080099252A (ko) | 2008-11-12 |
TW200730552A (en) | 2007-08-16 |
RU2008134511A (ru) | 2010-03-10 |
EP1981926A1 (de) | 2008-10-22 |
PL1981926T3 (pl) | 2009-10-30 |
DK1981926T3 (da) | 2009-08-31 |
RU2435795C9 (ru) | 2013-02-27 |
WO2007085548A1 (de) | 2007-08-02 |
PT1981926E (pt) | 2009-06-05 |
EP1981926B1 (de) | 2009-05-27 |
ES2324319T3 (es) | 2009-08-04 |
CN101374877B (zh) | 2011-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2435795C2 (ru) | Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками | |
US20060167125A1 (en) | Method for the production of low-emission polyurethane soft foams | |
US8236866B2 (en) | High resilience foams | |
EP3571239B1 (en) | Flexible polyurethane foam and process to make | |
EP1476485B1 (en) | Polyurethane foam | |
US12054589B2 (en) | Isocyanate-functional polymer components and polyurethane articles formed from recycled polyurethane articles and associated methods for forming same | |
CA2664032A1 (en) | Viscoelastic foams having high air flow | |
EP2176312A1 (en) | Polyol blends and their use in making polymers | |
US10793692B2 (en) | Viscoelastic flexible foams comprising hydroxyl-terminated prepolymers | |
WO2007144272A1 (de) | Offenzellige viskoelastische polyurethan-weichschaumstoffe | |
KR19990071971A (ko) | 폴리우레탄 엘라스토머 | |
US8389775B2 (en) | Process for preparing polyether alcohols | |
EP2069417B1 (en) | Polyurethane foams made from hydroxymethyl-containing polyester polyols and tertiary amine-containing polyols | |
US20010023263A1 (en) | Production of polyurethane foams | |
JP7459081B2 (ja) | エラストマーポリウレタンフォームおよびその生成方法 | |
CA2999863A1 (en) | High-resiliency polyurethane foam | |
JP2023528832A (ja) | 改善された自己消火性火災試験性能を有する連続気泡軟質ポリウレタン発泡体 | |
US20170247494A1 (en) | Flame retardant slabstock polyurethane foam composition | |
WO2012148798A1 (en) | Polyurethanes obtained from hydroxyalkanoate crosslinking agents | |
EP4032926A1 (en) | Processes for making molded flexible foams and flexible foams produced thereby | |
CN113795530B (zh) | 具有降低的冷流效应的聚氨酯泡沫材料及其生产方法 | |
EP4032925A1 (en) | Processes for making molded flexible foams and flexible foams produced thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TK4A | Correction to the publication in the bulletin (patent) |
Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 34-2011 |
|
TH4A | Reissue of patent specification | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140117 |