RU2427953C2 - Адаптивная схема для управления схемой преобразования - Google Patents

Адаптивная схема для управления схемой преобразования Download PDF

Info

Publication number
RU2427953C2
RU2427953C2 RU2009113004/07A RU2009113004A RU2427953C2 RU 2427953 C2 RU2427953 C2 RU 2427953C2 RU 2009113004/07 A RU2009113004/07 A RU 2009113004/07A RU 2009113004 A RU2009113004 A RU 2009113004A RU 2427953 C2 RU2427953 C2 RU 2427953C2
Authority
RU
Russia
Prior art keywords
input
signal
output
voltage
circuit
Prior art date
Application number
RU2009113004/07A
Other languages
English (en)
Other versions
RU2009113004A (ru
Inventor
Маттиас ВЕНДТ (NL)
Маттиас ВЕНДТ
ДЕР БРУК Хайнц В. ВАН (NL)
ДЕР БРУК Хайнц В. ВАН
Георг САУЭРЛЕНДЕР (NL)
Георг САУЭРЛЕНДЕР
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2009113004A publication Critical patent/RU2009113004A/ru
Application granted granted Critical
Publication of RU2427953C2 publication Critical patent/RU2427953C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)

Abstract

Адаптивные схемы (3) для управления схемами (1-2) преобразования для преобразования входных сигналов в импульсные сигналы и для преобразования импульсных сигналов в выходные сигналы снабжены генераторами (30) для формирования сигналов управления в зависимости от входных сигналов и (основная идея) схемами (71-72, 81-83) компенсации для настройки генераторов (30) в зависимости от входной информации для повышения стабильности выходных сигналов, чтобы быть способными подавать относительно постоянные выходные сигналы в нагрузку (6). Адаптивные схемы (3) могут снижать зависимости между входными сигналами и выходными сигналами и могут формировать сигналы управления независимо от выходных сигналов, чтобы уничтожить цепи обратной связи. Входные сигналы могут быть входными напряжениями, выходные сигналы могут быть выходными токами, а входная информация может содержать входные напряжения и номинальные входные напряжения для компенсации отклонений входных напряжений или может содержать номинальные выходные напряжения и входные токи, пропорциональные выходным напряжениям, для компенсации отклонений выходных напряжений. Технический результат - передача постоянного выходного сигнала на нагрузку. 5 н. и 4 з.п. ф-лы, 10 ил.

Description

Изобретение относится к адаптивной схеме для управления схемой преобразования, и также относится к схеме питания, содержащей адаптивную схему и схему преобразования, к устройству, содержащему схему питания, к способу и к компьютерному программному продукту.
Примерами такой схемы преобразования являются схемы преобразования мощности, не исключая другие схемы преобразования. Примерами такой схемы питания являются импульсные источники питания, не исключая другие схемы питания. Примерами такого устройства являются потребительская продукция и непотребительская продукция, не исключая другую продукцию.
WO 2005/036726 A1 раскрывает схему управления, обратный преобразователь DC/AC (постоянного тока в переменный) (схему преобразования), преобразователь мощности (схему питания), содержащий обратный преобразователь DC/AC и схему управления, и жидкокристаллический дисплей (устройство), содержащее преобразователь мощности. В WO 2005/036726 A1 схема управления для управления обратным преобразователем DC/AC формирует часть этого обратного преобразователя DC/AC и присоединена к дополнительной схеме управления (логическим схемам), которая непосредственно управляет затворами транзисторов обратного преобразователя DC/AC.
Цель изобретения, среди прочего, состоит в том, чтобы предложить адаптивную схему для управления схемой преобразования для подачи относительно постоянного выходного сигнала на нагрузку.
Дополнительные цели изобретения, среди прочего, состоят в том, чтобы предложить схему питания, содержащую адаптивную схему и схему преобразования, в устройстве, содержащем схему питания, в способе и в компьютерном программном продукте для подачи относительно постоянного выходного сигнала в нагрузку.
Адаптивная схема для управления схемой преобразования для преобразования входного сигнала в импульсный сигнал и для преобразования импульсного сигнала в выходной сигнал определена содержанием
- входа для приема входного сигнала,
- генератора для формирования сигнала управления в зависимости от входного сигнала,
- выхода для подачи сигнала управления в схему преобразования, и
- схемы компенсации для настройки генератора в зависимости от входной информации для повышения стабильности выходного сигнала.
Адаптивная схема управляет схемой преобразования мощности. Схема преобразования мощности преобразует входной сигнал в импульсный сигнал, а затем преобразует импульсный сигнал в выходной сигнал. Генератор формирует сигнал управления для упомянутого управления схемой преобразования мощности. Посредством введения в дополнение к генератору схемы компенсации, которая настраивает генератор в зависимости от входной информации для повышения стабильности выходного сигнала, схема преобразования мощности может подавать относительно постоянный выходной сигнал в нагрузку.
Вариант осуществления адаптивной схемы согласно изобретению определен пунктом 2 формулы изобретения. Адаптивная схема снижает зависимость между входным сигналом и выходным сигналом и формирует сигнал управления независимо от выходного сигнала. Этот вариант осуществления преимущественно избегает использования неблагоприятной цепи обратной связи со вторичной стороны схемы преобразования мощности на первичную сторону схемы преобразования мощности. Другими словами, этот вариант осуществления подает сигнал управления в зависимости от сигнала первичной стороны и независимо от сигнала вторичной стороны.
Вариант осуществления адаптивной схемы согласно изобретению определен пунктом 3 формулы изобретения. Входным сигналом является входное напряжение, а выходным сигналом является выходной ток, и входная информация содержит входное напряжение и номинальное входное напряжение для компенсации отклонений входного напряжения. Управление схемой преобразования мощности, например, дополнительно снижает зависимость, например, между входным напряжением и, например, выходным током.
Вариант осуществления адаптивной схемы согласно изобретению определен пунктом 4 формулы изобретения. Этот вариант осуществления касается компенсации тока смещения, вызванного отклонениями входного напряжения. Чтобы скомпенсировать ток смещения, входное напряжение должно сравниваться с номинальным входным напряжением, а получающаяся в результате разность должна взвешиваться и подаваться на генератор. Если входное напряжение повышается, частота импульсного сигнала будет слегка понижаться, и наоборот. Как результат может компенсироваться ток смещения. Действие компенсации должно настраиваться коэффициентом k1 усиления усилителя (весовым коэффициентом). Оптимальное значение для k1 зависит от потерь в схеме преобразования мощности.
Вариант осуществления адаптивной схемы согласно изобретению определен пунктом 5 формулы изобретения. Входным сигналом является входное напряжение, а выходным сигналом является выходной ток, и входная информация содержит номинальное входное напряжение и входной ток, пропорциональный выходному напряжению для компенсации отклонений выходного напряжения. Управление схемой преобразования энергии, например, дополнительно снижает зависимость, например, между входным напряжением и, например, выходным током.
Вариант осуществления адаптивной схемы согласно изобретению определен пунктом 6 формулы изобретения. Этот вариант осуществления касается компенсации тока смещения, вызванного отклонением выходного напряжения. Выходное напряжение может детектироваться в нефильтрованном входном токе. Этот входной ток состоит из двух положительных синусоидальных полуволн и может легко измеряться привязанным к земле шунтом. Амплитуда входного тока прямо пропорциональна выходному напряжению. Таким образом, например, посредством использования пикового детектора для входного тока, в сущности, измеряется выходное напряжение. Подвергнутый пиковому детектированию входной ток должен сравниваться с номинальным выходным напряжением, а получающаяся в результате разность должна взвешиваться и подаваться в генератор. Как результат вновь может компенсироваться ток смещения. Действие компенсации должно настраиваться коэффициентом k2 усиления усилителя (весовым коэффициентом). Оптимальное значение для k2 зависит от потерь в схеме преобразования мощности.
Схема питания, как определено пунктом 7 формулы изобретения, содержит адаптивную схему и содержит схему преобразования мощности. Предпочтительно, для такой схемы питания, импульсный сигнал содержит первые импульсы, имеющие первую амплитуду, и содержит вторые импульсы, имеющие вторую амплитуду, отличную от первой амплитуды, и содержит ступени, имеющие третью амплитуду, отличную от первой и второй амплитуд, первая амплитуда является положительной амплитудой, вторая амплитуда является отрицательной амплитудой, а третья амплитуда является, по существу, нулевой амплитудой, и схема преобразования содержит первый и второй, а также третий и четвертый транзисторы, и логические схемы для приема сигнала управления для приведения первого и четвертого транзисторов в проводящее состояние, чтобы создавать первые импульсы, и для приведения второго и третьего транзисторов в проводящее состояние, чтобы создавать вторые импульсы, и для приведения первого и третьего либо второго и четвертого транзисторов в проводящее состояние, чтобы создавать ступени.
Затем вводится импульсный сигнал с тремя разными амплитудами, чтобы создать некоторое количество вариантов выбора управления. Вводится симметричный импульсный сигнал, и четыре транзистора вводятся, например, в полной мостовой конфигурации (H-моста). Логические схемы связывают схему преобразования мощности и адаптивную схему друг с другом.
Предпочтительно, схема преобразования мощности содержит трансформатор или дроссель, схему выпрямления, содержащую один или более выходных диодов, присоединенных ко вторичной стороне трансформатора или дросселя, и конденсатор, последовательно присоединенный к первичной стороне или ко вторичной стороне трансформатора или дросселя. Трансформатор обеспечивает гальваническую изоляцию. Конденсатор создает в сочетании с индуктивностью рассеяния трансформатора и/или в сочетании с дросселем, и/или в сочетании с отдельным дросселем резонансную цепь, имеющую период/частоту резонанса.
Кроме того, предпочтительно, схема преобразования мощности заключает в себе период резонанса, а импульсный сигнал содержит импульс, имеющий ширину импульса, по существу, равную половине периода резонанса, и/или схема преобразования мощности заключает в себе частоту резонанса, а импульсный сигнал содержит импульсы, имеющие частоту импульсов, по существу, равную или меньшую, чем половина частоты резонанса, произведение входного сигнала и частоты импульсов является, по существу, постоянным.
Устройство, как определено пунктом 8 формулы изобретения, содержит схему питания и дополнительно содержит нагрузку для приема выходного сигнала. Нагрузка, например, содержит один или более светоизлучающих диодов или СИД (LED).
Варианты осуществления схемы питания и устройства, а также способа и компьютерного программного продукта (и носителя для хранения и содержания компьютерного программного продукта) соответствуют вариантам осуществления адаптивной схемы.
Могло бы быть понимание, среди прочего, что флуктуация во входном напряжении может иметь следствием флуктуацию в выходном токе, которая должна уничтожаться.
Основная идея, среди прочего, могла бы состоять в том, что в дополнение к генератору должна быть введена схема компенсации, которая настраивает генератор в зависимости от входной информации, для повышения стабильности выходного сигнала.
Среди прочего, решена задача предоставления адаптивной схемы для управления схемой преобразования мощности, которая может подавать относительно постоянный выходной сигнал на нагрузку.
Эти и другие аспекты изобретения будут очевидны и разъяснены со ссылкой на варианты осуществления, описанные ниже.
На чертежах:
Фиг.1 показывает в виде схемы схему питания согласно изобретению, содержащую адаптивную схему согласно изобретению и схему преобразования мощности,
Фиг.2 показывает в виде схемы преобразователь переменного тока в постоянный ток,
Фиг.3 показывает логические схемы для схемы преобразования мощности,
Фиг.4 показывает сигнал управления и импульсный сигнал,
Фиг.5 показывает первый вариант осуществления адаптивной схемы,
Фиг.6 показывает второй вариант осуществления адаптивной схемы,
Фиг.7 показывает напряжение на конденсаторе и ток через этот конденсатор на первичной стороне схемы преобразования мощности в качестве функции импульсного сигнала,
Фиг.8 показывает выходной ток в качестве функции импульсного сигнала,
Фиг.9 показывает входной ток в качестве функции импульсного сигнала, и
Фиг.10 показывает устройство согласно изобретению.
Схема 1-3 питания согласно изобретению, показанная на Фиг.1, содержит схему 1-2 преобразования мощности и адаптивную схему 3. Схема 1-2 преобразования мощности содержит первую схему 1 и вторую схему 2. Первая схема 1 содержит источник 4 напряжения для формирования входного напряжения Uin через первую и вторую клеммы 15 и 16 источника опорного сигнала. Первая схема 1 дополнительно содержит четыре транзистора 11-14. Первый транзистор 11 имеет первый основной электрод, присоединенный к первой клемме 15 источника опорного сигнала, и имеет второй основной электрод, присоединенный к первому входу 20a второй схемы 2. Второй транзистор 12 имеет первый основной электрод, присоединенный ко второму основному электроду первого транзистора 11, и имеет второй основной электрод, присоединенный ко второй клемме 16 источника опорного сигнала. Третий транзистор 13 имеет первый основной электрод, присоединенный к первой клемме 15 источника опорного сигнала, и имеет второй основной электрод, присоединенный ко второму входу 20b второй схемы 2. Четвертый транзистор 14 имеет первый основной электрод, присоединенный ко второму основному электроду третьего транзистора 13, и имеет второй основной электрод, присоединенный ко второй клемме 16 источника опорного сигнала. Первая схема 1 дополнительно содержит логические схемы 5, присоединенные к адаптивной схеме 3 и к управляющим электродам транзисторов 11-14. Логические схемы 5 будут обсуждены со ссылкой на Фиг.3.
Вторая схема 2 содержит от входа 20a до входа 20b последовательный резонансный контур из конденсатора 27, индуктивности 26 и первичной стороны трансформатора 25. Индуктивность 26 обычно, по меньшей мере частично, формируется паразитной индуктивностью трансформатора 25. Вторая схема 2 дополнительно содержит четыре выходных диода 21-24, присоединенных ко вторичной стороне трансформатора 25 и образующих схему выпрямления, которая, кроме того, присоединена к сглаживающему конденсатору 28 и к нагрузке 6, например, содержащей три последовательных светоизлучающих диода или СИД.
Преобразователь 4 переменного тока в постоянный ток или источник 4 напряжения, показанный на Фиг.2, содержит источник 45 напряжения переменного тока, присоединенный к четырем диодам, образующим дополнительную схему выпрямления, которая, кроме того, присоединена к дополнительному сглаживающему конденсатору 46.
Логические схемы 5, показанные на Фиг.3, содержат триггер 51, принимающий сигнал s(t) управления из адаптивной схемы 3 на входе 50 логических схем 5. Выход Q триггера присоединен к логическому элементу 52 И, который, кроме того, принимает сигнал s(t) управления, а инверсный выход Q триггера присоединен к логическому элементу 53 И, который, кроме того, принимает сигнал s(t) управления. Выход логического элемента 52 И присоединен через повторитель 52a к схеме 54a задержки tdon, а через инвертор 52b - к схеме 54b задержки tdon. Выход логического элемента 53 И присоединен через повторитель 53a к схеме 55a задержки tdon, а через инвертор 53b - к схеме 55b задержки tdon. Соответственные схемы 54a и 54b, а также 55a и 55b задержки tdon присоединены к управляющим электродам соответственных транзисторов 11-14, возможно, через схему 56 сдвига уровня со стороны транзисторов 11 и 12, и схему 57 сдвига уровня со стороны транзисторов 13 и 14.
На Фиг.4 показаны сигнал s(t) управления и импульсный сигнал U1(t), являющийся следствием сигнала s(t) управления. Импульсный сигнал U1(t) содержит первые импульсы, имеющие первую амплитуду +Uin, и содержит вторые импульсы, имеющие вторую амплитуду -Uin, отличную от первой амплитуды, и содержит ступени, имеющие третью амплитуду 0, отличную от первой и второй амплитуд. Предпочтительно, первая амплитуда является положительной амплитудой, вторая амплитуда является отрицательной амплитудой, а третья амплитуда является, по существу, нулевой амплитудой. Импульсный сигнал U1(t), например, присутствует между входами 20a и 20b.
Адаптивная схема 3, показанная на Фиг.5 (первый вариант осуществления), содержит генератор 30 (импульсов) с входом 38 для приема входного напряжения Uin (в более общем смысле: входного сигнала или сигнала первичной стороны) и с выходом 40, который должен присоединяться ко входу 50 для подачи сигнала s(t) управления в логические схемы 5 в зависимости от входного напряжения Uin и независимо от выходного напряжения на нагрузке 6. Генератор 30, кроме того, содержит дополнительный вход 39 для приема опорного тока (в целях затемнения), сигнал s(t) управления, кроме того, зависит от опорного тока. К тому же генератор 30 содержит умножитель 31 для перемножения входного напряжения Uin и сигнала s(t) управления и содержит фильтр 32 нижних частот для фильтрации нижних частот выходного напряжения умножителя, и содержит преобразователь 33 для преобразования выходного напряжения фильтра нижних частот в пропорциональное значение оцененного выходного тока, и содержит элемент 34 для определения разности между опорным током и оцененным выходным током (вычитанием, или, например, сложением опорного тока с инверсией оцененного выходного тока). Генератор 30 дополнительно содержит контроллер 35 для приема разности значений тока и содержит управляемый напряжением генератор 36 колебаний для приема выходного сигнала контроллера, и содержит одновибратор 37 для приема выходного сигнала управляемого напряжением генератора колебаний и для формирования сигнала s(t) управления.
Адаптивная схема 3 дополнительно содержит еще дополнительный вход 73 для приема номинального входного напряжения Uin0 и содержит элемент 71, присоединенный к входам 38 и 73, для определения разности между номинальным входным напряжением Uin0 и данным входным напряжением Uin (вычитанием, или, например, сложением номинального входного напряжения Uin0 с инверсией входного напряжения Uin). Элемент 72 умножения перемножает разность с первым весовым коэффициентом k1 и подает взвешенную разность между номинальным входным напряжением Uin0 и входным напряжением Uin на элемент 34 для прибавления к разности между опорным током и оцененным выходным током фильтра нижних частот.
Таким образом, схема 71-72 компенсации, содержащая элементы 71 и 72, настраивает генератор 30 в зависимости от входной информации в виде (разности между) входного напряжения Uin и номинального входного напряжения Uin0, для повышения стабильности выходного сигнала в виде выходного тока Iout через нагрузку 6. Этот вариант осуществления касается компенсации тока смещения, вызванного отклонениями входного напряжения Uin. Чтобы скомпенсировать ток смещения, входное напряжение Uin должно сравниваться с номинальным входным напряжением Uin0, а получающаяся в результате разность должна взвешиваться и добавляться в генератор 30. Если входное напряжение Uin повышается, частота импульсного сигнала будет слегка понижаться, и наоборот. Как результат ток смещения может компенсироваться. Действие компенсации настраивается весовым коэффициентом k1, который зависит от потерь в схеме 1-2 преобразования мощности.
Адаптивная схема 3, показанная на Фиг.6 (второй вариант осуществления), соответствует показанной на Фиг.5, кроме следующего. Вместо элементов 71 и 72 и еще дополнительного входа 73 адаптивная схема 3 содержит дополнительный вход 84 для приема входного тока Iin, протекающего через источник 4 напряжения, и содержит элемент 81 пикового детектирования, присоединенный к другому входу 84, для выполнения пикового детектирования над входным током Iin. Подвергнутый пиковому детектированию входной ток пропорционален выходному напряжению Uout, и элемент 82 определяет разность между этим оцененным выходным напряжением Uout и номинальным выходным напряжением Uout0, приходящим через еще один другой вход 85 (вычитанием, или, например, сложением выходного напряжения Uout и инвертированного варианта номинального выходного напряжения Uout0). Элемент 83 умножения перемножает эту разность со вторым весовым коэффициентом k2 и подает взвешенную разность между оцененным выходным напряжением Uout и номинальным выходным напряжением Uout0 на элемент 34 для прибавления к разности между опорным током и оцененным выходным током.
Таким образом, схема 81-83 компенсации, содержащая элементы 81, 82 и 83, настраивает генератор 30 в зависимости от входной информации, содержащей (разность между) номинальное выходное напряжение Uout0 и подвергнутый пиковому детектированию входной ток Iin, для повышения стабильности выходного сигнала в виде выходного тока Iout через нагрузку 6. Этот вариант осуществления касается компенсации тока смещения, вызванного отклонением выходного напряжения Uout. Выходное напряжение Uout может детектироваться в нефильтрованном входном токе. Этот входной ток Iin состоит из двух положительных синусоидальных полуволн и может легко измеряться привязанным к земле шунтом. Амплитуда входного тока Iin прямо пропорциональна выходному напряжению Uout. Таким образом, например, посредством использования пикового детектора для пикового детектирования входного тока Iin практически измеряется выходное напряжение Uout. Подвергнутый пиковому детектированию входной ток должен сравниваться с номинальным выходным напряжением Uout0, а получающаяся разница должна взвешиваться и добавляться в генератор 30. Как результат вновь может компенсироваться ток смещения. Действие компенсации настраивается весовым коэффициентом k2, который зависит от потерь в схеме 1-2 преобразования.
На Фиг.7 напряжение Uc(t) на конденсаторе 27 и ток I1(t) через этот конденсатор 27 на первичной стороне схемы 1-2 преобразования мощности показаны в качестве функции импульсного сигнала U1(t).
На Фиг.8 выходной ток Id(t), являющийся масштабированным трансформатором и выпрямленным током на вторичной стороне схемы 1-2 преобразования мощности, показан в качестве функции импульсного сигнала U1(t).
На Фиг.9 входной ток Iin(t), протекающий через источник 4 напряжения на первичной стороне схемы 1-2 преобразования мощности, показан в качестве функции импульсного сигнала U1(t).
Устройство 10 согласно изобретению, показанное на Фиг.10, содержит схему 1-2 преобразования мощности и адаптивную схему 3, а также нагрузку 6 и источник 4 напряжения, на этот раз расположенный вне схемы 1-2 преобразования мощности.
В целом, была создана топология формирователя с гальванической изоляцией и схема управления для светоизлучающих диодов или СИД. Входное напряжение Uin может быть нестабилизированным напряжением постоянного тока. Формирователь состоит из транзисторного H-моста 11-14, адаптивной схемы 3 для H-моста 11-14, трансформатора 25, последовательного конденсатора 27, диодного моста 21-24 и сглаживающего выходного конденсатора 28. На выходе может добавляться последовательное соединение СИД.
Трансформатор 25 служит для гальванической изоляции и может адаптировать уровень напряжения, например, с 300 В до 30 В. Резонансная топология образуется паразитной индуктивностью 26 трансформатора 25 и последовательным конденсатором 27. Таким образом, паразитная индуктивность рассеяния трансформатора 25 может быть частью формирователя. Вопреки основанным на широтно-импульсной модуляции преобразователям, таким как прямоходовые и обратноходовые топологии, здесь индуктивности рассеяния минимизироваться не нужно. Это имеет преимущество для конструкции изоляции и обмотки и таким образом удерживает себестоимость низкой. Индуктивность рассеяния также может расширяться дополнительным индуктивным элементом.
Адаптивная схема 3 и логические схемы 5 формируют знакопеременные положительные и отрицательные импульсы напряжения с постоянной длительностью импульса. Между этими импульсами напряжения H-мост 11-14 должен оставаться в состоянии свободного хода в течение закладываемого времени. Отсюда выход управляется частотой следования. Если частота резонанса схемы адаптирована надлежащим образом под ширину импульса напряжения и если количество СИД удовлетворяет рабочему диапазону напряжений схемы, был создан идеальный формирователь питания СИД, который демонстрирует следующие признаки:
- Ток в формирователе становится синусоидальным и он является нулевым в моменты переключения. Это уничтожает коммутационные потери и минимизирует электромагнитные помехи (EMI).
- Средний ток в СИД пропорционален входному напряжению постоянного тока формирователя и рабочей частоте. Это означает, что падения напряжений СИД не оказывают влияния на ток на большом диапазоне нагрузок. Если произведение входного напряжения постоянного тока на частоту сохраняется постоянным, средний ток в СИД также постоянен. Более того, ток СИД может меняться от номинального значения вплоть до нуля.
- Система формирователя СИД не требует ни датчиков, ни элементов управления на вторичной стороне (СИД).
- Изменения параметров СИД не оказывают влияния на ток в СИД. Это также учитывает короткое замыкание одиночного СИД. Среднее падение напряжения СИД может меняться между 33% и 100%.
- Номинальное выходное напряжение может устанавливаться коэффициентом трансформации трансформатора 25.
- Система освещения вполне пригодна для питающей сети.
- Функция затемнения может легко вводиться в действие.
- Элемент питания и управления может быть интегрирован в интеллектуальную силовую ИС (интегральную схему, IC).
К тому же, в частности, любое нестабилизированное напряжение Uin постоянного тока может использоваться для питания формирователя. Это напряжение может формироваться из сети переменного тока посредством использования дополнительного диодного моста 41-44 и дополнительного сглаживающего конденсатора 46. Силовая часть формирователя состоит из H-моста, реализованного 4-мя транзисторами 11-14. Эти транзисторы 11-14 управляются адаптивной схемой 3 через логические схемы 5. Схемы сдвига уровня напряжения могут использоваться в качестве средств сопряжения между управляющими электродами транзисторов 11-14 и логическими схемами 5.
Выходные клеммы H-моста 11-14 присоединены к первичной обмотке трансформатора 25 через последовательный конденсатор 27. Вторичная обмотка трансформатора 25 питает диодный мост 21-24. Этот диодный мост 21-24 выпрямляет напряжение переменного тока с трансформатора 25, и сглаживающий конденсатор 28 используется для сглаживания выходного напряжения Uout. Последовательное соединение произвольного количества СИД питается выходным напряжением Uout.
Последовательный конденсатор 27 и паразитная индуктивность 26 трансформатора 25 образуют резонансный контур с частотой fres = (2π)-1 (L26C27) = (Tres)-1 резонанса и с резонансным полным сопротивлением Zres = (L26/C27). H-мост 11-14 формирует поочередно положительные и отрицательные импульсы напряжения (+Uin или -Uin). Положительный импульс напряжения возникает, если транзистор 11 и транзистор 14 находятся во включенном состоянии, наряду с тем, что отрицательный импульс напряжения может устанавливаться с включением транзисторов 12 и 13. Между импульсами напряжения H-мост 11-14 обеспечивает тракт свободного хода, который может выполняться либо включением 11 и 13 либо включением 12 и 14. Временная длительность ton положительных и отрицательных импульсов предпочтительно настраиваются равными половине периода ton = Tres/2 резонанса, не исключая других настроек.
Если длительность импульса постоянна, частота fs может использоваться в качестве параметра управления. Ее максимальное значение должно ограничиваться fmax = fres/2 > fs. Фиг.4 показывает характеристическую волну выходного напряжения H-моста 11-14, а также основную функцию s(t) переключения, формируемую внутри адаптивной схемы 3.
Номинальное выходное напряжение Uout может определяться количеством СИД, соединенных последовательно, и их падениями напряжения. Оно могло оставаться в пределах диапазона напряжений N2 Uin / (3 N1) < Uout < N2 Uin / N1, в силу чего N2 представляет количество витков вторичной обмотки, а N1 представляет количество витков первичной обмотки трансформатора 25. Если условия удовлетворены, два следующих один за другим синусоидальных полуволновых импульса тока отбираются из H-моста 11-14 за каждый импульс напряжения. Соответствующий ток I1(t) представлен на Фиг.7 для определенной рабочей точки. Более того, это изображение также иллюстрирует получающееся в результате напряжение Uc(t) на последовательном конденсаторе 27.
Пренебрегая током намагничивания, вторичный ток трансформатора 25 пропорционален первичному току, I2 = I1 N1 / N2. Вторичный ток трансформатора выпрямляется диодным мостом 21-24. Вследствие сглаживающего конденсатора 28 выходной постоянный ток протекает в нагрузке 6, который равен среднему значению выпрямленного вторичного тока трансформатора.
Выходной ток и соответственно ток СИД пропорционален частоте и входному напряжению: Iout = 2 Uin N1 fs / (Zres π N2 fres). Поскольку входное напряжение Uin меняется в зависимости от напряжения сети и вследствие пульсации напряжения, вызванной небольшим дополнительным сглаживающим конденсатором 46, частота fs может адаптироваться таким образом, что произведение Uin и fs, а соответственно выходной ток Iout сохраняется относительно постоянным.
Это может достигаться адаптивной схемой 3, без исключения других схем, таких как схемы управления. На первом этапе импульсы напряжения без знака, которые должны формироваться переключательной функцией s(t), и входное напряжение Uin постоянного тока фильтруются фильтром нижних частот (например, RC-цепью). Получающееся в результате напряжение постоянного тока является пропорциональным произведению напряжения и частоты. Это напряжение преобразуется в ток посредством преобразователя 33 и сравнивается с опорным током, а разность задает рабочую частоту fs через контроллер 35. Кроме того, контроллер 35 управляет управляемым напряжением генератором 36 колебаний, который формирует fs и который запускает одновибратор 37, который формирует сигнал s(t) управления с импульсами, имеющими длительность ton импульса, и т.д. Предпочтительно, но не исключительно, ton =1/(2 fres). Включение схем 54a, 54b, 55a, 55b задержки привносит временную задержку tdon для избежания короткого замыкания в H-мосте 11-14.
Возможными модификациями являются:
- Вместо MOSFET (полевых транзисторов на основе перехода металл-оксид-полупроводник) может использоваться любая другая транзисторная технология.
- Сглаживающий конденсатор 28, присоединенный параллельно СИД, может быть опущен, и последовательный конденсатор 27 может быть расположен на первичной и/или вторичной стороне трансформатора.
- Тракт свободного хода H-моста 11-14 мог бы всегда реализовываться включением 12 и 14. В этом случае время пребывания во включенном состоянии верхних транзисторов 11 и 13 ограничено постоянной длительностью ton импульса, каковое является преимуществом.
- Входной выпрямитель может быть реализован компенсацией коэффициента мощности схемой выпрямителя PFC.
- Формирователь может быть реализован без трансформатора 25, но с дросселем, таким как последовательный индуктивный элемент для формирования резонансной топологии.
- Полномостовой выходной выпрямитель 21 -24 также мог бы быть замещен комбинацией секционированной выходной обмотки плюс только два диода с преимуществом экономии двух диодов и получения меньших потерь прямой проводимости диода (но за цену необходимости второй обмотки и, может быть, получения асимметричных пиковых токов СИД для положительного и отрицательного входного напряжения трансформатора).
Это изобретение могло бы использоваться для стенового наполнения, задней подсветки ЖКД (жидкокристаллического дисплея, LCD) и общего освещения, не исключая других применений с нагрузками в виде СИД или в виде не СИД.
Подводя итог, адаптивные схемы 3 для управления схемами 1-2 преобразования для преобразования входных сигналов в импульсные сигналы и для преобразования импульсных сигналов в выходные сигналы снабжены генераторами 30 для формирования сигналов управления в зависимости от входных сигналов и (основная идея) схемами 71-72, 81-83 компенсации для настройки генераторов 30 в зависимости от входной информации для повышения стабильности выходных сигналов, чтобы быть способными подавать относительно постоянные выходные сигналы в нагрузку 6. Адаптивные схемы 3 могут снижать зависимости между входными сигналами и выходными сигналами и могут формировать сигналы управления независимо от выходных сигналов, чтобы уничтожить цепи обратной связи. Входные сигналы могут быть входными напряжениями, выходные сигналы могут быть выходными токами, а входная информация может содержать входные напряжения и номинальные входные напряжения для компенсации отклонений входных напряжений или может содержать номинальные выходные напряжения и входные токи, пропорциональные выходным напряжениям, для компенсации отклонений выходных напряжений.
Должно быть отмечено, что вышеупомянутые варианты осуществления скорее иллюстрируют, чем ограничивают изобретение, и что специалисты в данной области техники будут способны сконструировать многочисленные альтернативные варианты осуществления, не выходя из объема прилагаемой формулы изобретения. В формуле изобретения любые символы ссылок, размещенные между круглыми скобками, не должны истолковываться в качестве ограничивающих формулу изобретения. Использование глагола «содержать» и его спряжений не исключает наличия элементов или этапов, иных, чем изложенные в формуле изобретения. Использование единственного числа при описании элемента не исключает наличия множества таких элементов. Изобретение может быть реализовано посредством аппаратных средств, содержащих несколько отдельных элементов, и посредством подходящим образом запрограммированного компьютера. В пункте формулы изобретения об устройстве, перечисляющем несколько средств, некоторые из этих средств могут быть воплощены одним и тем же элементом аппаратных средств. Простое обстоятельство, что определенные критерии перечислены во взаимно разных зависимых пунктах формулы изобретения, не служит признаком того, что сочетание этих критериев не может быть использовано с выгодой.

Claims (9)

1. Адаптивная схема (3) для управления схемой (1-2) преобразования для преобразования входного сигнала в импульсный сигнал и для преобразования импульсного сигнала в выходной сигнал, каковая адаптивная схема (3) содержит вход (38) для приема входного сигнала, генератор (30) для формирования сигнала управления в зависимости от входного сигнала, выход (40) для подачи сигнала управления на схему (1-2) преобразования, и схему (71-72, 81-83) компенсации для настройки генератора (30) в зависимости от входной информации для повышения стабильности выходного сигнала, при этом, адаптивная схема (3) выполнена с возможностью снижения зависимости между входным сигналом и выходным сигналом и формирования сигнала управления независимо от выходного сигнала.
2. Адаптивная схема (3) по п.1, в которой входным сигналом является входное напряжение, а выходным сигналом является выходной ток, и входная информация содержит входное напряжение и номинальное входное напряжение для компенсации отклонений входного напряжения.
3. Адаптивная схема (3) по п.2, в которой генератор (30) содержит умножитель (31) для перемножения входного напряжения и сигнала управления, фильтр (32) нижних частот для фильтрации нижних частот выходного сигнала умножителя, преобразователь (33) для преобразования выходного сигнала фильтра нижних частот в преобразованный выходной сигнал фильтра нижних частот, элемент (34) для определения разности между преобразованным выходным сигналом фильтра нижних частот и взвешенной разностью между входным напряжением и номинальным входным напряжением, контроллер (35) для приема выходного сигнала элемента, управляемый напряжением генератор (36) колебаний для приема выходного сигнала контроллера, и
одновибратор (37) для приема выходного сигнала управляемого напряжением генератора колебаний и для формирования сигнала управления.
4. Адаптивная схема (3) по п.1, в которой входным сигналом является входное напряжение, а выходным сигналом является выходной ток, и входная информация содержит номинальное выходное напряжение и входной ток, который пропорционален выходному напряжению, для компенсации отклонений выходного напряжения.
5. Адаптивная схема (3) по п.4, в которой генератор (30) содержит умножитель (31) для перемножения входного напряжения и сигнала управления, фильтр (32) нижних частот для фильтрации нижних частот выходного сигнала умножителя, преобразователь (33) для преобразования выходного сигнала фильтра нижних частот в преобразованный выходной сигнал фильтра нижних частот, элемент (34) для определения разности между преобразованным выходным сигналом фильтра нижних частот и взвешенной разностью между номинальным выходным напряжением и подвергнутым пиковому детектированию входным током, контроллер (35) для приема выходного сигнала элемента,
управляемый напряжением генератор (36) колебаний для приема выходного сигнала контроллера и одновибратор (37) для приема выходного сигнала управляемого напряжением генератора колебаний и для формирования сигнала управления.
6. Схема (1-3) питания, содержащая адаптивную схему (3) по п.1 и содержащая схему (1-2) преобразования.
7. Устройство (10), содержащее схему (1-3) питания по п.6 и дополнительно содержащее нагрузку (6) для приема выходного сигнала.
8. Способ для управления схемой (1-2) преобразования для преобразования входного сигнала в импульсный сигнал и для преобразования импульсного сигнала в выходной сигнал, каковой способ содержит этапы, на которых принимают входной сигнал, формируют сигнал управления в зависимости от входного сигнала, подают сигнал управления в схему преобразования и настраивают формирование в зависимости от входной информации для повышения стабильности выходного сигнала, при этом способ выполнен с возможностью снижения зависимости между входным сигналом и выходным сигналом и формирования сигнала управления независимо от выходного сигнала.
9. Носитель для хранения и содержания компьютерного программного продукта для выполнения этапов способа по п.8.
RU2009113004/07A 2006-09-08 2007-08-30 Адаптивная схема для управления схемой преобразования RU2427953C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06120336 2006-09-08
EP06120336.0 2006-09-08

Publications (2)

Publication Number Publication Date
RU2009113004A RU2009113004A (ru) 2010-10-20
RU2427953C2 true RU2427953C2 (ru) 2011-08-27

Family

ID=39032194

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009113004/07A RU2427953C2 (ru) 2006-09-08 2007-08-30 Адаптивная схема для управления схемой преобразования

Country Status (7)

Country Link
US (1) US20100289532A1 (ru)
EP (1) EP2064807A2 (ru)
JP (1) JP2010503375A (ru)
CN (1) CN101512886A (ru)
RU (1) RU2427953C2 (ru)
TW (1) TW200822515A (ru)
WO (1) WO2008029330A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604869C2 (ru) * 2011-07-25 2016-12-20 Филипс Лайтинг Холдинг Б.В. Система и способ воплощения уменьшения яркости, проводимого на основе сигнала сети, твердотельного осветительного модуля
RU2606387C2 (ru) * 2011-09-06 2017-01-10 Филипс Лайтинг Холдинг Б.В. Блок управления мощностью и способ управления электрической мощностью, выдаваемой на нагрузку, в частности в блок светоизлучающих диодов и блок управления напряжением, для управления выходным напряжением блока преобразователя

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259424A1 (en) 2004-05-18 2005-11-24 Zampini Thomas L Ii Collimating and controlling light produced by light emitting diodes
US7766511B2 (en) 2006-04-24 2010-08-03 Integrated Illumination Systems LED light fixture
US7729941B2 (en) 2006-11-17 2010-06-01 Integrated Illumination Systems, Inc. Apparatus and method of using lighting systems to enhance brand recognition
US8013538B2 (en) 2007-01-26 2011-09-06 Integrated Illumination Systems, Inc. TRI-light
EP2127487B1 (en) * 2007-03-13 2011-06-08 Philips Intellectual Property & Standards GmbH Supply circuit
US8742686B2 (en) 2007-09-24 2014-06-03 Integrated Illumination Systems, Inc. Systems and methods for providing an OEM level networked lighting system
US8255487B2 (en) * 2008-05-16 2012-08-28 Integrated Illumination Systems, Inc. Systems and methods for communicating in a lighting network
TWI586216B (zh) * 2008-10-08 2017-06-01 Holdip Ltd 照明系統之改良
RU2566736C2 (ru) 2009-02-26 2015-10-27 Конинклейке Филипс Электроникс Н.В. Резонансный преобразователь
WO2010109371A1 (en) 2009-03-23 2010-09-30 Koninklijke Philips Electronics N.V. Supply circuit
US8585245B2 (en) 2009-04-23 2013-11-19 Integrated Illumination Systems, Inc. Systems and methods for sealing a lighting fixture
KR101683765B1 (ko) * 2009-10-30 2016-12-21 삼성디스플레이 주식회사 광원 구동 방법 및 이를 수행하기 위한 표시 장치
US9066381B2 (en) 2011-03-16 2015-06-23 Integrated Illumination Systems, Inc. System and method for low level dimming
US9967940B2 (en) 2011-05-05 2018-05-08 Integrated Illumination Systems, Inc. Systems and methods for active thermal management
US20150237700A1 (en) 2011-07-26 2015-08-20 Hunter Industries, Inc. Systems and methods to control color and brightness of lighting devices
US9521725B2 (en) 2011-07-26 2016-12-13 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US10874003B2 (en) 2011-07-26 2020-12-22 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US8710770B2 (en) 2011-07-26 2014-04-29 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US11917740B2 (en) 2011-07-26 2024-02-27 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US9609720B2 (en) 2011-07-26 2017-03-28 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
CN103947290B (zh) * 2011-11-16 2017-04-12 飞利浦照明控股有限公司 用于操作低功率照明单元的电路装置及操作其的方法
DE102011088169A1 (de) * 2011-12-09 2013-06-13 Robert Bosch Gmbh Spannungswandler für ein Kraftfahrzeug
TWI487994B (zh) * 2012-07-13 2015-06-11 Univ Ishou Light emitting diode drive
US8894437B2 (en) 2012-07-19 2014-11-25 Integrated Illumination Systems, Inc. Systems and methods for connector enabling vertical removal
US9351357B2 (en) * 2012-09-26 2016-05-24 Koninklijke Philips N.V. Light emitting diode lamp and driver
US9379578B2 (en) 2012-11-19 2016-06-28 Integrated Illumination Systems, Inc. Systems and methods for multi-state power management
US9420665B2 (en) 2012-12-28 2016-08-16 Integration Illumination Systems, Inc. Systems and methods for continuous adjustment of reference signal to control chip
US9485814B2 (en) 2013-01-04 2016-11-01 Integrated Illumination Systems, Inc. Systems and methods for a hysteresis based driver using a LED as a voltage reference
US10228711B2 (en) 2015-05-26 2019-03-12 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10918030B2 (en) 2015-05-26 2021-02-16 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10030844B2 (en) 2015-05-29 2018-07-24 Integrated Illumination Systems, Inc. Systems, methods and apparatus for illumination using asymmetrical optics
US10060599B2 (en) 2015-05-29 2018-08-28 Integrated Illumination Systems, Inc. Systems, methods and apparatus for programmable light fixtures
TWI596876B (zh) * 2016-12-28 2017-08-21 致茂電子股份有限公司 電源轉換裝置及其控制方法
JP6575555B2 (ja) * 2017-04-05 2019-09-18 株式会社豊田中央研究所 電力変換装置
CN110048597B (zh) * 2018-01-15 2021-01-15 株式会社村田制作所 功率因数校正电路的控制方法、控制器及系统
US11063519B2 (en) * 2019-05-02 2021-07-13 Howard Sanders Efficient high voltage power supply for pulse capacitor discharge applications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387686A3 (de) * 1989-03-17 1993-03-17 Siemens Aktiengesellschaft Verfahren zur Spannungs-Frequenz-Wandlung und Einrichtung zur Durchführung des Verfahrens
JP3400504B2 (ja) * 1993-10-29 2003-04-28 富士電機株式会社 半導体電力変換装置の入力振動抑制方法
JPH1167471A (ja) * 1997-08-26 1999-03-09 Tec Corp 照明装置
JP2001267890A (ja) * 2000-03-22 2001-09-28 Hitachi Ltd クロック発生装置、バスインタフェース制御装置及び情報処理装置
US6813173B2 (en) 2000-10-26 2004-11-02 02Micro International Limited DC-to-DC converter with improved transient response
US7262628B2 (en) * 2004-07-02 2007-08-28 Primarion, Inc. Digital calibration with lossless current sensing in a multiphase switched power converter
US7005835B2 (en) * 2002-06-28 2006-02-28 Microsemi Corp. Method and apparatus for load sharing in a multiphase switching power converter
TW200505139A (en) * 2003-07-30 2005-02-01 Delta Electronics Inc Method and apparatus for decreasing capacitor current of bus
CN1868110A (zh) 2003-10-13 2006-11-22 皇家飞利浦电子股份有限公司 功率变换器
DE102004026148B4 (de) * 2004-05-28 2010-06-24 Advanced Micro Devices, Inc., Sunnyvale Digital gesteuertes Filter-Tuning für WLAN-Kommunikationsgeräte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604869C2 (ru) * 2011-07-25 2016-12-20 Филипс Лайтинг Холдинг Б.В. Система и способ воплощения уменьшения яркости, проводимого на основе сигнала сети, твердотельного осветительного модуля
RU2606387C2 (ru) * 2011-09-06 2017-01-10 Филипс Лайтинг Холдинг Б.В. Блок управления мощностью и способ управления электрической мощностью, выдаваемой на нагрузку, в частности в блок светоизлучающих диодов и блок управления напряжением, для управления выходным напряжением блока преобразователя

Also Published As

Publication number Publication date
CN101512886A (zh) 2009-08-19
JP2010503375A (ja) 2010-01-28
RU2009113004A (ru) 2010-10-20
EP2064807A2 (en) 2009-06-03
WO2008029330A2 (en) 2008-03-13
WO2008029330A3 (en) 2008-05-15
TW200822515A (en) 2008-05-16
WO2008029330A9 (en) 2008-10-09
US20100289532A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
RU2427953C2 (ru) Адаптивная схема для управления схемой преобразования
RU2427954C2 (ru) Схема питания и устройство, содержащее схему питания
US8525428B2 (en) Power supply apparatus and method for a backlight system
US8923019B2 (en) DC/DC converter, power converter and control method thereof
US6396717B2 (en) Switching power supply having an improved power factor by voltage feedback
EP2432105B1 (en) Power factor correcting current resonance converter
US7696733B2 (en) Resonant switching power source device
JP4232845B1 (ja) 直流変換装置
JP5434371B2 (ja) 共振型スイッチング電源装置
US8787039B2 (en) Hybrid adaptive power factor correction schemes for switching power converters
US20110188269A1 (en) Switching power-supply apparatus
JP2007174793A (ja) 多出力スイッチング電源装置
JP2001351789A (ja) 発光ダイオード駆動装置
US20120033451A1 (en) Converter
JP2014060895A (ja) 電源装置
TWI792036B (zh) 切換式電力轉換器、及用於控制其之方法及封裝積體電路
CN111654189B (zh) 谐振式电源转换装置
JP2011087394A (ja) スイッチング素子駆動用制御回路およびスイッチング電源装置
JP2007028751A (ja) 多出力スイッチング電源装置
US20150009722A1 (en) Power supply
KR100988561B1 (ko) 스위칭 컨버터와 선형 레귤레이터를 이용한 전력변환장치
JP2012125025A (ja) 電力変換装置
JP2002034240A (ja) 自励方式スイッチング電源回路
JP2022525437A (ja) 負荷を駆動するための変換器、ledドライバ及びled照明装置
JPH08251924A (ja) 交流直流変換電源回路

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120831