RU2427954C2 - Схема питания и устройство, содержащее схему питания - Google Patents

Схема питания и устройство, содержащее схему питания Download PDF

Info

Publication number
RU2427954C2
RU2427954C2 RU2008139417/07A RU2008139417A RU2427954C2 RU 2427954 C2 RU2427954 C2 RU 2427954C2 RU 2008139417/07 A RU2008139417/07 A RU 2008139417/07A RU 2008139417 A RU2008139417 A RU 2008139417A RU 2427954 C2 RU2427954 C2 RU 2427954C2
Authority
RU
Russia
Prior art keywords
circuit
signal
power circuit
output
input
Prior art date
Application number
RU2008139417/07A
Other languages
English (en)
Other versions
RU2008139417A (ru
Inventor
Маттиас ВЕНДТ (NL)
Маттиас ВЕНДТ
ДЕР БРУК Хайнц ВАН (NL)
ДЕР БРУК Хайнц ВАН
Георг ЗАУЭРЛЕНДЕР (NL)
Георг ЗАУЭРЛЕНДЕР
Дирк ХЕНТЕ (NL)
Дирк ХЕНТЕ
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2008139417A publication Critical patent/RU2008139417A/ru
Application granted granted Critical
Publication of RU2427954C2 publication Critical patent/RU2427954C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Схемы питания (1-3, 101-102, 201-203) для подачи выходных сигналов тока на нагрузки (6, 106, 206) и содержащие первые схемы (1, 101, 201) с транзисторами (11-14, 111-112, 211-212) для преобразования входных сигналов напряжения в импульсные сигналы и содержащие вторые схемы (2, 102, 202) с резонансными контурами для приема импульсных сигналов и для подачи выходных сигналов тока на нагрузки (6, 106, 206) представлены с третьими схемами (3, 203) для управления первыми схемами (1, 101, 201), причем третьи схемы (3, 203) содержат генераторы (35-37) для генерации управляющих сигналов для управления транзисторами (11-14, 111-112, 211-212) для того, чтобы уменьшить зависимости между входными сигналами напряжения и выходными сигналами тока. Третьи схемы (3, 203) подают управляющие сигналы в зависимости от входных сигналов напряжения и независимо от выходных сигналов тока. Транзисторы (11-14, 111-112, 211-212) могут образовать полный мост, полный мост, работающий в режиме полумоста, или полумост. Технический результат - подача постоянного сигнала на нагрузку. 4 н. и 15 з.п. ф-лы, 29 ил.

Description

Изобретение относится к схеме питания для подачи выходного сигнала на нагрузку и также относится к устройству, содержащему схему питания, к способу, компьютерному программному продукту и носителю для хранения компьютерного программного продукта.
Примерами такой схемы питания являются схемы переключения в режим источников электропитания, не исключая и другие схемы питания. Примерами такой нагрузки являются один светодиод, а также два или несколько последовательных светодиодов, а также два или несколько параллельных светодиодов, не исключая и другие нагрузки.
Схема питания предшествующего уровня техники известна из Патента США 6853150 B2, который раскрывает схему питания, содержащую транзисторную схему с двумя транзисторами в конфигурации полумоста и содержащую импедансную цепь с катушкой индуктивности и конденсаторами, соединенными со светодиодами.
Схема питания предшествующего уровня техники не оптимальна, в частности, в том, что колебание входного сигнала и/или колебания падения напряжения на светодиодах может привести к колебанию выходного сигнала, которое может привести к колебанию яркости светодиода.
Патент США 2005/0073859 раскрывает преобразователь постоянного тока в переменный ток и интегральную схему его контроллера. Этот преобразователь постоянного тока в переменный ток содержит схему детектирования тока для детектирования величины тока, протекающего через нагрузку для генерации сигнала детектирования тока (параграф 0017). Этот сигнал детектирования тока подается назад на интегральную схему контроллера (параграф 0049).
Задача изобретения, в частности, заключается в предоставлении схемы питания, которая поставляет относительно постоянный выходной сигнал на нагрузку.
Кроме того, задачи изобретения, в частности, заключаются в предоставлении устройства, содержащего схему питания, которая подает относительно постоянный выходной сигнал на нагрузку, чтобы предоставить способ подачи относительно постоянного выходного сигнала на нагрузку, в предоставлении компьютерного программного продукта и в предоставлении носителя.
В соответствии с изобретением схема питания для подачи выходного сигнала на нагрузку содержит
первую схему для преобразования входного сигнала в импульсный сигнал, причем первая схема содержит транзисторы,
вторую схему для приема импульсного сигнала и для подачи выходного сигнала на нагрузку, причем вторая схема содержит резонансный контур, и
третью схему для управления первой схемой, причем третья схема содержит генератор для генерации управляющего сигнала для управления транзисторами, для уменьшения зависимости между входным сигналом и выходным сигналом, причем третья схема содержит вход для приема входного сигнала и содержит выход для подачи управляющего сигнала в зависимости от входного сигнала и независимо от выходного сигнала.
Посредством введения, в дополнение к первой схеме и второй схеме, третьей схемы для управления первой схемой, причем третья схема содержит генератор для генерации управляющего сигнала для управления транзисторами таким образом, чтобы зависимость между входным сигналом и выходным сигналом уменьшалась, схема питания в соответствии с изобретением подает относительно постоянный выходной сигнал на нагрузку.
Входной сигнал, например, содержит сигнал входного напряжения, не исключая и других входных сигналов, и выходной сигнал, например, содержит выходной сигнал тока, не исключая и других выходных сигналов.
Схема питания в соответствии с изобретением, кроме того, снижает зависимость между, например, выходным сигналом напряжения и, например, выходным сигналом тока.
Выход для подачи управляющего сигнала в зависимости от входного сигнала и независимо от выходного сигнала удачно позволяет избежать использования невыгодного контура обратной связи от нагрузки (вторичная сторона) к первой схеме (первичная сторона). Другими словами, управляющий сигнал подается в зависимости от сигнала первичной стороны и независимо от сигнала вторичной стороны.
Вариант реализации схемы питания в соответствии с изобретением определен третьей схемой, содержащей, кроме того, вход для приема опорного сигнала, причем управляющий сигнал, кроме того, зависит от опорного сигнала. Этот вариант реализации успешно позволяет выходному сигналу быть отрегулированным посредством регулировки опорного сигнала. Опорный сигнал, например, содержит опорный сигнал тока, не исключая и других опорных сигналов.
Вариант реализации схемы питания в соответствии с изобретением определен третьей схемой, содержащей мультипликатор для умножения входного сигнала и управляющего сигнала, и содержащий фильтр низких частот для низкочастотной фильтрации выходного сигнала мультипликатора, и содержащий преобразователь для преобразования выходного сигнала фильтра низких частот, и содержащий сумматор для суммирования преобразованного и инвертированного выходного сигнала фильтра низких частот и опорного сигнала, генератор, содержащий контроллер для приема выходного сигнала сумматора, и содержащий управляемый напряжением вибратор для приема выходного сигнала контроллера, и содержащий монотриггер для приема выходного сигнала, управляемого напряжением вибратора, и для генерации управляющего сигнала. Этот вариант реализации успешно использует третью схему, содержащую управляющий контур. Сложение преобразованного и инвертированного выходного токового сигнала фильтра низких частот и опорного сигнала, естественно, соответствует вычитанию выходного сигнала фильтра низких частот из опорного сигнала. Выходной сигнал мультипликатора, например, содержит сигнал выходного напряжения мультипликатора, выходной сигнал фильтра низких частот, например, содержит выходной сигнал напряжения фильтра низких частот перед входом в преобразователь и, например, содержит выходной сигнал тока фильтра низких частот с другой стороны преобразователя, и выходной сигнал сумматора, например, содержит выходной сигнал тока сумматора, не исключая и другие сигналы.
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим первые импульсы, имеющие первую амплитуду, и содержащим вторые импульсы, имеющие вторую амплитуду, отличающуюся от первой амплитуды, и содержащим уровни, имеющие третью амплитуду, отличающуюся от первой и второй амплитуд. Этот вариант реализации успешно использует импульсный сигнал с тремя различными амплитудами, которые увеличивают число вариантов управления.
Предпочтительно, схема питания в соответствии с изобретением определена первой амплитудой, являющейся положительной амплитудой, второй амплитудой, являющейся отрицательной амплитудой, и третьей амплитудой, являющейся по существу нулевой амплитудой. Этот вариант реализации успешно использует симметричный импульсный сигнал.
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей первый транзистор, имеющий первый главный электрод, соединенный с первым опорным выводом, и имеющий второй главный электрод, соединенный с первым входом второй схемы, и содержащей второй транзистор, имеющий первый главный электрод, соединенный со вторым главным электродом первого транзистора, и имеющий второй главный электрод, соединенный со вторым опорным выводом, и содержащей третий транзистор, имеющий первый главный электрод, соединенный с первым опорным выводом и имеющий второй главный электрод, соединенный со вторым входом второй схемы, и содержащей четвертый транзистор, имеющий первый главный электрод, соединенный со вторым главным электродом третьего транзистора и имеющий второй главный электрод, соединенный со вторым опорным выводом. Этот вариант реализации успешно использует первую схему, содержащую четыре транзистора в конфигурации полного моста (двухполупериодный H-мост).
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей логическую схему для получения управляющего сигнала и содержащей выходы, соединенные с управляющими электродами транзисторов для перевода первого и четвертого транзисторов в проводящее состояние для создания первых импульсов и для перевода второго и третьего транзисторов в проводящее состояние, для создания вторых импульсов, и для перевода также первого и третьего, или второго и четвертого транзисторов в проводящее состояние, чтобы создать уровни. Этот вариант реализации успешно использует логическую схему в первой схеме для соединения первой и третьей схем друг с другом.
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим первые импульсы, имеющие первую амплитуду, и содержащий вторые импульсы, имеющие вторую амплитуду, отличную от первой амплитуды. Этот вариант реализации успешно использует импульсный сигнал только с двумя различающимися амплитудами.
Предпочтительно, схема питания в соответствии с изобретением определена первой амплитудой, являющейся положительной амплитудой и второй амплитудой, являющейся отрицательной амплитудой. Этот вариант реализации успешно использует симметричный импульсный сигнал.
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей четыре транзисторные топологии, описанные выше, при которой четыре транзистора управляются таким образом, что в данном случае подводится только импульсный сигнал с двумя различающимися амплитудами. Этот вариант реализации успешно использует первую схему, содержащую четыре транзистора в конфигурации полного моста (H-мост), который в данном случае подводит импульсный сигнал только с двумя амплитудами.
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим третьи импульсы, имеющие четвертую амплитуду, и содержащим уровень, имеющий пятую амплитуду. Этот вариант реализации успешно использует импульсный сигнал только с двумя различающимися амплитудами, причем одна из этих амплитуд реализована посредством импульса и другая амплитуда реализована посредством уровня.
Предпочтительно, схема питания в соответствии с изобретением определена четвертой амплитудой, являющейся положительной амплитудой, и пятой амплитудой, являющейся по существу нулевой амплитудой. Этот вариант реализации успешно использует асимметричный импульсный сигнал.
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей первый транзистор, имеющий первый главный электрод, соединенный с первым опорным выводом, и имеющий второй главный электрод, соединенный с первым входом второй схемы, и содержащей второй транзистор, имеющий первый главный электрод, соединенный со вторым главным электродом первого транзистора, и имеющий второй главный электрод, соединенный со вторым опорным выводом, причем второй опорный вывод, кроме того, соединен со вторым входом второй схемы. Этот вариант реализации успешно использует первую схему, содержащую два транзистора в конфигурации полумоста.
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей логическую схему для получения управляющего сигнала и содержащей выходы, соединенные с управляющими электродами транзисторов для перевода первого транзистора в проводящее состояние, чтобы создать третий импульс, и для перевода второго транзистора в проводящее состояние, чтобы создать уровни. Этот вариант реализации успешно использует логическую схему в первой схеме для соединения первой и третьей схем друг с другом.
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей полумост, и третьей схемой, выполненной для управления полумостом при Ts≥4·tau, где tau - половина периода резонанса резонансного контура, и Ts - время переключения.
Предпочтительно, схема питания в соответствии с изобретением определена первой схемой, содержащей полный мост, и третьей схемой, выполненной для управления полным мостом либо как однополупериодным мостом при on&off time=2·tau (время включения-выключения) и при Ts≥4·tau, либо как полным мостом без свободного состояния при on+&on-time=2·tau и при Ts≥4·tau, или как полным мостом со свободным состоянием при on+&on-time=tau и свободными состояниями длительностью tau вслед за каждым импульсом и Ts≥4·tau, где tau - половина периода резонанса резонансного контура и Ts - время переключения.
Вариант реализации схемы питания в соответствии с изобретением определен резонансным контуром, содержащим трансформатор и конденсатор, соединенный последовательно с первичной стороной трансформатора или с вторичной стороной трансформатора. Этот вариант реализации успешно использует трансформатор для обеспечения гальванической развязки. Возможно, вторая схема, кроме того, содержит выпрямляющую схему, содержащую один или несколько диодов, соединенных с вторичной стороной трансформатора. Этот вариант реализации, кроме того, успешно использует конденсатор в комбинации с индуктивностью рассеяния трансформатора (и/или с отдельной катушкой индуктивности) для создания резонансного контура.
Вариант реализации схемы питания в соответствии с изобретением определен резонансным контуром, содержащим катушку индуктивности и конденсатор, соединенный последовательно с первичной стороной катушки индуктивности или с вторичной стороной катушки индуктивности. Этот вариант реализации успешно использует катушку индуктивности. Такая катушка индуктивности намного дешевле трансформатора. Возможно, вторая схема, кроме того, содержит выпрямляющую схему, содержащую один или несколько диодов, соединенных с вторичной стороной катушки индуктивности. Этот вариант реализации, кроме того, успешно использует конденсатор в комбинации с катушкой индуктивности для создания резонансного контура.
Вариант реализации схемы питания в соответствии с изобретением определен нагрузкой, содержащей один или несколько светодиодов.
Вариант реализации схемы питания в соответствии с изобретением определен содержанием одного или нескольких входных диодов для выпрямления сигнала переменного тока, причем входной сигнал содержит выпрямленный сигнал переменного тока. Сигнал переменного тока, например, содержит сигнал напряжения переменного тока, не исключая и другие сигналы переменного тока.
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим импульс, имеющий длительность, по существу равную половине резонансного периода резонансного контура (полный мост).
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим импульсы, имеющие частоту по существу равную или меньшую половины резонансной частоты резонансного контура (полный мост).
Вариант реализации схемы питания в соответствии с изобретением определен произведением входного сигнала и частоты импульсов, являющимся по существу постоянным. Таким образом, создается постоянный выходной сигнал тока, который является независимым от входного сигнала напряжения.
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим импульс с длительностью, по существу равной резонансному периоду резонансного контура (полумост).
Вариант реализации схемы питания в соответствии с изобретением определен импульсным сигналом, содержащим импульсы, имеющие частоту по существу равную или меньшую резонансной частоты резонансного контура (полумост).
Вариант реализации схемы питания в соответствии с изобретением определен произведением входного сигнала и частоты импульсов, являющегося по существу постоянным. Таким образом, создается постоянный выходной сигнал тока, который является независимым от входного напряжения сигнала.
Варианты реализации устройства в соответствии с изобретением и способа в соответствии с изобретением и компьютерного программного продукта в соответствии с изобретением и носителя в соответствии с изобретением соответствуют вариантам реализации схемы питания в соответствии с изобретением.
Изобретение основано на понимании того, в частности, что колебания входного напряжения могут привести к колебанию выходного тока, которое следует избегать, и основано на основной идее, в частности, что в дополнение к первой схеме и второй схеме вводится третья схема для управления первой схемой таким образом, что зависимость между входным сигналом и выходным сигналом снижается.
Изобретение решает задачу, в частности, обеспечения схемы питания, которая подает относительно постоянный выходной сигнал на нагрузку и, кроме того, выгодно, в частности, снижением зависимости между, например, выходным сигналом напряжения и, например, выходным сигналом тока.
Эти и другие аспекты изобретения будут очевидны и объяснены описанными в дальнейшем вариантами реализации.
Среди чертежей:
Фиг.1 - схематически показана схема питания в соответствии с изобретением, содержащая первую, вторую и третью схемы,
Фиг.2 - схематически показан преобразователь переменного тока в постоянный ток,
Фиг.3 - показана логическая схема для первой схемы,
Фиг.4 - показана третья схема более подробно,
Фиг.5 - показан управляющий сигнал и результирующий импульсный сигнал,
Фиг.6 - показан ток через первичную сторону трансформатора второй схемы и напряжение на конденсаторе второй схемы как функция импульсного сигнала,
Фиг.7 - показан ток через вторичную сторону трансформатора второй схемы и ток через нагрузку как функция импульсного сигнала,
Фиг.8 - показано устройство в соответствии с изобретением.
Фиг.9 - показан управляющий сигнал и отдельные управляющие сигналы, полученные из него логической схемой и предназначенные для отдельных транзисторов,
Фиг.10 - показана схематически другая схема питания в соответствии с изобретением,
Фиг.11 - показана схематически другая схема питания в соответствии с изобретением.
Фиг.12 - показана схематически другая схема питания в соответствии с изобретением,
Фиг.13 - показана схематически другая схема питания в соответствии с изобретением,
Фиг.14 - показано напряжение, подаваемое первой схемой и напряжение на конденсаторе как функция времени,
Фиг.15 - показан ток через катушку индуктивности как функция времени,
Фиг.16 - показаны напряжения и токи для различных ситуаций A-F как функция времени,
Фиг.17 - показаны токи для различных ситуаций A-C как функция времени.
Фиг.18 - показаны токи для различных ситуаций A-C как функция времени,
Фиг.19 - показана схематически другая схема питания в соответствии с изобретением, и
Фиг.20 - показаны токи и напряжение для периода переключения как функция времени (Ts>4·tau), tau=половина резонансного периода.
Схема питания 1-3 в соответствии с изобретением, показанная на Фиг.1, содержит первую схему 1 и вторую схему 2 и третью схему 3. Первая схема 1 содержит источник 4 напряжения для генерирования входного сигнала напряжения Uin посредством первого и второго контрольных выводов 15 и 16. Первая схема 1, кроме того, содержит четыре транзистора 11-14. Первый транзистор 11 имеет первый главный электрод, соединенный с первым контрольным выводом 15, и имеет второй главный электрод, соединенный с первым входом 20a второй схемы 2. Второй транзистор 12 имеет первый главный электрод, соединенный со вторым главным электродом первого транзистора 11, и имеет второй главный электрод, соединенный со вторым контрольным выводом 16. Третий транзистор 13 имеет первый главный электрод, соединенный с первым контрольным выводом 15, и имеет второй главный электрод, соединенный со вторым входом 20b второй схемы 2. Четвертый транзистор 14 имеет первый главный электрод, соединенный со вторым главным электродом третьего транзистора 13, и имеет второй главный электрод, соединенный со вторым контрольным выводом 16. Первая схема 1, кроме того, содержит логическую схему 5, соединенную с третьей схемой 3 и с управляющими электродами транзисторов 11-14. Эта логическая схема 5 будет рассмотрена в связи с Фиг.3.
Вторая схема 2 содержит от входа 20a до входа 20b, например, последовательный резонансный контур из конденсатора 27, индуктивности 26 и первичной стороны трансформатора 25. Индуктивность 26 обычно, по меньшей мере, частично формируется паразитной индуктивностью трансформатора 25. Вторая схема 2 возможно, кроме того, содержит четыре выходных диода 21-24, соединенных с вторичной стороной трансформатора 25 и образующих выпрямляющую схему, которая, кроме того, соединена со сглаживающим конденсатором 28 и с нагрузкой 6, например, содержащей три последовательных светодиода.
Преобразователь 4 переменного тока в постоянный ток или источник напряжения 4, показанный на Фиг.2, содержит источник напряжения переменного тока 45, соединенный с четырьмя диодами, образующими дополнительную выпрямляющую схему, которая, кроме того, соединена с дополнительным сглаживающим конденсатором 46.
Логическая схема 5, изображенная на Фиг.3, содержит мультивибратор 51, принимающий управляющий сигнал s(t) от третьей схемы 3. Q-выход мультивибратора соединен со схемой 52И, которая, кроме того, принимает управляющий сигнал s(t) и инвертированный Q-выход ждущего мультивибратора 51 соединен со схемой 53И, которая, кроме того, принимает управляющий сигнал s(t). Выход схемы И 52 соединен через неинвертор 52a со схемой задержки tdon 54a и через инвертор 52b со схемой задержки tdon 54b. Выход схемы И 53 соединен через неинвертор 53a со схемой задержки tdon 55a и через инвертор 53b со схемой задержки tdon 55b. Соответствующие схемы задержки tdon 54a и 54b, и 55a и 55b, соединены с управляющими электродами соответствующих транзисторов 11-14 возможно через переключатель 56 уровня для транзисторов 11 и 12 и переключатель 57 уровня для транзисторов 13 и 14.
Третья схема 3, показанная на Фиг.4, содержит вход 30a для приема входного сигнала напряжения Uin (в более общем случае: входной сигнал или сигнал первичной стороны) и содержит выход 30c для подачи управляющего сигнала s(t) в зависимости от входного сигнала напряжения Uin и независимо от выходного сигнала тока через нагрузку 6. Третья схема 3, кроме того, содержит дополнительный вход 30b для приема опорного сигнала тока, управляющего сигнала s(t), кроме того, зависящего от опорного сигнала тока. К тому же третья схема 3 содержит умножитель 31 для перемножения входного сигнала напряжения Uin и управляющего сигнала s(t) и содержит фильтр 32 нижних частот для низкочастотной фильтрации выходного сигнала напряжения мультипликатора, и содержит преобразователь 33 для преобразования выходного сигнала напряжения фильтра низких частот в выходной сигнал тока фильтра низких частот, и содержит сумматор 34 для суммирования инвертированного выходного сигнала тока фильтра низких частот и опорного сигнала тока. Генератор 35-37 содержит контроллер 35 для приема выходного сигнала тока сумматора, и содержит управляемый напряжением вибратор 36 для приема выходного сигнала контроллера, и содержит, монотриггер 37 для приема выходного сигнала вибратора управляемого напряжением и для генерации управляющего сигнала s(t).
На Фиг.5 показаны управляющий сигнал s(t) и результирующий импульсный сигнал U1(t). Импульсный сигнал U1 имеет первые импульсы, имеющие первую амплитуду +Uin, и имеет вторые импульсы, имеющие вторую амплитуду -Uin, отличающуюся от первой амплитуды, и имеет уровни, имеющие третью амплитуду 0, отличающуюся от первой и второй амплитуд. Предпочтительно, первая амплитуда является положительной амплитудой, вторая амплитуда - отрицательной амплитудой и третья амплитуда - по существу нулевая амплитуда.
На Фиг.6 показаны ток I1(t) через первичную сторону трансформатора 25 второй схемы 2 и напряжение Uc(t) на конденсаторе 27 второй схемы 2 как функция импульсного сигнала U1(t).
На Фиг.7 показаны ток ID(t) через вторичную сторону трансформатора 25 второй схемы 2 (после выпрямителя) и ток Iout через нагрузку 6 как функция импульсного сигнала U1(t).
Устройство 10 в соответствии с изобретением, показанное на Фиг.8, содержит первую, вторую и третью схемы 1-3 и нагрузку 6 и источник напряжения 4, в данном случае расположенный вне первой схемы 1.
На Фиг.9 показаны управляющий сигнал s(t) и отдельный управляющий сигнал f1 (выход схемы И 53) и f2 (выход схемы И 52) и T1-T4 (выходы tdon схем задержки 54a, 54b, 55a, 55b), полученные из логической схемы 5 и предназначенные для отдельных транзисторов 11-14.
Итак, были созданы топология формирователя с гальванической развязкой и схема управления светодиодами или LED. Входное напряжение Uin может быть нестабилизированным напряжением постоянного тока. Формирователь состоит из транзисторного H-моста 11-14, управляющей третьей схемы 3 для H-моста 11-14, трансформатора 25, последовательного конденсатора 27, диодного моста 21-24 и сглаживающего выходного конденсатора 28. На выходе может быть запитано последовательное соединение светодиодов.
Трансформатор 25 служит для гальванической развязки и может адаптировать уровень напряжения, например, от 300В до 30В. Резонансная топология сформирована паразитной индуктивностью 26 трансформатора 25 и последовательным конденсатором 27. Таким образом, индуктивность паразитного рассеяния трансформатора 25 может быть частью формирователя. В противоположность преобразователям на основе Широтно-Импульсной Модуляции, например, прямой или обратной топологии, в данном случае не требуется минимизировать индуктивность рассеяния. Это дает преимущество для изоляции и конструкции обмотки и, таким образом, сохраняет низкую стоимость.
Управляющая третья схема 3 и логическая схема 5 генерирует чередуемые положительные и отрицательные импульсы напряжения с фиксированной длительностью. Между этими импульсами напряжения H-мост 11-14 должен оставаться в свободном состоянии заданное время. Следовательно, выход управляется частотой повторения импульсов. Если резонансная частота схемы адаптирована должным образом к длительности импульса напряжения, и если количество светодиодов соответствует рабочему диапазону напряжения схемы, то это соответствует идеальному формирователю питания для светодиодов, имеющему следующие особенности:
Ток в формирователе становится синусоидальным, причем нулевым в моменты переключения. Это позволяет избежать потерь при переключении и минимизируются электромагнитные помехи.
Средний ток в светодиоде пропорционален входному напряжению постоянного тока формирователя и рабочей частоте. Это означает, что падение напряжения на светодиоде не воздействует на ток при большом диапазоне нагрузки. Если произведение входного напряжения постоянного тока и частоты сохраняется постоянным, то средний ток через светодиод также постоянен. Кроме того, ток светодиода может варьироваться от номинального значения до нуля.
Система формирователя для светодиода не требует ни датчиков, ни блоков управления на вторичной стороне (светодиода).
Изменения параметров светодиода не влияют на ток в светодиоде. Это также включает в себя короткое замыкание отдельного светодиод. Полное падение напряжения на всех светодиодах может изменяться от 33% до 100%.
Номинальное выходное напряжение может быть установлено коэффициентом трансформации трансформатора 25.
Система освещения является очень подходящей для питания от электросети.
Легко может быть установлена функция затемнения.
Блок питания и управления может быть объединен в большой интегральной схеме.
Кроме того, в частности, любое, не стабилизированное напряжение постоянного тока Uin может быть использовано для питания формирователя. Это напряжение может быть сгенерировано от сети переменного тока посредством использования дополнительного диодного моста 41-44 и дополнительного сглаживающего конденсатора 46. Питающая часть формирователя состоит из H-моста, выполненного на 4-х транзисторах 11-14. Эти транзисторы управляются третьей схемой 3 через логическую схему 5. Переключатели уровня могут использоваться как интерфейсы между управляющими электродами транзисторов 11-14 и логической схемой 5.
Выходные выводы H-моста 11-14 соединяются с первичной обмоткой трансформатора 25 через последовательный конденсатор 27. Вторичная обмотка трансформатора 25 питает диодный мост 21-24. Этот диодный мост 21-24 выпрямляет напряжение переменного тока от трансформатора 25 и сглаживающий конденсатор 28 используется для сглаживания выходного напряжения Uout. Последовательное соединение произвольного числа светодиодов питается выходным напряжением Uout.
Последовательный конденсатор 27 и паразитная индуктивность 26 трансформатора 25 формирует последовательный резонансный контур с резонансной частотой fres=(2π)-1 (L26C27)-1/2~(Tres)-1 и с резонансным импедансом Zres=(L26C27)-1/2. H-мост 11-14 производит поочередно положительный и отрицательный импульсы напряжения (+Uin или -Uin). Импульс положительного напряжения появляется, если транзистор 11 и транзистор 14 находятся в состоянии, когда может быть установлен импульс отрицательного напряжения, включающий транзисторы 12 и 13. Между импульсами напряжения H-мост 11-14 обеспечивает свободный режим, который может быть осуществлен или включением транзисторов 11 и 13, или включением транзисторов 12 и 14. Временной интервал ton положительного и отрицательного импульсов предпочтительно устанавливается равным половине резонансного периода ton=Tres/2, не исключая и другие установки.
В случае если временной интервал ton установлен, частота fs может быть использована как управляющий параметр. Ее максимальное значение ограничивается как fmax=fres/2>fs. На Фиг.5 показана характерная волна выходного напряжения H-моста 11-14, а также основная функция переключения s(t), сгенерированная в управляющей третьей схеме 3.
Номинальное выходное напряжение Uout может определяться числом светодиодов, соединенных последовательно, и падениями напряжения на них. Оно может оставаться в пределах диапазона напряжений N2Uin/(3N1)<Uout<N2Uin/Nl, где N2 обозначает вторичные обмотки, и N1 обозначает первичные обмотки трансформатора 25. Если эти условия выполнены, то две последовательных синусоидальных полуволны импульсов тока снимаются с H-моста 11-14 для каждого импульса напряжения. Соответствующий ток I1(t) представлен на Фиг.6 для некоторой рабочей точки. Кроме того, на этом чертеже показано также результирующее напряжение Uc(t) на последовательном конденсаторе 27.
Пренебрегая током намагничивания, вторичный ток трансформатора 25 пропорционален первичному току - I2=I1N1/N2. Вторичный ток трансформатора I2 выпрямляется диодным мостом 21-24, с ID(t)=|I2(t)|, показанным на Фиг.7. Благодаря сглаживающему конденсатору 28 в нагрузке 6 протекает постоянный выходной ток, равный среднему значению выпрямленного вторичного тока Iout=IDrectified.
Выходной ток и, таким образом, ток светодиода пропорционален частоте и входному напряжению: Iout=2 UinN1fs/(Zres π N2 fres). Поскольку входное напряжение Uin изменяется с напряжением сети и из-за пульсаций напряжения, вызванных малым дополнительным сглаживающим конденсатором 46, частота fs может быть приспособлена таким образом, что произведение Uin и fs и, таким образом, выходной ток Iout поддерживается относительно постоянным.
Это может быть достигнуто третьей схемой 3, не исключая и другие схемы. На первом этапе необозначенные импульсы напряжения, генерируемые функцией переключения s(t) и входным напряжением постоянного тока Uin, фильтруются фильтром нижних частот (например, RC-цепочкой).
Результирующее напряжение постоянного тока пропорционально произведению частоты и напряжения. Это напряжение преобразуется в ток посредством преобразователя 33 и сравнивается с опорным током, Iref, и разность устанавливает рабочую частоту fs посредством контроллера 35. К тому же, контроллер 35 управляет управляемым напряжением вибратором 36, который генерирует fs и который запускает монотриггер 37, который генерирует управляющий сигнал s(t) с импульсами, имеющими длительность ton и т.д. Предпочтительно, но не исключительно, ton=1/(2fres). Включение схем 54a, 54b, 55a, 55b задержки вводит задержку времени tdon, чтобы избежать короткого замыкания в H-мосте 11-14.
Возможные модификации:
Вместо MOSFET может быть использована любая другая транзисторная технология.
Сглаживающий конденсатор 28, соединенный параллельно с светодиодами, может быть исключен. Это не влияет на средний ток, но увеличивает среднеквадратичное и пиковое значение тока через светодиоды.
Свободный режим H-моста 11-14 может всегда быть реализован включением 12 и 14. В этом случае время включения верхних транзисторов 11 и 13 ограничивается постоянной длительностью ton импульса, которая является преимущественной.
Последовательный конденсатор 27 может также быть помещен на вторичной стороне трансформатора, или последовательные конденсаторы могут быть использованы с обеих сторон.
Входной выпрямитель может быть реализован посредством схемы выпрямителя PFC.
Формирователь может быть реализован без трансформатора 25, но с катушкой индуктивности, например, с последовательным дросселем, чтобы сформировать резонансную топологию.
Мостовой выходной выпрямитель 21-24 может также быть заменен комбинацией разделенной выходной обмотки плюс только два диода для экономии двух диодов и при меньших потерях прямой проводимости диодов (но ценой необходимости во второй обмотке и, возможно, ценой получения асимметричных светодиодных пиковых токов для положительного и отрицательного входного напряжения трансформатора).
Это изобретение могло бы использоваться для настенного наполнения, подсвечивания жидкокристаллического дисплея и общего освещения, не исключая и другие применения с нагрузками в виде светодиодов или с не светодиодными нагрузками.
Схема питания в соответствии с изобретением, показанная на Фиг.10, содержит первую схему 101, содержащую полумост с последовательной транзисторной схемой первого транзистора 111 и второго транзистора 112, соединенный с источником Vo, и содержит вторую схему 102, содержащую, например, последовательный резонансный контур с конденсатором 127 и катушкой индуктивности 126. Одна сторона последовательного резонансного контура соединена с общей точкой последовательной транзисторной схемы, и другая сторона - соединена с первой и второй (встречно-параллельными) ветвями. Первая (вторая) ветвь содержит диод 121A (121B), соединенный с параллельной схемой конденсатора 128A (128B), и, например, последовательно соединенные светодиоды 106A (106B).
Альтернативно, полумост может быть заменен, например, полным мостом в режиме полумоста. Кроме того, альтернативно, катушка индуктивности 126 может быть заменена трансформатором, первичная сторона которого соединена с конденсатором 127 и вторичная сторона которого соединена с ветвями моста.
Схема питания в соответствии с изобретением, показанная на Фиг.11, содержит первую схему 101, содержащую полумост с последовательной транзисторной схемой первого транзистора 111 и второго транзистора 112, соединенный с источником Vо, и содержит вторую схему 102, содержащую, например, последовательный резонансный контур из конденсатора 127 и катушки индуктивности 126. Одна сторона последовательного резонансного контура соединена с общей точкой последовательной транзисторной схемы, и другая сторона соединена к первой и второй (встречно-параллельными) ветвями. Первая (вторая) ветвь содержит первую (вторую) последовательную диодно-конденсаторную цепь из диода 121С (121D), соединенного с конденсатором 128C (128D). Общие точки последовательных диодно-конденсаторных цепей соединены друг с другом через, например, последовательно соединенные светодиоды 106C. Это представляет собой удвоитель напряжения с двух-конденсаторной конструкцией.
Схема питания в соответствии с изобретением, показанная на Фиг.12, содержит полумост с последовательной транзисторной схемой первого транзистора 111 и второго транзистора 112, соединенный с источником Vo, уже рассмотренный в связи с Фиг.10 и 11, и содержит, например, последовательный резонансный контур из конденсатора 127 и катушки индуктивности 126, уже рассмотренный в связи с Фиг.10 и 11. Одна сторона последовательного резонансного контура соединена с конденсатором 128E, который соединен с анодом диода 121E и катодом диода 121F. Эти диоды 121E-121F дополнительно соединены, например, с последовательно соединенными светодиодами 106E. Это представляет собой удвоитель напряжения с одноконденсаторной конструкцией.
Схема питания в соответствии с изобретением, показанная на Фиг.13, соответствует схемам питания, показанным на Фиг.11 и 12, у которых удвоитель напряжения заменен на мультипликатор Cockroft-Walton.
На Фиг.14 показаны напряжение Vin, подаваемое первой схемой 101, и напряжение Vc на конденсаторе 127 как функция времени, и на Фиг.15 показан ток через катушку индуктивности 126 как функция времени в течение периода переключения, равного удвоенному резонансному периоду 126, 127. На Фиг.20 показаны напряжение Vin и ток через катушку индуктивности 126 и усредненный ток Iol в течение времени переключения, большего удвоенного резонансного периода 126, 127.
Топология может быть комбинацией полумоста, например, запускающего последовательный колебательный контур и ветви нагрузки выпрямителя вблизи или ниже резонанса. Тем самым топология подобна преобразователю напряжение - ток, когда, например, и входное напряжение, и частота переключения постоянны, тогда выходной ток известен, не требуется дополнительных шунтов для питания постоянной токовой нагрузки, достигается переключение при нулевом токе, резонансный рабочий режим позволяет увеличивать частоту переключения для снижения количества пассивных компонентов, она может работать с трансформатором или без трансформатора, она имеет характерную защиту от короткого замыкания, она может иметь объединенный магнетизм для трансформаторных решений, при которых индуктивность рассеяния трансформатора может использоваться как индуктивность последовательного колебательного контура, она может иметь синусоидальный ток колебательного контура с низкими электромагнитными помехами, допуская их наличие на шине переменного тока, она не требует взаимной стабилизации, то есть изменение нагрузки в одной выходной ветви не влияет на ток на выходе, что означает неявную защиту от перенапряжения, и она может использоваться для питания умножителя напряжения для увеличения колебания выходного напряжения без трансформатора (важно для интегрирования).
На Фиг.10-15 Vo обозначает входное напряжение постоянного тока, 111 и 112 являются, например, MosFet-элементами полумоста, 127 и 126 являются, например, элементами последовательного резонансного колебательного контура, 121 является выходным выпрямительным диодом, 106 является цепочкой нагрузки, например, цепочкой светодиодов.
Относительно Фиг.10, 14 и 15, для установившегося состояния, отклик может быть подразделен на два состояния с двумя подынтервалами. Два состояния образованы посредством I) 121A включен и 121В выключен (состояние I), и посредством II) 121A выключено, и 121B включен (состояние II). Подынтервалы 1,2,3,4, как определено на Фиг.14 и 15, могут иметь ту же самую длительность: tl=t2=t3=t4=τ, где τ обозначает резонансный период: τ=π·√(L1·C1). Время переключения Ts может быть выбрано равным 4·τ или большим. С помощью дифференциальных уравнений электрического состояния для обоих состояний, при наблюдаемых условиях непрерывности и периодичности, могут быть аналитически рассчитаны соответствующие токи и напряжения. Важными могут быть соотношения для усредненного тока за один период переключения Ts=l/fs в обеих ветвях нагрузки для каждого состояния: iavI=iavII=2/π·Vo/Zo·fs/fres, где Zo=√(Ll/Cl).
Эти уравнения показывают, что усредненный выходной ток пропорционален произведению входного напряжения Vo постоянного тока и частоты переключения fs.
Если Vo постоянно, то ток через нагрузку также постоянен. Даже нулевая ошибка нагрузки и взаимной стабилизации означает отсутствие влияния изменения напряжения на одной ветви на ток и того же самого на другой ветви. Если входное напряжение изменяется, то частота переключения может быть адаптирована таким образом, что произведение Vo и fs и, таким образом, выходной ток также сохраняются относительно постоянными. Это показано на Фиг.17 и 18, рассматриваемых ниже. Так, например, топология полумоста соответствует идеальному преобразователю напряжения/ток. Другой важный аспект заключается в пиковом токе нагрузки для постоянной выходной мощности. Поскольку преобразователь осциллирует в резонансе и время переключения составляет 4τ, в каждом состоянии имеется 2 локальных токовых пика:
Ipk1I=|-0.5·(Vo-Voutl+Vout2)/Zo| и ipk2I=|-0.5 (Vo+Voutl-Vout2)/Zo|. Может быть желательно иметь оба пика симметричными, то есть более или менее той же самой величины, чтобы и воздействие пикового тока для данной мощности (усредненный ток) было бы минимальным. При рассмотрении обоих выражений для пикового тока преобразователя в соответствии с изобретением можно заметить, что оба значения симметричны, когда выходные напряжения Vout1, Vout2 являются малыми по сравнению с Vo. Это означает то, что предложенный преобразователь хорошо подходит для применений с малыми напряжениями питания, как в случае с диодами большой мощности, когда только несколько светодиодов соединяются последовательно.
На Фиг.16 показаны напряжения и токи для различных ситуаций A-F в функции времени, например, для Vout<<Vo. A: входное напряжение полного моста без нулевого состояния, B: входное напряжение полумоста, C: входное напряжение полного моста с нулевым состоянием, D: диодный ток полного моста без нулевого состояния, E: диодный ток однополупериодного моста и F: диодный ток полного моста с нулевым состоянием.
На Фиг.17 показаны токи для различных ситуаций A-C в функции времени (взаимная стабилизация). Ток и усредненный ток в ветви с диодом для изменяющегося выходного напряжения в той же самой ветви демонстрирует, что усредненный ток постоянен. Параметр нагрузки - ld=0, 0.5, 1 при Voutl=ld·Vout, Vout2=Vout, Vout=48В, Vin=100В.
На Фиг.18 показаны токи для различных ситуаций A-C в функции времени (все на одном графике). Ток и усредненный ток в ветви с диодом для изменяющегося выходного напряжения в той же самой ветви демонстрирует, что усредненный ток постоянен. Параметр составляет ld=0, 0.5, l при Voutl=ld·Vout; Vout2=Vout, Vout=48В и Vin=100В.
Так, например, топология полумоста, например, с последовательным резонансным контуром и, например, для выпрямленных выходов, была создана, например, с двойным однонаправленным выпрямлением и, например, с диодно-конденсаторным мультипликатором напряжения, например, работающим при Ts≥4·tau, где tau=π·√(L·C). Альтернативно, полный мост с изменяющимся управлением может быть использован так, чтобы полный мост управлялся или как полумост (включен и выключен: 2·tau, Ts≥4·tau), или как полный мост без свободного состояния (включен на + и на - 2·tau, Ts≥4·tau), или как полный мост со свободным состоянием (включен на + и на - =tau, свободное состояние=tau после каждого импульса, Ts≥4·tau). Другими словами, хотя и не показано на Фиг.10-13, третья схема может быть использована для управления моста в соответствии с одной или несколькими из четырех управляющих схем, как показано выше, для снижения зависимости между входным сигналом и выходным сигналом.
Схема питания в соответствии с изобретением, показанная на Фиг.19, содержит первую схему 201 и вторую схему 202 и третью схему 203. Первая схема 201 содержит источник напряжения 204 для создания входного сигнала напряжения Uin через первый и второй контрольные выводы 215 и 216. Первая схема 201, кроме того, содержит два транзистора 211-212. Первый транзистор 211 имеет первый главный электрод, соединенный с первым контрольным выводом 215, и имеет второй главный электрод, соединенный с первым входом 220a второй схемы 202. Второй транзистор 212 имеет первый главный электрод, соединенный со вторым главным электродом первого транзистора 211, и имеет второй главный электрод, соединенный с вторым контрольным выводом 216, который, кроме того, соединен с вторым входом 220b второй схемы 202. Первая схема 201, кроме того, содержит логическую схему 205, соединенную с третьей схемой 203 и с управляющими электродами транзисторов 211-212. Эта логическая схема 205, например, идентична части логической схемы 5, рассмотренной выше. Вторая схема 202, например, идентична второй схеме 2, рассмотренной выше.
На Фиг.20 показаны напряжение Vin и ток через катушку индуктивности 126 и усредненный ток Iol в течение времени переключения, большего, чем в два раза резонансного периода 126, 127. T= частота переключения, ton=Tres, где Tres резонансный период.
На Фиг.20 показан временной отсчет для T>2·Tres, где ton=Tres и Toff>Tres. Минимальный временной отсчет соответствует T=2·Tres, где ton=Tres и Toff=Tres (как показано на Фиг.14-15).
Итак, схемы питания 1-3, 101-102, 201-203 для подачи выходных сигналов тока на нагрузки 6, 106, 206, содержащие первые схемы 1, 101, 201 с транзисторами 11-14, 111-112, 211-212 для преобразования сигналов входного напряжения в импульсные сигналы, содержащие вторые схемы 2, 102, 202 с резонансными контурами для приема импульсных сигналов и для подачи сигналов выходного тока на нагрузки 6, 106, 206, представлены с третьими схемами 3, 203 для управления первыми схемами 1, 101, 201, причем третьи схемы 3, 203 содержат генераторы 35-37 для генерации управляющих сигналов для управления транзисторами 11-14, 111-112, 211-212 для снижения зависимости между сигналами входного напряжения и сигналами выходного тока. Третьи схемы 3, 203 подают управляющие сигналы в зависимости от сигналов входного напряжения и независимо от выходных сигналов тока. Транзисторы 11-14, 111-112, 211-212 могут образовывать полный мост, причем полный мост работает в режиме полумоста, или полумост.
Термины "относительно" и "по существу" определяют максимальные отклонения 30%, предпочтительно 20%, еще более предпочтительно 10%, наиболее предпочтительно 1%. Иначе говоря, такие термины определяют интервалы 70-130%, предпочтительно 80-120%, еще более предпочтительно 90-110%, наиболее предпочтительно 99-101%.
Следует отметить, что вышеупомянутые варианты реализации скорее иллюстрируют, а не ограничивают изобретение, и что специалисты в данной области техники могут сконструировать много альтернативных вариантов реализации, не отступая от объема притязаний приложенных формул. В формулах любые цифровые обозначения, помещенные между круглыми скобками, не должны рассматриваться как ограничение формулы. Использование глагола "содержать" и его спряжений не исключает присутствие элементов или этапов кроме заявленных в формуле. Упоминание элемента в единственном числе не исключает наличия множества таких элементов. Изобретение может быть осуществлено посредством аппаратных средств, содержащих несколько отличные элементы, и посредством соответственно запрограммированного компьютера. В формуле для устройства перечислено нескольких средств, причем несколько из этих средств могут быть воплощены посредством одного и того же аппаратного средства. Простой факт, что некоторые характеристики рассмотрены в зависимых взаимно различающихся формулах, не означает, что комбинация этих характеристик не может быть использована с целью получения преимуществ.

Claims (19)

1. Схема питания (1-3, 101-102, 201-203) для подачи выходного сигнала на нагрузку (6, 106, 206), причем схема питания (1-3, 101-102, 201-203) содержит первую схему (1, 101, 201) для преобразования входного сигнала в импульсный сигнал, причем первая схема содержит транзисторы (11-14, 111-112, 211-212), вторую схему (2, 102, 202) для приема импульсного сигнала и для подачи выходного сигнала на нагрузку (6, 106, 206), причем вторая схема (2, 102, 202) содержит резонансный контур, и третью схема (3, 203) для управления первой схемой (1, 101, 201), причем третья схема (3, 203) содержит генератор (35-37) для генерации управляющего сигнала для управления транзисторами (11-14, 111-112, 211-212), для уменьшения зависимости между входным сигналом и выходным сигналом, в которой третья схема (3) содержит вход (30а) для приема входного сигнала и содержит выход (30с) для подачи управляющего сигнала в зависимости от входного сигнала и независимо от выходного сигнала, при этом управляющий сигнал управляет транзисторами (11-14, 111-112, 211-212) так, что схема питания обеспечивает, по существу, постоянный ток на нагрузку.
2. Схема питания (1-3) по п.1, причем третья схема (3) содержит дополнительный вход (30b) для приема опорного сигнала, управляющий сигнал дополнительно зависит от опорного сигнала.
3. Схема питания (1-3) по п.2, причем третья схема (3) содержит мультипликатор (31) для умножения входного сигнала и управляющего сигнала и содержит фильтр (32) низких частот для фильтрации низкой частоты выходного сигнала мультипликатора, и содержит преобразователь (33) для преобразования выходного сигнала фильтра низких частот, и содержит сумматор (34) для суммирования преобразованного и инвертированного выходного сигнала фильтра низких частот и опорного сигнала, генератор (35-37) содержит контроллер (35) для приема выходного сигнала сумматора и содержит управляемый напряжением вибратор (36) для приема выходного сигнала контроллера, и содержит монотриггер (37) для приема выходного сигнала управляемого напряжением вибратора и для генерации управляющего сигнала.
4. Схема питания (1-3) по п.1, причем импульсный сигнал содержит первые импульсы, имеющие первую амплитуду, и содержит вторые импульсы, имеющие вторую амплитуду, отличающуюся от первой амплитуды, и содержит уровни, имеющие третью амплитуду, отличающуюся от первой и второй амплитуд.
5. Схема питания (1-3) по п.1, причем импульсный сигнал содержит первые импульсы, имеющие первую амплитуду, и содержит вторые импульсы, имеющие вторую амплитуду, отличающуюся от первой амплитуды.
6. Схема питания (101-102, 201-203) по п.1, причем импульсный сигнал содержит третьи импульсы, имеющие четвертую амплитуду, и содержит уровень, имеющий пятую амплитуду.
7. Схема питания (1-3, 201-203) по п.1, причем резонансный контур содержит трансформатор (25, 225) и конденсатор (27, 227), соединенный последовательно с первичной стороной трансформатора (25,225) или с вторичной стороной трансформатора (25, 225).
8. Схема питания (101-102) по п.1, причем резонансный контур содержит катушку индуктивности (126) и конденсатор (127), соединенный последовательно с первичной стороной катушки индуктивности (126) или с вторичной стороной катушки индуктивности (126).
9. Схема питания (1-3, 101-201, 201-203) по п.1, причем нагрузка (6, 106, 206) содержит один или несколько светодиодов.
10. Схема питания (1-3) по п.1, содержащая один или несколько входных диодов (41-44) для выпрямления сигнала переменного тока, причем входной сигнал содержит выпрямленный сигнал переменного тока.
11. Схема питания (1-3) по п.1, причем импульсный сигнал содержит импульс, имеющий длительность, по существу, равную половине резонансного периода резонансного контура.
12. Схема питания (1-3) по п.1, причем импульсный сигнал содержит импульсы, имеющие частоту следования, по существу, равную или меньшую половины резонансной частоты резонансного контура.
13. Схема питания (1-3) по п.12, причем произведение входного сигнала и частоты импульсов является, по существу, постоянным.
14. Схема питания (101-102, 201-203) по п.1, причем импульсный сигнал содержит импульс, имеющий длительность, по существу, равную резонансному периоду резонансного контура.
15. Схема питания (101-102, 201-203) по п.1, причем импульсный сигнал содержит импульсы, имеющие частоту следования, по существу, равную или меньшую резонансной частоты резонансного контура.
16. Схема питания (101-102, 201-203) по п.15, причем произведение входного сигнала и частоты импульсов является, по существу, постоянным.
17. Устройство (10), содержащее схему питания (1-3, 101-102, 201-203) по п.1 и дополнительно содержащее нагрузку (6, 106, 206).
18. Способ для подачи выходного сигнала на нагрузку (6, 106, 206), причем способ содержит этапы преобразования входного сигнала в импульсный сигнал посредством первой схемы (1, 101, 201), причем первая схема (1, 101, 201) содержит транзисторы (11-14, 111-112, 211-212), приема импульсного сигнала и подачи выходного сигнала на нагрузку (6, 106, 206) посредством второй схемы (2, 102, 202), причем вторая схема (2, 102, 202) содержит резонансный контур, и управления первой схемой (1, 101, 201) посредством третьей схемы (3, 203), причем третья схема (3, 203) содержит генератор (35-37) для генерации управляющего сигнала для управления транзисторами (11-14, 111-112, 211-212) для уменьшения зависимости между входным сигналом и выходным сигналом, причем способ дополнительно содержит этапы: приема входного сигнала посредством входа (30а) третьей схемы (3) и подачи управляющего сигнала посредством выхода (30с) третьей схемы (3) в зависимости от входного сигнала и независимо от выходного сигнала, при этом управляющий сигнал управляет транзисторами (11-14, 111-112, 211-212) так, что схема питания обеспечивает, по существу, постоянный ток на нагрузку.
19. Носитель для сохранения и содержания компьютерного программного продукта для выполнения этапов способа по п.18.
RU2008139417/07A 2006-03-06 2007-03-02 Схема питания и устройство, содержащее схему питания RU2427954C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06110730 2006-03-06
EP06110730.6 2006-03-06

Publications (2)

Publication Number Publication Date
RU2008139417A RU2008139417A (ru) 2010-04-20
RU2427954C2 true RU2427954C2 (ru) 2011-08-27

Family

ID=38349519

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008139417/07A RU2427954C2 (ru) 2006-03-06 2007-03-02 Схема питания и устройство, содержащее схему питания

Country Status (6)

Country Link
US (1) US8330391B2 (ru)
EP (1) EP1994635B1 (ru)
JP (1) JP5148515B2 (ru)
CN (1) CN101395791B (ru)
RU (1) RU2427954C2 (ru)
WO (1) WO2007102106A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510864C1 (ru) * 2012-12-07 2014-04-10 Закрытое акционерное общество "Связь инжиниринг" Мостовой преобразователь напряжения
RU2605451C2 (ru) * 2011-09-16 2016-12-20 Сеул Семикондактор Ко., Лтд. Осветительное устройство, включающее в себя полупроводниковые светоизлучающие диоды
RU2608356C2 (ru) * 2011-09-19 2017-01-18 Филипс Лайтинг Холдинг Б.В. Возбудитель сид
RU2775061C1 (ru) * 2021-11-29 2022-06-28 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП" "Алмаз") Регулятор переменного тока транзисторный и стабилизатор переменного тока на его основе

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259424A1 (en) * 2004-05-18 2005-11-24 Zampini Thomas L Ii Collimating and controlling light produced by light emitting diodes
US7766511B2 (en) * 2006-04-24 2010-08-03 Integrated Illumination Systems LED light fixture
WO2008029325A1 (en) 2006-09-07 2008-03-13 Philips Intellectual Property & Standards Gmbh Resonant driver with low-voltage secondary side control for high power led lighting
US7729941B2 (en) 2006-11-17 2010-06-01 Integrated Illumination Systems, Inc. Apparatus and method of using lighting systems to enhance brand recognition
WO2008075389A1 (en) * 2006-12-21 2008-06-26 Osram Gesellschaft mit beschränkter Haftung A cell arrangement for feeding electrical loads such as light sources, corresponding circuit and design method
US8013538B2 (en) 2007-01-26 2011-09-06 Integrated Illumination Systems, Inc. TRI-light
JP2010521946A (ja) * 2007-03-13 2010-06-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電源供給回路
US8023296B2 (en) * 2007-09-06 2011-09-20 General Electric Company High voltage, high speed, high pulse repetition rate pulse generator
DE202007013349U1 (de) * 2007-09-24 2007-11-29 Osram Gesellschaft mit beschränkter Haftung Präsentationsvorrichtung zur Präsentation eines Objekts
US8742686B2 (en) * 2007-09-24 2014-06-03 Integrated Illumination Systems, Inc. Systems and methods for providing an OEM level networked lighting system
TW200930133A (en) * 2007-12-21 2009-07-01 Alliance Optotek Co Ltd Light emitting diode lamp and driving apparatus for the same
CA2649257A1 (en) * 2008-01-14 2009-07-14 Tai-Her Yang Uni-directional light emitting diode drive circuit in pulsed power non-resonance
US8063582B2 (en) * 2008-01-14 2011-11-22 Tai-Her Yang Uni-directional light emitting diode drvie circuit in bi-directional divided power impedance
US8255487B2 (en) * 2008-05-16 2012-08-28 Integrated Illumination Systems, Inc. Systems and methods for communicating in a lighting network
DE102008039351B3 (de) * 2008-08-22 2010-01-28 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Betrieb mindestens einer Halbleiterlichtquelle
US8552658B2 (en) * 2008-08-28 2013-10-08 Marvell World Trade Ltd. Light-emitting diode (LED) driver and controller
JP2010086943A (ja) * 2008-09-04 2010-04-15 Toshiba Lighting & Technology Corp Led点灯装置および照明器具
US8358056B2 (en) * 2008-10-16 2013-01-22 Kumho Electric Inc. LED fluorescent lamp
JP5300501B2 (ja) * 2009-01-15 2013-09-25 三菱電機株式会社 点灯装置及び照明器具
RU2566736C2 (ru) 2009-02-26 2015-10-27 Конинклейке Филипс Электроникс Н.В. Резонансный преобразователь
JP5854400B2 (ja) 2009-02-26 2016-02-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光源にパルス電力を供給するための変換器
EP2412205B1 (en) 2009-03-23 2012-11-21 Koninklijke Philips Electronics N.V. Supply circuit
KR101008458B1 (ko) * 2009-03-23 2011-01-14 삼성전기주식회사 Led 구동 회로
KR20100109765A (ko) * 2009-04-01 2010-10-11 삼성전자주식회사 전류 밸런싱 장치, 전원공급장치, 조명 장치 및 그 전류 밸런싱 방법
US8585245B2 (en) 2009-04-23 2013-11-19 Integrated Illumination Systems, Inc. Systems and methods for sealing a lighting fixture
TWI411353B (zh) * 2009-04-27 2013-10-01 Delta Electronics Inc 多組直流負載之電流平衡供電電路
TWI489903B (zh) * 2009-07-09 2015-06-21 Light emitting diode lighting device and its current control method
CN101989817B (zh) * 2009-07-29 2014-12-03 通用电气公司 三相led电源
CN102550128B (zh) * 2009-09-30 2015-02-11 皇家飞利浦电子股份有限公司 Led驱动器的调光
US8963442B2 (en) * 2009-11-04 2015-02-24 International Rectifier Corporation Driver circuit with an increased power factor
GB2475518A (en) * 2009-11-20 2011-05-25 Technelec Ltd Two stage resonant converter for LED lamps
US20110291573A1 (en) * 2010-05-27 2011-12-01 Inergy Technology Inc. Resonant power supply for light-emitting devices
CN101950541B (zh) * 2010-07-12 2013-03-27 深圳市华星光电技术有限公司 背光模块及液晶显示器
DE202010017370U1 (de) * 2010-07-19 2011-10-12 Solytech Enterprise Corporation Stromversorgungsgerät für eine LED-Lampe
EP2597935A4 (en) * 2010-07-22 2015-09-02 Panasonic Ip Man Co Ltd LIGHTING CIRCUIT, LAMP AND LIGHTING DEVICE
CN102454921A (zh) 2010-10-15 2012-05-16 通用电气公司 柱安装的基于发光二极管(led)装置的灯及其电源
FR2968887B1 (fr) 2010-12-13 2012-12-21 Schneider Electric Ind Sas Dispositif et procede d'alimentation pour systeme d'eclairage a diodes electroluminescentes et ensemble d'eclairage comportant un tel dispositif
US9066381B2 (en) 2011-03-16 2015-06-23 Integrated Illumination Systems, Inc. System and method for low level dimming
JP5828067B2 (ja) 2011-04-04 2015-12-02 パナソニックIpマネジメント株式会社 半導体発光素子の点灯装置およびそれを用いた照明器具
CN102186291B (zh) * 2011-04-18 2014-02-26 台达电子企业管理(上海)有限公司 驱动电路结构
US9967940B2 (en) 2011-05-05 2018-05-08 Integrated Illumination Systems, Inc. Systems and methods for active thermal management
US11917740B2 (en) 2011-07-26 2024-02-27 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US9521725B2 (en) 2011-07-26 2016-12-13 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US10874003B2 (en) 2011-07-26 2020-12-22 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US20150237700A1 (en) 2011-07-26 2015-08-20 Hunter Industries, Inc. Systems and methods to control color and brightness of lighting devices
US9609720B2 (en) 2011-07-26 2017-03-28 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US8710770B2 (en) 2011-07-26 2014-04-29 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
CN102376272A (zh) * 2011-09-30 2012-03-14 青岛海信电器股份有限公司 Led背光源的驱动电路、led背光源及液晶显示装置
WO2013086445A1 (en) * 2011-12-09 2013-06-13 The Regents Of The University Of California Switched-capacitor isolated led driver
CN103249211A (zh) * 2012-02-09 2013-08-14 台达电子企业管理(上海)有限公司 照明装置、照明系统以及灯具
US8894437B2 (en) 2012-07-19 2014-11-25 Integrated Illumination Systems, Inc. Systems and methods for connector enabling vertical removal
US9379578B2 (en) 2012-11-19 2016-06-28 Integrated Illumination Systems, Inc. Systems and methods for multi-state power management
CN102931736A (zh) * 2012-11-26 2013-02-13 南京邮电大学 一种磁耦合谐振无线供电功率控制系统
TW201426691A (zh) * 2012-12-19 2014-07-01 Chyng Hong Electronic Co Ltd 無變壓器且無電磁干擾之真空螢光顯示器電源電路
US9420665B2 (en) 2012-12-28 2016-08-16 Integration Illumination Systems, Inc. Systems and methods for continuous adjustment of reference signal to control chip
US8773045B1 (en) * 2012-12-31 2014-07-08 I Shou University Light emitting diode driving device
US9485814B2 (en) 2013-01-04 2016-11-01 Integrated Illumination Systems, Inc. Systems and methods for a hysteresis based driver using a LED as a voltage reference
CN103915967B (zh) * 2013-01-06 2016-02-24 济南吉美乐电源技术有限公司 电容补偿全半桥转换双励磁绕组的电励磁双凸极发电机
US9192003B2 (en) * 2013-03-15 2015-11-17 City University Of Hong Kong Electrical load driving apparatus
CN103470997A (zh) * 2013-05-13 2013-12-25 杭州璞莱科技有限公司 一种省线led灯串簇的输出电路
KR101473912B1 (ko) 2013-05-14 2014-12-18 (주)바롬코리아 단일 led 드라이버를 사용하는 고출력 led 조명기기
CN104244498A (zh) * 2013-06-09 2014-12-24 美的集团股份有限公司 灯具及其控制装置
US9247595B2 (en) * 2013-06-11 2016-01-26 Enphase Energy, Inc. LED lighting converter
CN103824547A (zh) * 2014-02-27 2014-05-28 深圳市华星光电技术有限公司 一种液晶显示装置的背光源及其驱动电路
US9924571B2 (en) * 2014-10-17 2018-03-20 Tridonic Gmbh & Co Kg Operating circuit for energizing a lamp, LED converter, and method for operating an operating circuit
US10228711B2 (en) 2015-05-26 2019-03-12 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10918030B2 (en) 2015-05-26 2021-02-16 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10060599B2 (en) 2015-05-29 2018-08-28 Integrated Illumination Systems, Inc. Systems, methods and apparatus for programmable light fixtures
US10030844B2 (en) 2015-05-29 2018-07-24 Integrated Illumination Systems, Inc. Systems, methods and apparatus for illumination using asymmetrical optics
DE102016122914B4 (de) 2015-11-30 2022-02-24 Analog Devices International Unlimited Company Vorrichtung und Verfahren zum Bereitstellen eines Erregungsstroms an einem elektromagnetischen Flusssensor
US10352742B2 (en) * 2015-11-30 2019-07-16 Analog Devices Global Electromagnetic flow sensor interface including sensor drive circuit
US9904075B2 (en) 2015-12-22 2018-02-27 Johnson & Johnson Vision Care, Inc. High-voltage H-bridge control circuit for a lens driver of an electronic ophthalmic lens
US10667362B1 (en) * 2016-03-30 2020-05-26 Cooledge Lighting Inc. Methods of operating lighting systems with controllable illumination
US10136485B1 (en) * 2016-03-30 2018-11-20 Cooledge Lighting Inc. Methods for adjusting the light output of illumination systems
CN109074145B (zh) * 2017-03-10 2021-01-15 华为技术有限公司 供电电路及供电方法
JP6323602B1 (ja) 2017-08-08 2018-05-16 Tdk株式会社 金属粉末製造装置と金属粉末の製造方法
RU2690839C1 (ru) * 2018-09-17 2019-06-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Понижающий конденсаторный преобразователь напряжения
JP6973420B2 (ja) * 2019-01-11 2021-11-24 オムロン株式会社 送電装置の制御装置、送電装置、及び非接触電力伝送システム
JP6832402B1 (ja) * 2019-09-02 2021-02-24 島田理化工業株式会社 インバータ装置およびインバータ装置の制御方法
US10801714B1 (en) 2019-10-03 2020-10-13 CarJamz, Inc. Lighting device
JP7433423B2 (ja) * 2019-10-24 2024-02-19 シグニファイ ホールディング ビー ヴィ 高強度放電ランプを置き換えるためのled照明システム用のledドライバ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293292A (ja) * 1986-06-13 1987-12-19 キヤノン株式会社 El駆動回路
JPH0185894U (ru) * 1987-11-27 1989-06-07
US5323305A (en) * 1990-02-07 1994-06-21 Daichi Co., Ltd. Light emitting power supply circuit
US5914572A (en) * 1997-06-19 1999-06-22 Matsushita Electric Works, Ltd. Discharge lamp driving circuit having resonant circuit defining two resonance modes
US6794831B2 (en) * 1998-04-15 2004-09-21 Talking Lights Llc Non-flickering illumination based communication
JP3335587B2 (ja) 1998-12-25 2002-10-21 富士通株式会社 Dc−dcコンバータ回路
DE20024002U1 (de) * 2000-03-17 2009-03-26 Tridonicatco Gmbh & Co. Kg Spannungsversorgung von Leuchtdioden (LEDs)
US6411045B1 (en) * 2000-12-14 2002-06-25 General Electric Company Light emitting diode power supply
US6853150B2 (en) 2001-12-28 2005-02-08 Koninklijke Philips Electronics N.V. Light emitting diode driver
JP3954481B2 (ja) * 2002-11-29 2007-08-08 ローム株式会社 直流−交流変換装置、及びそのコントローラic
DE10259088B4 (de) * 2002-12-17 2007-01-25 Infineon Technologies Ag Resonanzkonverter mit Spannungsregelung und Verfahren zum Treiben von veränderlichen Lasten
JP2004274872A (ja) * 2003-03-07 2004-09-30 Toko Inc スイッチング定電流電源装置
US20070076445A1 (en) 2003-10-13 2007-04-05 Koninklijke Philips Electronics N.V. Power converter
CN1879453B (zh) 2003-11-13 2010-06-23 皇家飞利浦电子股份有限公司 具有亮度和颜色控制的谐振电源led控制电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2605451C2 (ru) * 2011-09-16 2016-12-20 Сеул Семикондактор Ко., Лтд. Осветительное устройство, включающее в себя полупроводниковые светоизлучающие диоды
RU2608356C2 (ru) * 2011-09-19 2017-01-18 Филипс Лайтинг Холдинг Б.В. Возбудитель сид
RU2510864C1 (ru) * 2012-12-07 2014-04-10 Закрытое акционерное общество "Связь инжиниринг" Мостовой преобразователь напряжения
RU2775061C1 (ru) * 2021-11-29 2022-06-28 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП" "Алмаз") Регулятор переменного тока транзисторный и стабилизатор переменного тока на его основе

Also Published As

Publication number Publication date
EP1994635A2 (en) 2008-11-26
JP2009529312A (ja) 2009-08-13
EP1994635B1 (en) 2012-06-27
CN101395791B (zh) 2012-07-04
WO2007102106A3 (en) 2007-11-15
US8330391B2 (en) 2012-12-11
JP5148515B2 (ja) 2013-02-20
WO2007102106A2 (en) 2007-09-13
RU2008139417A (ru) 2010-04-20
CN101395791A (zh) 2009-03-25
US20090021175A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
RU2427954C2 (ru) Схема питания и устройство, содержащее схему питания
RU2427953C2 (ru) Адаптивная схема для управления схемой преобразования
CN104040860B (zh) 具有过电压保护的led电源
US7279868B2 (en) Power factor correction circuits
JP2015144554A (ja) 電力変換装置
US20160099649A1 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
WO1992022952A1 (en) High power factor, voltage-doubler rectifier
KR20100014323A (ko) 광원들과 같은 전기적 부하들을 급전하기 위한 셀 어레인지먼트, 그에 대응하는 회로 및 설계 방법
RU166986U1 (ru) Источник питания светодиодного светильника с повышенным ресурсом
JP2010506559A (ja) 二次回路に給電する一次共振インバーター回路
JP2011198795A (ja) Led駆動装置
US7095158B2 (en) A/D converter with adjustable internal connection and method for the sameoperating
RU176540U1 (ru) Источник питания светодиодного светильника с повышенным ресурсом
CN111987913B (zh) 可实现有源功率解耦的准单级ac/dc变换器电路
JP6313659B2 (ja) 電力変換装置
JP5577933B2 (ja) コンバータ
KR20050121275A (ko) 다중 정격 출력들 및 단일 피드백 루프를 갖는 스위치 모드전원 장치
JP2005229695A (ja) 電源装置
JP5569242B2 (ja) コンバータ
Vinnikov et al. New fuel cell power conditioning system for supplying dedicated loads
JPH077931A (ja) 電力変換装置
Saravanan et al. A Boost Converter for High Voltage Applications using Three State Switching Cell
JP2011205847A (ja) フォワードコンバータ
JP2006115600A (ja) スイッチング電源装置
KR20050034315A (ko) 도금용 전원 장치

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170130

PD4A Correction of name of patent owner