RU2404485C2 - Стеклянный компонент солнечного элемента, имеющий оптимизирующее светопропускание покрытие, и способ его изготовления - Google Patents
Стеклянный компонент солнечного элемента, имеющий оптимизирующее светопропускание покрытие, и способ его изготовления Download PDFInfo
- Publication number
- RU2404485C2 RU2404485C2 RU2008111986/28A RU2008111986A RU2404485C2 RU 2404485 C2 RU2404485 C2 RU 2404485C2 RU 2008111986/28 A RU2008111986/28 A RU 2008111986/28A RU 2008111986 A RU2008111986 A RU 2008111986A RU 2404485 C2 RU2404485 C2 RU 2404485C2
- Authority
- RU
- Russia
- Prior art keywords
- layer
- product according
- metal oxide
- light transmission
- refractive index
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000002834 transmittance Methods 0.000 title claims abstract description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 35
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000010703 silicon Substances 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 95
- 230000005540 biological transmission Effects 0.000 claims description 21
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 7
- 229910001887 tin oxide Inorganic materials 0.000 claims description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000005329 float glass Substances 0.000 claims description 4
- 238000005816 glass manufacturing process Methods 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 3
- 229910003437 indium oxide Inorganic materials 0.000 claims 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 32
- 239000007789 gas Substances 0.000 description 25
- 238000000576 coating method Methods 0.000 description 16
- 229910006404 SnO 2 Inorganic materials 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000006124 Pilkington process Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000005361 soda-lime glass Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000007507 annealing of glass Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0376—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
- H01L31/03762—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12597—Noncrystalline silica or noncrystalline plural-oxide component [e.g., glass, etc.]
- Y10T428/12604—Film [e.g., glaze, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Energy (AREA)
- Surface Treatment Of Glass (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Photovoltaic Devices (AREA)
- Laminated Bodies (AREA)
Abstract
Изделие с покрытием, пригодное для использования в качестве компонента солнечного элемента, содержащее прозрачную диэлектрическую подложку, прозрачный электропроводящий слой оксида металла, нанесенный на диэлектрическую подложку и имеющий коэффициент преломления менее 2,0, оптимизирующий светопропускание промежуточный слой, нанесенный поверх проводящего слоя оксида металла и имеющий коэффициент преломления от 2,3 до 3,5, и слой кремния, нанесенный на оптимизирующий светопропускание промежуточный слой и имеющий коэффициент преломления по меньшей мере 4,5. Также предложены способ изготовления изделия с покрытием, пригодного для использования в качестве компонента солнечного элемента, и прозрачное стеклянное изделие с покрытием, пригодное для использования в качестве компонента солнечного элемента. Изобретение обеспечивает возможность повысить КПД солнечных элементов и конкурентоспособность в отношении стоимости генерируемой электрической энергии по сравнению с традиционными средствами за счет создания структуры солнечного элемента, сочетающей высокую электропроводность с хорошей прозрачностью для солнечного излучения. 3 н. и 19 з.п. ф-лы, 4 табл.
Description
Предпосылки создания изобретения
Солнечные элементы на основе аморфного кремния находят широкое применение, начиная от бытовых приборов, например электронных калькуляторов и часов, и кончая источниками электроснабжения. Обычно солнечные элементы на основе аморфного кремния имеют многослойную структуру, включающую стеклянную пластину подложки, прозрачную проводящую пленку, пленку аморфного кремния, пленку металлического электрода. Солнечный свет, падающий на такой солнечный элемент, проходит со стороны стеклянной пластины подложки сквозь прозрачную проводящую пленку и попадает в пленку аморфного кремния. Таким образом, для получения хороших характеристик стеклянная пластина подложки и прозрачная проводящая пленка должны обладать высоким пропусканием.
Подобные солнечные элементы, при использовании их в качестве источников электроснабжения, должны обладать большой площадью поверхности, освещаемой Солнцем. Поэтому в таких солнечных элементах в качестве пластины подложки часто используется недорогое известково-натриевое стекло, содержащее щелочь, получаемое посредством флоат-процесса (получение листового стекла на расплаве металла). Для предотвращения миграции щелочных ионов из стекла в другие компоненты многослойной структуры слоистой пленки солнечного элемента в качестве барьерной пленки часто используется тонкая пленка SiO2 (оксид кремния). В солнечных элементах, используемых в качестве источников электроснабжения, также часто используются наносимые химическим осаждением из газовой (газовой) фазы (ХОГФ) пленки SnO2, относительно недорогие и хорошо подходящие для массового производства. Эти пленки обладают более высокой адгезией по сравнению с SnO2 пленками, наносимыми металлизацией распылением или вакуумным осаждением из газовой фазы.
В солнечных элементах на основе аморфного кремния, предназначенных для источников электроснабжения, важно, чтобы прозрачная проводящая пленка обладала пониженным электрическим сопротивлением, поскольку такие элементы имеют панели большой площади. В частности, в относительно недорогой прозрачной проводящей пленке из SnO2 общее пониженное электрическое сопротивление достигается легированием SnO2 соответствующими примесями и повышением толщины покрытия SnO2.
Стеклянные подложки, образованные пластиной из известково-натриевого стекла и двухслойным покрытием, сформированным последовательным нанесением сплошной барьерной пленки SiO2 для защиты от щелочи и прозрачной проводящей пленки SnO2 (в таком порядке), подвергались воздействию атмосферы с высокой температурой и влажностью (например, 100% относительной влажности при 80°С). В результате испытаний было установлено, что на прозрачных проводящих пленках с толщиной 6000 Å или более образовались тончайшие трещины, препятствующие протеканию электрического тока.
Краткое изложение сущности изобретения
В настоящем изобретении предлагается стеклянное изделие с покрытием, подходящее в качестве компонента солнечного элемента, в частности солнечного элемента на основе аморфного кремния.
Предлагаемое в настоящем изобретении стеклянное изделие с покрытием содержит прозрачную диэлектрическую подложку с нанесенным на нее прозрачным электропроводящим слоем оксида металла. Коэффициент преломления электропроводящего слоя оксида металла составляет менее 2,0. На проводящий слой оксида металла для оптимизации светопропускания наносится промежуточный слой, коэффициент преломления которого составляет 2,3-3,5. Затем поверх оптимизирующего светопропускание промежуточного слоя наносится слой кремния, коэффициент преломления которого составляет по меньшей мере 4,5. При необходимости, перед нанесением прозрачного электропроводящего слоя оксида металла может быть нанесена одно-двухслойная цветоизбирательная пленка.
Различные слои слоистой пленки могут быть нанесены любым подходящим способом, в предпочтительном варианте, в ходе непрерывного флоат-процесса изготовления стекла, а в наиболее предпочтительном варианте, в ходе этого процесса посредством химического осаждения из газовой фазы при атмосферном давлении.
Подробное описание предпочтительных вариантов осуществления
Задача многих разработчиков солнечных элементов состояла в повышении КПД этих солнечных элементов при преобразовании солнечного излучения в электрическую энергию и обеспечении их конкурентоспособности в отношении стоимости генерируемой электрической энергии по сравнению с традиционными средствами.
Одной из задач, с которой приходилось сталкиваться на этом пути, являлось создание структуры, сочетающей высокую электропроводность с хорошей прозрачностью для солнечного излучения. Эта задача может быть решена посредством использования слоистой пленки, обладающей, наряду с другими свойствами, относительно толстым электропроводящим слоем оксида металла. Недостаток этого варианта, как уже отмечалось выше, состоит в тенденции растрескивания проводящего слоя оксида металла, что может препятствовать протеканию электрического тока. При более толстых проводящих слоях оксида металла, например, порядка 6000-10000 Å, также снижается способность проникновения сквозь проводящий слой оксида металла солнечного излучения для его преобразования в электрическую энергию. Ранее считалось предпочтительным использование более толстых проводящих металлических слоев, как обладающих более шероховатой поверхностью и хорошей электропроводностью.
В стеклянном изделии с покрытием, в соответствии с настоящим изобретением, используется оптическая интерференция и различные иные средства тонкопленочных технологий для создания оптимизирующего светопропускание промежуточного слоя с выбором коэффициентов преломления в соответствующем интервале, чем обеспечивается компромисс между поглощением и отражением солнечной энергии и возможность использования более тонкого проводящего слоя оксида металла. При этом в солнечный элемент проникает больше солнечного излучения, которое, благодаря этому, более эффективно используется. Как показывает расчет, при использовании стеклянного изделия с покрытием в соответствии с настоящим изобретением, может быть достигнуто значительное повышение эффективности солнечного элемента.
В настоящем изобретении используется прозрачная диэлектрическая подложка, например, из известково-натриевого стекла, хотя могут быть использованы и другие прозрачные стекла, желательно, полученные в ходе флоат-процесса.
На материал подложки наносится подходящая пленка оксида металла, электропроводность которой обеспечивается соответствующим легированием. Предпочтительным оксидом металла является оксид олова, желательно, легированный фтором. При использовании оксида олова предпочтительная толщина пленки составляет порядка 3000-7500 Å. Коэффициент преломления проводящего слоя оксида металла должен быть менее 2,0 для его правильной работы в составе всей слоистой пленки.
В настоящем изобретении оптимизирующий светопропускание промежуточный слой наносится поверх электропроводящего слоя оксида металла. К материалам, пригодным для создания оптимизирующего светопропускание промежуточного слоя, относятся ТiO2 и другие подходящие достехиометрические оксиды металлов. Сам по себе оптимизирующий светопропускание промежуточный слой не должен иметь большую толщину. Установлено, что для этого слоя достаточно толщины 300-600 Å, при этом предпочтительной толщиной является 450-500 Å. Для обеспечения совместимости с другими слоями в слоистой пленке в предпочтительном варианте осуществления коэффициент преломления оптимизирующего светопропускание промежуточного слоя должен составлять от 2,3 до 3,5. В наиболее предпочтительном варианте осуществления коэффициент преломления оптимизирующего светопропускание промежуточного слоя составляет 2,5-3,0.
В предпочтительном варианте осуществления изобретения, когда предложенное в изобретении стеклянное изделие с покрытием используется как составная часть солнечного элемента на основе аморфного кремния, слой кремния наносится поверх слоя, оптимизирующего светопропускание. Коэффициент преломления слоя кремния составляет по меньшей мере 4,5, в предпочтительном варианте выполнения по меньшей мере 5,0.
В некоторых применениях требуется дальнейшее подавление радужной окраски, возникающей при отражении света от стеклянной подложки с пленочным покрытием или прохождении света сквозь нее. В контексте настоящего изобретения может быть использована любая подходящая цветоизбирательная однослойная или многослойная слоистая пленка, включая одиночный слой оксида металла, слой оксида металла и слой двуокиси кремния, либо слой покрытия с плавно меняющимися свойствами.
В предпочтительном варианте осуществления слой оксида металла и слой двуокиси кремния совместно образуют отличную цветоизбирательную слоистую пленку, известную, например, из US 4377613 и US 4419386, выданных Гордону (Gordon) и включенных в настоящее описание посредством ссылки. Цветоизбирательная слоистая пленка нанесена на материал подложки перед нанесением электропроводящего слоя оксида металла. Толщина цветоизбирательной слоистой пленки относительно невелика, толщина слоя оксида олова составляет 250-600 Å, а толщина слоя двуокиси кремния составляет 250-350 Å.
Как будет показано, толщина различных слоев в слоистой пленке стеклянного изделия с покрытием, согласно изобретению, не обязательно должна иметь какое-либо конкретное значение, а может находиться в относительно широком интервале. При этом условии толщины пленок могут быть оптимизированы с точки зрения достижения наилучших свойств и характеристик слоистой пленки в целом.
Слои стеклянного изделия с покрытием, предложенного в настоящем изобретении, могут быть нанесены на материал диэлектрической подложки любым подходящим способом, но предпочтительным способом является химическое осаждение из газовой фазы при атмосферном давлении. Другие способы нанесения оксидов металлов путем химического осаждения из газовой фазы описаны, например, в US 5698262, 5773086 и 6238738, каждый из которых включен в настоящее описание посредством ссылки.
Для осуществления предпочтительного способа нанесения пленки температура газовой смеси, подводимой в окрестности плоской стеклянной подложки, предназначенной для покрытия, поддерживается ниже температуры реакции формирования наносимого материала, а температура подложки превышает температуру реакции реагентов. Затем в паровое пространство непосредственно над подложкой вводится газовая смесь-предшественник. Тепло от подложки поднимает температуру газа-предшественника выше температуры термического разложения соединений веществ-предшественников.
Высокие скорости нанесения важны с практической точки зрения при нанесении покрытий на подложки в рамках процесса изготовления. Это особенно справедливо для непрерывного флоат-процесса изготовления стекла, где стеклянная линия движется с определенной скоростью конвейера и где требуется определенная толщина покрытия.
Оборудование для флоат-процесса изготовления стекла может быть использовано в качестве средства для осуществления способа, предложенного в настоящем изобретении. Ниже приводится описание конкретного примера оборудования для флоат-процесса изготовления стекла. В частности, в установке флоат-процесса изготовления стекла из плавильной печи расплавленное стекло по каналу подается во флоат-ванну, где в соответствии с хорошо известным флоат-процессом формируется непрерывная стеклянная лента. Стеклянная лента выходит из ванны через примыкающие к ванне лер (печь отжига стекла) и отсек охлаждения. Непрерывная стеклянная лента служит подложкой, на которую в соответствии с настоящим изобретением наносится требуемое покрытие.
Флоат-ванна включает нижнюю секцию, в которой находится ванна расплава олова, верхняя стенка, расположенные напротив друг друга боковые стенки и торцевые стенки. Верхняя стенка, боковые стенки и торцевые стенки в совокупности определяют камеру, в которой, для предотвращения окисления расплавленного олова, поддерживается неокисляющая газовая среда.
Кроме того, в флоат-ванне расположены устройства распределения газа. Устройства распределения газа в флоат-ванне могут использоваться для нанесения дополнительных покрытий на подложку перед нанесением покрытия оксида металла в соответствии с настоящим изобретением. Дополнительные покрытия могут включать кремний и диоксид кремния.
В процессе работы установки расплавленное стекло протекает по каналу через регулирующую жаропрочную заслонку вниз на поверхность ванны расплава олова управляемым потоком. На поверхности ванны расплава олова расплавленное стекло растекается в стороны под влиянием тяготения и сил поверхностного натяжения, а также определенного механического фактора, и движется вдоль ванны, образуя ленту. Лента извлекается по отрывным валкам, после чего по параллельным с ними валкам проходит сквозь лер и отсек охлаждения. Нанесение предложенного в настоящем изобретении покрытия может производиться во флоат-ванне либо далее по конвейеру, например, между флоат-ванной и лером, либо в лере.
В камере ванны поддерживается подходящая неокисляющая газовая среда, в основном, содержащая азот или смесь азота с водородом, для предотвращения окисления расплавленного олова. Эта газовая среда поступает по трубопроводам, соединенным с распределительным коллектором. Скорость введения неокисляющего газа достаточна для восполнения его естественной убыли и для поддержания небольшого избыточного давления, порядка 0,001-0,01 атмосферы, относительно давления окружающей среды для предотвращения проникновения в камеру атмосферного воздуха. Для использования в настоящем изобретении указанный интервал давлений может считаться попадающим в область нормального атмосферного давления. Тепло для поддержания требуемого температурного режима в ванне расплава олова и камере может обеспечиваться радиационными излучателями, расположенными внутри камеры. Газовая среда внутри лера обычно представляет собой атмосферный воздух, поскольку отсек охлаждения не изолирован и стеклянная лента открыта атмосферным воздействиям. В отсеке охлаждения атмосферный воздух может направляться на стеклянную ленту, например, вентилятором. Нагреватели могут быть также установлены внутри лера для обеспечения постепенного понижения температуры стеклянной ленты согласно заданному закону, по мере ее прохождения сквозь лер.
Устройства распределения газа обычно располагаются во флоат-ванне для нанесения на подложку из стеклянной ленты различных покрытий, но могут также располагаться и за пределами флоат-ванны, далее по ходу движения ленты. Устройство распределения газа является одним из видов реакторов, которые могут быть использованы при осуществлении процесса в соответствии с настоящим изобретением.
Обычной конфигурацией устройств распределения, подходящих для получения материалов-предшественников, согласно настоящему изобретению является вогнутая конструкция в виде желоба, ограниченного разнесенными внутренней и наружной стенками, и образующая по меньшей мере две замкнутые полости. По замкнутым полостям циркулирует подходящая теплообменная среда для поддержания требуемой температуры устройств распределения газа. Предпочтительный вариант осуществления устройства распределения газа раскрыт в US 4504526, выданном Хоферу (Hofer) и др., который включен в настоящее описание посредством ссылки.
Газовая смесь-предшественник подается по питающему трубопроводу, имеющему жидкостное охлаждение. Питающий трубопровод проходит вдоль устройства распределения и выпускает газ по ответвлениям, распределенным вдоль питающего трубопровода. Питающий трубопровод идет к нагнетательной камере внутри коллектора, расположенного на конструкции. Газы-предшественники, прошедшие в ответвления, выходят из нагнетательной камеры через проход к напылительной камере, образующей паровое пространство, открывающееся на стекло, где они протекают вдоль поверхности стекла.
Внутри нагнетательной камеры могут находиться отражательные перегородки для выравнивания потока материалов-предшественников вдоль распределительного устройства для обеспечения подачи материалов на стекло ровным, ламинарным, однородным потоком по всей длине распределительного устройства. Отработавшие материалы-предшественники собираются и выводятся через выпускные камеры по краям распределительного устройства.
Распределительные устройства различной формы, известные из уровня техники и используемые в химическом осаждении из газовой фазы, пригодны для настоящего изобретения.
В одной из таких альтернативных конфигураций распределительного устройства газовая смесь-предшественник вводится через питающий трубопровод, где он охлаждается охлаждающей жидкостью, циркулирующей по каналам охлаждения. Газовый питающий трубопровод выходит сквозь вытянутое отверстие в дроссель газового потока.
Дроссель газового потока содержит большое число металлических полос, волнисто гофрированных вдоль и установленных вертикально поджатыми друг к другу вдоль длины распределительного устройства. Смежные гофрированные металлические полосы расставлены "в противофазе", образуя между ними большое число вертикальных каналов. Эти вертикальные каналы имеют небольшую площадь поперечного сечения по сравнению с площадью поперечного сечения питающего трубопровода, поэтому газ выходит из дросселя газового потока с приблизительно одинаковым давлением по длине распределительного устройства.
Газ для создания покрытия выходит из дросселя газового потока во впускную сторону направляющего канала, имеющего существенно U-образную форму и, в целом, содержащего впускную ветвь, напылительную камеру, которая открывается на покрываемую горячую стеклянную подложку, и выпускную ветвь, посредством которой использованный для создания покрытия газ отводится от стекла. Скругленная форма краев брусков, образующих канал, через который выходит использующийся для покрытия газ, способствует созданию однородного ламинарного потока газа параллельно вдоль поверхности стекла, на которую наносится покрытие.
Примеры
Описанные ниже примеры, предположительно представляющие предпочтительные варианты осуществления изобретения, представлены только в целях иллюстрации и лучшего раскрытия изобретения и не должны восприниматься как ограничивающие изобретение.
Примеры, приведенные в таблицах 1-4, являются результатом компьютерного моделирования различных конфигураций слоистой пленки стеклянного изделия с покрытием, предложенного в настоящем изобретении, а также конфигураций слоистых пленок, не попадающих в область притязаний настоящего изобретения, которые могут служить хорошей основой для сопоставления с настоящим изобретением.
Приведенные в таблицах примерах 1-16 термины имеют следующее значение:
Rg обозначает коэффициент отражения, в процентах, видимого света от основной поверхности стеклянного листа, в отсутствие нанесенных тонкопленочных покрытий.
Rg(a*) и Rg(b*) определяют цветовые характеристики света, отраженного от непокрытой поверхности стеклянного листа, согласно, соответственно координатам а* и b* цветового пространства CIELAB.
ABS обозначает, в процентах, часть видимого света, поглощаемого одной или более тонкими пленками, нанесенными на покрытом стеклянном листе.
Т обозначает, в процентах, часть видимого света, поглощаемого солнечным элементом на существенно аморфном кремнии, которая может быть преобразована в электрическую энергию.
В частности, примеры 1-4 относятся к области притязаний настоящего изобретения. Примеры 1-4 можно сравнить с примерами 5-8, причем в слоистой пленке в примерах 1-4 согласно настоящему изобретению используется слой кремния толщиной 5000 Å, что является характерным для солнечного элемента с, в основном, аморфным кремнием. Как будет показано, отражение (Rg) со стороны стекла структуры исследованной модели (примеры 1-4) очень невелико, составляя 5,2-8,0%. Столь низкое отражение позволяет довести до максимума количество солнечного излучения, захваченного структурой солнечного элемента, которое может быть использовано для преобразования в электрическую энергию.
Также следует отметить, что в примерах 1-8 используются структуры для подавления радужного эффекта при отражении. Среди приведенных примеров в примерах 2 и 3, отличающихся более тонкими слоями нелегированного SnO2 (250 Å и 600 Å), достигнут минимальный Rg. Примеры 2 и 3 также отличаются в отношении толщины слоев легированного SnО2. В модели в этих примерах в качестве легирующей примеси выбран фтор. Несмотря на разницу в толщине слоя SnO2:F, составляющую 2000 Å, предсказанная разница в величине Rg очень невелика.
Приведенные для сравнения примеры 5-8 показывают, как взаимодействие слоя аморфного кремния с промежуточным слоем, оптимизирующим пропускание, снижает потери света из-за отражения и повышает светопропускание/поглощение. Величина Rg в примерах 5-8 примерно на 20% выше, чем в примерах 1-4.
Примеры 9-12 и 13-16, в которых отсутствует оптимизирующий светопропускание промежуточный слой, могут служить базой для сравнения с примерами, где такой слой используется. Видно, особенно в примерах 13-16, нежелательное значительное увеличение Rg по сравнению с примерами 1-4. Действительно, величина Rg в примерах 13-16 в среднем более, чем вдвое выше величины Rg в примерах 1-4. Можно, таким образом, утверждать, что промежуточный слой TiO2, оптимизирующий светопропускание, оказывает значительное благоприятное действие по снижению отражения света. Поглощение света в примерах 1-4 составляет на 6-10% больше, чем в примерах 13-16, что значительно повышает эффективность солнечного элемента, в котором используется настоящее изобретение.
Таблица 1 - примеры 1-4 | ||||
Пример | 1 | 2 | 3 | 4 |
SnO2 | 600 | 250 | 250 | 600 |
SiO2 | 250 | 250 | 250 | 250 |
SnO2F | 5300 | 5300 | 7300 | 7300 |
TiO2 | 450 | 500 | 500 | 500 |
Si | 5000 | 5000 | 5000 | 5000 |
ABS | 90,288 | 92,933 | 93,054 | 90,348 |
Т | 1,72 | 1,79 | 1,73 | 1,69 |
Rg(a*) | 6,55 | 7,048 | 6,656 | 3.662 |
Rg(b*) | -10,411 | -12,516 | -11,727 | -13,726 |
Rg | 7,992 | 5,277 | 5,216 | 7,962 |
ABS (Si) | 77,96 | 80,22 | 76,777 | 74,326 |
Таблица 1: примеры 1-4 иллюстрируют использование настоящего изобретения в качестве компонента солнечного элемента на основе аморфного кремния и результаты анализа его оптических характеристик.
Таблица 2 - примеры 5-8 | ||||
Примеры | 5 | 6 | 7 | 8 |
SnO2 | 600 | 250 | 250 | 600 |
SiO2 | 250 | 250 | 250 | 250 |
SnO2F | 5300 | 5300 | 7300 | 7300 |
TiO2 | 450 | 500 | 500 | 500 |
Si | ||||
ABS | 12,328 | 12,711 | 16,277 | 16,022 |
Т | 59,78 | 61,14 | 58,99 | 57.71 |
Rg(a*) | -2,235 | -4,59 | -3,74 | -0,74 |
Rg(b*) | 1,231 | 2,0 | 2,0 | -0,61 |
Rg | 27,9 | 26,149 | 24,73 | 26,268 |
Таблица 2: примеры 5-8 показывают измеренные оптические характеристики настоящего изобретения с оптимизирующим светопропускание промежуточным слоем оксида олова, легированного фтором, но не в комбинации с покрытием из аморфного кремния.
Таблица 3 - примеры 9-12 | ||||
Примеры | 9 | 10 | 11 | 12 |
SnO2 | 250 | 600 | 250 | 600 |
SiO2 | 250 | 600 | 250 | 600 |
SnO2F | 5300 | 5300 | 7300 | 7300 |
TiO2 | ||||
Si | ||||
ABS | 10,865 | 10,669 | 13,969 | 13,65 |
Т | 77,9 | 75,77 | 75,19 | 72,86 |
Rg(a*) | 0,20 | -6,1 | -1,57 | -4,29 |
Rg(b*) | -1,83 | -8,55 | -0,21 | -2,97 |
Rg | 11,33 | 13,57 | 10,85 | 13,49 |
Таблица 3: примеры 9-12 показывают оптические характеристики, получение которых можно ожидать без использования промежуточного слоя, оптимизирующего светопропускание.
Таблица 4 - примеры 13-16 | ||||
Пример | 13 | 14 | 15 | 16 |
SnO2 | 250 | 601 | 250 | 601 |
SiO2 | 250 | 250 | 250 | 250 |
SnO2F | 5300 | 5300 | 7300 | 7300 |
TiO2 | ||||
Si | 5000 | 5000 | 5000 | 5000 |
ABS | 84,23 | 82,42 | 85,467 | 83,341 |
Т | 1,61 | 1,54 | 1,55 | 1,5 |
Rf(a*) | -1,015 | -1,023 | -1,018 | -1,006 |
Rf(b*) | -3,181 | -3,181 | -3,182 | -3,177 |
Rf | 35,32 | 35,353 | 35,32 | 35,356 |
Rg(a*) | -3,057 | 2,721 | -1,544 | 0,607 |
Rg(b*) | -0,175 | 0,44 | -0,694 | -4,624 |
Rg | 13,567 | 16,04 | 12,983 | 15,159 |
ABS (Si) | 73,96 | 71,75 | 71,50 | 69,69 |
Таблица 4: примеры 13-16 представляют химический состав и оптические характеристики известного солнечного элемента на основе аморфного кремния, не имеющего промежуточного слоя, оптимизирующего светопропускание.
Из данных таблицы 1 видно, что образцы, содержащие оптимизирующий светопропускание промежуточный слой, обладают отражением падающего солнечного излучения, меньшим на 7-8%, по сравнению с образцами, такого слоя не имеющими. Результатом подобного снижения отражения может быть увеличение эффективности преобразования на 8-9%, что очень важно, если эффективность преобразования обычных солнечных элементов составляет порядка 10-12%.
Изобретение было раскрыто на примере его вариантов осуществления, которые могут считаться предпочтительными. Следует, однако, понимать, что конкретные варианты осуществления представлены только для иллюстрации изобретения и что изобретение допускает иные, по сравнению с проиллюстрированными, варианты осуществления без отступления от его существа и в пределах объема притязаний формулы изобретения.
Claims (22)
1. Изделие с покрытием, пригодное для использования в качестве компонента солнечного элемента, содержащее
прозрачную диэлектрическую подложку,
прозрачный электропроводящий слой оксида металла, нанесенный на диэлектрическую подложку и имеющий коэффициент преломления менее 2,0,
оптимизирующий светопропускание промежуточный слой, нанесенный поверх проводящего слоя оксида металла и имеющий коэффициент преломления от 2,3 до 3,5, и
слой кремния, нанесенный на оптимизирующий светопропускание промежуточный слой и имеющий коэффициент преломления по меньшей мере 4,5.
прозрачную диэлектрическую подложку,
прозрачный электропроводящий слой оксида металла, нанесенный на диэлектрическую подложку и имеющий коэффициент преломления менее 2,0,
оптимизирующий светопропускание промежуточный слой, нанесенный поверх проводящего слоя оксида металла и имеющий коэффициент преломления от 2,3 до 3,5, и
слой кремния, нанесенный на оптимизирующий светопропускание промежуточный слой и имеющий коэффициент преломления по меньшей мере 4,5.
2. Изделие по п.1, в котором электропроводящий слой содержит оксид металла, легированный фтором.
3. Изделие по п.1, в котором оптимизирующий светопропускание промежуточный слой включает слой оксида металла.
4. Изделие по п.3, в котором оптимизирующий светопропускание промежуточный слой содержит оксид титана.
5. Изделие по п.1, в котором слой кремния содержит аморфный кремний.
6. Изделие по п.1, дополнительно содержащее цветоизбирательную пленку, размещенную между диэлектрической подложкой и электропроводящим слоем.
7. Изделие по п.6, в котором цветоизбирательная пленка содержит слой, выбранный из группы, состоящей из одиночного слоя оксида металла, слоя оксида металла и слоя двуокиси кремния, и градиентного слоя.
12. Изделие по п.3, в котором оптимизирующий светопропускание промежуточный слой имеет коэффициент преломления в интервале от 2,3 до 3,0.
14. Изделие по п.1, в котором коэффициент преломления слоя кремния составляет по меньшей мере 5,0.
15. Изделие по п.1, в котором электропроводящий слой содержит оксид индия, легированный оловом.
16. Способ изготовления изделия с покрытием, пригодного для использования в качестве компонента солнечного элемента, при осуществлении которого
подготавливают нагретую диэлектрическую подложку,
наносят на указанную подложку прозрачный электропроводящий слой оксида металла, имеющий коэффициент преломления менее 2,0,
наносят на проводящий слой оксида металла оптимизирующий светопропускание промежуточный слой, коэффициент преломления которого составляет от 2,3 до 3,5, и
наносят на оптимизирующий светопропускание промежуточный слой слой кремния, коэффициент преломления которого составляет по меньшей мере 4,5.
подготавливают нагретую диэлектрическую подложку,
наносят на указанную подложку прозрачный электропроводящий слой оксида металла, имеющий коэффициент преломления менее 2,0,
наносят на проводящий слой оксида металла оптимизирующий светопропускание промежуточный слой, коэффициент преломления которого составляет от 2,3 до 3,5, и
наносят на оптимизирующий светопропускание промежуточный слой слой кремния, коэффициент преломления которого составляет по меньшей мере 4,5.
17. Способ по п.16, в котором каждый слой наносят непосредственно в ходе флоат-процесса изготовления стекла.
18. Способ по п.16, в котором каждый слой наносится химическим осаждением из газовой фазы при атмосферном давлении.
19. Прозрачное стеклянное изделие с покрытием, пригодное для использования в качестве компонента солнечного элемента, включающее прозрачную диэлектрическую подложку из стекла, прозрачный электропроводящий слой оксида металла, нанесенный на диэлектрическую подложку и имеющий коэффициент преломления менее 2,0,
оптимизирующий светопропускание промежуточный слой, нанесенный поверх проводящего слоя оксида металла и имеющий коэффициент преломления от 2,3 до 3,5, и
слой кремния, нанесенный на оптимизирующий светопропускание промежуточный слой и имеющий коэффициент преломления по меньшей мере 4,5,
причем коэффициент отражения изделия с покрытием со стороны стекла составляет от 5,2 до 8,0.
оптимизирующий светопропускание промежуточный слой, нанесенный поверх проводящего слоя оксида металла и имеющий коэффициент преломления от 2,3 до 3,5, и
слой кремния, нанесенный на оптимизирующий светопропускание промежуточный слой и имеющий коэффициент преломления по меньшей мере 4,5,
причем коэффициент отражения изделия с покрытием со стороны стекла составляет от 5,2 до 8,0.
20. Изделие по п.19, в котором оптимизирующий светопропускание промежуточный слой нанесен непосредственно на проводящий слой оксида металла.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71246505P | 2005-08-30 | 2005-08-30 | |
US60/712,465 | 2005-08-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2008111986A RU2008111986A (ru) | 2009-10-10 |
RU2404485C2 true RU2404485C2 (ru) | 2010-11-20 |
RU2404485C9 RU2404485C9 (ru) | 2011-03-20 |
Family
ID=37685171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008111986/28A RU2404485C9 (ru) | 2005-08-30 | 2006-08-24 | Стеклянный компонент солнечного элемента, имеющий оптимизирующее светопропускание покрытие, и способ его изготовления |
Country Status (9)
Country | Link |
---|---|
US (1) | US7968201B2 (ru) |
EP (1) | EP1929542A1 (ru) |
JP (1) | JP5270345B2 (ru) |
KR (1) | KR101252322B1 (ru) |
CN (1) | CN100555671C (ru) |
BR (1) | BRPI0614819A2 (ru) |
MY (1) | MY160173A (ru) |
RU (1) | RU2404485C9 (ru) |
WO (1) | WO2007027498A1 (ru) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101000057B1 (ko) | 2008-02-04 | 2010-12-10 | 엘지전자 주식회사 | 다층 투명전도층을 구비한 태양전지 이의 제조방법 |
KR100988479B1 (ko) * | 2008-08-25 | 2010-10-18 | 대주나노솔라주식회사 | 복합 산화물 층이 형성된 태양전지 모듈용 유리 기판 |
EP2104145A1 (fr) | 2008-03-18 | 2009-09-23 | AGC Flat Glass Europe SA | Substrat de type verrier revêtu de couches minces et procédé de fabrication |
MX2011010130A (es) * | 2009-03-27 | 2011-10-11 | Ppg Ind Ohio Inc | Espejo reflectante solar que tiene un recubrimiento protector y metodo de fabricacion del mismo. |
US20100258174A1 (en) * | 2009-04-14 | 2010-10-14 | Michael Ghebrebrhan | Global optimization of thin film photovoltaic cell front coatings |
CN101567396A (zh) * | 2009-05-27 | 2009-10-28 | 中国南玻集团股份有限公司 | 用于太阳能电池的透明导电基板 |
JP5554409B2 (ja) | 2010-06-21 | 2014-07-23 | 三菱電機株式会社 | 光電変換装置 |
JP2014160689A (ja) * | 2011-06-20 | 2014-09-04 | Asahi Glass Co Ltd | 透明導電性酸化物膜付き基体 |
US20150122319A1 (en) | 2011-07-28 | 2015-05-07 | David A. Strickler | Apcvd of doped titanium oxide and the coated article made thereby |
US9557871B2 (en) * | 2015-04-08 | 2017-01-31 | Guardian Industries Corp. | Transparent conductive coating for capacitive touch panel or the like |
US10222921B2 (en) | 2012-11-27 | 2019-03-05 | Guardian Glass, LLC | Transparent conductive coating for capacitive touch panel with silver having increased resistivity |
KR101466621B1 (ko) * | 2013-02-28 | 2014-12-01 | 주식회사 케이씨씨 | 투과율과 내구성이 향상된 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법 |
GB201309717D0 (en) | 2013-05-31 | 2013-07-17 | Pilkington Group Ltd | Interface layer for electronic devices |
WO2015169331A1 (de) * | 2014-05-05 | 2015-11-12 | Masdar Pv Gmbh | Verfahren zum aufbringen von halbleitermaterial, halbleitermodul und substratherstellungsanlage |
US10133108B2 (en) | 2015-04-08 | 2018-11-20 | Guardian Glass, LLC | Vending machines with large area transparent touch electrode technology, and/or associated methods |
CN106584975B (zh) * | 2016-12-05 | 2019-05-03 | 复旦大学 | 一种红外增强的宽带光热转换薄膜器件 |
KR102282988B1 (ko) | 2020-11-24 | 2021-07-29 | 주식회사 지쓰리 | 볼링공 보조주행장치 |
CN112919825A (zh) * | 2021-02-08 | 2021-06-08 | 海控三鑫(蚌埠)新能源材料有限公司 | 一种双层镀膜光伏玻璃的在线降温装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US437763A (en) * | 1890-10-07 | Electric metee | ||
DE3048381C2 (de) * | 1980-12-22 | 1985-09-05 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Dünnschicht-Solarzelle |
US4377613A (en) | 1981-09-14 | 1983-03-22 | Gordon Roy G | Non-iridescent glass structures |
US4419386A (en) * | 1981-09-14 | 1983-12-06 | Gordon Roy G | Non-iridescent glass structures |
US4504526A (en) * | 1983-09-26 | 1985-03-12 | Libbey-Owens-Ford Company | Apparatus and method for producing a laminar flow of constant velocity fluid along a substrate |
JPS6068663A (ja) * | 1983-09-26 | 1985-04-19 | Komatsu Denshi Kinzoku Kk | アモルフアスシリコン太陽電池 |
JPS61141185A (ja) * | 1984-12-13 | 1986-06-28 | Fuji Electric Co Ltd | 光起電力素子の製造方法 |
JPS61159771A (ja) * | 1985-01-07 | 1986-07-19 | Sanyo Electric Co Ltd | 光起電力装置 |
US4746371A (en) * | 1985-06-03 | 1988-05-24 | Chevron Research Company | Mechanically stacked photovoltaic cells, package assembly, and modules |
US5698262A (en) * | 1996-05-06 | 1997-12-16 | Libbey-Owens-Ford Co. | Method for forming tin oxide coating on glass |
US6238738B1 (en) * | 1996-08-13 | 2001-05-29 | Libbey-Owens-Ford Co. | Method for depositing titanium oxide coatings on flat glass |
US5773086A (en) * | 1996-08-13 | 1998-06-30 | Libbey-Owens-Ford Co. | Method of coating flat glass with indium oxide |
EP1054454A3 (en) * | 1999-05-18 | 2004-04-21 | Nippon Sheet Glass Co., Ltd. | Glass sheet with conductive film, method of manufacturing the same, and photoelectric conversion device using the same |
JP4516657B2 (ja) * | 1999-06-18 | 2010-08-04 | 日本板硝子株式会社 | 光電変換装置用基板とその製造方法、およびこれを用いた光電変換装置 |
JP2001148491A (ja) * | 1999-11-19 | 2001-05-29 | Fuji Xerox Co Ltd | 光電変換素子 |
JP4362273B2 (ja) * | 2001-12-03 | 2009-11-11 | 日本板硝子株式会社 | 基板の製造方法 |
JPWO2005027229A1 (ja) * | 2003-08-29 | 2007-11-08 | 旭硝子株式会社 | 透明導電膜付き基体およびその製造方法 |
-
2006
- 2006-08-24 JP JP2008529119A patent/JP5270345B2/ja not_active Expired - Fee Related
- 2006-08-24 BR BRPI0614819-0A patent/BRPI0614819A2/pt not_active IP Right Cessation
- 2006-08-24 RU RU2008111986/28A patent/RU2404485C9/ru not_active IP Right Cessation
- 2006-08-24 EP EP06813706A patent/EP1929542A1/en not_active Withdrawn
- 2006-08-24 WO PCT/US2006/033078 patent/WO2007027498A1/en active Application Filing
- 2006-08-24 KR KR1020087005199A patent/KR101252322B1/ko not_active IP Right Cessation
- 2006-08-24 CN CNB2006800316544A patent/CN100555671C/zh not_active Expired - Fee Related
- 2006-08-24 MY MYPI20080146A patent/MY160173A/en unknown
- 2006-08-24 US US11/990,475 patent/US7968201B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
MY160173A (en) | 2017-02-28 |
RU2008111986A (ru) | 2009-10-10 |
KR20080051132A (ko) | 2008-06-10 |
RU2404485C9 (ru) | 2011-03-20 |
KR101252322B1 (ko) | 2013-04-08 |
EP1929542A1 (en) | 2008-06-11 |
US20090155619A1 (en) | 2009-06-18 |
CN100555671C (zh) | 2009-10-28 |
CN101253634A (zh) | 2008-08-27 |
BRPI0614819A2 (pt) | 2011-04-19 |
JP5270345B2 (ja) | 2013-08-21 |
WO2007027498A1 (en) | 2007-03-08 |
US7968201B2 (en) | 2011-06-28 |
JP2009505941A (ja) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2404485C2 (ru) | Стеклянный компонент солнечного элемента, имеющий оптимизирующее светопропускание покрытие, и способ его изготовления | |
EP1950813A1 (en) | Transparent conductive substrate for solar cell and process for producing the same | |
US6380480B1 (en) | Photoelectric conversion device and substrate for photoelectric conversion device | |
US6602606B1 (en) | Glass sheet with conductive film, method of manufacturing the same, and photoelectric conversion device using the same | |
EP1056136B1 (en) | Conductive substrate for a photoelectric conversion device and its manufacturing method | |
US6362414B1 (en) | Transparent layered product and glass article using the same | |
US10573765B2 (en) | APCVD of doped titanium oxide and the coated article made thereby | |
JPH02503615A (ja) | 太陽電池用基板 | |
WO2000013237A1 (fr) | Dispositif photovoltaique | |
US6498380B1 (en) | Substrate for photoelectric conversion device, and photoelectric conversion device using the same | |
JP5599823B2 (ja) | 導電性酸化チタンコーティングの堆積方法 | |
WO2012021593A1 (en) | Photovoltaic device with oxide layer | |
JP2001035262A (ja) | 導電膜付きガラス板とその製造方法、およびこれを用いた光電変換装置 | |
JP2001060707A (ja) | 光電変換装置 | |
JP3984404B2 (ja) | 導電膜付きガラス板とその製造方法、およびこれを用いた光電変換装置 | |
JP4516657B2 (ja) | 光電変換装置用基板とその製造方法、およびこれを用いた光電変換装置 | |
WO2022114028A1 (ja) | 透明導電膜付きガラス基板及び太陽電池 | |
JPH06184755A (ja) | 堆積膜形成方法および堆積膜形成装置 | |
WO2011087895A2 (en) | Photovoltaic module and method for making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TH4A | Reissue of patent specification | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140825 |