RU2395867C2 - ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ - Google Patents

ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ Download PDF

Info

Publication number
RU2395867C2
RU2395867C2 RU2008139737/28A RU2008139737A RU2395867C2 RU 2395867 C2 RU2395867 C2 RU 2395867C2 RU 2008139737/28 A RU2008139737/28 A RU 2008139737/28A RU 2008139737 A RU2008139737 A RU 2008139737A RU 2395867 C2 RU2395867 C2 RU 2395867C2
Authority
RU
Russia
Prior art keywords
layer
sic
silicon
substrate
membrane
Prior art date
Application number
RU2008139737/28A
Other languages
English (en)
Other versions
RU2008139737A (ru
Inventor
Антон Викторович Матузов (RU)
Антон Викторович Матузов
Алексей Валентинович Афанасьев (RU)
Алексей Валентинович Афанасьев
Владимир Алексеевич Ильин (RU)
Владимир Алексеевич Ильин
Александра Николаевна Кривошеева (RU)
Александра Николаевна Кривошеева
Борис Борисович Логинов (RU)
Борис Борисович Логинов
Виктор Викторович Лучинин (RU)
Виктор Викторович Лучинин
Александр Сергеевич Петров (RU)
Александр Сергеевич Петров
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) (СПбГЭТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) (СПбГЭТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) (СПбГЭТУ)
Priority to RU2008139737/28A priority Critical patent/RU2395867C2/ru
Publication of RU2008139737A publication Critical patent/RU2008139737A/ru
Application granted granted Critical
Publication of RU2395867C2 publication Critical patent/RU2395867C2/ru

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Weting (AREA)

Abstract

Группа изобретений относится к микро- и нанотехнологии и может быть использовано при изготовлении микромеханических приборов. Сущность изобретения: полупроводниковая сэндвич-структура 3С-SiC/Si содержит последовательно расположенные кремниевую подложку с базовой ориентацией (100), слой нанопористого кремния толщиной 50÷180 нм, сформированный с помощью химического травления подложки, и слой 3С-SiC, нанесенный с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния. Предложены также способ получения полупроводниковой сэндвич-структуры и чувствительный элемент мембранного типа с ее использованием. Техническим результатом изобретения является повышение обратного пробивного напряжения и подвижности носителей зарядов в полупроводниковой сэндвич-структуре за счет повышения надежности получения структурно совершенного слоя карбида кремния. 3 н.п. ф-лы, 4 ил., 3 табл.

Description

Группа изобретений относится к микро- и нанотехнологии и может быть использована при получении полупроводниковой сэндвич-структуры 3С-SiC/Si для изготовления диодов и мембранных элементов микромеханических приборов.
Известна полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая подложку из монокристаллического кремния и эпитаксиальный слой карбида кремния, между которыми расположен посредник - с-ВР. Такую структуру получают путем химического осаждения слоя с-ВР, синтезированного из газовой смеси диборана и фосфина, на подложку с последующим химическим осаждением SiC из монометилсилана или из пропан-силановой смеси (WO/2003/023095, С30В 25/02, H01L 21/04, 2003; US 20040053438, H01L 21/00, H01L 21/20, H01L 21/336, 2004).
Однако данная структура и способ ее получения нетехнологичны, причем формирование и нанесение посредника - с-ВР - не только усложняют технологию, но и могут приводить к загрязнению целевого продукта атомами фосфора и бора.
Известна также полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая подложку из монокристаллического, поликристаллического или аморфного кремния, на поверхности которой сформирован слой карбида кремния высокотемпературным химическим осаждением в реакционной камере магнетрона высокочастотного (от 10 МГц до 10 ГГц) напряжения из плазмы высокого давления с использованием реакционной смеси водорода и углеродсодержащего газа (WO/2007/055377, H01L 21/205, С30В 29/36, 2007).
Однако способ получения целевого продукта здесь является сложным из-за необходимости создания высокочастотного разряда для образования плазмы высокого давления. Кроме того, слой SiC в целевом продукте имеет незначительную и нерегулируемую толщину, поскольку в плазме присутствует лишь углеродсодержащий компонент. В этом случае после нанесения на подложку сплошного слоя SiC процесс диффузии атомов кремния из подложки прекращается, в связи с чем дальнейшее нанесение SiC невозможно из-за отсутствия источника атомов кремния.
В уровень техники входит также полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая подложку из монокристаллического кремния с ориентацией (110), на которую нанесена монокристаллическая пленка 3С-SiC ориентации (111) через посредник - слой SiC, включающий атомы водорода в концентрации ≥1019 atoms/cm3. Такую структуру получают низкотемпературным осаждением из газовой фазы кремнийорганического соединения на поверхность подложки из монокристаллического кремния с ориентацией (110) слоя карбида кремния, включающего атомы водорода в концентрации ≥1019 atoms/cm3, а затем слоя 3С-SiC ориентации (111) (JP 2006253617, H01L 21/205, H01L 21/20, H01L 21/02, 2006).
Однако в целевом продукте, полученном данным способом, невозможно регулировать технические характеристики (кристаллическую структуру, подвижность носителей зарядов и др.) из-за неуправляемости соотношением атомов Si и С в газовой фазе используемого кремнийорганического соединения на стадии низкотемпературного осаждения.
Еще одна группа аналогов касается получения полупроводниковой сэндвич-структуры 3С-SiC/Si, содержащей подложку из монокристаллического кремния с базовой ориентацией (111), на которую нанесен слой карбида кремния. Целевой продукт здесь получают синтезом пленки карбида кремния на поверхности кремниевой подложки под нагревом с использованием углерода, осаждаемого из углеродсодержащего материала сначала при условиях, не обеспечивающих образования карбида кремния, а затем при условиях, обеспечивающих синтез карбида кремния (RU 2286617, H01L 21/205, 2006; RU 2286616, H01L 21/205, 2006).
Однако слой SiC, получаемый в данном способе, имеет незначительную толщину (как указано в источниках информации, толщина слоя SiC составляет до 1 мкм, хотя, по нашим данным, на равна 0,2 мкм). Это приводит к сужению области использования целевого продукта, например, невозможности его использования в СВЧ системах, требующих не менее 10 мкм. Увеличить толщину слоя SiC в данной технологии невозможно из-за формирующегося сплошного слоя SiC, препятствующего диффузии атомов Si из подложки, при этом дальнейшее нанесение SiC невозможно из-за отсутствия источника атомов кремния. Кроме того, недостаток данного аналога заключается в поликристаллической структуре нанесенной пленки SiC, как это проиллюстрировано в его описании.
Из приведенного обзора аналогов видно, что технические характеристики целевого продукта зависят от способа его получения. Это относится также и к прототипу целевого продукта.
Наиболее близкой к заявляемой является полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая последовательно расположенные подложку из монокристаллического кремния с базовой ориентацией (100), слой нано-пористого кремния толщиной от 0,3 до 100 мкм, сформированный с помощью химического или электрохимического травления подложки, и слой карбида кремния. Такую структуру получают формированием слоя нано-пористого кремния на поверхности подложки из монокристаллического кремния с базовой ориентацией (100) химическим травлением подложки реакционной смесью, содержащей водный раствор HF с добавлением окислителя - НNО3, с последующей карбидизацией нанопористого слоя и химическим осаждением слоя 3С-SiC из газовой фазы, включающей SiH4, C3H8 и H2 (JP 2006045036, С30В 29/36, С30В 29/38, H01L 21/205, С23С 16/24, С30В 29/10, H01L 21/02, С23С 16/22, 2006).
Однако слой карбида кремния в подавляющем большинстве прототипных образцов обладает низким структурным совершенством: он является, как правило, поликристаллическим, текстурированным или блочным, что имеет следствием ухудшение его электрофизических характеристик (низкие значения обратного пробивного напряжения и подвижности носителей зарядов в целевом продукте).
Технической задачей группы изобретений, касающихся полупроводниковой сэндвич-структуры 3С-SiC/Si и способа ее получения, является повышение обратного пробивного напряжения и подвижности носителей зарядов в целевом продукте за счет повышения надежности получения структурно совершенного слоя карбида кремния.
Решение указанной технической задачи в части структуры заключается в том, что в полупроводниковой сэндвич-структуре 3С-SiC/Si, содержащей последовательно расположенные подложку из монокристаллического кремния с базовой ориентацией (100), слой нанопористого кремния, сформированный с помощью химического травления подложки, и слой карбида кремния, слой нанопористого кремния сформирован толщиной 50-180 нм, при этом слой карбида кремния нанесен с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния.
Решение указанной технической задачи в части способа заключается в том, что в способ получения полупроводниковой сэндвич-структуры 3С-SiC/Si, предусматривающий формирование слоя нанопористого кремния на поверхности подложки из монокристаллического кремния с базовой ориентацией (100) путем химического травления подложки реакционной смесью, содержащей водный раствор HF, с последующей карбидизацией нанопористого слоя и химическим осаждением слоя 3C-S1C из газовой фазы, включающей SiH4, С3Н8 и H2, вносятся следующие изменения:
1) слой пористого кремния формируют толщиной 50-180 нм;
2) реакционная смесь, используемая на стадии химического травления подложки, дополнительно содержит NaNO2 при следующем соотношении компонентов, мас.%:
HF 20÷49;
NaNO2 0,02÷0,30;
деионизованная вода остальное;
3) соотношение компонентов газовой фазы, используемой для химического осаждения слоя 3С-SiC составляет, объем.%:
SiH4 0,6-1,0;
С3Н8 0,8-1,2;
Н2 остальное.
Причинно-следственная связь между внесенными изменениями и достигнутым техническим результатом заключается в следующем. Замена окислителя (NaNO2 вместо HNO3) в составе реакционной смеси позволяет проводить более «мягкое» травление подложки, что важно для контроля процесса порообразования, а также обеспечения возможности пассивации водородом оборванных кремниевых связей. Новое соотношение ростообразующих компонентов в газовой фазе, используемой для химического осаждения слоя 3С-SiC, позволяет значительно улучшить структуру данного слоя и обеспечить скорость его роста до 30 нм/мин. Другие отличия - гидрогенизация поверхности нанопористого слоя и уменьшение его толщины до 50-180 нм - обеспечивают понижение плотности центров кристаллизации, что имеет следствием улучшение электрофизических характеристик целевого продукта, а именно, повышение обратного пробивного напряжения гетероструктуры и увеличение подвижности основных носителей заряда в слое.
В отношении преимущественной области использования предлагаемой полупроводниковой структуры - для изготовления чувствительного элемента мембранного типа в микромеханических приборах - уровень техники характеризуется следующими аналогами:
1. Чувствительный элемент мембранного типа, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), мембрану, изготовленную из нитрида кремния и расположенную над отверстием, выполненным в подложке для образования мембранной камеры, и оптический узел съема информативного сигнала, в качестве которого установлен интерферометр, регистрирующий величину прогиба мембраны под действием приложенного давления (D.Maier-Schneider, J.Maibach, E. Obermeier. Computeraided characterization of the elastic properties of thin films // Journal of Micromechanics and Microengineering, Vol.2, 1992, p.173-175).
Такой элемент обладает низкой чувствительностью к давлению.
2. Чувствительный элемент мембранного типа, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), двухслойную мембрану, включающую слой нитрида кремния и компенсирующий слой нитрида алюминия, расположенную над отверстием, выполненным в подложке для образования подмембранной камеры, и узел съема информативного сигнала (RU 2327252, H01L 29/84, 2008).
Его недостатками являются низкая химическая стойкость слоя нитрида алюминия, что усложняет, в частности, технологию изготовления целевого изделия.
3. Чувствительный элемент мембранного типа, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), двухслойную мембрану, первый слой которой сформирован из нитрида кремния, а второй (компенсирующий) слой - из карбида кремния. Мембрана расположена над отверстием, выполненным в подложке для образования подмембранной камеры. Целевое изделие оснащено тензометрическим или оптическим узлом съема информативного сигнала для подключения к внешней электрической цепи. Здесь компенсирующий SiC-слой мембраны уменьшает ее начальное внутреннее напряжение, что имеет следствием повышение чувствительности целевого изделия. Данный эффект наблюдается в диапазоне толщин SiC- и Si3N4-пленок, обеспечивающих функционирование нанесенной композиции SiC/Si3N4 как мембраны (RU 2247443, H01L 29/84, 2005 - прототип мембраны).
Однако слой Si3N4 мембраны обладает высокими механическими напряжениями, что имеет следствием низкую чувствительность целевого изделия к давлению. Данное изделие является сложным в отношении конструкции и изготовления из-за наличия слоев из разных материалов. Кроме того, оно не обладает универсальностью применения, поскольку является пассивным, в связи с чем не может использоваться для преобразования внешнего электрического сигнала в перемещение, например, в микроактюаторах и, особенно, в комбинированных технических системах, в которых мембрана попеременно выполняет измерительную и исполнительную функцию.
Технической задачей усовершенствования чувствительного элемента мембранного типа является повышение его чувствительности к давлению и упрощение конструкции.
Для решения этой технической задачи в конструкцию чувствительного элемента мембранного типа, содержащего подложку из монокристаллического кремния с базовой ориентацией (100), на рабочей поверхности которой последовательно сформированы компенсирующий слой и слой карбида кремния, а с тыльной стороны подложки выполнено глухое отверстие для образования мембранной камеры, и узел съема информативного сигнала, вносятся следующие изменения:
1) компенсирующий слой сформирован толщиной 50÷180 нм из нанопористого кремния химическим травлением рабочей поверхности подложки;
2) толщина слоя карбида кремния составляет 0,4÷0,6 мкм.
Такой чувствительный элемент, очевидно, может быть изготовлен с использованием предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si, где толщина слоя карбида кремния составляет 0,4÷0,6 мкм. Для этого с тыльной стороны подложки выполняют глухое отверстие для образования мембранной камеры и оснащают мембранный элемент узлом съема информативного сигнала, например, оптоволоконным интерферометром Фабри-Перро. Возможно выполнение узла съема информативного сигнала (либо узла управления) с использованием тензорезистивных свойств выполненного слоя карбида кремния.
Упрощение конструкции чувствительного элемента достигнуто тем, что слои мембраны выполнены из одного материала - карбида кремния различной модификации, а повышение чувствительности целевого изделия к давлению обеспечено структурным совершенством выращенного монокристаллического слоя карбида кремния, поскольку монокристаллический слой обладает минимальными остаточными механическими напряжениями.
На фиг.1 представлена схема полупроводниковой сэндвич-структуры 3С-SiC/Si; на фиг.2 приведена схема диода на основе данной полупроводниковой структуры; на фиг.3 даны схемы вариантов мембранного узла микромеханического прибора, изготовленных с использованием данной полупроводниковой структуры; на фиг.4 приведена схема чувствительного элемента мембранного типа, изготовленного с использованием данной полупроводниковой структуры. В табл.1 приведены технические характеристики полупроводниковой сэндвич-структуры 3С-SiC/Si; в табл.2 приведены структурные и электрофизические характеристики полупроводниковой сэндвич-структуры 3С-SiC/Si при различном соотношении режимных параметров ее получения;
в табл.3 приведены сравнительные характеристики предлагаемого и прототипного чувствительных элементов мембранного типа.
Полупроводниковая сэндвич-структура 3С-SiC/Si (фиг.1) содержит последовательно расположенные подложку 1, выполненную из монокристаллического кремния с базовой ориентацией (100), слой нанопористого кремния 2 толщиной 50-180 нм, сформированный с помощью химического травления подложки, и слой карбида кремния 3, нанесенный с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния. В случае использования данной полупроводниковой сэндвич-структуры в качестве диода на ее верхнюю и нижнюю поверхности нанесены металлизированные покрытия 4 и 5 соответственно, служащие для подключения целевого изделия к внешней электрической цепи (фиг.2). При этом выпрямляющие свойства структуры обеспечиваются различным уровнем легирования и различной электропроводностью слоев 3С-SiC и Si.
В оптимальном варианте полупроводниковая сэндвич-структура 3С-SiC/Si может быть получена следующим образом. На поверхности подложки из монокристаллического кремния с базовой ориентацией (100) толщиной 400 мкм формируют слой нанопористого кремния толщиной 150 нм химическим травлением подложки реакционной смесью, содержащей водный раствор HF и NaNO2 при следующем соотношении ингредиентов:
HF 30;
NaNO2 0,15;
деионизованная вода остальное.
Данную операцию проводят в течение 15 мин при температуре 40°С.
Далее проводят карбидизацию слоя нанопористого кремния путем замещения водорода на углерод в поверхностных связях Si-H слоя пористого кремния термообработкой в пропано-водородной смеси (содержание пропана 0,1 объем. %) при температуре 1300°С в течение 3 мин.
Затем производят химическое осаждение монокристаллического слоя 3С-SiC толщиной 0,6 мкм из газовой фазы, включающей SiH4, С3Н8 и Н2 при следующем соотношении компонентов, объем.%:
SiH4 0,8;
С3Н4 1,0;
Н2 - остальное.
Операцию ведут в течение 40 мин при температуре 1350°С.
Полученный целевой продукт имеет следующие электрофизические характеристики: концентрация носителей заряда 7,8·1017 см-3, обратное пробивное напряжение 210 В; подвижность основных носителей зарядов 280 см2В·с.
По результатам испытания образцов предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si с толщиной слоя нанопористого кремния 50÷180 нм и толщиной слоя 3С-SiC в диапазоне 0,2÷0,8 мкм при средних значениях концентраций компонентов на стадиях химического травления подложки (HF 35 мас.%; NaNO2 0,15 мас.%) и химического осаждения слоя 3С-SiC (SiH4 0,8 объем.%; С3Н8 1,0 объем.%) все предлагаемые образцы имеют монокристаллическую структуру слоя SiC при следующих значениях электрофизических характеристик: концентрация носителей заряда 7,8·1017÷2,9·1018см-3; обратное пробивное напряжение 107÷210 В; подвижность основных носителей зарядов 115÷280 см2/В·с. В то же время 83,4% прототипных изделий обладают блочной структурой слоя SiC при следующих значениях электрофизических характеристик: обратное пробивное напряжение 55÷78 В; подвижность основных носителей зарядов 74÷108 см2/В·с (табл.1).
По результатам испытания образцов предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si с толщиной слоя нанопористого кремния 100 им и толщиной слоя 3С-SiC, равной 0,5 мкм, в диапазонах значений концентраций компонентов на стадиях химического травления подложки: HF 20÷49 мас.%; NaNO2 0,02÷0,30 мас.% и химического осаждения слоя 3С-SiC: SiH4 0,6÷1,0 объем. %; С3Н8 0,8÷1,2 объем.% все предлагаемые образцы имеют монокристаллическую структуру слоя SiC при следующих значениях электрофизических характеристик: концентрация носителей заряда 7,8·1017÷2,9·1018 см-3; обратное пробивное напряжение 125÷210 В; подвижность основных носителей зарядов 175÷280 см2/В·с. В то же время 83,4% прототипных изделий обладают блочной структурой слоя SiC при следующих значениях электрофизических характеристик: обратное пробивное напряжение 55÷78 В; подвижность основных носителей зарядов 74÷108 см2/В·с. При этом скорость химического травления подложки для образования слоя пористого кремния в предлагаемом способе составляет 6÷24 нм/мин, а скорость химического осаждения слоя 3С-SiC составляет 23÷30 нм/мин, что в 2÷24 раза выше, чем в прототипе (табл.2).
Чувствительный элемент мембранного типа (фиг.3), изготовленный с использованием предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si, содержит подложку 1, выполненную из монокристаллического кремния с базовой ориентацией (100), на рабочей поверхности которой последовательно сформированы компенсирующий слой 2 толщиной 50÷180 нм, выполненный из нанопористого кремния химическим травлением рабочей поверхности подложки, и слой 3 карбида кремния толщиной 0,4÷0,6 мкм. С тыльной стороны подложки 1 выполнено глухое отверстие 6 для образования мембранной камеры. В вариантах данной конструкции мембрана может быть выполнена трехслойной (фиг.3а), содержащей слои 2, 3 и кремниевое основание 7 мембраны, образовавшееся в результате неполного травления тыльной стороны подложки 1, или однослойной (фиг.3б) - только из слоя 3 (при полном травлении подложки, включая слой 2 нанопористого кремния). Чувствительный элемент оснащен узлом съема информативного сигнала. В варианте фиг.4 в качестве узла съема информативного сигнала установлен торцевой волоконно-оптический интерферометр 8 Фабри-Перро, включающий оптическое волокно 9, лазерный диод 11, фотоприемник 12 и волоконно-оптический ответвитель 10, установленный с возможностью регистрации величины прогиба мембраны под действием приложенного к ней давления Р.
При подаче давления на мембрану происходит ее прогиб, который регистрируется интерферометром 8.
Чувствительный элемент мембранного типа может быть изготовлен химическим анизотропным травлением на тыльной стороне подложки 1 полупроводниковой сэндвич-структуры 3С-SiC/Si (фиг.1) с толщиной слоя карбида кремния, равной 0,4÷0,6 мкм, глухого отверстия с помощью 33 мас.% раствора КОН при 85°С. Далее первичный преобразователь оснащают узлом съема информативного сигнала.
Изготовленные таким образом чувствительные элементы мембранного типа в варианте фиг.3б имеют следующие технические характеристики (табл.3): остаточное механическое напряжение 0,008÷0,028 ГПа; чувствительность 13÷16 нм/Па против 0,1÷0,3 ГПа и 1,5÷3,5 нм/Па в прототипном устройстве соответственно. Наиболее высокие значения чувствительности и минимальные значения остаточного механического напряжения наблюдаются по мере уменьшения толщины слоя SiC, однако при толщине этого слоя 0,2 мкм и менее образцы разрушаются в процессе вытравливания подмембранной камеры. При верхнем запредельном значении толщины слоя SiC, равном 1 мкм, чувствительность целевого изделия снижается на порядок.
Таким образом, при использовании группы заявленных изобретений по сравнению с их аналогами достигаются следующие технические результаты:
- повышение обратного пробивного напряжения (125÷210 В) и подвижности носителей зарядов (175÷280 см2/В·с) в полупроводниковой сэндвич-структуре 3С-SiC за счет повышения надежности получения структурно совершенного слоя карбида кремния, что проиллюстрировано в табл.1 и 2;
- повышение на порядок чувствительности к давлению мембраны, выполненной с использованием предлагаемой полупроводниковой сэндвич-структуры 3С-SiC, что проиллюстрировано в табл.3;
- упрощение конструкции и технологии изготовления чувствительного элемента мембранного типа, выполненного на основе предлагаемой полупроводниковой сэндвич-структуры 3С-SiC, что подтверждается возможностью однослойного выполнения мембраны, а также наличием только одной основной операции (вытравливания подмембранной камеры) в технологическом процессе ее изготовления.
Таблица 1
Структурные и электрофизические характеристики полупроводниковой сэндвич-структуры 3С-SiC/Si
№ пп Толщина слоев сэндвич-структуры 3С-SiC/Si Способ нанесения слоя SiC Структура слоя SiC Обратное пробивное напряжение гетеро-структуры, В Подвижность основных носителей заряда в слое см2/В·с
Si (100), мкм нанопористый Si, нм SiC, мкм
1. 300 1000 5,0 Варианты согласно JP 2006045036 блочная (83,4% образцов), монокристаллическая (16,6% образцов) 55 81
2. 300 1000 5,0 78 108
3. 300 1000 5,0 61 74
4. 400 40 0,2 Предлагаемый (выделен) и контроли при запредельных значениях толщин слоев блочная 90±11 95±6
5. 400 50 0,2 монокристаллическая 107±9 115±5
6. 400 70 0,4 монокристаллическая 130±14 145±7
7. 400 100 0,5 монокристаллическая 170±12 150±7
8. 400 150 0,6 монокристаллическая 210±11 280±9
9. 400 180 0,8 монокристаллическая 180±16 160±8
10. 400 200 0,8 текстурированная 140±14 150±6
11. 400 250 0,8 поликристаллическая 105±12 135±5
Таблица 2
Структурные и электрофизические характеристики полупроводниковой сэндвич-структуры 3С-SiC/Si при различном соотношении режимных параметров операций химического травления подложки и химического осаждения слоя 3С-SiC (варианты 3÷5 - заявленный способ; варианты 1, 2, 6, 7 - запредельные режимы)
№ пп Содержание компонентов раствора для химического травления подложки, мас.% Содержание компонентов газовой фазы при химическом осаждении 3С-SiC, объем.% Структура слоя SiC (M - монокристаллическая; Б - блочная; Т - текстурированная) Обратное пробивное напряжение гетерострутуры, В Подвижность основных носителей заряда в слое, см2/В·с Скорость химического травления подложки, нм/мин Скорость химического осаждения 3С-SiC, нм/мин
HF NaNO2 H2O SiH4 С3Н8 Н2
1. 15 0,01 84,99 0,8 1,0 98,2 Б 80±13 125±6 1±0,2 25+6
2. 35 0,15 64,85 0,5 0,7 98,8 Т 75±15 85±12 3±0,5 21±8
3. 20 0,02 79,98 0,6 0,8 98,6 M 140±8 205±10 6±1 23±5
4. 35 0,15 64,85 0,8 1,0 98,2 М 210±11 280±9 9±2 25±4
5. 49 0,30 50,70 1,0 1,2 97,8 М (83%), Б (17%) 125±9 175±12 24±2 30±3
6. 49 0,40 50,60 0,8 1,0 98,2 В 105±14 130±12 31±7 25±6
7. 35 0,15 64,85 1,2 1,5 97,3 Т 95±12 115±16 5±1 39±8
Таблица 3
Сравнительные технические характеристики предлагаемого и прототипного чувствительных элементов мембранного типа
№ пп Чувствительный элемент Толщина слоев мембраны, мкм Значения технических характеристик
SiC Si3N4 остаточное напряжение, ГПа чувствительность, нм/Па
1. Прототипный 0,13 0,25 0,30±0,01 1,53±0,05
2. 0,21 0,25 0,11±0,01 3,45±0,05
3. Предлагаемый (фиг.3-б) 0,20 - Образцы разрушаются при травлении подмембранной камеры
4. 0,4 - 0,008±0,001 16,0±2,0
5. 0,5 - 0,016±0,002 14,5±1,2
6. 0,6 - 0,028±0,002 13,0±0,5
7. 1,0 - 0,133±0,003 1,3±0,2
8. Предлагаемый (фиг.3-а) 0,5 - 0,055±0,002 7,6±1,8

Claims (3)

1. Полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая последовательно расположенные подложку из монокристаллического кремния с базовой ориентацией (100), слой нанопористого кремния, сформированный с помощью химического травления подложки, и слой карбида кремния, отличающаяся тем, что слой нанопористого кремния сформирован толщиной 50-180 нм, при этом слой карбида кремния нанесен с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния.
2. Способ получения полупроводниковой сэндвич-структуры 3С-SiC/Si, предусматривающий формирование слоя нанопористого кремния на поверхности подложки из монокристаллического кремния с базовой ориентацией (100) путем химического травления подложки реакционной смесью, содержащей водный раствор HF, с последующей карбидизацией нанопористого слоя и химическим осаждением слоя 3С-SiC из газовой фазы, включающей SiH4, C3H8 и Н2, отличающийся тем, что слой пористого кремния формируют толщиной 50-180 нм, при этом используемая для химического травления реакционная смесь дополнительно содержит NaNO2 при следующем соотношении компонентов, мас.%:
HF 20÷49
NaNO2 0,02÷0,30
деионизованная вода остальное
карбидизацию слоя нанопористого кремния проводят замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния, а соотношение компонентов газовой фазы, используемой для химического осаждения слоя 3С-SiC, составляет, об.%:
SiH4 0,6-1,0
С3Н8 0,8-1,2
Н2 остальное
3. Чувствительный элемент мембранного типа с использованием полупроводниковой сэндвич-структуры 3С-SiC/Si по п.1 формулы, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), на рабочей поверхности которой последовательно сформированы компенсирующий слой и слой карбида кремния, а с тыльной стороны подложки выполнено глухое отверстие для образования мембранной камеры и узел съема информативного сигнала, отличающийся тем, что компенсирующий слой сформирован толщиной 50-180 нм из нанопористого кремния, полученного химическим травлением рабочей поверхности подложки и последующей карбидизацией с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния, а толщина слоя карбида кремния составляет 0,4-0,6 мкм.
RU2008139737/28A 2008-10-06 2008-10-06 ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ RU2395867C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008139737/28A RU2395867C2 (ru) 2008-10-06 2008-10-06 ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008139737/28A RU2395867C2 (ru) 2008-10-06 2008-10-06 ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ

Publications (2)

Publication Number Publication Date
RU2008139737A RU2008139737A (ru) 2010-04-20
RU2395867C2 true RU2395867C2 (ru) 2010-07-27

Family

ID=42698228

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008139737/28A RU2395867C2 (ru) 2008-10-06 2008-10-06 ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ

Country Status (1)

Country Link
RU (1) RU2395867C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538358C1 (ru) * 2013-06-19 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) СПОСОБ СВЧ ПЛАЗМЕННОГО ФОРМИРОВАНИЯ ПЛЕНОК КУБИЧЕСКОГО КАРБИДА КРЕМНИЯ НА КРЕМНИИ (3С-SiC)
RU2586266C2 (ru) * 2014-07-04 2016-06-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Способ обработки поверхности пластин для формирования солнечных элементов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538358C1 (ru) * 2013-06-19 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) СПОСОБ СВЧ ПЛАЗМЕННОГО ФОРМИРОВАНИЯ ПЛЕНОК КУБИЧЕСКОГО КАРБИДА КРЕМНИЯ НА КРЕМНИИ (3С-SiC)
RU2586266C2 (ru) * 2014-07-04 2016-06-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Способ обработки поверхности пластин для формирования солнечных элементов

Also Published As

Publication number Publication date
RU2008139737A (ru) 2010-04-20

Similar Documents

Publication Publication Date Title
TWI355684B (en) Doped intride film, doped oxide film and other dop
KR101971597B1 (ko) 웨이퍼 및 박막 제조 방법
DE69932227D1 (de) Herstellungsverfahren einer photoelektrischen Dünnschicht-Umwandlungsanordnung aus amorphem Silizium
KR101607907B1 (ko) 단결정 4H-SiC 기판 및 그 제조방법
WO2003023837A1 (fr) Electrode pour carbure de silicium de type p
CN108028286B (zh) 光电子半导体芯片和用于制造光电子半导体芯片的方法
US20140117382A1 (en) Epitaxial Wafer, Method for Fabricating the Wafer, and Semiconductor Device Including the Wafer
WO2014122854A1 (ja) 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
JP2017147438A (ja) 接着向上法
KR20140055338A (ko) 에피택셜 웨이퍼 및 그 제조 방법
RU2395867C2 (ru) ПОЛУПРОВОДНИКОВАЯ СЭНДВИЧ-СТРУКТУРА 3С-SiC/Si, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МЕМБРАННОГО ТИПА С ЕЕ ИСПОЛЬЗОВАНИЕМ
TW200423509A (en) Nitride semiconductor device and method for manufacturing same
JP2008045180A (ja) Dlc膜の形成方法及びdlc膜の製造装置
TWI823050B (zh) 無氫二氧化矽
KR20130021026A (ko) 웨이퍼 표면 처리 방법
JP4858948B2 (ja) 不純物傾斜型ダイヤモンド薄膜及びその製造方法並びに該不純物傾斜型ダイヤモンド薄膜を用いたダイオード又はトランジスタ
JP2006128154A (ja) 基板上に形成された金属酸化物層とその作製方法
JP2008056955A (ja) 炭素膜形成方法
KR20200056022A (ko) 탄화규소 에피 웨이퍼
KR20040070668A (ko) 엔 도핑으로 형성된 피형 산화아연 박막 성장방법
JP2010024066A (ja) ダイヤモンド単結晶基板とその製造方法
FR2900277A1 (fr) Procede de formation d'une portion monocristalline a base de silicium
JP2012148393A (ja) 半導体素子及び半導体素子の製造方法
TW201720747A (zh) 基於3C-SiC之感測器
KR102131245B1 (ko) 에피택셜 웨이퍼

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20120831