RU2377233C2 - Способ получения диизоцианатов в газовой фазе - Google Patents

Способ получения диизоцианатов в газовой фазе Download PDF

Info

Publication number
RU2377233C2
RU2377233C2 RU2004137019/04A RU2004137019A RU2377233C2 RU 2377233 C2 RU2377233 C2 RU 2377233C2 RU 2004137019/04 A RU2004137019/04 A RU 2004137019/04A RU 2004137019 A RU2004137019 A RU 2004137019A RU 2377233 C2 RU2377233 C2 RU 2377233C2
Authority
RU
Russia
Prior art keywords
tubular reactor
wall
double
sectional area
cross
Prior art date
Application number
RU2004137019/04A
Other languages
English (en)
Other versions
RU2004137019A (ru
Inventor
Юрген МАЙН (DE)
Юрген МАЙН
Херберт ШТУТЦ (DE)
Херберт ШТУТЦ
Original Assignee
Байер Матириальсайенс Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байер Матириальсайенс Аг filed Critical Байер Матириальсайенс Аг
Publication of RU2004137019A publication Critical patent/RU2004137019A/ru
Application granted granted Critical
Publication of RU2377233C2 publication Critical patent/RU2377233C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1843Concentric tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/244Concentric tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/005Feed or outlet devices as such, e.g. feeding tubes provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения диизоцианатов общей формулы R(NCO)n, в которой R означает (цикло)алифатический углеводородный радикал, содержащий до 15 атомов углерода, предпочтительно, от 4 до 13 атомов углерода, при условии, что между двумя изоцианатными группами NCO находится, по меньшей мере, два атома углерода, а n означает число 2, фосгенированием соответствующих аминов общей формулы R(NH2)n, в которой R имеет вышеуказанное значение, в газовой фазе в трубчатом реакторе с подачей в него предварительно нагретых фосгена и аминов. При этом для фосгенирования используют трубчатый реактор, содержащий центрично расширяющуюся в направлении оси вращения трубчатого реактора двухстенную направляющую трубу, причем между внутренней и внешней стенками двухстенной направляющей трубы образован концентрический кольцевой зазор, а отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:0,5 до 1:4. Температуру отделенных друг от друга парообразных аминов и фосгена поддерживают в диапазоне от 200°С до 600°С; при этом парообразные амины в смеси с инертным газом подают в трубчатый реактор через концентрический кольцевой зазор со средней скоростью потока 20-150 м/с, а фосген подают в трубчатый реактор в оставшуюся область поперечного сечения трубчатого реактора со средней скоростью потока, по меньшей мере, 1 м/с. Способ благодаря улучшению смешения эдуктов позволяет снизить возможность обратного смешения

Description

Настоящее изобретение относится к технологии получения изоцианатов, в особенности к способу получения изоцианатов в газовой фазе.
Получение изоцианатов взаимодействием аминов с фосгеном в газовой фазе известно давно (смотри Siefken, Annalen 562. 108, 1949). Газофазные реакции могут проводиться различными способами. Для смешения эдуктов используют сопла, горелку или смесительную трубу. Использование сопел для газофазного фосгенирования диизоцианатов описывается лишь в самых общих чертах. При этом, как описано, например, в европейской заявке на патент ЕР-А1-0593334, речь идет о гладкоструйных соплах или о концентрических впускных трубах. При этом обычно один из эдуктов известным образом посредством центрично расположенного сопла направляют в поток второго эдукта, подаваемого в виде потока с небольшой скоростью через кольцевое пространство в сопловой трубе. При этом поток эдуктов, движущийся с большей скоростью, засасывает поток эдукта, движущийся с меньшей скоростью, и происходит их смешение. После некоторого зависящего от диаметра сопел и от разницы в скоростях потоков эдуктов периода времени или пройденного пути достигается затем полное смешение эдуктов. Смешение способствует началу химической реакции. Газофазное фосгенирование аминов является реакцией, скорость которой определяется смешением эдуктов. Так как может происходить последующая реакция образующихся изоцианатов с аминами, то для достижения высокой селективности в отношении желаемого диизоцианата необходимы быстрое смешение и избыток фосгена. Вследствие процессов обратного смешения происходит реакция диизоцианата с непрореагировавшим диамином из потока эдукта с образованием твердых отложений. Это приводит к загрязнению реактора в зоне смешения и к остановке реактора.
Увеличение размеров реактора, имеющего часто конструкцию трубчатого реактора, требует также увеличения размеров смесительного сопла, часто выполняемого конструктивно в виде гладкоструйного сопла. Однако с увеличением диаметра гладкоструйного сопла снижается скорость смешения центрального потока вследствие увеличения требуемого диффузионного пути и возрастает опасность обратного смешения, что вновь приводит к образованию полимерных загрязнений и, как следствие, к твердым отложениям в реакторе.
В заявке на патент Великобритании GB-PS 1165831 реакцию проводят в трубчатом реакторе, снабженном механической мешалкой. Реактор подобен тонкопленочному выпарному аппарату, в котором мешалка перемешивает газы и одновременно касается обогреваемых стенок трубчатого реактора, чтобы таким образом препятствовать отложению полимерного вещества на стенке трубы. Однако использование быстро вращающейся мешалки при обращении с нагревом до около 300°С горячим фосгеном требует высоких затрат на технику безопасности, чтобы герметизировать реактор и установить мешалку в высококоррозионной среде.
Поэтому задачей настоящего изобретения является создание способа получения изоцианатов в газовой фазе, в котором эдукты - амины и фосген, могут быть быстрее и лучше смешаны в реакторе без движущихся внутренних устройств и в котором можно избежать возникновения в реакторе полимерных загрязнений и отложений.
Теперь было найдено, что можно получить (цикло)алифатические или ароматические изоцианаты газофазным фосгенированием соответствующих аминов при исключении названных недостатков известного уровня техники, если с высокой скоростью смешивать через кольцевой зазор поток эдукта, вводимого концентрически в поток другого эдукта. Благодаря этому диффузионный путь к смешению делается маленьким, а время смешения - очень коротким. Тогда реакция может протекать с высокой селективностью для желаемого диизоцианата. В результате снижается образование полимерных загрязнений и отложений.
Объектом изобретения является способ получения изоцианатов общей формулы (I):
Figure 00000001
в которой
R означает (цикло)алифатический или ароматический углеводородный радикал, содержащий до 15 атомов углерода, предпочтительно, от 4 до 13 атомов углерода, при условии, что между двумя изоцианатными группами NCO находится, по меньшей мере, два атома углерода, а
n означает число 2 или 3, фосгенированием соответствующих аминов общей формулы (II):
Figure 00000002
в которой
R означает (цикло)алифатический или ароматический углеводородный радикал, содержащий до 15 атомов углерода, предпочтительно, от 4 до 13 атомов углерода, при условии, что между двумя аминогруппами находится, по меньшей мере, два атома углерода, а
n означает число 2 или 3,
в газовой фазе в трубчатом реакторе, содержащем центрично расширяющуюся в направлении оси вращения трубчатого реактора двухстенную направляющую трубу, причем между внутренней и внешней стенками двухстенной направляющей трубы образован концентрический кольцевой зазор, а отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:0,5 до 1:4, особенно, от 1:1 до 1:3,
в котором отделенные друг от друга парообразные амины и фосген нагревают до температуры от 200°С до 600°С; парообразные амины подают в трубчатый реактор через концентрический кольцевой зазор со средней скоростью потока 20-150 м/с, предпочтительно, 40-100 м/с, а фосген подают в трубчатый реактор в оставшуюся область поперечного сечения трубчатого реактора со средней скоростью потока, по меньшей мере, 1 м/с, предпочтительно, 5-15 м/с.
Парообразные амины могут также подаваться в трубчатый реактор, при необходимости, разбавленными инертным газом или парами инертного растворителя. Пригодными инертными газами являются, например, азот или благородные газы, такие как гелий или аргон. Предпочтительно, используют азот. Пригодными растворителями являются, например, хлорбензол, о-дихлорбензол, толуол, ксилол, хлортолуол, хлорнафталин, декагидронафталин. Предпочтительно, используют хлорбензол.
Смешение обоих газообразных эдуктов происходит согласно способу по изобретению на кольцеобразной разделительной поверхности потоков эдуктов - амина и фосгена.
Исходными веществами для способа по изобретению являются амины общей формулы (II):
Figure 00000002
в которой
R означает (цикло)алифатический или ароматический углеводородный радикал, содержащий до 15 атомов углерода, предпочтительно, от 4 до 13 атомов углерода, при условии, что между двумя аминогруппами находится, по меньшей мере, два атома углерода, а
n означает число 2 или 3.
Типичные примеры пригодных алифатических диаминов названы в европейской заявке на патент ЕР-А1-0289840 в столбце 3, строки от 19 до 26. Примеры пригодных алифатических триаминов названы, например, в европейской заявке на патент ЕР-А-749 958 в столбце 3, строки от 18 до 22 и строки от 28 до 31. В особенности, называются 1,4-диаминобутан, 1,3-диаминопентан,1,6-диаминогексан (ГДА), 1,11-диаминоундекан, 1,4-диаминоциклогексан, 1-амино-3,3,5-триметил-5-аминометилциклогексан (изофорондиамин, ИФДА), 2,3-, 2,4- и 2,6-диамино-1-метилциклогексан, а также их смеси, 1,3,5-триизопропил-2,4-диаминоциклогексан, 2,4- и 2,6-диамино-1-изопропилциклогексан или их смеси и бис(п-аминоциклогексил)метан.
Предпочтительными являются изофорондиамин, гексаметилендиамин и бис(п-аминоциклогексил)метан.
Типичными примерами пригодных ароматических диаминов являются чистые изомеры или смеси изомеров диаминобензола, диаминотолуола, диаминодиметилбензола, диаминонафталина, а также диаминодифенилметана, предпочтительно, смеси 2,4/2,6-толуилендиамина с соотношением изомеров 80/20 и 65/35 или изомеры чистого 2,4-толуилендиамина.
В качестве триаминов, предпочтительно, используют 1,8-диамино-4-(аминометил)октан, триаминононан.
Исходные амины перед осуществлением способа по изобретению испаряют и нагревают до температуры от 200°С до 600°С, предпочтительно, от 300°С до 500°С и вводят в реактор, при необходимости, при разбавлении инертным газом или парами инертного растворителя.
Используемый для фосгенирования фосген перед осуществлением способа по изобретению также нагревают до температуры от 200°С до 600°С, предпочтительно, от 300°С до 500°С.
Для осуществления взаимодействия реагентов по изобретению в реактор непрерывно подают предварительно нагретый поток, содержащий ди- и/или триамины или смесь ди- и/или триаминов, и предварительно нагретый поток, содержащий фосген.
Трубчатые реакторы обычно выполнены из стали, стекла, легированной или эмалированной стали и имеют длину, достаточную для обеспечения в условиях способа полного взаимодействия диамина с фосгеном. Поток фосгена обычно подводят к концу трубчатого реактора. С этим потоком фосгена смешивают амин, подаваемый с высокой скоростью через расположенный радиально-симметрично концентрический кольцевой зазор. При этом фосген вводят в трубчатый реактор как через зону поперечного сечения, ограниченную внутренней стенкой двухстенной направляющей трубы, так и через зону поперечного сечения, ограниченную стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы.
Зону смешения, предпочтительно, поддерживают при температуре в пределах от 200°С до 600°С, предпочтительно, от 300°С до 500°С, причем, при необходимости, эта температура может поддерживаться обогревом трубчатого реактора.
При осуществлении способа по изобретению давление на входе в реактор составляет, предпочтительно, от 200 мбар до 4000 мбар, а на выходе из реактора оно составляет от 150 мбар до 2000 мбар. При правильном поддержании разницы давления скорость потока фосгена на входе в трубчатый реактор устанавливается равной, по меньшей мере, 1 м/с, предпочтительно, от 2 м/с до 60 м/с, особенно предпочтительно, от 3 м/с до 20 м/с и, наиболее предпочтительно, от 5 м/с до 15 м/с.
Смешение амина происходит через концентрический кольцевой зазор со скоростью 20-150 м/с, предпочтительно, 40-100 м/с. Смешение обоих газообразных эдуктов - диамина и фосгена, происходит на кольцеобразной разделяющей поверхности потоков эдукта.
При этих реакционных условиях внутри реакционного пространства обычно преобладает турбулентный характер течения потока.
В последующем изобретение иллюстрируется чертежом, где показан трубчатый реактор 1, пригодный для использования в способе по изобретению. Трубчатый реактор 1 имеет цилиндрическую стенку трубы 2, охватывающую реакционное пространство 9, и крышку 3, изолирующую снаружи цилиндрическое реакционное пространство с одного конца цилиндрической стенки трубы 2. Со стороны, противоположной крышке 3, трубчатый реактор 1 открыт. В крышке 3 центрически, то есть симметрично вращению оси вращения 8 цилиндрической стенки трубы 2, имеется отверстие, которое закрыто проходящим сквозь обе стороны крышки 3 выступающим цилиндрическим патрубком 4. На обращенной в реакционное пространство 9 стороне патрубок 4 переходит посредством соединительных направляющих патрубков 5 в двухстенную направляющую трубу 6, расположенную в реакционном пространстве 9 центрично, то есть вращательно симметрично оси вращения 8 цилиндрической стенки трубы 2. Трубчатый реактор 1, кроме того, имеет расположенный на уровне патрубка 4 на цилиндрической стенке трубы 2 впускной штуцер 7.
Содержащий диамины и/или триамины поток А устремляется через патрубок 4, соединительные направляющие трубы 5 и через двухстенную направляющую трубу 6 и, наконец, выходит из двухстенной направляющей трубы в форме кольцевого потока. Содержащий фосген поток В устремляется через впускной штуцер 7, приблизительно на уровне патрубка 4, в пространство между цилиндрической стенкой трубы 2 и патрубком 4 и обтекает патрубок 4, соединительные направляющие трубы 5, а также двухстенную направляющую трубу 6. При этом он обтекает двухстенную направляющую трубу 6 как через свободную зону поперечного сечения, ограниченную внутренней стенкой двухстенной направляющей трубы, так и через свободную зону поперечного сечения, ограниченную цилиндрической стенкой трубы 2 трубчатого реактора и внешней стенкой двухстенной направляющей трубы. При этом путь потоков А и В на чертеже обозначен подобными потоку линейными стрелками. Содержащий ди- и/или триамины поток А выходит из двухстенной направляющей трубы 6 в виде кольцеобразных свободных потоков струй и затем смешивается, в общем, турбулентным потоком с содержащим фосген потоком В, причем образуются соответствующие ди- и/или триизоцианаты.
Пример 1 (по изобретению)
В трубчатый реактор согласно чертежу с дополнительной стадией конденсации изоцианата и последующей обработкой изоцианата в качестве потока эдукта А непрерывно подают смесь изофорондиамина с инертным газом, а в качестве потока эдукта В - фосген. Температура обоих потоков эдуктов составляла 300°С. Давление в трубчатом реакторе находилось незначительно выше атмосферного - около 1400 мбар.
Скорость компонента А в двухстенной направляющей трубе 6 составляла около 60 м/с, а у компонента В перед смешением - около 7 м/с. При этом отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы 6, к площади поперечного сечения трубчатого реактора, ограниченной цилиндрической стенкой 2 трубчатого реактора и наружной стенкой двухстенной направляющей трубы, составляло 1:1.
Скорость реакционной смеси на выходе из реактора составляла около 17 м/с.
Продукт реакции - изофорондиизоцианат (ИФДИ), после выпуска из реактора конденсируют, отделяют от избыточного фосгена и побочного продукта - хлористого водорода, и затем направляют на очистку. В расположенных по ходу нисходящего потока в четырех местах двухстенной направляющей трубы 6 пунктах измерения температуры измеряют температуру на цилиндрической внешней стенке трубы 2 трубчатого реактора 1 посредством термопар. Максимальная температура (около 450°С) достигается у второго пункта измерения температуры, находящегося на расстоянии от места смешения, равном приблизительно двум диаметрам цилиндрической стенки трубы 2, по направлению нисходящего потока. Из-за ограниченной термической стабильности диизоцианата и побочных реакций вследствие плохого перемешивания могут образовываться высокомолекулярные продукты, которые частично конденсируются в реакторе, тем самым сужают реактор и ограничивают время эксплуатации. После шести недель эксплуатации никакого повышения давления и загрязнения не было установлено.
Выход изофорондиизоцианата составил в расчете на использованный изофорондиамин 98,8% от теоретического.
Пример 2 (сравнительный)
Пример 1 повторяют в тех же условиях, причем вместо двухстенной направляющей трубы используют гладкоструйное сопло. При этом уравнивают площади поперечных сечений проходящих потоков для смеси изофорондиамина с инертным газом и фосгена на выходе из сопла проходящих потоков поперечных сечений в трубчатом реакторе по Примеру 1.
При этом оказывается, что при использовании обычных гладкоструйных сопел при сравнимых скоростях компонентов у места смешения максимальная температура в трубчатом реакторе явно достигается только лишь позднее, а именно на расстоянии от места смешения, равном только примерно пяти диаметрам цилиндрической стенки 2, по направлению нисходящего потока. Выход изофорондиизоцианата в расчете на использованный изофорондиамин составил 98,5% от теоретического. После трехнедельной эксплуатации зафиксировано повышение давления на 40 мбар и загрязнение в нижней части реактора.
Дополнительно оказывается, что благодаря лучшему и более быстрому смешению (определяемому по более быстрому достижению максимальной температуры) в используемом по изобретению трубчатом реакторе с двухстенной направляющей трубой снижается образование полимерных побочных продуктов. Это приводит к продлению срока эксплуатации реактора.

Claims (9)

1. Способ получения диизоцианатов общей формулы (I)
Figure 00000003

в которой R означает (цикло)алифатический углеводородный радикал, содержащий до 15 атомов углерода, предпочтительно от 4 до 13 атомов углерода, при условии, что между двумя изоцианатными группами NCO находятся, по меньшей мере, два атома углерода, а
n означает число 2,
фосгенированием соответствующих аминов общей формулы (II)
Figure 00000004

в которой R имеет вышеуказанное значение,
в газовой фазе в трубчатом реакторе с подачей в него предварительно нагретых фосгена и аминов, отличающийся тем, что используют трубчатый реактор, содержащий центрично расширяющуюся в направлении оси вращения трубчатого реактора двухстенную направляющую трубу, причем между внутренней и внешней стенками двухстенной направляющей трубы образован концентрический кольцевой зазор, а отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:0,5 до 1:4,
при этом температуру отделенных друг от друга парообразных аминов и фосгена поддерживают от 200 до 600°С;
при этом парообразные амины в смеси с инертным газом подают в трубчатый реактор через концентрический кольцевой зазор со средней скоростью потока 20-150 м/с, а фосген подают в трубчатый реактор в оставшуюся область поперечного сечения трубчатого реактора со средней скоростью потока, по меньшей мере, 1 м/с.
2. Способ по п.1, отличающийся тем, что средняя скорость потока парообразных аминов составляет от 40 до 100 м/с.
3. Способ по п.1 или 2, отличающийся тем, что средняя скорость потока фосгена составляет от 5 до 15 м/с.
4. Способ по п.1 или 2, отличающийся тем, что в качестве амина используют изофорондиамин, гексаметилендиамин или бис(п-аминоциклогексил)метан.
5. Способ по п.3, отличающийся тем, что в качестве амина используют изофорондиамин, гексаметилендиамин или бис(п-аминоциклогексил)метан.
6. Способ по п.1 или 2, отличающийся тем, что фосгенирование проводят в трубчатом реакторе, у которого отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:1 до 1:3.
7. Способ по п.3, отличающийся тем, что фосгенирование проводят в трубчатом реакторе, у которого отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:1 до 1:3.
8. Способ по п.4, отличающийся тем, что фосгенирование проводят в трубчатом реакторе, у которого отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:1 до 1:3.
9. Способ по п.5, отличающийся тем, что фосгенирование проводят в трубчатом реакторе, у которого отношение площади поперечного сечения трубчатого реактора, ограниченной внутренней стенкой двухстенной направляющей трубы, к площади поперечного сечения трубчатого реактора, ограниченной стенкой трубчатого реактора и внешней стенкой двухстенной направляющей трубы, составляет от 1:1 до 1:3.
RU2004137019/04A 2003-12-18 2004-12-17 Способ получения диизоцианатов в газовой фазе RU2377233C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359627A DE10359627A1 (de) 2003-12-18 2003-12-18 Verfahren zur Herstellung von Diisocyanaten
DE10359627.5 2003-12-18

Publications (2)

Publication Number Publication Date
RU2004137019A RU2004137019A (ru) 2006-05-27
RU2377233C2 true RU2377233C2 (ru) 2009-12-27

Family

ID=34609493

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004137019/04A RU2377233C2 (ru) 2003-12-18 2004-12-17 Способ получения диизоцианатов в газовой фазе

Country Status (14)

Country Link
US (1) US6930199B2 (ru)
EP (1) EP1555258B1 (ru)
JP (1) JP4676754B2 (ru)
KR (1) KR101135352B1 (ru)
CN (1) CN100475783C (ru)
AT (1) ATE413380T1 (ru)
CA (1) CA2490050C (ru)
DE (2) DE10359627A1 (ru)
ES (1) ES2314330T3 (ru)
HK (1) HK1081525A1 (ru)
MX (1) MXPA04012337A (ru)
PL (1) PL1555258T3 (ru)
RU (1) RU2377233C2 (ru)
TW (1) TWI335908B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571826C2 (ru) * 2010-05-05 2015-12-20 Байер Интеллектуэль Проперти Гмбх Способ получения изоцианатов в газовой фазе

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739798B2 (ja) * 2005-04-05 2011-08-03 三井化学株式会社 ポリイソシアネート連続製造装置
DE102005036870A1 (de) 2005-08-02 2007-02-08 Bayer Materialscience Ag Verfahren zur Gasphasenphosgenierung
DE102005042392A1 (de) * 2005-09-06 2007-03-08 Basf Ag Verfahren zur Herstellung von Isocyanaten
EP2049675A1 (de) 2006-08-01 2009-04-22 Basf Se Verfahren zur herstellung von pentamethylen-1,5-diisocyanat
CN101153015B (zh) * 2006-09-28 2010-06-16 宁波万华聚氨酯有限公司 一种孔射流式反应器及利用该反应器制备异氰酸酯的方法
CN101583594B (zh) * 2006-11-07 2013-06-19 巴斯夫欧洲公司 生产异氰酸酯的方法
US20100048942A1 (en) * 2006-12-11 2010-02-25 Basf Se Process for preparing isocyanates
DE102006058633A1 (de) 2006-12-13 2008-06-19 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102006058634A1 (de) 2006-12-13 2008-06-19 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
CN101209405B (zh) * 2006-12-27 2013-08-28 宁波万华聚氨酯有限公司 一种孔射流式喷射反应器
WO2008077287A1 (fr) * 2006-12-27 2008-07-03 Ningbo Wanhua Polyurethanes Co. Ltd. Réacteur à injection du type à gicleur à orifice
DE102007020444A1 (de) 2007-04-27 2008-11-06 Bayer Materialscience Ag Verfahren zur Oxidation eines Chlorwasserstoffenthaltenden Gasgemisches
WO2009027232A1 (de) 2007-08-30 2009-03-05 Basf Se Verfahren zur herstellung von isocyanaten
EP2060560B1 (en) * 2007-11-14 2016-04-13 Covestro Deutschland AG Preparation of light-colored isocyanates
DE102007056511A1 (de) 2007-11-22 2009-05-28 Bayer Materialscience Ag Verfahren zur Herstellung aromatischer Diisocyanate in der Gasphase
US8765996B2 (en) 2008-07-23 2014-07-01 Basf Se Process for preparing isocyanates
JP2012505850A (ja) 2008-10-15 2012-03-08 ビーエーエスエフ ソシエタス・ヨーロピア イソシアネートの製造方法
CN102272095B (zh) 2008-11-07 2014-10-08 巴斯夫欧洲公司 制备异氰酸酯的方法
JP5576390B2 (ja) 2008-12-03 2014-08-20 ビーエーエスエフ ソシエタス・ヨーロピア イソシアネートの製造方法
DE102008061686A1 (de) * 2008-12-11 2010-06-17 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102008063728A1 (de) 2008-12-18 2010-06-24 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102008063991A1 (de) 2008-12-19 2010-06-24 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
WO2010100221A1 (de) 2009-03-06 2010-09-10 Basf Se Verfahren und vorrichtung zur herstellung von isocyanaten
CN102361852B (zh) 2009-03-20 2015-04-22 巴斯夫欧洲公司 制备异氰酸酯的方法和设备
EP2417100B1 (de) 2009-04-08 2017-07-12 Basf Se Verfahren zur herstellung von isocyanaten
DE102009032413A1 (de) 2009-07-09 2011-01-13 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten
HUE026304T2 (en) 2010-02-26 2016-06-28 Basf Se A method for producing isocyanates in a gas phase
US8487127B2 (en) 2010-02-26 2013-07-16 Basf Se Process for preparing isocyanates in the gas phase
US20110230679A1 (en) * 2010-03-16 2011-09-22 Dow Global Technologies, Inc. Reactive Static Mixer
PL214498B1 (pl) 2010-12-10 2013-08-30 Inst Chemii Przemyslowej Im Prof Ignacego Moscickiego Sposób wydzielania produktów reakcji fosgenowania toluilenodiaminy (TDA) w fazie gazowej przy wytwarzaniu toluilenodiizocyjanianu (TDI)
PL393216A1 (pl) * 2010-12-10 2012-06-18 Zakłady Chemiczne Zachem Spółka Akcyjna Sposób otrzymywania toluilenodiizocyjanianu (TDI) poprzez prowadzenia reakcji fosgenowania toluilenodiaminy (TDA) w fazie gazowej oraz urządzenie do otrzymywania toluilenodiizocyjanianu (TDI) poprzez prowadzenie reakcji fosgenowania toluilenodiaminy (TDA) w fazie gazowej
HUE026867T2 (en) * 2010-12-29 2016-08-29 Wanhua Chemical Group Co Ltd Fast mixing reactor and application
EP2872481B1 (de) 2012-07-11 2016-08-24 Covestro Deutschland AG Verfahren zur aufarbeitung von destillationsrückständen aus der isocyanatherstellung
US9932299B2 (en) 2013-02-08 2018-04-03 Covestro Deutschland Ag Process for separating an isocyanate prepared by phosgenation of a primary amine in the gas phase from the gaseous crude product of the phosgenation
CN103224457B (zh) * 2013-04-15 2015-02-25 湘潭大学 一种连续制备氨基甲酰氯的方法及其装置
EP2829533A1 (de) 2013-07-26 2015-01-28 Bayer MaterialScience AG Verfahren zur herstellung von isocyanaten
CN103638893B (zh) * 2013-12-14 2015-04-01 甘肃银光聚银化工有限公司 一种节流子反应器及利用其制备异氰酸酯的方法
WO2015155366A1 (de) 2014-04-11 2015-10-15 Bayer Materialscience Ag Zusammensetzung zur herstellung transparenter polythiourethan-körper
KR20170058927A (ko) * 2014-09-19 2017-05-29 코베스트로 도이칠란트 아게 이소시아네이트의 기체 상 제조 방법
KR102547793B1 (ko) 2014-09-19 2023-06-26 코베스트로 도이칠란트 아게 1,5-펜탄디이소시아네이트의 기체상 제조 방법
WO2016146574A1 (de) 2015-03-16 2016-09-22 Covestro Deutschland Ag Polyisocyanatzusammensetzung auf basis von 1,5-pentamethylendiisocyanat
ES2720033T3 (es) 2015-04-21 2019-07-17 Covestro Deutschland Ag Mezcla de poliisocianato a base de 1,5-diisocianatopentano
EP3307708B1 (de) 2015-06-12 2021-12-01 Covestro Intellectual Property GmbH & Co. KG Verfahren zur herstellung von diisocyanaten in der gasphase
CN105032307B (zh) * 2015-07-21 2017-07-21 万华化学集团股份有限公司 一种动态自清理反应器及其用于制备异氰酸酯的方法
JP6913083B2 (ja) 2015-09-30 2021-08-04 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag イソシアネートの製造方法
CN108290831B (zh) 2015-12-03 2021-11-19 科思创德国股份有限公司 制备异氰酸酯的方法
HUE053661T2 (hu) 2016-12-21 2021-07-28 Covestro Intellectual Property Gmbh & Co Kg Eljárás egy izocianát elõállítására
US10919845B2 (en) 2017-04-03 2021-02-16 Covestro Deutschland Ag Cleaning device for gas flows from isocyanate production
HUE060475T2 (hu) 2017-06-08 2023-03-28 Covestro Intellectual Property Gmbh & Co Kg Eljárás izocianátok elõállítására
US10836713B2 (en) 2017-06-08 2020-11-17 Covestro Deutschland Ag Method for producing isocyanates in the gas phase
EP4031526A1 (de) 2019-09-17 2022-07-27 Covestro Deutschland AG Verfahren zur herstellung von isocyanaten
WO2022263320A1 (en) 2021-06-14 2022-12-22 Covestro Deutschland Ag Reactor and process for preparing isocyanates
EP4104922A1 (en) 2021-06-14 2022-12-21 Covestro Deutschland AG Reactor and process for preparing isocyanates
CN114195683B (zh) * 2021-12-14 2023-03-17 山东新和成维生素有限公司 一种采用气相反应器制备异氰酸酯的方法及气相反应器
CN115041106B (zh) * 2022-06-21 2023-11-07 湖北新轩宏新材料有限公司 一种制备三氯甲苯的反应器及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD132340B1 (de) * 1975-09-23 1983-06-08 Hans Iben Verfahren zur phosgenierung von aminen zu mono-,di-und polyisocyanaten
DE3714439A1 (de) * 1987-04-30 1988-11-10 Bayer Ag Verfahren zur herstellung von (cyclo)aliphatischen diisocyanaten
FR2697017B1 (fr) 1992-10-16 1995-01-06 Rhone Poulenc Chimie Procédé de préparation de composés du type isocyanates aromatiques en phase gazeuse.
DE19523385A1 (de) * 1995-06-23 1997-01-09 Bayer Ag Verfahren zur Herstellung von Triisocyanaten
DE19707576C1 (de) * 1997-02-26 1998-04-16 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten mit Biuretstruktur
DE19800529A1 (de) * 1998-01-09 1999-07-15 Bayer Ag Verfahren zur Phosgenierung von Aminen in der Gasphase unter Einsatz von Mikrostrukturmischern
JP2001151725A (ja) * 1999-11-22 2001-06-05 Nippon Shokubai Co Ltd アルデヒド処理剤混合装置およびアクリル酸の精製方法
DE10133728A1 (de) * 2001-07-11 2003-01-23 Bayer Ag Verfahren zur Herstellung von (cyclo)aliphatischen Diisocyanaten
DE10158160A1 (de) * 2001-11-28 2003-06-12 Basf Ag Herstellung von Isocyanaten in der Gasphase
DE10161384A1 (de) * 2001-12-14 2003-06-18 Bayer Ag Verbessertes Verfahren für die Herstellung von (/Poly)-isocyanaten in der Gasphase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571826C2 (ru) * 2010-05-05 2015-12-20 Байер Интеллектуэль Проперти Гмбх Способ получения изоцианатов в газовой фазе
US9328064B2 (en) 2010-05-05 2016-05-03 Bayer Materialscience Ag Method for producing isocyanates in the gas phase

Also Published As

Publication number Publication date
HK1081525A1 (en) 2006-05-19
US20050137417A1 (en) 2005-06-23
JP2005179361A (ja) 2005-07-07
EP1555258A1 (de) 2005-07-20
DE10359627A1 (de) 2005-07-21
ES2314330T3 (es) 2009-03-16
CN100475783C (zh) 2009-04-08
ATE413380T1 (de) 2008-11-15
CA2490050C (en) 2012-02-07
PL1555258T3 (pl) 2009-04-30
US6930199B2 (en) 2005-08-16
CN1651406A (zh) 2005-08-10
RU2004137019A (ru) 2006-05-27
TWI335908B (en) 2011-01-11
DE502004008400D1 (de) 2008-12-18
JP4676754B2 (ja) 2011-04-27
KR101135352B1 (ko) 2012-04-17
KR20050061385A (ko) 2005-06-22
CA2490050A1 (en) 2005-06-18
MXPA04012337A (es) 2005-06-23
TW200535123A (en) 2005-11-01
EP1555258B1 (de) 2008-11-05

Similar Documents

Publication Publication Date Title
RU2377233C2 (ru) Способ получения диизоцианатов в газовой фазе
US7754915B2 (en) Process for preparing isocyanates in the gas phase
US6974880B2 (en) Process for the manufacture of (poly-)isocyanates in the gas phase
US6706913B2 (en) Process for preparing (cyclo)aliphatic isocyanates
US7019164B2 (en) Process for the production of (poly)isocyanates in the gas phase
JP5254234B2 (ja) 穴噴射型リアクターおよびこれを用いたイソシアナートの製造方法
US8765996B2 (en) Process for preparing isocyanates
KR20170058927A (ko) 이소시아네이트의 기체 상 제조 방법
US8399702B2 (en) Process for the production of aromatic diisocyanates in the gas
EP4104922A1 (en) Reactor and process for preparing isocyanates
US20180370907A1 (en) Method for producing isocyanates
WO2022263320A1 (en) Reactor and process for preparing isocyanates
CN117500584A (zh) 用于制备异氰酸酯的反应器和方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161218