RU2346920C2 - Способ окисления циклических алканов - Google Patents

Способ окисления циклических алканов Download PDF

Info

Publication number
RU2346920C2
RU2346920C2 RU2005109150/04A RU2005109150A RU2346920C2 RU 2346920 C2 RU2346920 C2 RU 2346920C2 RU 2005109150/04 A RU2005109150/04 A RU 2005109150/04A RU 2005109150 A RU2005109150 A RU 2005109150A RU 2346920 C2 RU2346920 C2 RU 2346920C2
Authority
RU
Russia
Prior art keywords
zone
reaction zone
reaction
cyclohexane
distillation column
Prior art date
Application number
RU2005109150/04A
Other languages
English (en)
Other versions
RU2005109150A (ru
Inventor
Томас ГЕНГЕР (DE)
Томас Генгер
Карстен ООСТ (BE)
Карстен ООСТ
Йоост-Виллем СНЕК (DE)
Йоост-Виллем СНЕК
Манфред ШТРЕЦЕЛЬ (DE)
Манфред ШТРЕЦЕЛЬ
Йенс БЕКЕР (DE)
Йенс БЕКЕР
Вилфрид БЕРНИНГ (DE)
Вилфрид БЕРНИНГ
Original Assignee
Басф Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Акциенгезелльшафт filed Critical Басф Акциенгезелльшафт
Publication of RU2005109150A publication Critical patent/RU2005109150A/ru
Application granted granted Critical
Publication of RU2346920C2 publication Critical patent/RU2346920C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/14Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom belonging to a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Изобретение относится к способу окисления циклических алканов окислительным агентом с получением продукта, в котором окисление проводят в ректификационной колонне, содержащей на нижнем конце кубовую зону, на верхнем конце головную зону и между кубовой и головной зонами реакционную зону, в реакционной зоне реакционную смесь поддерживают в состоянии кипения и окислительный агент вводят в реакционную зону, по меньшей мере, в двух частичных потоках, при этом покидающее реакционную зону, непрореагировавшее исходное сырье рециркулируют в реакционную зону, в качестве окислительного агента используют содержащий молекулярный кислород газ, а ниже реакционной зоны отбирают содержащую продукт реакционную смесь. Применение данного способа позволяет получать продукт технически простым и экономичным способом, а также позволяет повысить конверсию исходного сырья и селективность образования целевых продуктов. 5 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к технологии окисления органических соединений, более конкретно к способу окисления циклических алканов с получением продукта, в котором окисление проводят в ректификационной колонне, которая содержит:
на нижнем конце кубовую зону,
на верхнем конце головную зону и
между кубовой и головной зонами реакционную зону,
в реакционной зоне реакционную смесь поддерживают в состоянии кипения и окислительный агент вводят в реакционную зону, по меньшей мере, в двух частичных потоках.
Известны многочисленные способы окисления, в частности, органического исходного вещества содержащим молекулярный кислород газом при получении продукта.
Так, например, насыщенные соединения могут превращаться в ненасыщенные соединения, например метилциклогексан в толуол или пропан в пропен, спирты в альдегиды или кетоны, как, например, изопропанол в ацетон, втор-бутанол в метилэтилкетон или метанол в формальдегид, углеводороды в гидропероксиды, как, например, кумол в кумолгидропероксид, тетралин в тетралингидропероксид или цикпогексан в циклогексангидропероксид, олефины в эпоксиды, как, например, этен в этиленоксид, или углеводороды в спирты, кетоны или карбоновые кислоты, как, например циклогексан в циклогексанол или циклогексанон, толуол в бензальдегид или бензойную кислоту, о-, м- или п-ксилол в соответствующие ароматические дикарбоновые кислоты или их ангидриды, бутан в ангидрид малеиновой кислоты или пропен в акролеин или акриловую кислоту.
Одной из проблем при таких окислительных реакциях является то, что желаемые целевые продукты, в свою очередь, могут быть окислены при получении нежелательных побочных продуктов или в конце концов двуокиси углерода и воды. Это приводит к снижению селективности реакции окисления.
В качестве технически важного окисления в публикации: Weissermel/Arpe, Industrielle Organische Chemie, 4. Auflage, VCH, Weinheim, 1994, стр.260 и далее описывается окисление воздухом циклогексана с получением смеси, содержащей циклогексанол и циклогексанон, в жидкой фазе в присутствии солей марганца или кобальта в качестве катализатора при 125-165°С и при давлении в интервале от 8 до 15 бар (абс.).
Конверсия циклогексана при этом ограничивается, чтобы достичь технически имеющей смысл селективности. Согласно публикации: Arpentier и др., The Technology of Catalytic Oxidations, Editions Technip 2001, стр.226 и далее селективность при конверсии циклогексана в интервале 1-2% составляет ок. 90%, в то время как уже при конверсии 4-5% она снижается до 77-85%.
Непрореагировавший циклогексан должен дистиллироваться в дополнительно подключенной дистилляционной колонне и возвращаться на стадию окисления.
Циклогексанол и циклогексанон представляют собой исходные вещества для получения капролактама и адипиновой кислоты, которые, в свою очередь, применяются в значительных количествах в качестве мономеров для получения технически важных полиамидов.
DE 19811517 описывает некатализированное, селективное окисление циклогексана озоном с получением циклогексанона в инертизированном относительно озона реакторе, причем озон дозируют в головной части колонны, в то время как одновременно образовавшийся циклогексанон непрерывно отводят из куба колонны в качестве продукта (целевого продукта).
Недостатком при этом способе является недостаточный контакт окислительного агента с исходным веществом и плохое использование окислительного агента. Озон при технологически применяемом давлении является газообразным и вместе с этим покидает реактор опять без достаточного контакта с подлежащим окислению углеводородом.
Далее способ должен проводиться при температурах, которые меньше (или) одинаковы с температурой кипения подлежащего окислению циклогексана. Однако в связи с тем, что продукты реакции кипят при температуре на прибл. 75°С выше, чем исходное вещество, и температура кипения реакционной смеси лежит выше температуры кипения циклогексана, согласно этому способу происходит чистое превращение жидкой фазы без дистилляции. Таким образом, этот способ имеет вышеприведенные проблемы, касающиеся разделения реакционной смеси и рециркуляции циклогексана.
Настоящее изобретение имеет задачу разработки способа, который обеспечивает окисление насыщенного или ненасыщенного углеводорода окислительным агентом с получением продукта технически простым и экономичным образом и который не имеет вышеприведенных недостатков.
Другой задачей является повышение конверсии исходного сырья и селективности образования целевых продуктов.
В соответствие с этим был разработан предлагаемый способ окисления циклических алканов.
Циклические алканы могут содержать до 12 атомов углерода.
Предпочтительно применяют циклогексан или декалин.
Согласно предпочтительной форме выполнения изобретения в качестве исходного вещества применяют циклогексан.
В качестве продукта пригодны в этом случае преимущественно циклогексанол, циклогексанон, циклогексилгидропероксид или их смеси, в частности циклогексанол, циклогексанон или их смеси.
Согласно изобретению окисление исходного вещества осуществляется окислительным агентом.
При еще одной предпочтительной форме выполнения изобретения в качестве окислительного агента можно применять молекулярный содержащий кислород газ, в частности молекулярный кислород.
В качестве молекулярного кислорода можно применять дикислород в триплетной или синглетной форме или трикислород, а именно озон, предпочтительно дикислород, в частности, в триплетной форме или смеси таких молекулярных форм кислорода.
Содержащий такой молекулярный кислород газ может быть свободным от других компонентов.
Содержащий такой молекулярный кислород газ может содержать другие компоненты.
В качестве других компонентов пригодны окислительно действующие газы, такие как оксиды азота.
В случае других компонентов могут применяться предпочтительно инертные газы, т.е. такие, которые в способе согласно изобретению не участвуют или не существенно участвуют в реакции окисления, такие как азот, например, в форме воздуха, или благородные газы, например аргон или его смеси.
При еще одной предпочтительной форме выполнения изобретения в качестве окислительного агента можно применять содержащий один или несколько оксидов азота газ, в частности, один или несколько оксидов азота.
В качестве оксидов азота пригодны оксид диазота, монооксид азота, диоксид азота или их смеси или олигомеры.
Содержащий один или несколько таких оксидов азота газ может быть свободным от других компонентов.
Содержащий один или несколько таких оксидов азота газ может содержать другие компоненты.
В качестве других компонентов пригодны действующие окислительно газы, такие как кислород.
В случае других компонентов могут применяться предпочтительно инертные газы, которые в способе согласно изобретению не участвуют или не существенно участвуют в реакции окисления, такие как азот, например, в форме воздуха, или благородные газы, например аргон или его смеси.
Согласно еще одной предпочтительной форме выполнения изобретения в качестве окислительного агента можно применять жидкое в условиях реакции соединение, такое как пероксиды, например неорганические пероксиды, такие как перекиси водорода, или органические пероксиды, такие как циклогексан-гидропероксид, изобутилгидропероксид, изопентилгидропероксид, фенилэтил-гидропероксид, кумолгидропероксид, тетралингидропероксид, или пероксокислоты, такие как перуксусная кислота.
Количественные соотношения между применяемым исходным веществом и молекулярным кислородом в содержащем молекулярный кислород газе зависят от желаемой степени превращения исходного вещества в продукт с химической точки зрения, т.е., например, превращения алкана в спирт или кетон, и с технологической точки зрения, т.е. выбранной конверсии, и может легко оптимизироваться небольшим количеством простых предварительных тестов. Окислительный агент и исходное вещество можно подавать в ректификационную колонну отдельно.
Окислительный агент и исходное вещество перед подачей в ректификационную колонну можно частично смешивать и затем подавать в ректификационную колонну.
Окислительный агент и исходное вещество можно перед подачей в ректификационную колонну полностью смешивать и затем подавать в ректификационную колонну.
Согласно изобретению окисление проводят в ректификационной колонне, которая содержит:
на нижнем конце кубовую зону,
на верхнем конце головную зону и
между кубовой и головной зонами реакционную зону.
В качестве ректификационных колонн пригодны описанные, например, в публикации Kirk-Othmer, Encyclopedia of Chemical Technology, S.Ed., Vol.7, John Wiley & Sons, New York, 1979, стр.870-881, колонны, такие как тарельчатые колонны, например колонны с сетчатыми тарелками, или колпачковые колонны, или упаковочные или насадочные колонны.
Согласно предпочтительной форме выполнения используют такие тарелки, которые обеспечивают длительное время пребывания реакционной смеси в колонне, такие как клапанные тарелки, предпочтительно колпачковые тарелки или туннельные тарелки.
Согласно еще одной предпочтительной форме выполнения изобретения пригодны насадки, такие как насадки из металлической ткани, листовые насадки, предпочтительно с упорядоченной структурой, или насадочные засыпки.
Согласно еще одной предпочтительной форме выполнения изобретения пригодны напорные насадки. Такие напорные насадки обеспечивают регулировку времени пребывания в реакционной зоне по падению давления и обеспечивают даже при высокой нагрузке хорошую разделяющую способность.
При еще одной предпочтительной форме выполнения изобретения под местом подачи окислительного агента в ректификационную колонну можно применять встройки с высоким числом ступеней разделения, например насадки из металлической ткани, или листовые насадки, предпочтительно с упорядоченной структурой.
Преимущественно ректификационные колонны должны иметь разделяющую способность от 10 до 100, предпочтительно от 20 до 40 теоретических тарелок.
Преимущественно из обоих реагентов исходного вещества и окислительного агента более высококипящий реагент может подаваться преимущественно или полностью поверх более низкокипящего реагента, в частности более высококипящий реагент можно вводить в верхней части ректификационной колонны и более низкокипящий реагент в нижней части ректификационной колонны.
Более высококипящий реагент может при этом содержать более низкокипящий реагент.
Более низкокипящий реагент может при этом содержать более высококипящий реагент.
При одной особенно предпочтительной форме выполнения ректификационная колонна имеет между реакционной зоной и кубовой зоной дистилляционную зону.
Было установлено, что особенное преимущество имеет встройка в нижнюю зону ректификационной колонны, т.е. в дистилляционную зону, от 0 до 50, предпочтительно от 5 до 30 теоретических тарелок.
Было установлено, что особенное преимущественным имеет встройка в верхнюю зону ректификационной колонны, т.е. в реакционную зону, от 0 до 50, предпочтительно от 5 до 30 теоретических тарелок.
Реакционная зона может находиться внутри ректификационной части колонны или она может находиться вне ректификационной части колонны.
Кроме того, реакционная зона может находиться вне ректифиакционной колонны. В этом случае давление в реакционной зоне и давление в ректификационной части колонны могут быть одинаковыми или различными.
Чертеж схематически показывает предпочтительную форму выполнения ректификационной колонны. На чертеже имеются следующие обозначения:
1: реакционная зона
2: дистилляционная зона
3: подвод для исходного вещества
4: подвод для катализатора
5: подача, в частности, газообразного окислительного агента, такого как воздух
6: испаритель
7: поток продукта
8: теплообменник
9: отвод инертного газа
10: отстойник
11: отвод воды
12: рециркуляция исходного вещества
Способ по изобретению может осуществляться предпочтительно в нескольких последовательно подсоединенных ректификационных колоннах. При эксплуатации последовательно подключенных ректификационных колонн при более низком давлении часть полученной во вторичном потоке передней колонны энергии может передаваться в подводимый поток последующей ректификационной колонны.
Далее предпочтительно часть несконденсированного вторичного потока может возвращаться в нижнюю часть ректификационной колонны. Благодаря этому возвратному циклу возможно регенерировать часть имеющейся в потоке кубовой зоны энергии.
Среднее время пребывания реакционной смеси на тарелках колонны должно составлять от 1 до 120 минут, предпочтительно от 5 до 30 минут.
Способ по изобретению, в особенности, в случае циклогексана в качестве исходного вещества может проводиться при давлении в интервале от 0,1 до 3,5 МПа, предпочтительно от 0,5 до 2,5 МПа, измеренном в кубовой зоне ректификационной колонны.
Температура имеет при этом такое значение, что реакционная смесь поддерживается в реакционной зоне в состоянии кипения.
Подходящую для такого взаимодействия температуру можно легко определять посредством небольшого количества простых предварительных тестов. В общем, работают при температуре в интервале от 10 до 300°С, измененной в реакционной зоне.
Если в качестве исходного вещества применяют циклогексан, то в реакционной зоне температура лежит преимущественно в интервале от 70 до 220°С, предпочтительно от 120 до 190°С.
При еще одной предпочтительной форме выполнения изобретения ректификационная колонна на верхнем конце головной зоны может иметь возможность отбора газа.
Предпочтительно реакцию осуществляют таким образом, что под реакционной зоной имеющаяся там реакционная смесь испаряется при получении смеси из жидкой и газообразной реакционной смеси.
При предпочтительной форме выполнения изобретения ректификационная колонна в кубовой зоне и в реакционной зоне заполнено жидкой реакционной смесью.
Полученная таким образом газообразная реакционная смесь вследствие более низкой плотности по сравнению с жидкой реакционной смесью поднимается в направлении головной зоны ректификационной колонны. Вследствие взаимодействия газообразной и жидкой фаз могут наступать изменения в составе газовой фазы вследствие процессов конденсации и испарения.
В головной зоне ректификационной колонны согласно изобретению конденсируется поступающая туда реакционная смесь и таким образом подается к реакционной зоне, предпочтительно в жидкой фазе.
Согласно изобретению окислительный агент вводят в реакционную зону, по меньшей мере, в двух частичных потоках, предпочтительно в 2 до 100, в частности, 5 до 50, особенно предпочтительно 2 до 40, а именно 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 частичных потоках.
Ввод окислительного агента в ректификационную колонну может при этом осуществляться известным само собой, особенно известным для ввода газа в жидкость, способом.
Способ по изобретению можно проводить в присутствии гомогенного или гетерогенного катализатора.
Если применяют гомогенный катализатор, то он может подаваться в реакционную смесь в головной зоне ректификационной колонны и забираться в кубовой зоне с реакционной смесью.
Если применяют гетерогенный катализатор, то он может фиксироваться в реакционной зоне ректификационной колонны известным способом.
В общем, для реакций окисления могут применяться известные катализаторы, например в случае окисления циклогексана в циклогексанол, циклогексанон или их смеси применяют содержащие марганец соли.
Количества катализатора могут быть легко определены в соответствии с известными для этих катализаторов для соответствующих реакций нагрузками катализатора и выбранной в способе согласно изобретению конверсии и оптимизация количества катализатора может осуществляться посредством небольшого числа простых предварительных тестов.
Преимущественно в кубовой зоне ректификационной колонны можно отбирать содержащую продукт реакционную смесь, в частности, если точка кипения продукта выше, чем точка кипения исходного вещества в условиях реакции. Отобранная в кубовой зоне реакционная смесь может состоять из продукта или из смеси, содержащей продукт и другие компоненты, такие как исходное вещество, побочные продукты, последующие продукты.
Преимущественно в головной зоне ректификационной колонны можно забирать содержащую продукт реакционную смесь, в частности, если точка кипения продукта ниже, чем точка кипения исходного вещества в условиях реакции, забранная в головной зоне реакционная смесь может состоять из продукта или из сочетания продукта с другими компонентами, такими как исходное вещество, побочные продукты, последующие продукты.
В том случае, если при реакции окисления согласно изобретению образуется вода в качестве неизбежного или нежелательного побочного продукта или в качестве последующего продукта, то ее можно предпочтительным образом забирать во время окисления из ректификационной колонны поверх реакционной зоны, предпочтительно через головную зону.
Сравнительный пример 1
В разделенном на восемь камер барботажном колонном реакторе поток циклогексана, который подают в конце реактора, регулируют таким образом, что время пребывания жидкой фазы в реакторе составляет 31 минуту. Добавкой соответствующего количества воздуха, равномерно распределенного по камерам реактора, устанавливают конверсию циклогексана на 3,5%. В реакторе поддерживают давление 16 бар.
Селективность по отношению к циклогексанолу, циклогексанону и циклогексан-гидропероксиду составляет в сумме 83,9%. Выход на объем/время в пересчете на жидкую фазу в реакторе составляет 45,7 кг/(м3ч).
Пример 1
К ректификационной колонне с 10 ступенями в реакционной зоне (наверху) и 10 ступенями в дистилляционной части (внизу) подводят в пересчете на объем жидкой фазы 2415 кг/(м3ч) циклогексана поверх реакционной зоны. В колонне поддерживают давление 11,9 бар. Подают 0,15 нм3 воздуха на кг циклогексана, равномерно распределенных по 10 ступеням реакционной зоны колонны. При 200 Втч/кг энергии испарения, в пересчете на поток свежего циклогексана, конверсия циклогексана составляет 10,1%.
Селективность по отношению к циклогексанолу, циклогексанону и циклогексан-гидропероксиду составляет в сумме 88,0%. Выход на объем/время в пересчете на жидкую фазу в реакторе составляет 250 кг/(м3ч).
Сравнительный пример 2
Реакцию проводят, как в примере 1, с той разницей, что общее количество воздуха подают в одном потоке на самую нижнюю ступень реакционной зоны. Конверсия циклогексана составляет 9,8%.
Селективность по отношению к циклогексанолу, циклогексанону и циклогексан-гидропероксиду составляет в сумме 84,1%. Выход на объем/время в пересчете на жидкую фазу в реакторе составляет 232 кг/(м3ч).

Claims (6)

1. Способ окисления циклических алканов окислительным агентом с получением продукта, в котором окисление проводят в ректификационной колонне, содержащей на нижнем конце кубовую зону, на верхнем конце - головную зону и между кубовой и головной зонами - реакционную зону, в реакционной зоне реакционную смесь поддерживают в состоянии кипения и окислительный агент вводят в реакционную зону, по меньшей мере, в двух частичных потоках, при этом покидающее реакционную зону, непрореагировавшее исходное сырье рециркулируют в реакционную зону, в качестве окислительного агента используют содержащий молекулярный кислород газ, а ниже реакционной зоны отбирают содержащую продукт реакционную смесь.
2. Способ по п.1, в котором при окислении образуется вода и эту воду во время окисления отбирают из ректификационной колонны в реакционной зоне или в головной зоне.
3. Способ по п.1 или 2, в котором процесс проводят при температуре в интервале от 10 до 300°С, измеренной в реакционной зоне.
4. Способ по п.1 или 2, в котором кипящий при более высокой температуре реагент, выбранный из группы, включающей окислительный агент и исходное сырье, подают в ректификационную колонну поверх кипящего при более низкой температуре реагента, выбранного из группы, включающей окислительный агент и исходное сырье.
5. Способ по п.1 или 2, в котором в качестве исходного сырья используют циклогексан.
6. Способ по п.5, в котором циклогексан окисляют воздухом, реакционную смесь непрерывно отбирают в кубовой зоне ректификационной колонны и непрореагировавший циклогексан и воду непрерывно отделяют в головной зоне, циклогексан и воду разделяют с помощью фазоотделителя и полученный таким образом циклогексан подают в качестве рецикла в головную зону ректификационной колонны.
RU2005109150/04A 2002-08-30 2003-07-30 Способ окисления циклических алканов RU2346920C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240816.5 2002-08-30
DE10240816A DE10240816A1 (de) 2002-08-30 2002-08-30 Oxidationsverfahren

Publications (2)

Publication Number Publication Date
RU2005109150A RU2005109150A (ru) 2005-08-10
RU2346920C2 true RU2346920C2 (ru) 2009-02-20

Family

ID=31502359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005109150/04A RU2346920C2 (ru) 2002-08-30 2003-07-30 Способ окисления циклических алканов

Country Status (13)

Country Link
US (1) US20050288532A1 (ru)
EP (1) EP1536885A1 (ru)
JP (2) JP2005536341A (ru)
KR (1) KR20050037591A (ru)
CN (1) CN1678389A (ru)
AU (1) AU2003250195A1 (ru)
BR (1) BR0313572A (ru)
DE (1) DE10240816A1 (ru)
MX (1) MXPA05001092A (ru)
PL (1) PL375785A1 (ru)
RU (1) RU2346920C2 (ru)
TW (1) TW200404756A (ru)
WO (1) WO2004020083A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053341A2 (de) * 2007-10-22 2009-04-30 Basf Se Verfahren zur oxidation von cycloaliphatischen alkoholen, cycloaliphatischen ketonen oder deren gemische mit wässriger salpetersäure und aufarbeitung der dicarbonsäuren
FR2955321B1 (fr) * 2010-01-21 2012-02-10 Rhodia Operations Procede d'oxydation d'hydrocarbures
US8936767B2 (en) * 2010-01-29 2015-01-20 Grupo Petrotemex. S.A. de C.V. Oxidation system with sidedraw secondary reactor
CN102766031A (zh) * 2011-05-05 2012-11-07 岳阳昌德化工实业有限公司 一种环己烷氧化的方法
CN102766032B (zh) * 2011-05-05 2014-10-01 中国石油化工股份有限公司 一种环己烷氧化的方法
US8981157B2 (en) * 2011-05-13 2015-03-17 Ever Nu Technology, LLC Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates
CN110922323A (zh) * 2019-11-27 2020-03-27 天津东大化工集团有限公司 甲苯连续催化氧化生产苯甲酸热电耦合高效节能减排工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931834A (en) * 1960-04-05 Ctclohexane oxidation process
GB1044446A (en) * 1963-03-30 1966-09-28 Inst Chemii Ogolnej Improvements in or relating to a method of distilling chemical substances
DE1518255B1 (de) * 1965-01-30 1969-12-11 Vickers Zimmer Ag Verfahren zur Aufarbeitung des Reaktionsgemisches der Oxydation von Cyclohexan mit sauerstoffhaltigen Gasen in fluessiger Phase
US3957876A (en) * 1970-07-31 1976-05-18 E. I. Du Pont De Nemours And Company Process for the oxidation of cyclohexane
CA984855A (en) * 1971-06-07 1976-03-02 Hercules Incorporated Production of aromatic secondary (c3-c7 alkyl) hydroperoxide
US5449501A (en) * 1994-03-29 1995-09-12 Uop Apparatus and process for catalytic distillation
DE19643154A1 (de) * 1996-10-18 1998-04-23 Basf Ag Verfahren zur Herstellung von Oxidationsprodukten des Cyclohexans im Gegenstrom
ATE199366T1 (de) * 1996-11-15 2001-03-15 Haldor Topsoe As Verfahren zur katalytischen teiloxidation eines kohlenwasserstoffs
US6743400B2 (en) * 2001-03-21 2004-06-01 The Boc Group, Inc. Sparger configuration for fluidized bed hydrocarbon partial oxidation reactors

Also Published As

Publication number Publication date
JP2005536341A (ja) 2005-12-02
MXPA05001092A (es) 2005-04-28
RU2005109150A (ru) 2005-08-10
KR20050037591A (ko) 2005-04-22
WO2004020083A1 (de) 2004-03-11
AU2003250195A1 (en) 2004-03-19
TW200404756A (en) 2004-04-01
PL375785A1 (en) 2005-12-12
EP1536885A1 (de) 2005-06-08
JP2010018629A (ja) 2010-01-28
DE10240816A1 (de) 2004-03-11
BR0313572A (pt) 2005-06-21
CN1678389A (zh) 2005-10-05
US20050288532A1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
JPS6393747A (ja) アクロレインへのプロピレン酸化反応およびアクリル酸へのアクロレイン酸化反応用の無水希釈剤
RU2003100831A (ru) Способ получения акролеина или акриловой кислоты или их смесей из пропана
JPH06293682A (ja) プロセス
KR100703914B1 (ko) 프로필렌 히드로포르밀화 생성물 및 아크릴산 및(또는)아크롤레인의 제조 방법
RU2007103614A (ru) Способ получения акриловой кислоты гетерогенно катализируемым частичным окислением в газовой фазе пропилена
JP2010018629A (ja) 酸化方法
SK278383B6 (en) Producing method of acrylic acid by two-step propylene catalytic oxidation
KR100539573B1 (ko) 저 불포화 탄화수소의 산화에 의한 불포화 카르복실산의두단계 제조방법
US6737546B2 (en) Extraction process for recovery of acrylic acid
US20050245751A1 (en) Integrated method for synthesis propylene oxide
US4341709A (en) Preparation of ε-caprolactone
JP2002523389A (ja) プロパンからのアクロレインおよび/またはアクリル酸の製法
PL178142B1 (pl) Sposób wytwarzania wodoronadtlenku cykloheksylu oraz sposób rozpoczynania niekatalizowanego procesu utleniania cykloheksanu w procesie wytwarzania wodoronadtlenku cykloheksylu
RU2002131796A (ru) Способ каталитического гидроксилирования насыщенных или ненасыщенных алифатических соединений
US7553986B2 (en) Process for the selective (amm)oxidation of lower molecular weight alkanes and alkenes
JP2000290218A (ja) C原子1〜4個を有する飽和カルボン酸を製造するための方法および装置
US3954879A (en) Process for producing hydroperoxides
MXPA04007730A (es) Procedimiento para la obtencion de ciclohexanol a partir de benceno.
US5241088A (en) Non-catalytic oxidation of alkylene to alkylene oxide in the presence of recycled aldehyde by-products
US5334771A (en) Peroxidation of secondary carbon in alkanes and cycloalkanes
JP2019151604A (ja) 1,3−ブタジエンの製造方法
Zhu et al. A new route to control product selectivity in the oxidative dehydrogenation of cyclohexane and cyclohexene
EP1307428B1 (en) Amelioration of ammonia breakthrough in an alkane ammoxidation process
RU2166494C2 (ru) Способ получения стирола

Legal Events

Date Code Title Description
TZ4A Amendments of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110731