RU2336607C1 - Система охлаждения для батарейного блока - Google Patents
Система охлаждения для батарейного блока Download PDFInfo
- Publication number
- RU2336607C1 RU2336607C1 RU2007110844A RU2007110844A RU2336607C1 RU 2336607 C1 RU2336607 C1 RU 2336607C1 RU 2007110844 A RU2007110844 A RU 2007110844A RU 2007110844 A RU2007110844 A RU 2007110844A RU 2336607 C1 RU2336607 C1 RU 2336607C1
- Authority
- RU
- Russia
- Prior art keywords
- refrigerant
- battery
- cooling system
- battery pack
- section
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6569—Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6562—Gases with free flow by convection only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
- H01M10/6557—Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6566—Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/42—Grouping of primary cells into batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Изобретение относится к области электротехники, в частности к системе охлаждения для батарейного блока, который используется в качестве источника питания электромобилей и гибридных электромобилей. Система охлаждения обеспечивает эффективное рассеивание тепла, генерируемого в ячейках батареи, за счет подачи холодильного агента к ячейкам батареи при постоянной скорости потока, а также уменьшения разности температур между ячейками батареи в процессе охлаждения. Это предотвращает падение кпд ячеек батареи и способствует достижению оптимального регулирования температуры, что является техническим результатом изобретения. Кроме того, в системе охлаждения использован единственный направляющий элемент для холодильного агента, установленный на одной стороне батарейного блока, что приводит к уменьшению общего размера батарейной установки. 8 з.п. ф-лы, 5 ил.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к системе охлаждения для батарейного блока, который является пригодным в качестве источника питания электромобилей и гибридных электромобилей, а более конкретно к системе охлаждения батарейных блоков для регулирования температуры батарейного блока, в которой зона введения холодильного агента и зона выпуска холодильного агента расположены на одной и той же стороне системы, и каждый из множества батарейных модулей имеет независимый канал для холодильного агента, по которому холодильный агент проходит через множество ячеек батарейных модулей, при постоянной скорости потока, что приводит к уменьшению колебания температуры между ячейками батареи, а также размера всей батарейной системы.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Одной главной проблемой, связанной с транспортными средствами, в которых сжигается природное топливо, такое как бензин и дизельное топливо, является загрязнение воздуха. Для решения такой проблемы следует обратить внимание на технологию, в которой в качестве источника питания транспортных средств используется аккумуляторная вторичная батарея. Соответственно, разрабатывались электромобили (ЭМ), которые функционировали только за счет вторичных батарей, и гибридные электромобили (ГЭМ), в которых использовались, как вторичные батареи, так и двигатели внутреннего сгорания, и некоторые из этих электромобилей и гибридных электромобилей получили промышленное внедрение. Примером вторичной батареи, которая применяется в качестве источника питания ЭМ и ГЭМ, является никель-металлическая гибридная (Ni-MH) батарея, но в последнее время также проводятся попытки применения литиево-ионных батарей.
Для использования вторичной батареи в качестве источника питания ЭМ и ГЭМ, вторичная батарея должна обладать высокой производимой мощностью и высокой емкостью. Рассматривая стандартную конфигурацию, как удовлетворяющую данному требованию, множество небольших вторичных батарей (ячеек батарей) соединяется последовательно или параллельно, образуя батарейный модуль, а, в свою очередь, множество батарейных модулей соединяется последовательно или параллельно, образуя единичный батарейный блок.
Однако проблема вторичной батареи с высокой выходной мощностью и емкостью состоит в том, что во время режима зарядки/разрядки она производит большое количество тепла. Если тепло ячеек батареи, генерированное при режиме зарядки/разрядки, эффективно не отводится, то это тепло накапливается, приводя к разрушению ячеек батареи. По этой причине необходимо обеспечить такую батарею с высокой выходной мощностью и емкостью, снабженную системой охлаждения.
В качестве примера системы для охлаждения батарейного блока согласно известному уровню техники, можно рассмотреть патент США № 5589290 и Корейскую выложенную патентную заявку № 2004-45937. Далее, принцип действия стандартной системы для охлаждения батарейного блока будет разъяснен со ссылкой на фиг.1.
Как показано на фиг.1, стандартная система охлаждения батарейного блока, обозначенная ссылочной позицией 10, включает батарейный блок 20, содержащий множество батарей, секцию 30 введения холодильного агента, установленную на нижней торцевой поверхности батарейного блока 20, и секцию 40 выпуска холодильного агента, установленную на верхней торцевой поверхности батарейного блока 20. Батарейный блок 20 состоит из множества батарейных модулей 50, электрически соединенных друг с другом. Также, каждый из батарейных модулей 50 состоит из множества ячеек 60 батареи, электрически соединенных друг с другом. Ячейки 60 батареи из каждого батарейного модуля 50 образуют небольшие зазоры в областях контакта с соседними ячейками 60 батареи, вследствие чего холодильный агент, введенный через зону 30 введения, можно использовать для рассеивания тепла, генерированного в ячейках 60 батареи при его перемещении через зазоры. После этого, холодильный агент выпускают через секцию 40 выпуска, размещенную в верхней части батарейного блока 20.
Однако система 10 охлаждения батарейного блока, имеющая вышеописанную конфигурацию, как показано на фиг.1, имеет несколько проблем, как изложено ниже.
Во-первых, в случае системы 10 охлаждения стандартного батарейного блока, сложно равномерно распределять холодильный агент, проходящий через секцию 30 введения, по соответствующим батарейным модулям 50. Это неизбежно приводит к большой разнице температур между ячейками 60 батареи. Последние исследования подтверждают, что такая большая разность температур между ячейками 60 батареи является главным фактором падения общего кпд блока 20 батарей.
Во-вторых, поскольку секция 30 введения холодильного агента и секция 40 выпуска холодильного агента размещены независимо друг от друга на верхней и нижней сторонах блока 20 батарей, необходимо установить два направляющих элемента для холодильного агента на обеих, соответственно верхней и нижней сторонах блока 20 батарей. Это удваивает место для установки направляющих элементов для холодильного агента, и, таким образом, нежелательным образом увеличивает общий размер батарейной системы.
По этим причинам наиболее коммерчески используемые в настоящее время системы охлаждения блоков батарей не обеспечивают оптимального регулирования температуры ячеек батареи и имеют увеличенный размер батарейной системы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Поэтому, настоящее изобретение было разработано ввиду вышеизложенных проблем, а также других не решенных традиционных технических проблем, и задачей настоящего изобретения является обеспечение системы охлаждения для батарейного блока, которая может эффективно отводить тепло, генерированное в ячейках батарей, за счет подачи холодильного агента к ячейкам батарей при постоянной скорости потока, а также может минимизировать разность температур между ячейками батареи в ходе процесса охлаждения, предотвращая, таким образом, падение кпд ячеек батареи и облегчая оптимальное регулирование температур ячеек батареи.
Другой задачей настоящего изобретения является обеспечение системы охлаждения блока батарей, пригодной для осуществления желаемой операции охлаждения, при достижении уменьшения общего размера батарейной системы.
В соответствии с вариантом осуществления настоящего изобретения вышеуказанные и другие задачи могут быть решены путем обеспечения системы охлаждения для блока батарей, в которой секция введения холодильного агента и зона выпуска холодильного агента расположены на одной и той же стороне блока батарей, и каждая из этих секций, секция введения холодильного агента и секция выпуска холодильного агента разделена внутри на множество каналов для прохождения холодильного агента, вследствие чего холодильный агент, проходящий через секцию введения холодильного агента, направляется к одному из соответствующих батарейных модулей для охлаждения батарейных модулей, и затем выпускается через секцию выпуска холодильного агента.
Как описывалось выше, блок батарей состоит из множества батарейных модулей, электрически соединенных друг с другом, и, в свою очередь, каждый из батарейных модулей состоит из множества небольших батарей, т.е. ячеек батарей, электрически соединенных друг с другом. Для получения батареи с желаемой выходной мощностью и емкостью, предпочтительно, батареи с высокой мощностью и высокой производительностью, необходимо электрически соединить друг с другом батарейные модули, а более конкретно ячейки батареи, последовательно или параллельно. Ячейки батареи можно свободно выбрать из различных аккумуляторных батарей без конкретных ограничений. Например, такой ячейкой батареи, предназначенной для использования в настоящем изобретении, является вторичная батарея, в которой катод, анод, сепаратор и электролит содержатся в герметизированном контейнере и работают по принципу зарядки/разрядки. Предпочтительно, чтобы типы ячеек батареи согласно настоящему изобретению включали литиево-ионные вторичные батареи, литиево-ионные полимерные вторичные батареи, или никель-металлические гибридные батареи.
Ячейки батареи в контактных областях между соседними ячейками батареи образуют небольшие зазоры, используемые для перемещения через них холодильного агента. В соответствии с требованиями ячейки батареи могут быть отделены друг от друга равными промежутками с заданным расстоянием или с различными расстояниями для обеспечения эффективного перемещения холодильного агента. Перемещаясь через промежутки, холодильный агент рассеивает тепло, генерированное в ячейках батареи.
Холодильный агент, предназначенный для использования в настоящем изобретении, можно свободно выбирать из различных охлаждающих жидкостей без конкретных ограничений. Является предпочтительным, чтобы холодильный агент был выбран из двух компонентов, воздуха или воды, а более предпочтительно, чтобы был выбран воздух. Например, когда холодильным агентом является воздух, холодильный агент, для его введения в секцию введения холодильного агента системы охлаждения согласно настоящему изобретению нагнетается с помощью отдельного устройства, такого как вентилятор.
Система охлаждения батарейного блока согласно настоящему изобретению влияет на уменьшение общего размера батарейной установки, поскольку, как секция введения холодильного агента, так и секция выпуска холодильного агента размещены на одной и той же стороне батарейного блока. Кроме того, в связи с тем, что каждый из батарейных модулей связан с определенным каналом для прохождения холодильного агента, вследствие чего батарейные модули охлаждаются независимо друг от друга, холодильный агент может перемещаться по соответствующим каналам при постоянной скорости потока, а разность температур между ячейками батареи в ходе процесса охлаждения можно снизить.
Количество каналов для прохождения холодильного агента может быть связано с количеством батарейных модулей в соотношении один к одному с использованием различных методов. В предпочтительном варианте осуществления секция введения холодильного агента снабжена внутри множеством перегородок, которые служат для отделения каждого из соответствующих батарейных модулей от других, смежных с ним батарейных модулей, вследствие чего холодильный агент вводится в соответствующие батарейные модули для охлаждения батарейных модулей при его циркулировании через них, и последующем выпуске из соответствующих батарейных модулей. Предпочтительно, чтобы перегородки также были установлены в секции выпуска холодильного агента. В примерной конфигурации, перегородки, используемые для отделения каналов для прохождения холодильного агента батарейных модулей друг от друга, проходят от впуска, выполненного в секции введения холодильного агента, или от местоположения, находящегося вблизи входа в выпускной канал, выполненный в секции выпуска холодильного агента или в местоположении вблизи выпуска.
Как секцию введения холодильного агента, так и секцию выпуска холодильного агента можно ограничить направляющими элементами для холодильного агента, причем направляющие элементы для холодильного агента можно установить на верхней или нижней стороне, а также на боковой стороне батарейного блока. В соответствии с требованиями направляющий элемент для холодильного агента может быть расположен в центре батарейного блока, вследствие чего батарейные модули устанавливаются, соответственно, на верхней и нижней стороне направляющего элемента холодильного агента. Предпочтительно, чтобы направляющий элемент холодильного агента можно было устанавливать на верхней или нижней стороне батарейного блока.
В предпочтительном варианте осуществления как секция введения холодильного агента, так и секция выпуска холодильного агента установлены на верхней стороне батарейного блока, а каналы для прохождения холодильного агента выполнены таким образом, чтобы холодильный агент, проходящий через вход секции введения холодильного агента, сначала перемещается в направлении первой боковой стенки батарейного блока для перемещения вниз вдоль первой боковой стенки, а затем перемещается в направлении второй боковой стенки батарейного блока, расположенной напротив первой боковой стенки, проходя через зазоры, образованные между соседними ячейками батареи, для перемещения вверх вдоль второй боковой стенки, и, наконец, выходит через выход секции выпуска холодильного агента.
Предпочтительно, чтобы система охлаждения батарейного блока согласно настоящему изобретению могла использоваться в батарейной установке, являющейся источником энергии электромобилей или гибридных электромобилей, более предпочтительно гибридных электромобилей.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Вышеуказанные и другие задачи, признаки и другие преимущества настоящего изобретения будут более четко поняты из следующего подробного описания, используемого в сочетании с сопровождающими чертежами, на которых:
на фиг.1 изображена схема системы охлаждения стандартного батарейного блока, которая показана на частично срезанном виде внутренней части;
на фиг.2 изображена схема системы охлаждения батарейного блока согласно предпочтительному варианту осуществления настоящего изобретения;
на фиг.3 изображен перспективный вид, иллюстрирующий направляющий элемент для холодильного агента согласно альтернативному варианту осуществления настоящего изобретения, для использования в системе охлаждения батарейного блока настоящего изобретения;
на фиг.4 изображен перспективный вид в разобранном виде системы охлаждения батарейного блока согласно настоящему изобретению, которая закреплена в верхней части батарейного блока; и
на фиг.5 изображен перспективный вид в разобранном виде системы охлаждения батарейного блока согласно настоящему изобретению, которая закреплена в нижней части батарейного блока.
<Описание основных номеров ссылок чертежей>
100: система охлаждения батарейного блока 200: батарейный модуль
300: батарейный блок 400: ячейка батареи
500, 700: направляющий элемент для холодильного агента 600: корпус
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ВОПЛОЩЕНИЯ
Далее будет описана система для охлаждения батарейного блока согласно варианту осуществления настоящего изобретения со ссылкой на прилагаемые чертежи. Последующее описание предназначено для легкого понимания настоящего изобретения, а не для ограничения объема настоящего изобретения.
На фиг.2 показана схема системы охлаждения батарейного блока согласно настоящему изобретению в виде частичного вида в разрезе внутренней части. Система 100 охлаждения батарейного блока включает батарейный блок 300, состоящий из множества батарейных модулей 200, 210, 220, и 230, электрически соединенных друг с другом, и направляющий элемент 500 для холодильного агента, установленный на верхней торцевой поверхности батарейного блока 300. Каждый из батарейных модулей 200, 210, 220, и 230 включает множество ячеек 400 батареи, электрически соединенных друг с другом.
Направляющий элемент 500 для холодильного агента включает секцию 510 введения холодильного агента и секцию 520 выпуска холодильного агента. В настоящем изобретении секция 510 введения холодильного агента и секция 520 выпуска холодильного агента расположены на верхней части батарейного блока 300. Секция 510 введения холодильного агента включает вход 512 для введения холодильного агента, подаваемого из внешнего подающего устройства (не показано) для подачи холодильного агента в герметизированное внутреннее пространство системы 100 охлаждения, и множество перегородок 514 для разделения секции 510 введения на множество каналов для прохождения холодильного агента, проходящих к батарейным модулям 200, 210, 220 и 230 соответственно. Секция 520 выпуска включает множество перегородок 524 для разделения секции 520 выпуска на множество каналов для прохождения холодильного агента, вдоль которых перемещается относительно высокотемпературный холодильный агент, проходящий через соответствующие батарейные модули 200, 210, 220, и 230, и выход 522 для выпуска высокотемпературного холодильного агента из системы 100 охлаждения.
Система 100 охлаждения герметично закрыта корпусом 600, за исключением входа 512 и выхода 522, вследствие чего холодильный агент перемещается только вдоль каналов без риска рассеивания.
В описанной выше конфигурации холодильный агент после его введения через вход 512 проходит вдоль заданных каналов, разделенных перегородками 514, так что в каждом соответствующем канале он имеет постоянную скорость потока. То есть скорость потока холодильного агента, проходящего через каждый конкретный канал из каналов FC1, который проходит к первому батарейному модулю 200, скорость потока холодильного агента, проходящего через каждый конкретный канал из каналов FC2, который проходит ко второму 210 батарейному модулю, скорость потока холодильного агента, проходящего через каждый конкретный канал из каналов FC3, который проходит к третьему 220 батарейному модулю, и скорость потока холодильного агента, проходящего через каждый конкретный канал из каналов FC4, который проходит к четвертому 230 батарейному модулю, идентична одна другой. Перегородки 514 секции 510 введения проходят вниз вдоль первой боковой стенки 110 к нижней торцевой поверхности батарейного блока 300. Таким образом, холодильный агент после его введения через вход 512 проходит по направлению к первой боковой стенке 110, а затем проходит ко второй боковой стенке 120, расположенной напротив первой боковой стенки 110, проходя через зазоры, образованные между соседними ячейками 400 батареи. Поскольку соответствующие батарейные модули 200, 210, 220 и 230 изолированы друг от друга, отсутствует какой-либо риск того, что холодильный агент, предназначенный для использования в охлаждении каждого конкретного батарейного модуля, например батарейного модуля 200, при его перемещении от первой боковой стенки 110 ко второй боковой стенке 120, позволяет на другой батарейный модуль, например батарейный модуль 210. При перемещении холодильного агента от первой боковой стенки 110 ко второй боковой стенке 120 тепло, генерированное в ячейках 400 батареи, передается холодильному агенту.
После достижения второй боковой стенки 120 холодильный агент проходит вверх в секцию 520 выпуска вдоль соответствующих каналов, разделенных перегородками 524, так что он выходит из системы 100 наружу через выход 522. Когда холодильный агент проходит вверх вдоль второй боковой стенки 120, скорость потока холодильного агента, проходящего через ячейки 400 батареи, не изменяется. Поэтому может рассматриваться, что перегородки 524 секции 520 выпуска выполнены только у второй боковой стенки 120.
На фиг.3 показан направляющий элемент для холодильного агента согласно альтернативному варианту осуществления настоящего изобретения.
Как показано на фиг.3, направляющий элемент 700 для холодильного агента согласно альтернативному варианту осуществления настоящего изобретения включает секцию 710 введения холодильного агента и секцию 720 выпуска холодильного агента, которая имеет приблизительно те же каналы для прохождения холодильного агента, что и на фиг.2, но отличающиеся формой перегородок 714 и 724. А именно, перегородки 714 секции 710 введения, проходящие ко входу (не показан) секции 710 введения, незначительно наклонены к первой боковой стенке 110. Кроме того, перегородки 724 секции 720 введения, проходящие к выходу (не показан) секции 720 выпуска, незначительно наклонены ко второй боковой стенке 120.
Из вышеприведенного описания следует понимать, что для реализации сущности настоящего изобретения можно использовать различные типы направляющих элементов для холодильного агента, и все из них включены в объем настоящего изобретения.
На фиг.4 и 5 показаны различные батарейные установки, в которых направляющий элемент для холодильного агента на фиг.3 установлен в верхней или нижней части батарейного блока.
Что касается фиг.4, между соседними батарейными модулями 200, 210, 220 и 230 вставлены разделительные элементы 800. Разделительные элементы 800 выступают из противоположных боковых поверхностей батарейного блока 300, вследствие чего они входят в тесное соприкосновение с крышкой 610 корпуса. Таким образом, как показано на фиг.4, является необязательным, чтобы в корпусе батарейной установки перегородки 714 и 724 проходили к боковым поверхностям батарейного блока 300.
Что касается фиг.5, направляющий элемент 700 для холодильного агента установлен в нижней части батарейного блока 300. В данном случае, холодильный агент проходит в направлении, обратном тому, которое описано со ссылкой на фиг.2.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Как ясно из вышеприведенного описания, настоящее изобретение включает относится к системе охлаждения батарейного блока, имеющей следующие преимущества.
Во-первых, система охлаждения батарейного блока согласно настоящему изобретению выполнена для подачи холодильного агента к соответствующим ячейкам батареи при постоянной скорости потока и достижения, таким образом, эффективного рассеивания тепла, генерированного в ячейках батареи. Кроме того, настоящее изобретение обеспечивает уменьшение разности температур между ячейками батареи в процессе охлаждения. Это предотвращает падение кпд ячеек батареи, облегчая, таким образом, оптимальное регулирование температуры ячеек батареи. Более того, в настоящем изобретении использован только один направляющий элемент для холодильного агента, установленный на верхней или нижней стороне батарейного блока, что приводит к уменьшению общего размера батарейной установки.
Хотя предпочтительные варианты настоящего изобретения были раскрыты для иллюстративных целей, специалисты в данной области техники должны принять во внимание, что возможны различные модификации, добавления и замены, без отклонения от объема и сущности изобретения, раскрытого в прилагаемой формуле изобретения.
Claims (9)
1. Система охлаждения для батарейного блока, в которой секция введения холодильного агента и секция выпуска холодильного агента расположены на одной и той же стороне батарейного блока, причем каждая из секций, секция введения холодильного агента и секция выпуска холодильного агента, разделена внутри на множество каналов для прохождения холодильного агента, так что холодильный агент, проходящий через секцию введения холодильного агента, направляется к одному из соответствующих батарейных модулей для охлаждения батарейных модулей, а затем выпускается через секцию выпуска холодильного агента, при этом каждый из батарейных модулей содержит множество ячеек батарей, причем холодильный агент подается к ячейкам батарей при постоянной скорости потока.
2. Система охлаждения по п.1, в которой ячейки батареи представляют собой литиево-ионные вторичные батареи, литиево-ионные полимерные вторичные батареи, или никель-металлические гибридные батареи.
3. Система охлаждения по п.1, в которой холодильный агент представляет собой воздух.
4. Система охлаждения по п.1, в которой секция введения холодильного агента снабжена внутри множеством перегородок, которые служат для отделения одного соответствующего батарейного модуля от других, прилегающих к нему батарейных модулей, посредством которой холодильный агент вводится в соответствующие батарейные модули для охлаждения батарейных модулей, при его циркулировании через них, а затем выводится из соответствующих батарейных модулей.
5. Система охлаждения по п.4, в которой в секции выпуска холодильного агента также выполнены перегородки.
6. Система охлаждения по п.1, в которой, как секция введения холодильного агента, так и секция выпуска холодильного агента ограничена направляющим элементом для холодильного агента, и направляющий элемент холодильного агента установлен на верхней или нижней стороне батарейного блока.
7. Система охлаждения по п.6, в которой направляющий элемент для холодильного агента установлен на верхней стороне батарейного блока, и каналы для прохождения холодильного агента выполнены так, что холодильный агент, проходящий через вход, выполненный в секции введения холодильного агента, сначала перемещается в направлении первой боковой стенки батарейного блока для прохождения вниз вдоль первой боковой стенки, а затем перемещается ко второй боковой стенке батарейного блока, расположенной напротив первой боковой стенки, проходя через зазоры, образованные между соседними ячейками батареи, для прохождения вверх вдоль второй боковой стенки, и затем выходит через выход секции выпуска холодильного агента.
8. Система охлаждения по п.1, в которой система охлаждения используется в батарейной установке, которая служит в качестве источника питания электромобилей или гибридных электромобилей.
9. Система охлаждения по п.8, в которой система охлаждения используется в батарейной установке, которая служит в качестве источника питания гибридных электромобилей.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040085765A KR100853621B1 (ko) | 2004-10-26 | 2004-10-26 | 전지팩의 냉각 시스템 |
KR10-2004-0085765 | 2004-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2336607C1 true RU2336607C1 (ru) | 2008-10-20 |
Family
ID=36260240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007110844A RU2336607C1 (ru) | 2004-10-26 | 2005-10-04 | Система охлаждения для батарейного блока |
Country Status (10)
Country | Link |
---|---|
US (1) | US7560190B2 (ru) |
EP (1) | EP1805843B1 (ru) |
JP (1) | JP4727668B2 (ru) |
KR (1) | KR100853621B1 (ru) |
CN (1) | CN100511825C (ru) |
BR (1) | BRPI0516051B1 (ru) |
CA (1) | CA2577359C (ru) |
RU (1) | RU2336607C1 (ru) |
TW (1) | TWI276241B (ru) |
WO (1) | WO2006080679A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2479895C2 (ru) * | 2008-10-14 | 2013-04-20 | ЭлДжи КЕМ, ЛТД. | Модульная сборка аккумуляторных батарей с повышенной эффективностью охлаждения |
RU2790280C1 (ru) * | 2020-05-07 | 2023-02-17 | Энертек Интернэшнл, Инк. | Аккумуляторная батарея с удобным обслуживанием системы охлаждения |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100880388B1 (ko) | 2005-04-20 | 2009-01-23 | 주식회사 엘지화학 | 전지모듈용 하우징 부재 |
KR100932214B1 (ko) | 2005-10-14 | 2009-12-16 | 주식회사 엘지화학 | 열전소자를 이용한 전지팩의 열교환 시스템 |
KR100937903B1 (ko) | 2005-11-03 | 2010-01-21 | 주식회사 엘지화학 | 전지팩의 밀폐형 열교환 시스템 |
JP4827558B2 (ja) * | 2006-02-28 | 2011-11-30 | 三洋電機株式会社 | 車両用の電源装置 |
KR100905392B1 (ko) * | 2006-04-03 | 2009-06-30 | 주식회사 엘지화학 | 이중 온도조절 시스템의 전지팩 |
JP4857896B2 (ja) * | 2006-05-11 | 2012-01-18 | トヨタ自動車株式会社 | 組電池および車両 |
JP5061502B2 (ja) * | 2006-05-20 | 2012-10-31 | 日産自動車株式会社 | 電池構造体 |
KR100981878B1 (ko) | 2007-06-14 | 2010-09-14 | 주식회사 엘지화학 | 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스 |
KR101029838B1 (ko) | 2007-06-28 | 2011-04-15 | 주식회사 엘지화학 | 냉각 효율이 향상된 중대형 전지팩 |
JP5061753B2 (ja) * | 2007-06-29 | 2012-10-31 | トヨタ自動車株式会社 | 蓄電装置 |
KR20090030545A (ko) * | 2007-09-20 | 2009-03-25 | 에스케이에너지 주식회사 | 고용량 배터리 시스템의 균등 송풍 냉각구조 |
JP2011503800A (ja) | 2007-11-07 | 2011-01-27 | エナーデル、インク | 温度制御装置を有する電池アセンブリ |
EP2225792A4 (en) * | 2007-12-05 | 2012-01-25 | Enerdel Inc | Battery assembly with temperature control device |
KR101091211B1 (ko) * | 2008-02-28 | 2011-12-07 | 주식회사 엘지화학 | 전기자동차용 제트 타입 배터리팩 |
CN102037581B (zh) | 2008-06-11 | 2014-03-12 | 株式会社Lg化学 | 电动汽车用u型电池 |
EP3017986B1 (en) | 2008-06-27 | 2022-11-09 | Proterra Operating Company, Inc. | Vehicle battery systems and method |
JP5384635B2 (ja) * | 2008-07-26 | 2014-01-08 | エルジー・ケム・リミテッド | 優れた冷却効率の中型又は大型のバッテリーパックケース |
JP5330810B2 (ja) * | 2008-11-18 | 2013-10-30 | 株式会社日立製作所 | 電池モジュールを収容する電池箱及びそれを備える鉄道車両 |
KR100937897B1 (ko) * | 2008-12-12 | 2010-01-21 | 주식회사 엘지화학 | 신규한 공냉식 구조의 중대형 전지팩 |
US8852778B2 (en) * | 2009-04-30 | 2014-10-07 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
US20100275619A1 (en) * | 2009-04-30 | 2010-11-04 | Lg Chem, Ltd. | Cooling system for a battery system and a method for cooling the battery system |
DE102009022946A1 (de) * | 2009-05-08 | 2010-11-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Brennstoffzellenanordnung |
JP5640382B2 (ja) * | 2009-05-26 | 2014-12-17 | 日産自動車株式会社 | 車両のバッテリアセンブリ冷却構造、および、ウォータージャケット付きバッテリアセンブリ |
JP5531626B2 (ja) * | 2009-05-26 | 2014-06-25 | 日産自動車株式会社 | 車両のバッテリアセンブリ冷却構造、および、ウォータージャケット付きバッテリアセンブリ |
WO2011000826A1 (de) * | 2009-06-30 | 2011-01-06 | Siemens Aktiengesellschaft | Verfahren zur kühlung von batteriepacks und in module unterteiltes batteriepack |
US8268472B2 (en) | 2009-09-30 | 2012-09-18 | Bright Automotive, Inc. | Battery cooling apparatus for electric vehicle |
JP5496604B2 (ja) * | 2009-10-30 | 2014-05-21 | 三洋電機株式会社 | 電源装置及びこれを備える車両 |
KR101165511B1 (ko) * | 2010-01-26 | 2012-07-16 | 에스비리모티브 주식회사 | 차량용 배터리 팩 |
US20110244293A1 (en) * | 2010-04-05 | 2011-10-06 | Gm Global Technology Operations, Inc. | Secondary battery module |
US8968904B2 (en) * | 2010-04-05 | 2015-03-03 | GM Global Technology Operations LLC | Secondary battery module |
JP2013214354A (ja) * | 2010-07-30 | 2013-10-17 | Panasonic Corp | 電池モジュール |
CH703973A1 (de) * | 2010-10-29 | 2012-04-30 | Obrist Engineering Gmbh | Temperaturgesteuerte Batterie. |
KR101338258B1 (ko) | 2010-11-17 | 2013-12-06 | 주식회사 엘지화학 | 냉매의 분배 균일성이 향상된 전지팩 |
KR101338275B1 (ko) * | 2010-11-18 | 2013-12-06 | 주식회사 엘지화학 | 우수한 냉각 효율성의 전지팩 |
EP2659543B1 (en) | 2010-12-29 | 2024-03-27 | BYD Company Limited | Battery module, battery temperature managing system and vehicle comprising the same |
JP6045198B2 (ja) * | 2011-06-08 | 2016-12-14 | 株式会社Gsユアサ | 電池パック |
KR101283229B1 (ko) * | 2011-06-16 | 2013-07-11 | 기아자동차주식회사 | 친환경자동차의 배터리 냉각구조 |
KR101264338B1 (ko) | 2011-07-14 | 2013-05-14 | 삼성에스디아이 주식회사 | 랙 하우징 조립체 및 이를 구비한 전력저장장치 |
US8722223B2 (en) | 2011-09-01 | 2014-05-13 | Samsung Sdi Co., Ltd. | Battery pack |
KR101286781B1 (ko) * | 2011-09-16 | 2013-07-17 | 세방전지(주) | 전조의 극판지지장치 |
KR101658027B1 (ko) | 2011-11-22 | 2016-09-21 | 삼성에스디아이 주식회사 | 배터리 팩 |
KR101444522B1 (ko) * | 2012-06-29 | 2014-10-02 | 국민대학교산학협력단 | 전기 자동차용 배터리 및 그 냉각시스템 |
KR101371739B1 (ko) | 2012-09-07 | 2014-03-12 | 기아자동차(주) | 배터리 시스템 |
CN102903875B (zh) * | 2012-10-18 | 2015-03-25 | 安徽江淮汽车股份有限公司 | 一种增程型电动汽车电池组 |
KR20150006103A (ko) * | 2013-07-05 | 2015-01-16 | 현대모비스 주식회사 | 직접 수냉 방식을 활용한 이차전지 모듈 및 이의 냉각방법 |
US9780413B2 (en) * | 2013-08-01 | 2017-10-03 | Denso Corporation | Battery cooling system |
JP5835394B2 (ja) * | 2013-08-19 | 2015-12-24 | 株式会社デンソー | 電池冷却装置 |
DE102013216513A1 (de) * | 2013-08-21 | 2015-02-26 | Volkswagen Aktiengesellschaft | Vorrichtung zur Konditionierung eines Batteriepacks |
JP6121856B2 (ja) * | 2013-09-20 | 2017-04-26 | 三菱重工業株式会社 | 蓄電装置 |
KR101642326B1 (ko) | 2013-10-18 | 2016-07-26 | 주식회사 엘지화학 | 수직 배치된 공통 출입구가 형성된 2이상의 분리된 유로를 가진 히트싱크 |
US9982953B2 (en) | 2014-02-04 | 2018-05-29 | Ford Global Technologies, Llc | Electric vehicle battery pack spacer |
KR101649154B1 (ko) * | 2014-02-24 | 2016-08-18 | 엘지전자 주식회사 | 공기유로를 가지는 배터리팩 |
US10720683B2 (en) | 2014-09-30 | 2020-07-21 | Cps Technology Holdings Llc | Battery module thermal management features for internal flow |
US10658717B2 (en) | 2014-09-30 | 2020-05-19 | Cps Technology Holdings Llc | Battery module active thermal management features and positioning |
US9559393B2 (en) | 2014-09-30 | 2017-01-31 | Johnson Controls Technology Company | Battery module thermal management fluid guide assembly |
US9825343B2 (en) | 2014-09-30 | 2017-11-21 | Johnson Controls Technology Company | Battery module passive thermal management features and positioning |
KR101829093B1 (ko) | 2014-10-22 | 2018-03-29 | 주식회사 엘지화학 | 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법 |
JP6729031B2 (ja) * | 2016-06-16 | 2020-07-22 | トヨタ自動車株式会社 | バッテリパック |
PL3346517T3 (pl) * | 2017-01-04 | 2024-04-08 | Samsung Sdi Co., Ltd | Układ baterii |
CN111384327B (zh) * | 2018-12-29 | 2021-10-08 | 宁德时代新能源科技股份有限公司 | 一种电池包 |
KR102714488B1 (ko) * | 2019-12-12 | 2024-10-07 | 현대자동차주식회사 | 수냉식 배터리 배치구조가 개선된 하이브리드 차량 |
US11929474B2 (en) | 2020-06-17 | 2024-03-12 | Technologies Ve Inc. | Battery module and battery pack thermal control system |
IN202121024470A (ru) | 2021-06-01 | 2021-08-20 | ||
WO2024015593A1 (en) * | 2022-07-15 | 2024-01-18 | Briggs & Stratton, Llc | Battery pack with integrated battery charger |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4407156C1 (de) | 1994-03-04 | 1995-06-08 | Deutsche Automobilgesellsch | Batteriekasten |
DE19503085C2 (de) * | 1995-02-01 | 1997-02-20 | Deutsche Automobilgesellsch | Batteriemodul mit mehreren elektrochemischen Zellen |
US5639571A (en) * | 1996-06-24 | 1997-06-17 | General Motors Corporation | Battery pack |
JPH10223263A (ja) * | 1997-02-03 | 1998-08-21 | Sanyo Electric Co Ltd | 2次電池の充電方法および充電装置 |
US6255015B1 (en) * | 1998-08-23 | 2001-07-03 | Ovonic Battery Company, Inc. | Monoblock battery assembly |
KR100413293B1 (ko) * | 1999-08-27 | 2004-01-03 | 가부시키 가이샤 도쿄 알 앤드 디 | 배터리냉각구조 |
JP3741359B2 (ja) | 1999-11-11 | 2006-02-01 | 株式会社マキタ | バッテリーパック |
JP3681051B2 (ja) * | 1999-12-28 | 2005-08-10 | 本田技研工業株式会社 | 蓄電素子装置 |
KR20010072530A (ko) * | 1999-12-28 | 2001-07-31 | 이계안 | 전기 자동차용 배터리 쿨링 시스템 |
JP4046463B2 (ja) * | 2000-08-03 | 2008-02-13 | 三洋電機株式会社 | 電源装置 |
JP4118014B2 (ja) * | 2000-10-31 | 2008-07-16 | 三洋電機株式会社 | 電源装置 |
KR20030017821A (ko) * | 2001-08-23 | 2003-03-04 | 현대자동차주식회사 | 전기자동차용 배터리 냉각시스템 |
US7014949B2 (en) * | 2001-12-28 | 2006-03-21 | Kabushiki Kaisha Toshiba | Battery pack and rechargeable vacuum cleaner |
JP4242665B2 (ja) * | 2002-05-13 | 2009-03-25 | パナソニック株式会社 | 組電池の冷却装置及び二次電池 |
DE10250240B4 (de) * | 2002-10-29 | 2021-02-18 | Hilti Aktiengesellschaft | Akkupack |
KR20040045937A (ko) | 2002-11-26 | 2004-06-05 | 현대자동차주식회사 | 전기 및 하이브리드 자동차용 ni-mh 전지의 열관리장치 및 방법 |
JP4366100B2 (ja) * | 2003-03-24 | 2009-11-18 | パナソニックEvエナジー株式会社 | 電池パック |
JP4565950B2 (ja) * | 2004-09-30 | 2010-10-20 | 三洋電機株式会社 | 電源装置 |
-
2004
- 2004-10-26 KR KR1020040085765A patent/KR100853621B1/ko active IP Right Grant
-
2005
- 2005-10-04 JP JP2007532255A patent/JP4727668B2/ja active Active
- 2005-10-04 RU RU2007110844A patent/RU2336607C1/ru active
- 2005-10-04 EP EP05856421A patent/EP1805843B1/en active Active
- 2005-10-04 BR BRPI0516051-0A patent/BRPI0516051B1/pt active IP Right Grant
- 2005-10-04 WO PCT/KR2005/003262 patent/WO2006080679A1/en active Application Filing
- 2005-10-04 CA CA2577359A patent/CA2577359C/en active Active
- 2005-10-04 CN CNB2005800321247A patent/CN100511825C/zh active Active
- 2005-10-12 TW TW94135556A patent/TWI276241B/zh active
- 2005-10-26 US US11/259,461 patent/US7560190B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2479895C2 (ru) * | 2008-10-14 | 2013-04-20 | ЭлДжи КЕМ, ЛТД. | Модульная сборка аккумуляторных батарей с повышенной эффективностью охлаждения |
RU2790280C1 (ru) * | 2020-05-07 | 2023-02-17 | Энертек Интернэшнл, Инк. | Аккумуляторная батарея с удобным обслуживанием системы охлаждения |
Also Published As
Publication number | Publication date |
---|---|
CN100511825C (zh) | 2009-07-08 |
CA2577359C (en) | 2013-03-19 |
US7560190B2 (en) | 2009-07-14 |
JP4727668B2 (ja) | 2011-07-20 |
BRPI0516051B1 (pt) | 2017-08-01 |
EP1805843A4 (en) | 2009-06-17 |
US20060090492A1 (en) | 2006-05-04 |
CA2577359A1 (en) | 2006-08-03 |
CN101027814A (zh) | 2007-08-29 |
KR100853621B1 (ko) | 2008-08-25 |
EP1805843B1 (en) | 2012-04-18 |
KR20060036694A (ko) | 2006-05-02 |
TW200618375A (en) | 2006-06-01 |
WO2006080679A1 (en) | 2006-08-03 |
JP2008513949A (ja) | 2008-05-01 |
TWI276241B (en) | 2007-03-11 |
BRPI0516051A (pt) | 2008-08-19 |
EP1805843A1 (en) | 2007-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2336607C1 (ru) | Система охлаждения для батарейного блока | |
US9478778B2 (en) | Middle or large-sized battery pack case providing improved distribution uniformity of coolant flux | |
JP5989746B2 (ja) | 冷媒分配における均一性を改善した電池パック | |
JP5492995B2 (ja) | 新規な冷却構造を有しているバッテリパック | |
US8586228B2 (en) | Battery module | |
US7642003B2 (en) | Sealed type heat exchanging system of battery pack | |
US8673475B2 (en) | Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux | |
JP5117387B2 (ja) | バッテリーパックの冷却装置 | |
US10177422B2 (en) | Battery module | |
JP2007042637A (ja) | 電池モジュール | |
JP2013110087A (ja) | 電池パックケース | |
KR100637468B1 (ko) | 이차 전지 모듈 | |
KR100684760B1 (ko) | 이차 전지 모듈 | |
CN220456510U (zh) | 电池、用电设备及储能设备 |