RU2316611C2 - Способ и устройство для покрытия подложки - Google Patents
Способ и устройство для покрытия подложки Download PDFInfo
- Publication number
- RU2316611C2 RU2316611C2 RU2004128083A RU2004128083A RU2316611C2 RU 2316611 C2 RU2316611 C2 RU 2316611C2 RU 2004128083 A RU2004128083 A RU 2004128083A RU 2004128083 A RU2004128083 A RU 2004128083A RU 2316611 C2 RU2316611 C2 RU 2316611C2
- Authority
- RU
- Russia
- Prior art keywords
- evaporated
- coil
- substrate
- alternating
- electromagnetic field
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Manufacturing Of Electric Cables (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Abstract
Изобретение относится к способу и устройству покрытия подложки слоем материала, такого как металл, и подложке, полученной упомянутыми способом и устройством, и может найти применение в различных отраслях машиностроения для получения изделий с покрытием. В пространстве с низким остаточным давлением испаряют некоторое количество электропроводящего материала, а к подлежащему испарению материалу подводят энергию для испарения указанного материала. Подлежащий испарению материал во время испарения поддерживают в указанном пространстве во взвешенном состоянии без опоры и заключают в переменное электромагнитное поле, генерируемое с помощью высокочастотного переменного тока. Устройство содержит камеру, средства для создания в камере низкого остаточного давления, средства для приема подлежащего испарению материала, средства для изоляции катушки от испарительного пространства в указанной камере и средства для нагрева подлежащего испарению материала. Средства для приема подлежащего испарению материала содержат катушку для генерирования переменного электромагнитного поля. Средства для изоляции содержат керамическую трубу. Предусмотрены питающие средства для подачи испаряемого материала. Подложка представляет собой полосу с электропроводящим материалом из титана, магния, олова, цинка, хрома, никеля или алюминия или смесь одного из указанных металлов с одним или несколькими другими материалами, включая указанные или другие металлы. 3 н. и 16 з.п. ф-лы.
Description
Изобретение относится к способу покрытия подложки слоем материала, такого как металл, согласно которому в пространстве с низким остаточным давлением испаряют некоторое количество электропроводящего материала, а к подлежащему испарению материалу подводят энергию для испарения указанного материала. Изобретение также относится к устройству для покрытия подложки и к подложке, полученной с использованием способа или устройства.
Описанный выше способ является известным методом покрытия подложки (тонкими) слоями материала покрытия, обычно называемым методом нанесения покрытия осаждением из паровой или газовой фазы (PVD). Данный метод широко распространен в электронной и оптической промышленности, в производстве стекла и при производстве покрытых металлом пластиковых листов, используемых для всех видов применения. Метод PVD является привлекательным методом нанесения покрытия, поскольку при его применении достигается высокое качество и исключается образование побочных продуктов.
При применении метода PVD материал покрытия сначала следует превратить в паровую фазу. Такое превращение достигается нагревом материала покрытия в камере, в которой имеется очень низкое остаточное (фоновое) давление, известной как вакуумная камера. В результате нагрева материал покрытия превращается в пар до тех пор, пока достигается давление, которое находится в термодинамическом равновесии с горячей поверхностью материала покрытия, где образуется парообразная фаза. Равновесное давление паров является наиболее важным параметром скорости переноса материала покрытия на подложку, на которой осаждается пар. Равновесное давление пара зависит от температуры материала покрытия. Для достижения приемлемой скорости переноса материала покрытия на подложку, то есть приемлемого количества материала покрытия, осаждаемого на подложку в единицу времени, материал покрытия обычно следует нагреть до высоких температур. Такие температуры часто имеют значения порядка половины температуры кипения при атмосферном давлении, а иногда даже еще выше. На практике температуры нагрева металлов часто составляют примерно 600°С для цинка и примерно 2200°С для ниобия и рения. Для таких металлов, как тантал, молибден и вольфрам, необходимы столь высокие температуры, что они в методе PVD не используются. Такие металлы, как титан, хром, никель, алюминий и им подобные, используются редко, так как скорости переноса материалов из них являются низкими.
Недостаток использования метода PVD состоит в том, что скорости переноса ограничены в основном тем фактом, что подлежащие испарению материалы покрытия всегда находятся в жидком состоянии вследствие высоких температур процесса. Следовательно, материал должен находиться в тигле, который может быть изготовлен, например, из керамического материала или из меди. В последнем случае необходимо интенсивное охлаждение водой с тем, чтобы медь покрывал тонкий слой отвержденного материала покрытия, в результате чего предотвращается плавление или испарение меди и медь оказывается неповрежденной. Одним неблагоприятным последствием охлаждения медного тигля является потеря значительной доли подаваемого тепла в результате охлаждения. Применение керамического тигля ограничено теми материалами покрытия, которые не вступают в химическую реакцию с материалом тигля при высоких температурах процесса. При использовании керамического тигля также представляет проблему и подвод необходимой тепловой энергии, поскольку большинство керамических материалов являются плохими проводниками тепла.
Задачей настоящего изобретения является создание усовершенствованных способа и устройства для покрытия подложек посредством метода PVD.
Другой задачей изобретения является создание способа и устройства указанного типа, в которых скорость переноса материала покрытия выше скорости, которая была возможна до сих пор.
Еще одной задачей изобретения является создание способа и устройства указанного типа, которые на практике обеспечивают возможность использования в качестве материалов покрытий в методе PVD таких материалов, использование которых до сих пор было невозможным.
В соответствии с первым аспектом настоящего изобретения одна или более из указанных задач решаются за счет способа покрытия подложки слоем материала, такого как металл, согласно которому в пространстве с низким остаточным давлением испаряют некоторое количество электропроводящего материала, а к подлежащему испарению материалу подводят энергию для испарения указанного материала, причем в данном способе подлежащий испарению материал во время испарения поддерживают в указанном пространстве во взвешенном состоянии без опоры и заключают в переменное электромагнитное поле и при этом в данном способе переменное электромагнитное поле генерируют с помощью высокочастотного переменного тока.
"Поддержание подлежащего испарению материала в пространстве во взвешенном состоянии без опоры" означает, что больше нет необходимости в использовании медного или керамического тигля. В результате подлежащему испарению материалу можно придать более высокую температуру, поскольку тигель уже не является ограничивающим фактором. Поэтому скорость переноса испарившегося материала на подложку может быть увеличена. Вследствие отсутствия необходимости в использовании тигля возможно также испарение материалов, которые до сих пор невозможно было использовать из-за их способности реагировать с материалом тигля.
Электропроводящий материал можно заключить в переменное электромагнитное поле в результате действия сил Лоренца, которые генерируются при взаимодействии между внешним магнитным полем и вихревыми токами, которые вследствие этого индуцируются в электропроводящем материале.
Переменное электромагнитное поле генерируют с помощью высокочастотного переменного тока. Высокочастотный переменный ток необходим для того, чтобы можно было поддерживать во взвешенном состоянии достаточно большую массу электропроводящего материала с тем, чтобы стало возможным эффективное испарение такого количества электропроводящего материала в минуту, которое достаточно для покрытия подложки в промышленном масштабе.
Способ поддержания и плавления электропроводящих материалов во взвешенном (или, иначе говоря, плавающем) состоянии в переменном электромагнитном поле известен под названием "расплавление взвешенного металла" или "левитация зоны плавления". Способ и устройство данного назначения раскрыты в EP 0751361 В1; в данном случае расплавленный материал используется для прецизионного литья. Следует отметить, что все же всегда используется охлаждаемый водой тигель, с которым расплавленный материал не должен вступать в контакт. Расплавление взвешенного в переменном электромагнитном поле металла также описано различными авторами в ряде статей, представленных на "3-ем Международном симпозиуме по электромагнитной обработке материалов" 3-6 апреля 2000 г. в Нагоя, Япония, стр.345-375 ("3rd International Symposium on Electromagnetic Processing of Materials, April 3-6 2000, Nagoya, Japan, pp.345-375). Однако до сих пор расплавление взвешенного в электромагнитном поле металла не использовалось в комбинации с нанесением покрытия осаждением из паровой или газовой фазы; следовательно, расплавление взвешенного в электромагнитном поле металла с последующим испарением в соответствии с данным изобретением является неизвестным.
Частота переменного тока предпочтительно составляет 10 кГц или выше, более предпочтительно - 50 кГц или выше, даже более предпочтительно - 250 кГц или выше, еще более предпочтительно - 1 МГц или выше, а наиболее предпочтительно - 1,5 МГц или выше. Уровень частоты зависит от количества материала, подлежащего испарению в единицу времени, например, если подложку следует покрывать непрерывно. Указанное обстоятельство требует определенной площади поверхности испарения при выбранной температуре взвешенного материала. Такое количество взвешенного материала требует минимального вихревого тока в поверхностном слое взвешенного материала и, следовательно, минимальной частоты переменного тока.
В соответствии с предпочтительным вариантом воплощения переменное электромагнитное поле генерируют с помощью переменного тока, проходящего через катушку с силой тока 200 А или более, предпочтительно - с силой тока 500 А или более, более предпочтительно - с силой тока 1 кА или более и даже более предпочтительно - с силой тока 4 кА или более. Для получения достаточной нагревательной способности сила переменного тока должна быть выбрана в виде функции уровня частоты переменного тока.
В предпочтительном варианте мощность, рассеянная во взвешенном материале, составляет по меньшей мере 2 кВт, предпочтительно - по меньшей мере 5 кВт, а более предпочтительно - по меньшей мере 10 кВт. Указанные значения являются желательными потому, что испарение взвешенного материала усиливается по мере увеличения рассеянной мощности.
В соответствии с выгодным вариантом воплощения способа подлежащий испарению материал нагревают с помощью электромагнитного индукционного нагрева. Таким образом, подлежащий испарению материал может быть нагрет до требуемой высокой температуры.
В качестве альтернативы или в дополнение подлежащий испарению материал может быть нагрет с помощью лазерных лучей, и/или бомбардировки электронами, и/или индуктивно-связанной плазмы, и/или контактного электронагрева (т.е. нагрева джоулевым теплом). Все указанные методы нагрева могут быть легко использованы для нагрева взвешенного материала.
Подлежащий испарению материал предпочтительно дозагружают с течением времени (т.е. подают по мере необходимости) под действием переменного электромагнитного поля, втягивающего дополнительные количества подлежащего испарению материала. Действие переменного электромагнитного поля на втягивание материала обеспечивает легкое пополнение количества подлежащего испарению материала, которое уменьшается в результате непрерывного или ступенчатого испарения.
В соответствии с выгодным вариантом воплощения переменному электромагнитному полю катушки придают такую форму, что подлежащий испарению материал втягивается отдельным участком переменного поля. В том случае, если подлежащий испарению материал втягивают в отдельный участок переменного поля, тот участок переменного поля, где испаряется материал, не подвергается возмущениям или подвергается возмущениям в меньшей степени.
В данном случае подлежащий втягиванию материал предпочтительно не находится в свободно взвешенном состоянии в пространстве. Поэтому подлежащий втягиванию материал легко движется к тому участку в пространстве, из которого он затем втягивается переменным электромагнитным полем.
В соответствии с дополнительным выгодным вариантом воплощения способа отдельный участок переменного поля получают посредством вспомогательной катушки, которая отделена от указанной катушки. В результате операция втягивания подлежащего испарению материала может контролироваться и регулироваться независимо от испарения материала.
Вышеописанный способ предпочтительно используется для испарения титана, магния, олова, цинка, хрома, никеля или алюминия или смеси одного из указанных металлов с одним или несколькими другими материалами, включая указанные или другие металлы, поскольку они представляют собой коммерчески важные материалы покрытия. После испарения некоторые материалы могут взаимодействовать с химически активным (реакционноспособным) газом, таким как кислород или азот, в результате чего образуются непроводящий оксид или нитриды. Реакция может происходить в паровой фазе или непосредственно после конденсации на подложке.
В соответствии с выгодным вариантом воплощения подложку покрывают слоем материала непрерывно. Во многих случаях это будет означать, что подложку в форме полосы пропускают через вакуумную камеру и во время пребывания участка полосы в этой камере материал должен испариться в количестве, достаточном для покрытия указанного участка полосы. До сих пор это было невозможно вследствие низких скоростей переноса, однако с помощью вышеуказанного способа можно испарить достаточно быстро достаточное количество материала и поэтому можно покрывать подложку, такую как полоса, в промышленном масштабе.
Во втором своем аспекте настоящее изобретение предлагает устройство для покрытия подложки слоем материала, такого как металл, путем испарения электропроводящего материала, содержащее камеру, снабженную средствами для создания в камере низкого остаточного давления, средствами для приема подлежащего испарению материала и средствами для нагрева подлежащего испарению материала, при этом в устройстве по изобретению средства для принятия подлежащего испарению материала содержат катушку, которая может быть использована для генерирования переменного электромагнитного поля с тем, чтобы обеспечить нахождение подлежащего испарению материала во взвешенном состоянии без опоры.
Снабжение катушкой дает возможность получить подлежащий испарению материал во взвешенном состоянии, в связи с чем теперь отсутствует потребность в тигле, в результате чего вышеуказанный способ может быть осуществлен с помощью данного устройства.
Катушка предпочтительно предназначена для генерирования переменного электромагнитного поля посредством высокочастотного переменного тока. Поскольку катушка дает возможность использовать высокочастотный переменный ток, образуется переменное электромагнитное поле, в котором силы Лоренца могут поддерживать подлежащий испарению материал во взвешенном состоянии.
В соответствии с предпочтительным вариантом воплощения средства для нагрева материала содержат электромагнитную индукционную катушку. Следовательно, подлежащий нагреву материал может быть легко нагрет до высокой температуры без осуществления контакта с материалом, подлежащим нагреву.
При использовании в устройстве катушки предпочтительно обеспечивается возможность генерирования вышеуказанных высокочастотных переменных токов и, кроме того, вышеуказанных сил переменного тока.
В качестве альтернативы или в дополнение средства для нагрева материала содержат лазер и/или источник электронов. Указанные средства могут быть также использованы для нагрева подлежащего испарению материала, хотя слегка в меньшей степени.
Предпочтительно предусмотрены средства для изоляции катушки от камеры. Изоляция катушки от испарительного пространства в вакуумной камере дает возможность легко отделить катушку от подлежащего испарению материала и обеспечивает очень хорошее охлаждение катушки без загрязнения материала, поступающего в испарительную камеру и поэтому также достигающего подложки. Кроме того, охлаждающая среда (охладитель) не может вызвать короткое замыкание в камере. В результате обеспечивается возможность приема катушкой высокой мощности и передачи ее подлежащему испарению материалу. Средства изоляции предпочтительно изготовлены из керамического материала, поскольку керамика является стойкой к высоким температурам и охлаждающим средам. Средства изоляции содержат, например, керамическую трубу, поскольку она может быть легко изготовлена и использована.
Средства изоляции катушки также обеспечивают преимущество, состоящее в том, что проводящий материал, который конденсируется на изолирующих материалах в результате воздействия генерируемых катушкой вихревых токов, расплавляется или испаряется, так что он либо возвращается в находящийся во взвешенном состоянии материал в виде расплавленного материала, либо используется в качестве пара, покрывающего подложку. Поэтому изолированная катушка является самоочищающейся.
В соответствии с выгодным вариантом воплощения предусмотрены питающие средства для подачи подлежащего испарению материала в форме проволоки для того, чтобы дозагрузить испаряемый во время использования материал (т.е. восполнить его потребленное количество). Подлежащий испарению материал должен постоянно дозагружаться вследствие того факта, что в каждую единицу времени испаряется часть этого материала; для этой цели питающие средства должны быть сконструированы таким образом, чтобы в вакуумной камере поддерживался вакуум.
В камере предпочтительно размещено измерительное оборудование. Измерительное оборудование используется для контроля за процессом. Измерительное оборудование предпочтительно является подходящим, кроме прочего, для измерения температуры, например, средствами оптической пирометрии.
В своем третьем аспекте настоящее изобретение относится к подложке, снабженной слоем электропроводящего материала, полученным с помощью описанного выше способа и/или описанного выше устройства, причем электропроводящий материал предпочтительно представляет собой металл, более предпочтительно - титан, магний, олово, цинк, хром, никель алюминий или смесь одного из указанных металлов и одного или более других материалов, включая указанные или другие металлы.
Claims (19)
1. Способ покрытия подложки слоем материала, такого как металл, согласно которому в пространстве с низким остаточным давлением испаряют некоторое количество электропроводящего материала, а к подлежащему испарению материалу подводят энергию для испарения указанного материала, при этом подлежащий испарению материал во время испарения поддерживают в указанном пространстве во взвешенном состоянии без опоры и заключают в переменное электромагнитное поле, генерируемое с помощью высокочастотного переменного тока, проходящего через катушку, отличающийся тем, что подложку пропускают через указанное пространство в форме полосы и непрерывно покрывают слоем материала, который с течением времени дозагружают дополнительными количествами подлежащего испарению материала, при этом переменному магнитному полю катушки придают такую форму, что подлежащий испарению материал втягивается отдельным участком этого переменного поля.
2. Способ по п.1, в котором частота переменного тока составляет 10 кГц или выше, предпочтительно - 50 кГц или выше, более предпочтительно - 250 кГц или выше, еще более предпочтительно - 1 МГц или выше, а наиболее предпочтительно - 1,5 МГц или выше.
3. Способ по п.1, в котором переменное электромагнитное поле генерируют с помощью переменного тока с силой тока 200 А или более, предпочтительно - с силой тока 500 А или более, более предпочтительно - с силой тока 1 кА или более, и более предпочтительно - с силой тока 4 кА или более.
4. Способ по п.1, в котором мощность, рассеянная во взвешенном материале, составляет по меньшей мере 2 кВт, предпочтительно - по меньшей мере 5 кВт, а более предпочтительно - по меньшей мере 10 кВт.
5. Способ по любому из пп.1-4, в котором подлежащий испарению материал нагревают с помощью электромагнитного индукционного нагрева.
6. Способ по любому из пп.1-4, в котором подлежащий испарению материал нагревают с помощью лазерных лучей и/или бомбардировки электронами и/или индуктивно-связанной плазмы и/или контактного электронагрева.
7. Способ по п.1, в котором подлежащий втягиванию материал не находится в свободно взвешенном состоянии в указанном пространстве.
8. Способ по п.1, в котором указанный отдельный участок переменного поля получают посредством вспомогательной катушки, которая отделена от указанной катушки.
9. Способ по любому из пп.1-4, в котором испаряют титан, магний, олово, цинк, хром, никель или алюминий, или смесь одного из указанных металлов с одним или несколькими другими материалами, включая указанные или другие металлы.
10. Устройство для покрытия подложки слоем материала, такого как металл, путем испарения электропроводящего материала, содержащее камеру, снабженную средствами для создания в камере низкого остаточного давления, средствами для приема подлежащего испарению материала и средствами для нагрева подлежащего испарению материала, причем средства для приема подлежащего испарению материала содержат катушку для генерирования переменного электромагнитного поля с тем, чтобы обеспечить нахождение подлежащего испарению материала во взвешенном состоянии без опоры, отличающееся тем, что предусмотрены средства для изоляции катушки от испарительного пространства в указанной камере, причем средства изоляции содержат керамическую трубу, при этом предусмотрены питающие средства для подачи подлежащего испарению материала в виде отдельного участка указанной катушки, используемой для генерирования переменного электромагнитного поля.
11. Устройство по п.10, в котором катушка предназначена для генерирования переменного электромагнитного поля посредством высокочастотного переменного тока.
12. Устройство по п.10, в котором средства для нагрева материала содержат электромагнитную индукционную катушку.
13. Устройство по п.10, в котором средства для нагрева материала содержат лазер и/или источник электронов.
14. Устройство по любому из пп.10-13, в котором средства изоляции изготовлены из керамического материала.
15. Устройство по любому из пп.10-13, в котором питающие средства подают подлежащий испарению материал в форме проволоки с тем, чтобы дозагрузить испаряемый материал, который испаряется во время использования.
16. Устройство по любому из пп.10-13, в котором в камере размещено измерительное оборудование.
17. Устройство по п.16, в котором измерительное оборудование предназначено для измерения температуры.
18. Устройство по любому из пп.10-13, которое предназначено для осуществления способа по любому из пп.1-9.
19. Подложка, снабженная слоем электропроводящего материала, полученным с помощью способа по любому из пп.1-9 и/или устройства по любому из пп.10-18, причем подложка представляет собой полосу, а электропроводящий материал предпочтительно представляет собой металл, а более предпочтительно - титан, магний, олово, цинк, хром, никель или алюминий, или смесь одного из указанных металлов с одним или несколькими другими материалами, включая указанные или другие металлы.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1020059 | 2002-02-21 | ||
NL1020059A NL1020059C2 (nl) | 2002-02-21 | 2002-02-21 | Werkwijze en inrichting voor het bekleden van een substraat. |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2004128083A RU2004128083A (ru) | 2005-06-10 |
RU2316611C2 true RU2316611C2 (ru) | 2008-02-10 |
Family
ID=27752086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2004128083A RU2316611C2 (ru) | 2002-02-21 | 2003-02-21 | Способ и устройство для покрытия подложки |
Country Status (15)
Country | Link |
---|---|
US (1) | US7323229B2 (ru) |
EP (1) | EP1483425B1 (ru) |
JP (1) | JP4522709B2 (ru) |
KR (1) | KR100956491B1 (ru) |
CN (1) | CN100545299C (ru) |
AT (1) | ATE399889T1 (ru) |
AU (1) | AU2003221458A1 (ru) |
BR (1) | BR0307800B1 (ru) |
CA (1) | CA2476855C (ru) |
DE (1) | DE60321893D1 (ru) |
ES (1) | ES2309305T3 (ru) |
HK (1) | HK1078616A1 (ru) |
NL (1) | NL1020059C2 (ru) |
RU (1) | RU2316611C2 (ru) |
WO (1) | WO2003071000A1 (ru) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004080640A1 (en) * | 2003-03-14 | 2004-09-23 | Hille & Müller GMBH | Aluminium layered brazing product and method of its manufacture |
ZA200701534B (en) | 2004-08-23 | 2008-10-29 | Corus Technology Bv | Apparatus and method for levitation of an amount of conductive material |
EP1785010B1 (en) * | 2004-08-23 | 2009-04-08 | Corus Technology BV | Apparatus and method for levitation of an amount of conductive material |
JP5394061B2 (ja) * | 2005-05-31 | 2014-01-22 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ | 基材を被覆する装置および方法 |
US7524385B2 (en) * | 2006-10-03 | 2009-04-28 | Elemetric, Llc | Controlled phase transition of metals |
KR100961371B1 (ko) | 2007-12-28 | 2010-06-07 | 주식회사 포스코 | 실러 접착성 및 내식성이 우수한 아연계 합금도금강판과 그제조방법 |
KR101639813B1 (ko) * | 2009-10-08 | 2016-07-15 | 주식회사 포스코 | 연속 코팅 장치 |
US9267203B2 (en) * | 2010-12-13 | 2016-02-23 | Posco | Continuous coating apparatus |
KR101207719B1 (ko) * | 2010-12-27 | 2012-12-03 | 주식회사 포스코 | 건식 코팅 장치 |
RU2522666C2 (ru) * | 2012-06-27 | 2014-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) | Устройство для левитации некоторого количества материала |
KR101355817B1 (ko) * | 2012-07-09 | 2014-02-05 | 한국표준과학연구원 | 전자기 부양 금속 박막 증착 장치 |
RU2693852C2 (ru) * | 2017-11-07 | 2019-07-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования " Юго-Западный государственный университет" (ЮЗГУ) | Устройство для левитации некоторого количества материала |
KR102098455B1 (ko) * | 2017-12-26 | 2020-04-07 | 주식회사 포스코 | 연속 증착 장치 및 연속 증착 방법 |
CN109518133A (zh) * | 2018-10-23 | 2019-03-26 | 集美大学 | 一种电磁加热的pvd设备及其生产工艺 |
CN112760608A (zh) * | 2020-12-14 | 2021-05-07 | 兰州空间技术物理研究所 | 碳纤维复合材料表面薄膜沉积过程防止层间放气的方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2664852A (en) * | 1950-04-27 | 1954-01-05 | Nat Res Corp | Vapor coating apparatus |
US2957064A (en) * | 1958-09-30 | 1960-10-18 | Westinghouse Electric Corp | Stabilizing of levitation melting |
GB1206586A (en) * | 1966-09-07 | 1970-09-23 | Mini Of Technology | Vacuum deposition process of forming alloys |
BE713308A (ru) * | 1968-04-05 | 1968-10-07 | ||
DE2934011A1 (de) * | 1979-08-22 | 1981-03-26 | André Etienne de Dr. Lausanne Rudnay | Vorrichtung zum aufdampfen von elektrisch leitenden stoffen (metallen) im hochvakuum |
JPS621863A (ja) * | 1985-06-28 | 1987-01-07 | Ishikawajima Harima Heavy Ind Co Ltd | 金属蒸発装置 |
JP3563083B2 (ja) * | 1992-09-11 | 2004-09-08 | 真空冶金株式会社 | 超微粒子のガスデポジション方法及び装置 |
JPH07252639A (ja) * | 1994-03-15 | 1995-10-03 | Kao Corp | 金属薄膜体の製造方法 |
US5534314A (en) * | 1994-08-31 | 1996-07-09 | University Of Virginia Patent Foundation | Directed vapor deposition of electron beam evaporant |
JPH08104981A (ja) * | 1994-10-05 | 1996-04-23 | Sumitomo Electric Ind Ltd | Pvd装置 |
JP2783193B2 (ja) | 1995-06-26 | 1998-08-06 | 大同特殊鋼株式会社 | レビテーション溶解法及びレビテーション溶解・鋳造装置 |
US5736073A (en) * | 1996-07-08 | 1998-04-07 | University Of Virginia Patent Foundation | Production of nanometer particles by directed vapor deposition of electron beam evaporant |
DE19811816A1 (de) * | 1997-03-24 | 1998-10-01 | Fuji Electric Co Ltd | Verfahren zur Herstellung eines Elektrodenmaterials für Vakuum-Leistungsschalter |
CA2269632C (en) * | 1997-08-27 | 2003-09-02 | Josuke Nakata | Spherical semiconductor device and method of manufacturing same |
JPH1171605A (ja) * | 1997-08-29 | 1999-03-16 | Ishikawajima Harima Heavy Ind Co Ltd | 微粒子製造方法及び装置 |
EP1321545A1 (en) * | 2001-12-20 | 2003-06-25 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Method for producing particles with diamond structure |
-
2002
- 2002-02-21 NL NL1020059A patent/NL1020059C2/nl not_active IP Right Cessation
-
2003
- 2003-02-21 CN CNB038043181A patent/CN100545299C/zh not_active Expired - Fee Related
- 2003-02-21 KR KR1020047012566A patent/KR100956491B1/ko active IP Right Grant
- 2003-02-21 EP EP03710534A patent/EP1483425B1/en not_active Expired - Lifetime
- 2003-02-21 RU RU2004128083A patent/RU2316611C2/ru not_active IP Right Cessation
- 2003-02-21 BR BR0307800A patent/BR0307800B1/pt not_active IP Right Cessation
- 2003-02-21 AU AU2003221458A patent/AU2003221458A1/en not_active Abandoned
- 2003-02-21 ES ES03710534T patent/ES2309305T3/es not_active Expired - Lifetime
- 2003-02-21 WO PCT/NL2003/000139 patent/WO2003071000A1/en active Application Filing
- 2003-02-21 JP JP2003569889A patent/JP4522709B2/ja not_active Expired - Fee Related
- 2003-02-21 CA CA 2476855 patent/CA2476855C/en not_active Expired - Fee Related
- 2003-02-21 DE DE60321893T patent/DE60321893D1/de not_active Expired - Lifetime
- 2003-02-21 AT AT03710534T patent/ATE399889T1/de active
-
2004
- 2004-08-23 US US10/923,505 patent/US7323229B2/en not_active Expired - Fee Related
-
2005
- 2005-11-18 HK HK05110333A patent/HK1078616A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
RU2004128083A (ru) | 2005-06-10 |
US7323229B2 (en) | 2008-01-29 |
EP1483425B1 (en) | 2008-07-02 |
US20050064110A1 (en) | 2005-03-24 |
KR100956491B1 (ko) | 2010-05-07 |
KR20040085192A (ko) | 2004-10-07 |
BR0307800B1 (pt) | 2012-09-04 |
BR0307800A (pt) | 2004-12-14 |
ATE399889T1 (de) | 2008-07-15 |
ES2309305T3 (es) | 2008-12-16 |
NL1020059C2 (nl) | 2003-08-25 |
WO2003071000A1 (en) | 2003-08-28 |
JP2005523381A (ja) | 2005-08-04 |
CN1636077A (zh) | 2005-07-06 |
HK1078616A1 (en) | 2006-03-17 |
AU2003221458A1 (en) | 2003-09-09 |
EP1483425A1 (en) | 2004-12-08 |
CN100545299C (zh) | 2009-09-30 |
DE60321893D1 (de) | 2008-08-14 |
JP4522709B2 (ja) | 2010-08-11 |
CA2476855A1 (en) | 2003-08-28 |
CA2476855C (en) | 2009-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2316611C2 (ru) | Способ и устройство для покрытия подложки | |
RU2703751C2 (ru) | Устройство для формирования покрытий на поверхностях элемента, ленточного материала или инструмента | |
JP2004507617A (ja) | 金属被膜を連続冷プラズマ蒸着するための方法および装置 | |
US2664853A (en) | Apparatus for vapor coating | |
KR20180036766A (ko) | 스트립 형상 기판을 코팅하기 위한, 유도 기화기, 기화기 시스템, 및 기화 방법 | |
US20120138452A1 (en) | Method and Apparatus for Super-High Rate Deposition | |
US3860444A (en) | Coating of workpieces by vapor deposition | |
Ehrich et al. | Plasma deposition of thin films utilizing the anodic vacuum arc | |
US4385080A (en) | Method for evaporating large quantities of metals and semiconductors by electromagnetic levitation | |
Kuzmichev et al. | Evaporators with induction heating and their applications | |
US20220267890A1 (en) | Multizone crucible apparatus | |
JP2004211122A (ja) | 高耐電圧性部材 | |
JP2005307354A (ja) | 有機el素子の製造方法及び装置 | |
SU1227280A1 (ru) | Способ очистки поверхности металлических изделий | |
RU2676719C1 (ru) | Способ низкотемпературного нанесения нанокристаллического покрытия из альфа-оксида алюминия | |
JPS62235466A (ja) | 蒸着物質発生装置 | |
KR100548904B1 (ko) | 금속 증발용 보트의 제조방법 및 제조장치 | |
White | A survey of techniques for the vacuum deposition of thin metallic films | |
JP2022546072A (ja) | 堆積システム | |
PL184978B1 (pl) | Sposób otrzymywania powłok | |
JPS6479325A (en) | Method for evaporating metal element or metal compound | |
JP2001262320A (ja) | 表面加熱蒸発方法 | |
JPH06212408A (ja) | 溶融蒸発用金属組成物および金属の溶融蒸発方法 | |
JPH03226568A (ja) | 金属蒸気発生装置 | |
JPH06172975A (ja) | ドライプロセス用蒸発るつぼ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160222 |