RU2293718C2 - Теплозащитная система с переменной плотностью волокон - Google Patents

Теплозащитная система с переменной плотностью волокон Download PDF

Info

Publication number
RU2293718C2
RU2293718C2 RU2003121309/03A RU2003121309A RU2293718C2 RU 2293718 C2 RU2293718 C2 RU 2293718C2 RU 2003121309/03 A RU2003121309/03 A RU 2003121309/03A RU 2003121309 A RU2003121309 A RU 2003121309A RU 2293718 C2 RU2293718 C2 RU 2293718C2
Authority
RU
Russia
Prior art keywords
base
resin
heat shield
carbon
heat
Prior art date
Application number
RU2003121309/03A
Other languages
English (en)
Other versions
RU2003121309A (ru
Inventor
Генри МУДИ (US)
Генри МУДИ
Original Assignee
Олбэни Интернэшнл Текниуив, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олбэни Интернэшнл Текниуив, Инк. filed Critical Олбэни Интернэшнл Текниуив, Инк.
Publication of RU2003121309A publication Critical patent/RU2003121309A/ru
Application granted granted Critical
Publication of RU2293718C2 publication Critical patent/RU2293718C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/18Fabrics, textiles
    • B32B2305/188Woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • Y10S428/921Fire or flameproofing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12021All metal or with adjacent metals having metal particles having composition or density gradient or differential porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24033Structurally defined web or sheet [e.g., overall dimension, etc.] including stitching and discrete fastener[s], coating or bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet
    • Y10T428/24182Inward from edge of web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2975Coated or impregnated ceramic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2984Coated or impregnated carbon or carbonaceous fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3537One of which is a nonwoven fabric layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3553Woven fabric layers impregnated with an organosilicon resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3594Woven fabric layers impregnated with a thermoplastic resin [e.g., vinyl polymer, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3707Woven fabric including a nonwoven fabric layer other than paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/66Additional nonwoven fabric is a spun-bonded fabric
    • Y10T442/662Needled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Thermal Insulation (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Products (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Silicon Polymers (AREA)
  • Building Environments (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к теплозащитным абляционным материалам для аэрокосмической промышленности и используется для защиты поверхности, подвергаемой воздействию интенсивной тепловой нагрузки. Теплозащитная система содержит волоконную основу, состоящую из тканых или нетканых волоконных слоев, сформированных в виде многослойного материала, или основу, созданную методом трехмерного плетения, причем волоконная основа имеет переменную плотность волокон с плотностью, возрастающей по толщине теплозащитного материала от внешней поверхности к внутренней. Основа пропитана органической смолой, подвергнута обугливанию, после чего пропитана абляционной смолой на основе кремния. В основе проколоты отверстия и она соединена с изоляционной подложкой. Технический результат изобретения - достижение высокой прочности и высокой степени защиты от окисления при сравнительно низкой стоимости. 2 н. и 24 з.п. ф-лы, 10 ил.

Description

Область применения изобретения
Данное изобретение относится к теплозащитным материалам (ТЗМ) для аэрокосмической промышленности, а более конкретно к армированному углеродистому композиционному материалу, который до пропитки имеет переменную плотность основы и пропитывается абляционной смолой на кремниевой основе, отверждаемой и обрабатываемой с образованием структурных конфигураций, которые предназначены для установки на внешнюю поверхность конструкции, подлежащей защите посредством этих ТЗМ. Кроме того, изобретение относится к способу получения этого материала.
Предпосылки изобретения
При возвращении в атмосферу летательный аппарат подвергается воздействию экстремальных тепловых условий. Так как летательный аппарат контактирует с атмосферой на очень высоких скоростях, то силы трения высвобождают тепловую энергию высокого уровня, которая может поднять температуру до значений, являющихся разрушительными для внешней оболочки. Для защиты летательного аппарата от повышенных температур и сдвига ветра внешнюю оболочку аппарата обычно покрывают теплозащитными материалами, которые действуют в качестве изоляторов и предназначены для противодействия экстремальным тепловым условиям.
К одному из классов теплозащитных материалов, используемых при указанных условиях с подтвержденной эффективностью, относятся углерод-углеродные (С-С) композиты. Для успешного использования конкретного теплозащитного материала необходимо, чтобы система обладала достаточной механической прочностью при высоких температурах, вызывала эндотермические реакции при распаде и имела высокую излучательную способность поверхности.
В самом простом виде углерод-углеродный композит получают, связывая углеродные волокна органической смолой, обычно эпоксидной с высоким выходом углерода или фенольной. Образованные углеродное волокно и смоляную матрицу отверждают, получая трехмерную структуру наподобие плитки, плашки или другого объекта. Такая матрица имеет некоторую плотность, пористый объем и механическую прочность.
Углеродное волокно и смоляную матрицу затем подвергают высокотемпературной обработке, вызывающей распад смоляной матрицы до чистого углерода, этот процесс носит название обугливания или карбонизации. Обугливание превращает смоляное покрытие из органической смолы в свободный углерод, который покрывает углеродные волокна и частично заполняет пространство пор матрицы. Теплозащитный материал можно подвергать нескольким циклам обугливания, процесс известен как уплотнение. В результате уплотнения создается более жесткая основа с уменьшенной пористостью. Обуглившаяся поверхность основы обладает конструкционной способностью работать при высокой температуре, что является желательным свойством.
Обычные С-С композиты изготавливают таким образом, что получают хорошо заполненную и жесткую структуру, обладающую минимальной пористостью. Существует много способов уплотнения С-С материалов, включая инфильтрацию нефтяным пеком, пропитку фенольными или другими органическими смолами или инфильтрацию парами углерода (CVI) с использованием низкомолекулярных углеводородов, например метана. Любое вещество, используемое для уплотнения, должно иметь высокий выход угля из углерода. Повторные циклы пропитки и карбонизации необходимы для того, чтобы сначала ввести в материал углеродные материалы, а затем нагреть их до достаточно высокой температуры (обычно выше 500°С) для обугливания пропитывающего материала и создания пористости, необходимой для дальнейших циклов уплотнения. Для С-С композита с 5% пористостью обычный диапазон плотности составляет приблизительно от 1,6 до 1,8 г/см3 в зависимости от пропитывающих материалов и углеродных волокон, используемых в этом композите.
Однако при применении теплозащитных материалов с С-С композитами на высотных гиперзвуковых возвращаемых в атмосферу летательных аппаратах, совершающих продолжительный полет, проявляются некоторые особенности, вносящие существенные ограничения на режимы полета. Основным ограничением использования этих материалов является то, что они подвержены окислению в экстремальных тепловых условиях. Окисление, которое испытывают эти теплозащитные материалы во время длительного возвращения в атмосферу, может привести к значительным изменениям формы защитной оболочки летательного аппарата. Изменения формы, неблагоприятно влияющие на механическую прочность и аэродинамику летательного аппарата, являются неприемлемыми. Для компенсации потерь механической или конструктивной целостности, способных привести к изменениям формы, обычно увеличивают толщину материала. Однако увеличение толщины неблагоприятным образом добавляет вес и объем летательного аппарата, снижая полезную грузоподъемность и увеличивая стоимость.
Несмотря на то, что теплозащитные материалы С-С класса являются достойными кандидатами для использования в аэрокосмической области вследствие их превосходных температурных конструкционных свойств, изменения формы, вызванные окислением, по-прежнему могут представлять собой проблему. В связи с этим были приложены значительные усилия, направленные на создание устойчивых к окислению покрытий для С-С композитов. Тем не менее, эти усилия имели ограниченный успех. Покрытия, разработанные к настоящему времени, имеют ограничения по температурным значениям, которые в общем случае лежат ниже температурных значений, наблюдаемых на практике при возвращении в атмосферу или других высокотемпературных применениях. Кроме того, стоимость покрытия и его долговечность (долговечность в смысле микрорастрескивания при эксплуатации, крошечных отверстий, ударов частиц и повреждений при наземном обслуживании) представляют серьезные проблемы при рассмотрении покрытий для использования на теплозащитных материалах с С-С композитами.
В абляционной технологии применяется несколько механизмов управления тепловой энергией высокого уровня, высвобождающейся при возвращении в атмосферу. Три таких механизма представляют собой испарение и распад (пиролиз) смолы и последующее испарительное охлаждение на пограничном слое. Все эти процессы происходят с поглощением тепла. Образование большого количества газа является одним критерим способности системы, работающей на абляционном принципе, поглощать тепло. Образование газа также может быть увеличено за счет пропитки С-С основы органическим материалом, специально предназначенным для испарения и пиролиза при воздействии на систему интенсивных тепловых нагрузок. Материалы, известные как охладители и используемые в этих системах пассивного испарения, включают в себя такие материалы как полиэтилен или эпоксидные, акриловые или фенольные смолы.
В такой системе в материале создается зона пиролиза, в которой смола и любые присутствующие дополнительные охладители нагреваются до такой температуры, при которой органические материалы распадаются. В результате этого происходит поглощение тепла и образование дополнительного углерода, который может остаться в зоне пиролиза и/или отложиться на углеродных волокнах и внутри объема пор основы. Таким образом, окончательный вес С-С абляционного материала и способность поглощать тепло находятся в прямой зависимости от количества имеющейся смолы в С-С композите перед возвращением в атмосферу.
На поверхности С-С абляционного материала происходит переизлучение тепла благодаря преломляющим свойствам углеродной основы. Кроме того, газы, образующиеся в зоне пиролиза внутри С-С абляционного материала, высвобождаются в направлении поверхности при относительно низкой температуре по сравнению с условиями на этой поверхности. Этот эффект, известный как пиролизное испарение газа, обеспечивает охлаждение на поверхности теплозащитного материала. Недостатки описанных здесь систем с пассивным испарением включают в себя высокую общую плотность материала и высокое внутреннее давление, вызванное внезапным газообразованием внутри материала. Таким образом, абляционные системы, способные создавать и затем высвобождать большие объемы газа, демонстрируют лучшие возможности по поглощению и рассеянию тепла при возвращении в атмосферу.
В связи с этим для общей эффективности абляционного материала важна структура С-С основы. Объем пор может быть заполнен смолой или другим охладителем для обеспечения исходным материалом образования газов. Кроме того, способы построения основы могут обеспечить большие проходы просачивания, предназначенные для выпуска газов. Системы, которые образуют большие объемы газа за короткий период времени, также создают высокое внутреннее давление. Такое давление вызывает образование внутренних трещин в основе (микротрещины), а также сколов на поверхности. Эти явления являются разрушительными для механической целостности системы и могут привести к ее повреждению. Следовательно, улучшенные проходы просачивания также защищают систему от воздействий внутреннего давления.
Патент США 5635300 на имя Костикова (Kostikov) и др. раскрывает усовершенствование в области создания С-С или керамических абляционных материалов, заключающееся во введении в С-С основу смол на основе кремния. При распаде и последующем воздействии на поверхность очень высоких температур смола на основе кремния взаимодействует с углеродной основой, образуя покрытие из карбида кремния (SiC) на тех волокнах, которые подвергаются высокотемпературным условиям. Структура SiC более устойчива к окислению, чем углерод, и, следовательно, делает углеродную основу более прочной за счет формирования SiC каркаса в зонах экстремальной температуры. Если при длительных воздействиях на поверхность повышенной температуры и сдвига ветра происходит потеря SiC, то только что обнажившаяся углеродная основа претерпевает дальнейшую реакцию с образованием нового SiC, восстанавливая таким образом защитный каркас.
Слой SiC, образующийся на волокнах углеродной основы внутри абляционного материала, имеет коэффициент теплового расширения (КТР), отличный от КТР углерода. Следствием этого является то, что когда система испытывает температурные изменения, SiC покрытие внутри углеродной основы образует микротрещины. Эти трещины образуют проходы для проникновения воздуха, что приводит к окислению углеродной основы и, как следствие, к потере прочности и целостности абляционного материала.
В патенте Костикова основу из вещества углерод-SiC создают, получая заготовку углерод-пластик, состоящую из углеродных волокон и связующего материала из термореактивной смолы, и осуществляя тепловую обработку для образования коксовой матрицы, армированной углеродными волокнами. Плотность коксовой матрицы увеличивают, пропитывая ее пиролитическим углеродом и осуществляя тепловую обработку заготовки при температуре от 1900 до 2000°С. В соответствии с этим изобретением поровые каналы образуются вслед за кристаллизацией осажденного на матрицу углерода. После уплотнения следует обработка кремнием, при которой в полостях пор композита образуется SiC каркас. Углеродные волокна могут быть выполнены в виде текстильной ткани или тканой основы.
В патенте США 5672389 на имя Трана (Tran) и др. описывается керамический абляционный материал низкой плотности, в котором используется волокнистая керамическая основа, имеющая, до процесса пропитки смоляной матрицей, плотность, приблизительно равную от 0,15 до 0,2 г/см3. Согласно изобретению Трана углеродные волокна подпадают под определение "керамика". Керамическую основу пропитывают раствором низкой вязкости, содержащим органическую смолу в растворителе. Избыток пропитывающего материала удаляют, после чего следует удаление растворителя в условиях вакуума, при этом остаются волокна, покрытые смолой, а основа имеет среднее значение плотности от 0,15 до 0,4 г/см3. В патенте Трана сообщается, что получающийся абляционный материал может иметь как равномерное, так и неравномерное распределение смолы на керамических волокнах. Неравномерное распределение имеет преимущество, заключающееся в достижении необходимой степени абляции на внешней поверхности при малом весе на внутренней поверхности, не подверженной действию экстремальных температур.
Кроме того, при наличии на поверхности условий окисления кремний вступает в реакцию с атмосферным кислородом, образуя при этом покрытие из диоксида кремния (SiO2), которое проявляется в виде стеклообразного слоя на внешней поверхности абляционного материала. Этот SiO2 плюс смесь из свободного углерода и свободного карбида кремния SiC имеет высокую излучательную способность поверхности, которая улучшает способность материала излучать тепло с поверхности за счет конвекции и переизлучения от углеродной основы.
В патенте США 5965266 на имя Гоярда (Goujard) и др. описывается композиционный теплозащитный материал из углерода-карбида кремния (С-SiC), обладающий механизмом самовосстановления, обеспечивающим восстановление C-SiC матрицы на месте. Матрицу подвергают тепловой обработке для образования SiC и карбида бора (ВС) на C-SiC матрице. Слой из SiC улучшает механическую прочность системы. Однако вследствие различия в КТР матрица испытывает разрушительное растрескивание при воздействии температурных изменений, испытываемых при возвращении в атмосферу. Эти трещины создают проходы, обеспечивающие проникновение воздуха, что вызывает окисление C-SiC матрицы, а следовательно, механически ослабляет структуру теплозащитного материала.
В изобретении Гоярда предлагается использовать имеющиеся свободные кремний и бор в качестве предшественников стекла, которые вступают в реакцию с открытым углеродом при повышенных температурах и окислительных условиях при возвращении в атмосферу.
Предшественники стекла образуют внутри трещин самовосстанавливающийся стеклянный слой, закрывающий доступ для внутреннего окисления основы.
Помимо прочности и плотности абляционной системы успех использования теплозащитного материала определяется способом прикрепления этого материала к защитной оболочке летательного аппарата, а также внедрением дополнительных слоев изоляционного материала. В патенте США №3152548 на имя Шварца (Schwartz) описана система, в которой к защитной оболочке летательного аппарата прикреплены мотки проволоки, а на металлические мотки нанесен керамический теплозащитный материал, в результате чего между защитной оболочкой летательного аппарата и керамическим теплозащитным материалом образуется пространство. Это пространство заполняет гибкий теплоизоляционный материал, обеспечивая дополнительную изоляционную защиту оболочке летательного аппарата. В патенте сообщается, что применение мотков проволоки компенсирует различия в тепловом расширении металлической защитной оболочки летательного аппарата и керамического изолятора.
Сущность изобретения
Основной целью данного изобретения является создание теплозащитного материала (ТЗМ), который представляет собой углерод-углеродный (С-С) абляционный материал, имеет сравнительно низкую стоимость, низкую плотность и высокую механическую прочность и обеспечивает высокую степень защиты от окисления. Данное изобретение позволяет изготавливать теплозащитный материал таким способом, при котором по толщине или длине этого материала можно изменять показатели прочности, массы и теплопоглощения для достижения их оптимального соотношения при минимально возможной стоимости. Кроме того, предлагаемый С-С абляционный материал имеет структуру с проходами, которые позволяют повысить интенсивность просачивания образующихся газов. Предлагаемый С-С абляционный теплозащитный материал также охватывает способы изготовления новых и полезных конструкций из С-С абляционного теплозащитного материала, в которых изоляционный материал может быть введен между этим теплозащитным материалом и защитной оболочкой летательного аппарата.
Предлагаемая С-С основа представляет собой трехмерный объект тканого или нетканого исполнения. Плотность волокон возрастает по толщине теплозащитного материала, увеличивая тем самым прочность основы в этом направлении. Плотность волокна можно изменять, изменяя способ плетения или тип используемой ткани (т.е. тканую, нетканую, вязанную или плетеную ткань). Кроме того, изобретение может включать прокалывание отверстий в ткани, усиливающее взаимосвязь волокон по толщине структуры (по оси z). Прокалывание отверстий также служит для увеличения пористости по оси z, обеспечивая, таким образом, улучшенные проходы для просачивания абляционных газов, образующихся в условиях высокой температуры, например при возвращении в атмосферу. Для изменения плотности волокна по оси z и увеличения скорости испарения абляционного материала могут быть применены усовершенствованные способы плетения, позволяющие создавать трехмерные структуры.
Предлагаемый С-С абляционный материал пропитывают органической смолой, имеющей высокий выход углерода, а получаемую матрицу отверждают. Получаемую основу с покрытием подвергают по меньшей мере одному циклу обугливания для уплотнения этой основы. После проведения циклов обугливания систему обрабатывают абляционной смолой на основе кремния и отверждают.
Неотъемлемой частью данного изобретения является использование абляционной смолы на основе кремния. Смола на основе кремния расположена под поверхностью композиционного материала и при нагревании течет к этой поверхности, вступая в реакцию с углеродом и образуя SiC. Таким образом, в то время как абляционная смола служит в качестве охладителя системы, химические реакции, возникающие при высокой температуре внутри абляционного материала, направлены на обеспечение механической прочности С-С основы за счет создания стойкого к окислению покрытия из SiC.
Высокие температуры, возникающие при возвращении в атмосферу, являются достаточными для окисления углеродной основы. Это приводит к понижению поверхности абляционного материала, следствием которого является потеря механической прочности и, соответственно, изменение формы поверхности летательного аппарата. Это изменение формы может отрицательным образом отразиться на аэродинамике летательного аппарата, что недопустимо. Высокая температура системы, возникающая при возвращении в атмосферу, вызывает образование SiC в результате реакции кремния с углеродом основы. Следовательно, во время возвращения в атмосферу часть обуглившегося слоя окисляется. При этом происходит замещение углерода на SiC, который обеспечивает устойчивое к окислению защитное покрытие. Далее, по мере понижения поверхности абляционного материала обнажившаяся углеродная основа вступает в реакцию с кремнием, образуя слой карбида кремния в зоне воздействия.
Кроме того, кремний, находящийся в газах, образующихся при пиролизе смолы, вступает при высокой температуре в реакцию с кислородом атмосферы на поверхности абляционного материала, образуя диоксид кремния (SiO2) вместе со смесью свободного углерода и SiC. Данная смесь может иметь высокую проницаемость. При дальнейшем окислении концентрация SiO2 на поверхности повышается, обеспечивая защиту от окисления углерода и SiC, которые находятся под поверхностью.
Другой аспект данного изобретения заключается в том, что пока система не подвергается воздействию высоких температур при возвращении в атмосферу, образование SiC не происходит. Данное свойство образования SiC матрицы на месте позволяет устранить разрушающие влияния микрорастрескивания, которое возникает, когда С-С основа и SiC матрица испытывают высокотемпературные изменения и/или механические напряжения.
Разработан уникальный подход к созданию недорогого С-С композита вместе со способом, обеспечивающим длительную защиту на месте от окисления. Причем этот подход не просто связан с малыми затратами, он обеспечивает улучшенную абляционную стойкость по сравнению с обычными С-С композиционными материалами, используемыми в настоящее время. Используются С-С материалы более низкой плотности (от 1,3 до 1,5 г/см3). Это приводит к значительному снижению стоимости вследствие сокращения числа необходимых циклов уплотнения. Данный материал пропитывают абляционной смолой на основе кремния (например, RTV (вулканизованный при комнатной температуре), производимой компанией General Electric Corp.) с использованием процесса литьевого прессования смолы (ЛПС).
Процесс ЛПС включает очистку пробы от воздуха в закрытой форме и пропитку пробы под давлением смолой RTV для заполнения имеющихся пор основы. Поскольку в соответствии с данным изобретением требуется, чтобы RTV материалы сохранялись внутри основы для обеспечения защиты во время нагрева при возвращении в атмосферу, то возможности по наличию такой зоны хранения предусмотрены в виде увеличенного объема пор. Кроме того, С-С основа должна быть спроектирована и изготовлена таким образом, чтобы этот объем хранения и распределения был предсказуемым. Это важно для регулирования количества RTV, поскольку слишком большое количество RTV может создать высокое внутреннее давление газа во время воздействия высокой температуры. Недостаточное количество RTV приводит к ослаблению защитного действия абляционной системы во время фазы полета, связанной с возвратом в атмосферу.
Другие варианты выполнения изобретения включают С-С основу, которая изготовлена методом трехмерного плетения, известного как многослойное интерлочное плетение. Данный метод плетения может быть использован для изготовления трехмерной основы из углеродного волокна с желательной градацией плотности волокна вдоль оси. Трехмерный тканый объект имеет большую прочность по оси z и позволяет избежать проблем, свойственных двухмерным тканям, которые могут иметь меньшую целостность и взаимосвязь по слоям структуры.
Многослойное интерлочное плетение является методом, позволяющим создавать взаимосвязанное трехмерное плетение, которое можно изготавливать объемным. Данный метод позволяет получать трехмерную структуру с изменением плотности волокон по оси z. Получающаяся трехмерная основа имеет повышенную прочность по оси z и обеспечивает улучшенные проходы для просачивания газа по оси z. В получающейся основе могут быть проколоты отверстия для создания дополнительной взаимосвязи и проходов для просачивания газа. Многослойное интерлочное плетение описано в статье 3-D Braided Composites, Design and Applications, Brookstein, D., (Albany International Research Co., Sixth European Conference on Composite Materials, сентябрь, 1993), включенной в данную заявку посредством ссылки.
Дополнительным преимуществом данного изобретения, которое не может быть получено любой другой известной в технике композицией, является возможность регулирования не только плотности основы в зависимости от ее прочности, но и количества абляционной смолы, способной к пиролизу, а следовательно, используемой в качестве охладителя. В соответствии с данным изобретением теплозащитный материал по своей толщине имеет переменные плотность и объем пор. Области с большим объемом пор содержат большее количество смолы RTV, способной к абляции при возвращении в атмосферу. Следовательно, охлаждающая способность теплозащитного материала изменяется в зависимости от плотности С-С основы. Внешние слои могут содержать охладитель в большем объеме, в то время как внутренние слои могут проявлять более высокую механическую прочность.
Для создания систем материалов, удовлетворяющих вышеуказанным требованиям по пористости и дегазации, возможно применение нескольких технологий производства. К ним относится открытая тканая вязаная структура, поскольку петли, присущие процессу вязания, обеспечивают образование естественных карманов пористости, пригодных для хранения RTV. Другой принцип заключается в использовании тканой структуры со специальными промежутками между смежными нитями, которые образуют объем, необходимый для хранения RTV. Еще один принцип заключается в использовании жаккардового ткацкого станка для создания многослойной тканой структуры. Можно легко создать переплетения такой структуры, обеспечивающие объем для хранения RTV. Еще один принцип, обуславливающий самую низкую стоимость, связан с использованием нетканой заготовки. Такая заготовка может быть выполнена с заранее сформированной ориентацией в слоеной конструкции. Кроме того, данный принцип, равно как и другие вышеуказанные принципы, может принести пользу для увеличения структурной целостности от использования процесса прокалывания отверстий.
Существует несколько путей введения в структуру проходов для дегазации. Один путь заключается в прокалывании отверстий в заготовке перед процессом уплотнения С-С материала. При этом процессе осуществляют протыкание лицевой поверхности тканой заготовки по равномерному или специально созданному рисунку или сетке. В результате этого процесса прокалывания отверстий некоторый процент волокон оказываются проткнутыми и выравниваются в направлении прокалывания, создавая волоконный компонент, проходящий в направлении толщины. Это не только создает проходы, через которые газы выходят из этого компонента наружу, но добавочное армирование в направлении толщины также улучшает межслойные механические свойства.
Другим механизмом обеспечения проходов для газа в направлении толщины является Т-формирование. Т-формирование - это способ, которым волокна вставляют непосредственно в заготовку. Т-формирование описано в патенте США №6103337, выданном Albany International Corp., Techniweave Division и озаглавленном "Структуры, армированные волокном, и способ их получения" (Fiber Reinforced Structures and Method of Making Same). Описание этого патента включено в данную заявку посредством ссылки. В соответствии с этим способом глубину проникновения при Т-формировании и ориентацию можно регулировать. Т-формирование также может быть способом, выбираемым для механического крепления внешнего защитного слоя к опорным элементам для образования трехмерных структурных компонентов.
Применяя Т-формирование, описанные выше принципы получения материалов можно адаптировать для требований конкретного применения. Теплозащитный материал может быть выполнен в таких конфигурациях, которые способны структурно противостоять термическим нагрузкам на конструкцию, а также аэродинамическим нагрузкам, возникающим при возвращении в атмосферу и при маневрировании. Может быть создана система материала для эффективного переноса нагрузок, хотя она и не работает в качестве теплопровода от защитной оболочки летательного аппарата.
Другое улучшение, предлагаемое в данном изобретении, относится к усовершенствованным способам закрепления изоляционного материала между абляционным материалом и внешней оболочкой летательного аппарата. Абляционному материалу, изготавливаемому из основы, содержащей углеродные волокна, можно придать форму удобных конфигураций. Эти структурные элементы могут иметь вид Т-образных ребер и элементов жесткости, С-С сотовых конструкций, целотканых ребер, волнистых С-С, а также другие предпочтительные формы. Пространство, образующееся при установке абляционного материала в виде волнистой, Т-образной или подобной конфигурации, заполняют изоляционным материалом для придания системе дополнительной теплозащиты.
Другой вариант выполнения изобретения заключается в изготовлении материала в виде углеродной тканевой ленты с пропиткой поверхности ткани смолой RTV, содержащей кремний. Этот материал может быть затем ламинирован с использованием нагрева и давления для образования структурного компонента, армированного волокнами, с уже имеющейся схемой кремниевой защиты. Этот процесс не требует С-С обработки.
Краткое описание чертежей
Таким образом, реализуются цели и преимущества данного изобретения, описание которого следует рассматривать совместно с чертежами, на которых:
фиг.1 изображает поперечное сечение структуры из углеродных волокон, состоящей из нескольких тканевых слоев, соединенных ламинированием;
фиг.2 изображает поперечное сечение структуры, содержащей несколько слоев войлока из углеродных волокон и несколько слоев текстильной ткани из углеродных волокон, ламинированных вместе;
фиг.3 изображает поперечное сечение показанной на фиг.2 структуры, в которой проколоты отверстия для усиления сообщения слоев по ее толщине;
фиг.4 изображает схему процесса прокалывания и его результат;
фиг.5 изображает трехмерную основу из углеродных волокон и пустоты между волокнами;
фиг.6 изображает схему процесса литьевого прессования смолы (ЛПС);
фиг.7 изображает схему нескольких возможных способов Т-формирования;
фиг.8 изображает объединенные процессы Т-формирования и ЛПС;
фиг.9 изображает аксонометрический вид одного варианта выполнения данного изобретения, показывающий конфигурацию, объединяющую С-С композиционный абляционный материал и изоляционный материал; и
фиг.10 изображает схему нескольких возможных конфигураций из объединенных теплозащитного материала и изоляционного материала.
Подробное описание изобретения
Основа с переменной плотностью
Обратимся теперь более подробно к чертежам. На фиг.1 изображена основа из текстильного волокна, состоящая из нескольких слоев текстильной ткани, ламинированных с образованием слоистой структуры. Тканевые слои, 2а, b, с - 2n, структуры имеют переменную плотность, возрастающую от слоя 2а до 2n. Плотность отдельного слоя 2 может быть изменена за счет изменения типа переплетения, плотности переплетения и т.д. Следствием этого является то, что общая плотность структуры увеличивается в направлении, обозначенном t. Получившаяся композиция представляет собой трехмерный объект, состоящий из переплетенных волокон, плотность которых возрастает в направлении t. Типы волокон, которые могут быть использованы для изготовления такой основы, включают углерод, PAN, графит, карбид кремния или керамические волокна.
На внешней поверхности тканой основы, показанной на фиг.1 (т.е. слой 2а, при t=0), структура имеет относительно низкую плотность и большой относительный объем пор, что свидетельствует о том, что на единицу площади приходится меньшее количество волокон по сравнению со всей структурой. С другой стороны, внутренняя поверхность показанной на фиг.1 основы (т.е. слой 2n, при t=t') имеет более высокую относительную плотность и более низкий объем пор, что свидетельствует о том, что на единицу площади приходится большее количество волокон по сравнению со всей структурой. Следствием этой композиции является то, что внутренние слои, включающие слои 2n-1 и 2n, будут иметь более высокую прочность, то есть при нагревании системы до высоких температур система будет сохранять свою форму и механическую целостность. В то же время внешние слои, включающие слои 2а, b, с, имеют большие объемы пор, заполненные кремниевой абляционной смолой (например, RTV смолами, поставляемыми General Electric Corp.), которая будет влиять на поглощение тепла за счет абляционных процессов испарения, пиролиза, поверхностной утечки газа. Таким образом, абляционный процесс сосредотачивается на внешних слоях теплозащитного материала. Подходящими смолами являются RTV-11, 12, 31 или 615 от General Electric Corp., хотя данный список не является исчерпывающим.
В дополнение к способности вмещать большой объем абляционной смолы, внешние слои также создают улучшенные проходы для просачивания, которые обеспечивают выход больших объемов образовавшегося газа. Большой объем просочившегося газа создает повышенную способность поглощения тепла на поверхности теплозащитного материала, ослабляя при этом внутреннее давление выделившегося газа, что минимизирует механическое напряжение и повреждение теплозащитного материала основы.
На фиг.2 и 3 изображены альтернативные структуры, охватываемые данным изобретением. На фиг.2 изображена комбинированная основа из переплетенных и непереплетенных волокон, состоящая из нескольких слоев ткани, ламинированных с образованием слоистой структуры. Слои 2а, b, с - n ткани этой структуры имеют переменную плотность, возрастающую от слоя 2а к 2n. Внешние слои, которые включают слои 2а, b, с, состоят из нетканого волокнистого войлочного материала, имеющего относительно низкую плотность и относительно большой объем пор. Внутренние слои, которые включают слои вплоть до слоя 2n, имеют относительно более высокую плотность и меньший объем пор. Так же как и в описанном выше варианте выполнения изобретения, показанном на фиг.1, внутренние слои предназначены для сохранения прочности, а внешние слои предназначены для осуществления функции поглощения тепла, присущей абляционным теплозащитным материалам.
На фиг.3 изображена показанная на фиг.2 волокнистая основа, подвергнутая дополнительной обработке путем прокалывания отверстий. В войлочных слоях из штапельного волокна и внешних слоях (слои 2а, b, с) осуществлено совместное прокалывание отверстий в направлении слоев ткани из переплетенного волокна на внутренней поверхности основы (слои 2n-1, 2n). Прокалывание отверстий оказывает два благоприятных воздействия на теплозащитный материал. Во-первых, волокна одного слоя переориентируются в направлении поперечной плоскости, по оси z, усиливая тем самым прочность структуры в направлении поперечной плоскости. Эта добавленная прочность в направлении поперечной плоскости улучшает целостность теплозащитного материала в условиях экстремальных температур и сдвига ветра, например, во время возвращения в атмосферу. Во-вторых, прокалывание отверстий увеличивает пористость структуры по оси z, свойство, которое является полезным для абляционного процесса, так как это дает возможность увеличить выпуск и просачивание газов, созданных абляционным материалом при возвращении в атмосферу.
Фиг.4 иллюстрирует, как прокалывание отверстий увеличивает взаимосвязанность слоев за счет пропускания отдельных волокон через плоскости слоев из ткани и между ними. Иголки 6 находятся в игольнице 12, содержащей множество отдельных иголок. По мере того, как несколько образующих основу слоев проходят между чистильной пластиной 16 и игольным ложем 14, через указанные слои проталкивают иголки. Иголки имеют зубцы 8, которые захватывают отдельные волокна и продавливают их в направлении поперечной плоскости, по оси z, переориентируя волокна по плоскости. После удаления иголок волокно остается ориентированным оси z, а в ткани остается прокол в этом направлении, имеющий размер, приблизительно равный размеру иголки.
Эффект от прокалывания отверстий, как указывалось выше, заключается в увеличении прочности ламинированных слоев по оси z (т.е. между слоями), придающем, таким образом, дополнительную целостность трехмерной основе. Кроме того, образовавшиеся отверстия выступают в качестве проходов для выпуска газов по оси z. Это увеличивает эффективность абляционного процесса теплозащитного материала.
Фиг.5 представляет основу из углеродного волокна, подобную основе, показанной на фиг.1, и показывает текстильные волокна 2, проходящие в планарных (х- и у-) направлениях. Полости 4 пор выделены и показаны в виде более светлых участков. Относительный размер полостей пор соответствует величине объема пустот в основе, который, в свою очередь, является показателем количества абляционной смолы, которую может содержать основа. Чем большее количество смолы содержит основа, тем большее количество газа может образовать смола, что, в свою очередь, обеспечивает лучшее охлаждение абляционного материала.
По мере повышения температуры теплозащитного материала выше уровня, при котором происходит испарение и пиролиз, содержащаяся внутри основы смола испаряется и создает внутреннее давление, которое необходимо ослабить. Проходы для просачивания газа необходимы для ослабления этого разрушительного внутреннего давления. Кроме того, газ необходимо выпускать на поверхность равномерно, чтобы охлаждающее воздействие газа было хорошо распределено по поверхности. Поэтому проходы для выпуска газа, имеющиеся в основе, усиленной в результате прокалывания отверстий, представляют собой важные аспекты данного изобретения.
Другой вариант выполнения этого изобретения заключается в изготовлении материала в виде углеродной тканевой ленты с пропиткой поверхности ткани смолой RTV на основе кремния. Этот материал может быть затем ламинирован с использованием нагрева и давления для образования структурного волокнистого компонента, армированного волокнами, с уже имеющейся схемой кремниевой защиты. Этот процесс не требует С-С обработки (т.е. обугливания и уплотнения).
Другой вариант изобретения осуществляют с применением метода трехмерного ткачества плетением, известного как многослойное интерлочное плетение. Достоинства этого способа заключаются в том, что волокна ориентированы не только по осям плоскости х, у двумерного переплетения, но также в третьем направлении по оси z, что придает структуре большую взаимосвязь и механическую прочность по оси z. Посредством данного способа можно изменять объем пор и плотность по толщине t основы до уровня, сходного с уровнем варианта выполнения изобретения, показанного на фиг.1.
Помимо того, что метод многослойного интерлочного плетения позволяет создавать структуру с повышенной прочностью и целостностью по оси z, он также обеспечивает более равномерные пути движения для выпуска и просачивания газов, образованных в результате абляционного процесса при возвращении в атмосферу. Улучшенная способность выпуска газов является преимуществом данного варианта изобретения с трехмерным плетением. Способность структуры обеспечивать выпуск и просачивание газов также может быть увеличена за счет дополнительного прокалывания отверстий в структуре по оси z. С этой целью отверстия можно прокалывать также и в этой структуре.
ПРОПИТКА, КАРБОНИЗАЦИЯ И УПЛОТНЕНИЕ ОСНОВЫ
В соответствии с предпочтительным вариантом выполнения изобретения, основу из углеродных волокон готовят так, как описано выше, и пропитывают раствором фенольной или эпоксидной смолы, имеющей высокий выход углерода и низкую зольность. Используемый процесс пропитки известен как процесс литьевого прессования смолы (ЛПС).
Существует несколько препаратов из смолы, которые можно использовать при изготовлении С-С композитов. Все они в совокупности имеют высокий выход углерода. Они включают фенольную смолу SC1008, выпускаемую Monsanto. Кроме того, как указано в патенте США 5536562, существует материал Novotak на основе эпоксидной смолы, поставляемый Dow Chemical и другими компаниями.
Этот процесс, изображенный на фиг.6, включает захват необработанной или частично уплотненной С-С основы, помещение ее в ЛПС приспособление (или форму) 22 и откачивание из системы воздуха с использованием вакуумного насоса 24. Препарат смолы, например описанные выше SC1008 или Novolak, помещают в загрузочный контейнер 20. Для достижения желательной вязкости выбранных смол могут потребоваться растворители, например толуол.
Затем в загрузочном контейнере 20 поднимают давление до 55±15 фунтов на кв. дюйм (379,212±103,421×103 Па), вследствие чего С-С основа пропитывается под давлением смолой таким образом, что обеспечивается полная инфильтрация смолы через все полые пространства основы. Давление выдерживают выше ресурса смолы.
После пропитки избытку раствора смолы дают возможность стечь. Отверждение осуществляют либо при условиях окружающей среды, либо при умеренной температуре, в зависимости от рекомендаций производителя для конкретной смолы. Затем этот элемент вынимают из формы 22, после чего возможно его дальнейшее отверждение при температуре 150°С или при комнатной температуре в течение надлежащего периода времени.
После удаления растворителя и отверждения углеродные волокна основы имеют равномерное смоляное покрытие, которое образует углерод-смоляную матрицу по всей основе из углеродного волокна.
Затем основу подвергают термообработке при температуре свыше 500°С в течение 2-24 часов, причем такой период времени является достаточным для распада смоляной матрицы до чистого углерода. В результате этого процесса обугливания основа из углеродного волокна, армированная матрицей из углерода, становится жесткой. Этот получившийся материал известен как углерод-углеродная (С-С) основа. Для достижения средней плотности С-С основы от 1,1 до 1,5 г/см3 цикл обугливания может быть повторен. Однако плотность основы перед окончательной пропиткой смолой RTV на внутренних слоях будет больше, чем на внешних слоях С-С основы.
Приобретшая жесткость С-С основа отличается увеличенной прочностью и плотностью по сравнению с основой из углеродного волокна, не подвергшейся процессу обугливания. Цикл обугливания может быть повторен до достижения необходимых показателей прочности, плотности и пористости. Помимо прочности, внешний обугленный слой является поверхностью с высокой жаростойкостью, характерной для изолирующего материала. В предпочтительном варианте выполнения изобретения перед пропиткой смолой RTV применяют два цикла обугливания.
После обугливания С-С основу пропитывают абляционной смолой на основе кремния, используя ЛПС процесс. Кремний является одним из основных элементов абляционной смолы. Пропитку С-С основы осуществляют с использованием ЛПС процесса, избыток смолы сливают и пропитанную основу подвергают отверждению с образованием смоляной матрицы, заполняющей до 99% объема пор С-С основы. В число пригодных для использования абляционных смол на основе кремния входят несколько смол типа RTV, поставляемых General Electric и/или другими производителями. При выборе другой возможной абляционной смолы на основе кремния предпочтительней, чтобы кремний не находился в виде диоксида кремния.
RTV смолы могут включать RTV-11, 12, 31 и 615, поставляемые General Electric Corp. Вязкость этих смол изменяется в диапазоне от 1500 до 25000 сантипуазов (1,5-25 Па·с). При более высокой вязкости RTV смол их можно разводить толуолом, чтобы уменьшить вязкость до уровня, при котором ЛПС процесс будет протекать эффективно. Время отверждения изменяется в диапазоне от 2 часов до 7 дней, а температуры отверждения - в диапазоне от температуры окружающей среды до 150°С. Плотности этих смол находятся в диапазоне от 1,00 г/см3 до 1,42 г/см3.
В другом варианте выполнения изобретения перед пропиткой RTV смолой на основе кремния первоначальная пропитка смолой и циклы обугливания не применяются. Наоборот, основу из углеродных волокон в процессе ЛПС пропитывают абляционной смолой на основе кремния и отверждают, в результате чего получается основа из углеродных волокон, которая приобретает жесткость за счет нанесения и отверждения абляционной смолы на основе кремния. Однако, для всех вариантов выполнения изобретения, RTV смолу отверждают, но не обугливают, вследствие чего до воздействия высоких тепловых нагрузок, возникающих при возвращении в атмосферу, не образуются SiC или SiO2.
МЕТОД Т-ФОРМИРОВАНИЯ И ПРИКРЕПЛЕНИЕ ИЗОЛЯЦИИ
С-С композиционные абляционные материалы, предлагаемые в данном изобретении, можно использовать для получения новых и полезных структурных конфигураций. Легкие, прочные и создающие защиту композиционные материалы по данному изобретению могут быть изготовлены таким образом и в такой конфигурации, чтобы обеспечить усовершенствованные способы присоединения изоляционных материалов к тыльной поверхности теплозащитного материала.
На фиг.7 показаны четыре способа Т-формирования, которые могут применяться для создания различных конфигураций. На каждом чертеже отдельные углеродные волокна 26 вставлены через поперечную волокнам поверхность основы 30 внутрь узкого ребра опорного элемента 28. В результате получается непропитанная заготовка 32 из углеродного композита, которая может иметь форму Т-образного соединения 32 (фиг.8), двутавровой балки 38 или волнистой заготовки 36. При Т-формировании создается армированная структура заготовки, в которой армирующие волокна 26 пропитаны смолой и становятся частью окончательной структуры, приобретающей жесткость. Кроме того, введение волокон 26 создает проходы для выпуска и просачивания газа, образованного во время абляции.
Создание заготовок различных конфигураций может происходить на разных этапах производства теплозащитного материала. Например, две структуры из углеродного волокна могут быть соединены в конфигурацию Т-образной формы до первоначального проведения пропитки и обугливания. В результате этого образуется структура, имеющая равномерные жесткость и обугливание.
На фиг.8 показан способ Т-формирования, совмещенный с процессом пропитки ЛПС. Армированную заготовку создают путем ламинирования слоев тканых и/или нетканых волокнистых материалов (или трехмерным плетением волокнистой основы) для образования двухкомпонентных частей - главной основы 30 и опорного элемента 28. Опорный элемент 28 помещают в ЛПС приспособление 22, а основной элемент 30 размещают сверху опорного элемента 28. Основной элемент 30 соединяют с опорным элементом 28 путем пропускания одиночных волокон 26 из подобного основе материала, используя сшивающее приспособление 36А. Стежки проводят в направлении, параллельном направлению волокон в опорном элементе 28. Из фиг.7 можно видеть, что стежки 26 также могут быть ориентированы под углом к опорному элементу.
После соединения двух элементов 28 и 30 одиночными волокнами 26 ЛПС приспособление 22 герметизируют и из него откачивают воздух путем подвода вакуума к этой системе. Затем из резервуара 20 со смолой в ЛПС приспособление подают раствор смолы под давлением (приблизительно 55±15 фунтов на кв. дюйм (379,212±103,421×103 Па)).
На фиг.9 изображен предпочтительный вариант выполнения изобретения, в котором С-С композиционный абляционный материал сочетают с технологией Т-формирования для получения структуры из теплозащитного материала, сочетающей изоляционный материал и уголковые опоры, которые затем прикрепляют к защитной оболочке летательного аппарата.
В предпочтительном варианте выполнения данного изобретения применяется способ Т-формирования для прикрепления опорных элементов 38, состоящих из приблизительно прямых уголков, таким образом, что вершина угла находится у поверхности теплозащитного материала 30, образуя два опорных элемента, которые проходят от тыльной поверхности теплозащитного материала к поверхности защитной оболочки летательного аппарата под углом относительно тыльной поверхности, приблизительно равным 45 градусам. Опорные элементы повторяются подобно тому, как это происходит в волнистой структуре, вследствие чего точка пересечения двух смежных опорных элементов на защитной оболочке летательного аппарата образует приблизительно прямой угол, который обращен к тыльной поверхности теплозащитного материала. Изоляционный материал прикрепляют к тыльной поверхности теплозащитного материала и к опорным элементам для обеспечения дополнительной тепловой защиты летательному аппарату.
На фиг.10 показаны другие варианты выполнения данного изобретения, в которых опорный элемент 28 прикреплен к защитной оболочке 40 летательного аппарата, а образующееся под ним пространство заполнено изоляционным материалом 34. В качестве изоляционного материала может быть один из следующих материалов: Aerogel компании Southern Research Inst., Fiberfoam компании Fiber Materials, Inc., а также другие подходящие изоляционные материалы, известные в технике.
Предлагаемые С-С композиционные абляционные материалы при малом весе и стоимости имеют повышенные прочность и стойкость к окислению по сравнению с другими С-С абляционными материалами, известными из уровня техники. К характеристикам данного изобретения относятся переменная плотность и прочность наряду с увеличенным объемом пор и емкостью для помещения абляционных смол, а также улучшенная способность выпускать газы, образуемые абляционными смолами во время возвращения в атмосферу. Кроме того, система обладает преимуществом, которое заключается в упрочнении, защите и механизме восстановления углерод-углеродной и абляционной системы на основе кремния, действие которой направлено на уменьшение разрушительных влияний от сильного нагрева и окисления.
Несмотря на то, что здесь были раскрыты и подробно описаны предпочтительные варианты выполнения изобретения, эти варианты не ограничивают объем правовой охраны изобретения, определяемый приложенной формулой.

Claims (26)

1. Теплозащитная система для защиты поверхности, подвергающейся воздействию интенсивной тепловой нагрузки, представляющая собой углерод-углеродный (С-С) абляционный материал и содержащая волоконную основу, которая имеет внешнюю сторону, обращенную от поверхности, и противолежащую внутреннюю сторону, обращенную к поверхности, при этом плотность волокон указанной основы является переменной и возрастает в направлении, проходящем от внешней стороны к внутренней стороне; абляционную смолу на основе кремния.
2. Теплозащитная система по п.1, в которой указанные волокна выполнены из углерода, графита, карбида кремния или керамики.
3. Теплозащитная система по п.1, в которой указанная волоконная основа состоит из слоев тканого материала.
4. Теплозащитная система по п.1, в которой указанная волоконная основа состоит из слоев нетканых материалов.
5. Теплозащитная система по п.1, в которой указанная волоконная основа состоит из комбинации слоев нетканого и тканого материалов.
6. Теплозащитная система по п.1, в которой указанная волоконная основа создана способом трехмерного плетения.
7. Теплозащитная система по п.1, в которой указанная волоконная основа получена ламинированием.
8. Теплозащитная система по любому из п.п.1, 2, 3, 4, 5, 6 или 7, в которой в указанной волоконной основе проколоты отверстия в вертикальном направлении, проходящем от внешней стороны к внутренней стороне или наоборот.
9. Теплозащитная система по п.8, в которой указанная волоконная основа имеет внутреннюю сторону и внешнюю сторону, расположенную напротив внутренней стороны, и соединена с опорным элементом, состоящим из волокон и имеющим первую сторону и вторую сторону, расположенную напротив первой стороны, причем волокна опорного элемента ориентированы в направлении, параллельном первой и второй сторонам, опорный элемент примыкает к внутренней стороне основы, первая и вторая стороны опорного элемента расположены под углом от 0° до 180° к основе, а опорный элемент соединен с основой посредством введения отдельных армирующих волокон, которые сначала проходят через внешнюю сторону основы, затем выходят из основы через внутреннюю сторону и далее проходят в опорный элемент.
10. Теплозащитная система по п.8, в которой основа пропитана органической смолой, имеющей высокий выход углерода, и по меньшей мере один раз подвергнута обугливанию для преобразования смолы в углерод.
11. Теплозащитная система по п.9, в которой основа пропитана органической смолой, имеющей высокий выход углерода, и по меньшей мере один раз подвергнута обугливанию для преобразования смолы в углерод.
12. Теплозащитная система по п.10, в которой обугленная основа пропитана абляционной смолой на основе кремния и подвергнута отверждению.
13. Теплозащитная система по п.11, в которой обугленная основа пропитана абляционной смолой на основе кремния и подвергнута отверждению.
14. Теплозащитная система по п.12, в которой указанная смола является смолой RTV типа.
15. Теплозащитная система по п.13, в которой указанная смола является смолой RTV типа.
16. Теплозащитная система для защиты поверхности, подвергающейся воздействию интенсивной тепловой нагрузки, представляющая собой углерод-углеродный (С-С) абляционный материал и содержащая волоконную основу, которая имеет внешнюю сторону, обращенную от поверхности, и противолежащую внутреннюю сторону, обращенную к поверхности, при этом в основе проколоты отверстия в направлении, перпендикулярном плоскости внутренней и внешней сторон для увеличения прочности и пористости основы, при этом указанная основа имеет переменную плотность волокон, причем указанная плотность указанных волокон возрастает в направлении, проходящем от внешней стороны к внутренней стороне; абляционную смолу на основе кремния.
17. Теплозащитная система по п.16, в которой волокна выполнены из углерода, графита, карбида кремния или керамики.
18. Теплозащитная система по п.16, в которой волоконная основа состоит из слоев тканого материала.
19. Теплозащитная система по п.16, в которой волоконная основа состоит из слоев нетканых материалов.
20. Теплозащитная система по п.16, в которой волоконная основа состоит из комбинации слоев нетканого и тканого материалов.
21. Теплозащитная система по п.16, в которой волоконная основа создана способом трехмерного плетения.
22. Теплозащитная система по п.16, в которой волоконная основа получена ламинированием.
23. Теплозащитная система по п.16, в которой основа пропитана абляционной смолой на основе кремния.
24. Теплозащитная система по п.23, в которой указанная смола является смолой RTV типа.
25. Теплозащитная система по п.16, в которой волоконная основа имеет внутреннюю сторону и внешнюю сторону, расположенную напротив внутренней стороны, и соединена с опорным элементом, состоящим из волокон и имеющим первую сторону и вторую сторону, расположенную напротив первой стороны, причем волокна опорного элемента ориентированы в направлении, параллельном первой и второй сторонам, опорный элемент примыкает к внутренней стороне основы, первая и вторая стороны опорного элемента расположены под углом от 0° до 180° к основе, а опорный элемент соединен с основой введением отдельных армирующих волокон, которые сначала проходят через внешнюю сторону основы, затем выходят из основы через внутреннюю сторону и далее проходят в опорный элемент в направлении, параллельном ориентации волокон в опорном элементе.
26. Теплозащитная система по п.25, в которой основа объединена с изоляционным материалом, прикрепленным к ее внутренней стороне.
RU2003121309/03A 2001-01-10 2002-01-09 Теплозащитная система с переменной плотностью волокон RU2293718C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/755,160 2001-01-10
US09/755,160 US6555211B2 (en) 2001-01-10 2001-01-10 Carbon composites with silicon based resin to inhibit oxidation

Publications (2)

Publication Number Publication Date
RU2003121309A RU2003121309A (ru) 2005-03-10
RU2293718C2 true RU2293718C2 (ru) 2007-02-20

Family

ID=25037965

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003121309/03A RU2293718C2 (ru) 2001-01-10 2002-01-09 Теплозащитная система с переменной плотностью волокон

Country Status (19)

Country Link
US (2) US6555211B2 (ru)
EP (1) EP1353885B1 (ru)
JP (1) JP4458510B2 (ru)
KR (1) KR100692363B1 (ru)
CN (1) CN1285463C (ru)
AT (1) ATE308489T1 (ru)
AU (1) AU2002338656B2 (ru)
BR (1) BR0206401B1 (ru)
CA (1) CA2434138C (ru)
DE (1) DE60207040T2 (ru)
DK (1) DK1353885T3 (ru)
ES (1) ES2252477T3 (ru)
MX (1) MXPA03006171A (ru)
NO (1) NO20033154L (ru)
NZ (1) NZ526928A (ru)
RU (1) RU2293718C2 (ru)
TW (1) TW537975B (ru)
WO (1) WO2002083595A2 (ru)
ZA (1) ZA200305309B (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494872C2 (ru) * 2008-04-16 2013-10-10 Эйрбас Оперэйшнз Лимитед Слоистая композиционная структура с самовосстанавливающимся слоем
RU2528967C2 (ru) * 2008-12-30 2014-09-20 Олбани Энджиниэрд Композитс, Инк. Квази-изотропная трехмерная заготовка и способ ее изготовления
RU2593184C2 (ru) * 2014-09-15 2016-07-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Теплозащитное покрытие корпуса летательного аппарата
RU173721U1 (ru) * 2016-12-21 2017-09-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Схема теплозащитного покрытия многоразового теплового щита спускаемого аппарата для возвращения с низкой околоземной орбиты
RU175034U1 (ru) * 2016-12-21 2017-11-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Схема теплозащитного покрытия многоразового теплового щита спускаемого аппарата для возвращения после полета к Луне

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555211B2 (en) * 2001-01-10 2003-04-29 Albany International Techniweave, Inc. Carbon composites with silicon based resin to inhibit oxidation
DE10222258A1 (de) * 2002-03-22 2003-10-09 Schunk Kohlenstofftechnik Gmbh Verbundkeramikkörper sowie Verfahren zum Herstellen eines solchen
FR2845754B1 (fr) * 2002-10-11 2005-05-06 Materiaux Composites Ind Mci Nappe isolante thermique et acoustique
US20060006729A1 (en) * 2004-07-07 2006-01-12 Honeywell International Inc. Composite wheel beam key
US7481248B2 (en) * 2004-09-15 2009-01-27 Pratt & Whitney Canada Corp. Flexible heat shields and method
DE102004061438B3 (de) * 2004-12-17 2006-04-06 Sgl Carbon Ag Kalibrierkörper, Lehre oder Messeinrichtung, vorzugsweise Gewindemesseinrichtung und Verfahren zur Herstellung derselben
JP2008528428A (ja) * 2005-01-26 2008-07-31 サザン・リサーチ・インスティテュート 複合材料およびその製造方法および使用方法
ITLE20050008A1 (it) * 2005-05-24 2006-11-25 Megatex S P A Filati di origine naturale e sintetica con caratteristiche di barriera al trasporto di calore ottenuti attraverso la deposizione di aerogel.
US7549840B2 (en) * 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US7754126B2 (en) * 2005-06-17 2010-07-13 General Electric Company Interlaminar tensile reinforcement of SiC/SiC CMC's using fugitive fibers
FR2887601B1 (fr) * 2005-06-24 2007-10-05 Snecma Moteurs Sa Piece mecanique et procede de fabrication d'une telle piece
US20070014979A1 (en) * 2005-07-15 2007-01-18 Aspen Aerogels, Inc. Secured Aerogel Composites and Methods of Manufacture Thereof
JP4855753B2 (ja) * 2005-10-03 2012-01-18 富士通株式会社 多層配線基板及びその製造方法
US7682577B2 (en) 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Catalytic exhaust device for simplified installation or replacement
US7682578B2 (en) 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Device for catalytically reducing exhaust
US7943535B2 (en) * 2005-11-17 2011-05-17 Albany Engineered Composites, Inc. Hybrid three-dimensional woven/laminated struts for composite structural applications
US8039050B2 (en) * 2005-12-21 2011-10-18 Geo2 Technologies, Inc. Method and apparatus for strengthening a porous substrate
US7722828B2 (en) 2005-12-30 2010-05-25 Geo2 Technologies, Inc. Catalytic fibrous exhaust system and method for catalyzing an exhaust gas
FR2902803B1 (fr) * 2006-06-21 2008-11-14 Snecma Propulsion Solide Sa Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
FR2902802B1 (fr) 2006-06-21 2008-12-12 Snecma Propulsion Solide Sa Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
US8962500B2 (en) * 2006-08-22 2015-02-24 Kureha Corporation Molded article containing stacked carbon fiber and method for producing same
KR100918137B1 (ko) * 2006-10-19 2009-09-17 시니흐 엔터프라이즈 컴퍼니 리미티드 가변 밀도를 갖는 섬유 패드 구조체
JP5112029B2 (ja) * 2007-01-26 2013-01-09 イビデン株式会社 シート材およびその製造方法、排気ガス処理装置およびその製造方法、ならびに消音装置
US20080220256A1 (en) * 2007-03-09 2008-09-11 Ues, Inc. Methods of coating carbon/carbon composite structures
EP2171141B1 (en) * 2007-06-08 2014-07-23 Alvin L. Pepper Aasgaard An article of manufacture for warming the human body and extremities via graduated thermal insulation
FR2933634B1 (fr) * 2008-07-10 2010-08-27 Snecma Aube redresseur de soufflante en composite 3d
FR2939153B1 (fr) * 2008-11-28 2011-12-09 Snecma Propulsion Solide Realisation d'une structure fibreuse a epaisseur evolutive par tissage 3d
JP4825899B2 (ja) 2009-06-22 2011-11-30 トヨタ自動車株式会社 繊維強化樹脂の製造方法、繊維強化樹脂の製造装置
CN101792026A (zh) * 2010-04-16 2010-08-04 哈尔滨工业大学 玄武岩纤维布填充超高速撞击防护结构材料的制备方法
BR112013024727B1 (pt) * 2011-03-28 2021-01-19 Megtec Turbosonic Inc. eletrodo de coleta para um precipitador eletrostático úmido
JP5727923B2 (ja) * 2011-12-12 2015-06-03 川崎重工業株式会社 アブレータ
RU2493057C1 (ru) * 2012-04-24 2013-09-20 Общество с ограниченной ответственностью НПП "ПОЛИПЛЕН" Терморегулирующий материал
FR2997471B1 (fr) * 2012-10-29 2014-11-07 Tecalemit Aerospace Tuyauterie composite
FR3000971B1 (fr) * 2013-01-11 2016-05-27 Saint Gobain Isover Produit d'isolation thermique a base de laine minerale et procede de fabrication du produit
US9440752B1 (en) * 2013-03-14 2016-09-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Modification of surface density of a porous medium
CN103411098B (zh) * 2013-08-28 2016-06-08 航天特种材料及工艺技术研究所 一种耐高温一体化刚性隔热构件及其制备方法
US10604872B1 (en) * 2014-03-06 2020-03-31 United States Of America As Represented By The Administrator Of Nasa Woven thermal protection system
KR101640218B1 (ko) * 2014-06-26 2016-07-18 파낙스 이텍(주) 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓
US10539346B2 (en) * 2015-09-25 2020-01-21 The Board Of Trustees Of The University Of Illinois Autonomic cooling system
US10017426B2 (en) 2016-04-01 2018-07-10 Honeywell International Inc. High density carbon-carbon friction materials
RU2714554C2 (ru) * 2018-03-29 2020-02-18 Эдуард Павлович Цыганов Устройство для торможения и защиты спускаемого летательного аппарата в атмосфере планеты Э.П. Цыганова
CN109910390B (zh) * 2019-03-04 2020-10-09 湖北菲利华石英玻璃股份有限公司 一种梯度密度树脂复合材料预制体制备方法
CN111409321B (zh) * 2020-03-31 2022-03-11 山东众途复合材料有限公司 一种具有密度梯度的碳纤维硬毡的制备方法
CN111703148B (zh) * 2020-06-24 2021-06-22 山东智程达海洋科技有限公司 一种硅基复合材料绝热垫及其制备方法
CN111997781B (zh) * 2020-07-17 2022-02-08 上海复合材料科技有限公司 基于rtm工艺半固化表面的复合材料扩散段成型方法
CN112265347A (zh) * 2020-09-18 2021-01-26 航天特种材料及工艺技术研究所 一种结构承载-烧蚀防热一体化复合材料及其制备方法
CN116122504B (zh) * 2022-12-19 2023-09-12 江苏天鸟高新技术股份有限公司 基于纤维工字梁的双向连续交叉件预制体及其制备方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113521A (en) 1959-02-02 1963-12-10 Nuclear Corp Of America Inc Silica heat barrier
US3243313A (en) 1960-04-25 1966-03-29 Ling Temco Vought Inc Heat-resistant article
US3152548A (en) 1962-10-03 1964-10-13 Martin Marietta Corp Thermal insulating structure
US3264135A (en) 1962-11-28 1966-08-02 Noel T Wakelyn Method of coating carbonaceous base to prevent oxidation destruction and coated base
US3603260A (en) 1969-01-15 1971-09-07 Nasa Stand-off type ablative heat shield
US4038440A (en) * 1972-01-24 1977-07-26 Avco Corporation Three dimensional fabric material
US4031059A (en) 1974-01-21 1977-06-21 Martin Marietta Corporation Low density ablator compositions
US4100322A (en) 1974-12-11 1978-07-11 Mcdonnell Douglas Corporation Fiber-resin-carbon composites and method of fabrication
US4016322A (en) 1975-09-12 1977-04-05 The United States Of America As Represented By The Secretary Of The Air Force Ablative protective material for reentry bodies
US4193828A (en) 1976-07-27 1980-03-18 Fiber Materials, Inc. Method of forming carbon composites
US4131708A (en) 1976-07-27 1978-12-26 Fiber Materials, Inc. Selectively modified carbon-carbon composites
US4252588A (en) 1977-09-19 1981-02-24 Science Applications, Inc. Method for fabricating a reinforced composite
US4201611A (en) 1978-04-17 1980-05-06 The United States Of America As Represented By The Secretary Of The Air Force Carbon/carbon composite for re-entry vehicle applications
US4539252A (en) 1980-07-14 1985-09-03 Celotex Corporation Variable density board having improved thermal and acoustical properties and method and apparatus for producing same
US4430286A (en) 1980-07-14 1984-02-07 Celotex Corporation Variable density board having improved thermal and acoustical properties and method and apparatus for producing same
JPS5727746A (en) * 1980-07-25 1982-02-15 Toho Beslon Co Three dimensional fiber reinforcing composite material and its manufacture
US4522883A (en) 1984-02-09 1985-06-11 The United States Of America As Represented By The Secretary Of The Air Force Circumferentially wrapped carbon-carbon structure
US4833030A (en) 1984-05-18 1989-05-23 Hitco Polymer impregnated and carbonized carbon/carbon composite
US4515847A (en) 1984-08-22 1985-05-07 The United States Of America As Represented By The Secretary Of The Air Force Erosion-resistant nosetip construction
US4713275A (en) 1986-05-14 1987-12-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ceramic/ceramic shell tile thermal protection system and method thereof
FR2612280B1 (fr) 1987-03-13 1989-06-30 France Etat Armement Revetement destine a la protection thermique d'une structure soumise a des conditions d'agressions thermiques intenses
US4983451A (en) 1987-08-05 1991-01-08 Kabushiki Kaisha Kobe Seiko Sho Carbon fiber-reinforced carbon composite material and process for producing the same
US5242723A (en) 1988-08-19 1993-09-07 Osaka Gas Company, Ltd. Formed thermal insulator and process for preparation of same
JP2862580B2 (ja) * 1988-08-19 1999-03-03 大阪瓦斯株式会社 成形断熱材とその製造方法
US4894286A (en) 1988-11-07 1990-01-16 Rohr Industries, Inc. Oxidation resistant refractory coated carbon-carbon composites
JP2607670B2 (ja) * 1989-03-01 1997-05-07 大阪瓦斯株式会社 成形断熱材
US5112545A (en) 1990-02-14 1992-05-12 Airfoil Textron Inc. Composite preforms and articles and methods for their manufacture
US5079074A (en) * 1990-08-31 1992-01-07 Cumulus Fibres, Inc. Dual density non-woven batt
US5108830A (en) 1991-02-01 1992-04-28 The United States Government As Represented By The Secretary Of The Navy Shape-stable reentry body nose tip
JPH05132359A (ja) * 1991-11-08 1993-05-28 Ntn Corp 炭素繊維・セラミツクス複合材料
FR2690499B1 (fr) 1992-04-23 1995-06-30 Aerospatiale Dispositif de protection thermique d'un objet et structure, notamment bouclier thermique, ainsi obtenue.
US5413859A (en) 1992-10-28 1995-05-09 Lockhead Corporation Sublimitable carbon-carbon structure for nose tip for re-entry space vehicle
US5291830A (en) 1992-10-30 1994-03-08 Lockheed Corporation Dual-mode semi-passive nosetip for a hypersonic weapon
RU2084425C1 (ru) 1992-12-30 1997-07-20 Государственный научно-исследовательский институт конструкционных материалов на основе графита Способ получения изделий из углерод-карбидокремниевого композиционного материала и углерод-карбидокремниевый композиционный материал
US5536574A (en) 1993-08-02 1996-07-16 Loral Vought Systems Corporation Oxidation protection for carbon/carbon composites
US5536562A (en) 1994-03-14 1996-07-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low-density resin impregnated ceramic article having an average density of 0.15 to 0.40 g/cc
FR2732338B1 (fr) 1995-03-28 1997-06-13 Europ Propulsion Materiau composite protege contre l'oxydation par matrice auto-cicatrisante et son procede de fabrication
WO1997028399A1 (en) * 1996-01-30 1997-08-07 Textron Systems Corporation Three-dimensionally reinforced ablative/insulative composite
US5705012A (en) 1996-04-22 1998-01-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for molding planar billet of thermally insulative material into predetermined non-planar shape
US6103337A (en) * 1998-07-09 2000-08-15 Albany International Techniweave, Inc. Fiber-reinforced composite materials structures and methods of making same
US6136418A (en) 1999-03-01 2000-10-24 Rotary Rocket Company Rapidly removable thermal protection system for reusable launch vehicle
ATE482915T1 (de) * 2000-07-26 2010-10-15 Ballard Power Systems Kohlenstoffmatrix- verbundwerkstoffzusammensetzungen und darauf bezogene verfahren
US6555211B2 (en) * 2001-01-10 2003-04-29 Albany International Techniweave, Inc. Carbon composites with silicon based resin to inhibit oxidation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494872C2 (ru) * 2008-04-16 2013-10-10 Эйрбас Оперэйшнз Лимитед Слоистая композиционная структура с самовосстанавливающимся слоем
RU2528967C2 (ru) * 2008-12-30 2014-09-20 Олбани Энджиниэрд Композитс, Инк. Квази-изотропная трехмерная заготовка и способ ее изготовления
RU2593184C2 (ru) * 2014-09-15 2016-07-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Теплозащитное покрытие корпуса летательного аппарата
RU173721U1 (ru) * 2016-12-21 2017-09-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Схема теплозащитного покрытия многоразового теплового щита спускаемого аппарата для возвращения с низкой околоземной орбиты
RU175034U1 (ru) * 2016-12-21 2017-11-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Схема теплозащитного покрытия многоразового теплового щита спускаемого аппарата для возвращения после полета к Луне

Also Published As

Publication number Publication date
ES2252477T3 (es) 2006-05-16
DE60207040T2 (de) 2006-07-27
CN1494519A (zh) 2004-05-05
RU2003121309A (ru) 2005-03-10
WO2002083595A2 (en) 2002-10-24
EP1353885B1 (en) 2005-11-02
DK1353885T3 (da) 2005-12-05
KR100692363B1 (ko) 2007-03-09
NZ526928A (en) 2005-03-24
US6555211B2 (en) 2003-04-29
JP4458510B2 (ja) 2010-04-28
US20020090873A1 (en) 2002-07-11
KR20030086589A (ko) 2003-11-10
MXPA03006171A (es) 2004-11-12
ZA200305309B (en) 2004-07-09
CN1285463C (zh) 2006-11-22
DE60207040D1 (de) 2005-12-08
CA2434138A1 (en) 2002-10-24
WO2002083595A3 (en) 2003-04-24
NO20033154L (no) 2003-09-08
EP1353885A2 (en) 2003-10-22
AU2002338656B2 (en) 2007-11-22
CA2434138C (en) 2009-12-22
US6936339B2 (en) 2005-08-30
BR0206401A (pt) 2005-01-18
NO20033154D0 (no) 2003-07-09
ATE308489T1 (de) 2005-11-15
BR0206401B1 (pt) 2011-07-26
US20030148081A1 (en) 2003-08-07
TW537975B (en) 2003-06-21
JP2004527441A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
RU2293718C2 (ru) Теплозащитная система с переменной плотностью волокон
AU2002338656A1 (en) Thermal protection system having a variable density of fibers
US7001544B2 (en) Method for manufacturing carbon-carbon composites
US5360500A (en) Method of producing light-weight high-strength stiff panels
CN104955643B (zh) 制造弯曲陶瓷声衰减板的方法
US8999439B2 (en) Process for manufacturing a thermostructural composite part
US7186360B2 (en) Method of making ceramic composite devices with unidirectionally aligned reinforcing fibers
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
JP3766694B2 (ja) 三次元強化アブレーティブ/断熱複合材
WO2002008150A2 (en) Carbon-matrix composites compositions and methods related thereto
JPH08507744A (ja) 炭素−炭化ケイ素複合材料製品の製造方法及び炭素−炭化ケイ素複合材料
JP2004269353A (ja) セラミックマトリクス複合材料から多孔性部品を製造する方法
JP2709402B2 (ja) 部品、とくに炭素‐炭素ブレーキディスクの製造方法および得られた部品
US5985405A (en) Three dimensionally reinforced ablative/insulative composite
JP4245725B2 (ja) 炭素繊維強化炭素複合材料からなる高温加圧成型炉部材及びその製造方法
JPH04219369A (ja) セラミック繊維強化炭素材料及びその製造法
JP7492379B2 (ja) 耐熱部材
US9988750B2 (en) Method of fabricating a composite material part with improved intra-yarn densification

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190110