RU2284296C2 - Способ синтеза аммиака из смеси азота и водорода, полученной из природного газа - Google Patents

Способ синтеза аммиака из смеси азота и водорода, полученной из природного газа Download PDF

Info

Publication number
RU2284296C2
RU2284296C2 RU2003117224/15A RU2003117224A RU2284296C2 RU 2284296 C2 RU2284296 C2 RU 2284296C2 RU 2003117224/15 A RU2003117224/15 A RU 2003117224/15A RU 2003117224 A RU2003117224 A RU 2003117224A RU 2284296 C2 RU2284296 C2 RU 2284296C2
Authority
RU
Russia
Prior art keywords
synthesis
ammonia
synthesis gas
vol
gas
Prior art date
Application number
RU2003117224/15A
Other languages
English (en)
Other versions
RU2003117224A (ru
Inventor
Вилльем ДЕЙВИ (DE)
Вилльем ДЕЙВИ
Original Assignee
МГ Текнолоджиз АГ
Аммониа Касале С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7662866&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2284296(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by МГ Текнолоджиз АГ, Аммониа Касале С.А. filed Critical МГ Текнолоджиз АГ
Publication of RU2003117224A publication Critical patent/RU2003117224A/ru
Application granted granted Critical
Publication of RU2284296C2 publication Critical patent/RU2284296C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/10Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds combined with the synthesis of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus

Abstract

Способ каталитического синтеза аммиака из смеси азота и водорода заключается в том, что природный газ совместно с обогащенным кислородом газом, содержащим, по меньшей мере, 70 об.% кислорода, подвергают автотермическому риформингу при температуре от 900 до 1200°C и давлении от 40 до 100 бар в присутствии катализатора крекинга, получая сырой синтез-газ, содержащий в пересчете на сухое состояние 55-75 об.% H2, 15-30 об.% CO и 5-30 об.% CO2, причем объемное соотношение H2:CO составляет от 1,6:1 до 4:1. Сырой синтез-газ удаляют из печи для автотермического риформинга, охлаждают и подвергают каталитической конверсии, получая конвертированный синтез-газ, содержащий в пересчете на сухое состояние, по меньшей мере, 55 об.% H2 и не более 8 об.% CO. Конвертированный синтез-газ подвергают многоступенчатой очистке для извлечения CO2, CO и CH4, причем осуществляют контактирование синтез-газа с жидким азотом, используя, по меньшей мере, одну ступень абсорбционной очистки, получают смесь азота и водорода, которую направляют на каталитический синтез аммиака. При этом, по меньшей мере, часть синтезированного аммиака можно превращать в карбамид путем взаимодействия с диоксидом углерода. При осуществлении способа решается задача повышения экономичности синтеза аммиака. 7 з.п. ф-лы, 2 ил., 2 табл.

Description

Изобретение касается способа каталитического синтеза аммиака из смеси азота и водорода.
Из немецкой заявки на патент DE 2007441 известно о получении аммиака из синтез-газа, причем путем газификации углеводородов получают сырой синтез-газ, который обессеривают, конвертируют, освобождают от диоксида углерода и, в заключение, подвергают промывке жидким азотом с целью удаления остаточных примесей. В европейской заявке на патент ЕР 0307983 описывается аналогичный способ, причем конвертированный синтез-газ перед получением аммиака подвергают промывке жидким азотом. Подробное описание каталитического синтеза аммиака приводится в Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A2, Seiten 143-215. В этом же издании (Band A27, Seiten 333-350) описано получение карбамида. Комбинированный способ синтеза аммиака и карбамида описан в европейской заявке на патент ЕР-А-0905127.
В основу настоящего изобретения положена задача максимально возможного повышения экономичности синтеза аммиака и создания способа, пригодного для практического использования, в том числе и на крупных производственных установках. Согласно изобретению эту задачу решают тем, что природный газ совместно с обогащенным кислородом газом направляют в печь для автотермического риформинга, в которой при температуре от 900 до 1200°C и давлении от 40 до 100 бар в присутствии катализатора крекинга получают сырой синтез-газ, содержащий 55-75 об.% H2, 15-30 об.% CO и 5-30 об.% CO2 в пересчете на сухое состояние, причем объемное отношение H2:CO составляет от 1,6:1 до 4:1; сырой синтез-газ удаляют из печи для автотермического риформинга, охлаждают и подвергают каталитической конверсии для превращения CO в H2, получая конвертированный синтез-газ, содержащий, по меньшей мере, 55 об.% H2 и не более 8 об.% CO в пересчете на сухое состояние; конвертированный синтез-газ подвергают многоступенчатой очистке для извлечения CO2, CO и CH4; получают смесь N2+H2, которую направляют в систему каталитического синтеза аммиака.
Важной особенностью способа согласно изобретению является отказ от использования для получения сырого синтез-газа установки, предназначенной для конверсии природного газа с водяным паром (steam reforming). Автотермический риформинг может осуществляться при относительно высоком давлении, составляющем от 30 до 100 бар, преимущественно от 40 до 80 бар. Высокое давление выходящего из печи для риформинга газового потока в дальнейшем может быть сохранено почти на неизменном уровне, в связи с чем перед подачей синтез-газа в систему синтеза аммиака он должен быть подвергнут лишь незначительной компрессии. Благодаря этому способ согласно изобретению обладает гораздо более высокой экономичностью по сравнению с традиционными способами конверсии природного газа с водяным паром, согласно которым допускается использование лишь относительно невысокого давления. Другое преимущество автотермического риформинга природного газа по сравнению с его конверсией в присутствии водяного пара состоит в образовании синтез-газа, характеризующегося таким соотношением H2:CO2, при котором количество диоксида углерода, выделяемого путем абсорбционной очистки конвертированного газа, оказывается достаточным для превращения в карбамид всего синтезируемого аммиака.
Предпочтительный вариант осуществления изобретения состоит в том, что взаимодействию с диоксидом углерода с целью получения карбамида подвергают, по меньшей мере, часть синтезированного аммиака. При этом предпочтительно, если диоксид углерода извлекают из конвертированного синтез-газа, используя, по меньшей мере, одну ступень абсорбционной очистки, и выделенный диоксид углерода используют для получения карбамида. Одну из нескольких возможностей реализации подобной технологии предоставляет использование описанного в европейской заявке на патент ЕР-А-0905127 комбинированного способа. В отличие от традиционных способов того количества диоксида углерода, которое выделяют на стадии абсорбционной очистки синтез-газа, обычно вполне хватает для удовлетворения потребности в диоксиде, необходимом для осуществления синтеза карбамида.
Диоксид углерода предпочтительно может быть извлечен из конвертированной газовой смеси путем физической промывки, осуществляемой, например, метанолом при температуре от -20 до -70°C. При этом потребляется относительно небольшое количество энергии, включая энергию компрессии. Путем регенерации промывочной жидкости можно выделить, по меньшей мере, половину диоксида углерода, находящегося под давлением, например, от 2 до 8 бар, благодаря чему при последующем использовании выделенного диоксида углерода для синтеза карбамида экономится расходуемая на компрессию энергия.
Целесообразно, если в обогащенном кислородом газовом потоке, подаваемом в печь для автотермического риформинга, содержится, по меньшей мере, 70 об.%, преимущественно, по меньшей мере, 90 об.% кислорода, благодаря чему сокращается количество присутствующих в сыром синтез-газе примесей и может быть упрощена его абсорбционная очистка.
Возможные варианты осуществления способа согласно изобретению представлены на нижеследующих схемах.
На Фиг.1 приведена технологическая схема способа.
На Фиг.2 приведена технологическая схема альтернативного способа.
В соответствии с Фиг.1 на предназначенную для предварительной подготовки сырья установку (40) по трубопроводу (1) направляют природный газ, а по трубопроводу (1а) водяной пар для осуществления обычных подготовительных технологических операций: обессеривания, нагревания и удаления C2+-компонентов. Кроме того, на установку (40) по трубопроводу (42) подают содержащий метан газ. Состоящая преимущественно из метана и водяного пара смесь по трубопроводу (43) поступает в горелку (2) печи для автотермического риформинга (3). Одновременно в горелку (2) по трубопроводу (4) с установки для разделения воздуха (5) направляют обогащенный кислородом газ, содержание кислорода в котором обычно составляет, по меньшей мере, 70 об.%, предпочтительно, по меньшей мере, 95 об.%. В печь для риформинга (3) в виде стационарного слоя (За) помещают один из известных гранулированных катализаторов крекинга, например катализатор на основе никеля. Давление в печи (3) составляет от 30 до 100 бар, предпочтительно от 40 до 80 бар, температура от 900 до 1200°C. Удаляемый из печи (3) по трубопроводу (7) сырой синтез-газ содержит 55-75 об.% H2, 15-30 об.% CO и 5-30 об.% CO2, причем объемное отношение H2:CO составляет от 1,8:1 до 4:1. После охлаждения в теплообменнике (8) сырой синтез-газ по трубопроводу (9) направляют на установку каталитической конверсии (10), которая может состоять из нескольких реакторов. Каталитическую конверсию осуществляют при температуре от 150 до 500°C, предпочтительно при температуре от 280 до 450°C, используя известные, предназначенные для этой цели катализаторы, например катализатор на основе железа. Путем каталитической конверсии CO+H2O превращают в CO2+H2. Предпочтительное объемное отношение H2:CO2 в отводимом по трубопроводу (11) конвертированном газе составляет от 2,5:1 до 3:1 (в пересчете на сухое состояние).
Конвертированный синтез-газ, отводимый с установки (10) по трубопроводу (11), содержит, по меньшей мере, 55 об.%, предпочтительно, по меньшей мере, 65 об.% водорода в пересчете на сухое состояние и не более 8 об.% CO. Конвертированный синтез-газ подвергают в теплообменнике (12) косвенному охлаждению, после чего по трубопроводу (13) направляют на установку абсорбционной очистки (14), в частности, для извлечения диоксида углерода. Абсорбционная очистка может быть осуществлена, например, путем физической промывки синтез-газа метанолом при температуре от -70 до -20°C. Кроме того, для промывки синтез-газа могут использоваться и другие растворители, например метилдиэтиламин или селексол (Selexol). Содержащий диоксид углерода промывочный раствор по трубопроводу (16) направляют на установку для регенерации (17), где осуществляют десорбцию диоксида. Регенерированный промывочный раствор по трубопроводу (18) возвращают на установку абсорбционной очистки (14). Выделенный указанным способом диоксид углерода по своему качеству вполне пригоден для синтеза карбамида на установке (21), на которую его подают по трубопроводу (20).
Частично очищенный на установке абсорбционной очистки (14) синтез-газ по трубопроводу (22) направляют на вторую установку абсорбционной очистки (23), где в качестве промывочной жидкости используется жидкий азот. Необходимый для промывки синтез-газа азот поступает с установки для разделения воздуха (5) по трубопроводу (6). Подробности, касающиеся абсорбционной очистки предназначенного для получения аммиака синтез-газа жидким азотом, приводятся в указанном выше европейском патенте ЕР 0307983. Обычно на установке абсорбционной очистки (23) получают содержащий монооксид углерода газ, который по трубопроводу (41) возвращают на установку каталитической конверсии (10). Если одновременно получают обогащенный метаном газ, то по трубопроводу (42) его направляют на установку подготовки сырья (40). Чтобы способствовать производству холода, по трубопроводу (1b) на установку (23) подают природный газ, находящийся под давлением от 10 до 100 бар, предпочтительно под давлением, составляющим, по меньшей мере, 30 бар. Природный газ на установке абсорбционной очистки (23) дросселируют таким образом, чтобы его давление снизилось, по меньшей мере, до 8 бар, предпочтительно, по меньшей мере, до 2,5 бар. Дросселированный природный газ аналогично метану по трубопроводу (42) может быть направлен, например, на установку (40).
Абсорбционную очистку газа на установке (23) осуществляют таким образом, чтобы мольное отношение H2:N2 в отводимом по трубопроводу (24) синтез-газе составляло примерно 3:1. Промытый жидким азотом синтез-газ путем косвенного теплообмена нагревают в теплообменнике (45), после чего сжимают на компрессоре (46) и по трубопроводу (24а) направляют на установку синтеза аммиака, в состав которой входят реактор (25) с косвенным охлаждением и эксплуатируемый в адиабатическом режиме реактор (26). Смесь, образованная рециркулирующим по трубопроводу (27) синтез-газом и направляемым по трубопроводу (24а) свежим синтез-газом, температура которого составляет от 100 до 200°C, направляют по трубопроводу (27а) в трубки (28) или каналы реактора (25), причем функцию охлаждающей среды, предназначенной для отвода теплоты реакции от катализатора (25а), выполняет синтез-газ. В качестве альтернативы охлаждающей средой для отвода тепла, выделяемого в процессе синтеза аммиака, может служить кипящая вода.
Выходящий из реактора (25) синтез-газ, температура которого составляет от 300 до 500°C, по трубопроводу (29) направляют в реактор (26), где он контактирует со стационарным слоем катализатора. Синтез аммиака протекает с экзотермическим эффектом, поэтому реакционную смесь, температура которой составляет от 400 до 600°C, по трубопроводу (30) направляют в холодильник (31). Содержащий аммиак синтез-газ по трубопроводу (32) направляют в реактор (25) для косвенного охлаждения находящегося в нем стационарного слоя катализатора. Температура газа в трубопроводе (33) на выходе из реактора (25) составляет от 300 до 500°C, предпочтительно от 380 до 430°C. Концентрация аммиака в реакционной смеси, отводимой по трубопроводу (33), составляет, по меньшей мере, 20 об.%, и помимо аммиака смесь преимущественно содержит азот и водород. Реакционную смесь охлаждают в многоступенчатом холодильнике (34) и направляют в сепаратор (35). Жидкий сырой аммиак из сепаратора (35) сливают через трубопровод (36). Газообразные компоненты возвращают из сепаратора (35) по трубопроводу (27) в реактор (25) в качестве рециркулирующего газа.
Сырой аммиак может быть полностью или частично выведен с установки синтеза по трубопроводу (37) и направлен для использования в тех или иных известных целях. Кроме того, сырой аммиак может быть полностью или частично направлен по трубопроводу (38) на установку синтеза карбамида (21), который осуществляют известным способом. Полученный карбамид выводят с установки (21) по трубопроводу (39).
Согласно приведенной на Фиг.2 технологической схеме образующийся на установке для каталитической конверсии (10) синтез-газ по трубопроводу (11) направляют в теплообменник (12), затем его сжимают, используя компрессор (15), и далее по трубопроводу (13) направляют в абсорбер (14а) для извлечения диоксида углерода слабым раствором карбамата, поступающим с установки синтеза карбамида (21) по трубопроводу (18). Содержащий диоксид углерода промывочный раствор по трубопроводу (16) возвращают на установку синтеза карбамида (21). Частично очищенный синтез-газ по трубопроводу (22) направляют на установку тонкой очистки (23а), которая может быть осуществлена, например, путем промывки жидким азотом, адсорбции при переменном давлении или превращении диоксида углерода в метан. Подача природного газа по трубопроводу (1Ь) целесообразна лишь при промывке синтез-газа жидким азотом.
Аммиак синтезируют способом, аналогичным описанному при рассмотрении приведенной на Фиг.1 технологической схемы. Реакционная смесь из холодильника (34) по трубопроводу (33а) поступает в абсорбер (35а), где аммиак отмывают подаваемой по трубопроводу (50) водой. Содержащую аммиак воду по трубопроводу (51) направляют на установку синтеза карбамида. Подробное описание синтеза аммиака приводится в европейской заявке на патент ЕР-А-0905127. Остальные цифровые обозначения, указанные на фиг.2, аналогичны приведенным на Фиг.1.
Способ синтеза аммиака согласно изобретению по сравнению с известными способами обладает, в частности, следующими преимуществами:
1. Исключена конверсия природного газа с водяным паром (steam reforming), что означает отказ от использования крупногабаритного и дорогостоящего оборудования. Одновременно благодаря этому могут быть созданы более предпочтительные условия для крекинга метана и других углеводородов при повышенном давлении по сравнению с конверсией с водяным паром.
2. Азот для приготовления смеси N2+H2 предпочтительно вводят лишь на стадии промывки синтез-газа жидким азотом. Необходимость его введения на более ранних технологических стадиях получения и очистки водорода отсутствует.
3. Более целесообразным является выделение метана при промывке синтез-газа жидким азотом и его рециркуляция в печь для автотермического риформинга. Благодаря этому риформинг может быть осуществлен при предельно низкой температуре, составляющей около 950°C, и отсутствует необходимость обеспечения отсутствия метана в газовой смеси, выходящей из печи. Кроме того, оказывается возможным дросселирование природного газа, подаваемого на установку для промывки синтез-газа жидким азотом под давлением от 10 до 100 бар, для производства холода (эффект Джоуля-Томпсона).
4. Более целесообразным является получение при промывке синтез-газа жидким азотом газового потока, обогащенного монооксидом углерода, который возвращают на стадию каталитической конверсии. Благодаря этому присутствие остаточного монооксида углерода в конвертированной газовой смеси не следует рассматривать как нарушение технологии: его содержание в конвертированном синтез-газе может достигать 8 об.%, преимущественно не превышая 4 об.%. Благодаря этому для осуществления каталитической конверсии можно использовать надежные в эксплуатации и экономичные катализаторы на основе железа и отказаться от более чувствительных катализаторов на основе меди.
5. Очистка газа путем промывки жидким азотом приводит к получению смеси N2+H2, обладающей высокой степенью чистоты, в связи с чем можно полностью отказаться от удаления части рециркулирующего газа или удалять лишь незначительное его количество.
6. Количества отходящего тепла вполне хватает, чтобы компенсировать потребность в энергии, включая энергию, необходимую для компрессии синтез-газа, направляемого на получение аммиака и последующий синтез мочевины.
7. Расход природного газа при синтезе аммиака (с учетом нижнего предела теплотворной способности) не превышает 27,3 кДж/т, а при синтезе карбамида составляет не более 19 кДж/т, то есть гораздо ниже по сравнению с известными способами. Указанные расходные параметры положены в основу приведенного ниже примера.
8. Технологическое оборудование, предназначенное для осуществления способа согласно изобретению, может быть скомпоновано из отдельных модулей, и для его монтажа необходима относительно небольшая площадь.
Пример
Способ реализуют в соответствии с представленной на Фиг.1 технологической схемой, причем ежесуточная производительность может составлять 3000 т аммиака или 5263 т карбамида. Часть приведенных ниже данных получена расчетным путем.
По трубопроводу (1) подают природный газ, по трубопроводу (1а) водяной пар, причем мольное отношение водяного пара к углеводороду составляет 2,55:1. В таблице 1 приведены расходные параметры, температура, давление и составы газовых смесей (в об.%).

Таблица 1
Цифровые обозначения 1 43 7 11 24а 27а 33 20
Расход (т/час) 92 263 336 357 127 382 382 162
Температура (°C) 25 65 95 32 168 175 403 32
Давление (бар) 55 61 60 57 137 143 140 3
Состав CH4 91,3 27,0 1,8 2,0 - - - 0,8
C2H4 5,8 - - - - - - -
CO - 1,6 10,6 1,1 - - - -
CO2 1,9 0,6 7,1 16,7 - - - 99,0
Аргон - - 0,3 0,5 - - - 0,1
H2 - 3,2 38,7 47,5 74,8 70,8 54,1 0,1
N2 1,0 0,3 0,4 2,3 25,2 24,4 18,9 -
H2O - 67,3 41,1 29,9 - - - -
NH3 - - - - - 4,8 27,0 -
Содержание кислорода в направляемом по трубопроводу (4) газе составляет 95 об.%. Синтез-газ в трубопроводе (24) содержит менее 5 частей на миллион (об.) монооксида углерода и около 25 частей на миллион (об.) аргона. Катализатор (3а) на основе оксида никеля (NiO), а также катализаторы синтеза аммиака являются стандартной продукцией, выпускаемой, в частности, фирмой Süd-Chemie (Мюнхен (DE), тип G-90 и AS-4). Температура на входе в печь для риформинга (3) составляет 950°C. При этой температуре общий расход газа является минимальным.
Каталитическую конверсию (10) осуществляют, пропуская синтез-газ через охлаждаемый газом реактор, обладающий аналогичной реактору (25) конструкцией. Далее реакционную смесь пропускают через промежуточный холодильник и эксплуатируемый в адиабатическом режиме реактор со стационарным слоем катализатора. Конверсию осуществляют, используя выпускаемый фирмой Süd-Chemie стандартный железохромовый катализатор типа G-3C. Остаточное содержание монооксида углерода в конвертированном синтез-газе не превышает 1,6 об.% (в пересчете на сухое состояние), объемное соотношение H2:CO2=2,84 (в пересчете на сухое состояние).
Абсорбционную очистку газа (14, 17) осуществляют способом как для ректизола (Rectisol-Verfahren), извлекая диоксид углерода метанолом при температуре -58°C. На установке для промывки газа жидким азотом (23) синтез-газ сначала охлаждают до температуры -185°C. Охлаждение сопровождается конденсацией метана, который выделяют и удаляют по трубопроводу (42). Затем в результате контактирования газа с жидким азотом происходит конденсация монооксида углерода, который выделяют и по трубопроводу (41) направляют на каталитическую конверсию. В таблице 2 приводится состав газовых потоков (в об.%) в трубопроводах (41) и (42).
Таблица 2
(41) (42)
CH4 5,13 52,54
CO 21,18 12,27
CO2 - 0,53
Аргон 7,18 8,64
H2 9,76 6,75
N2 56,75 19,27
Благодаря теплообмену газовой смеси в системе охлаждения (34) с охлаждающей водой происходит конденсация 65% полученного аммиака. Часть газового потока (purge gas - газ продувки) отделяют от рециркулирующего газа с целью удаления примесей.

Claims (8)

1. Способ каталитического синтеза аммиака из смеси азота и водорода, отличающийся тем, что природный газ совместно с обогащенным кислородом газом, содержащим, по меньшей мере, 70 об.% кислорода, подвергают автотермическому риформингу при температуре от 900 до 1200°C и давлении от 40 до 100 бар в присутствии катализатора крекинга, получая сырой синтез-газ, содержащий в пересчете на сухое состояние 55-75 об.% H2, 15-30 об.% CO и 5-30 об.% CO2, причем объемное соотношение H2:CO составляет от 1,6:1 до 4:1, сырой синтез-газ удаляют из печи для автотермического риформинга, охлаждают и подвергают каталитической конверсии, получая конвертированный синтез-газ, содержащий в пересчете на сухое состояние по меньшей мере, 55 об.% H2 и не более 8 об.% CO, конвертированный синтез-газ подвергают многоступенчатой очистке для извлечения CO2, CO и CH4, причем осуществляют контактирование синтез-газа с жидким азотом, используя, по меньшей мере, одну ступень абсорбционной очистки, получают смесь азота и водорода, которую направляют на каталитический синтез аммиака.
2. Способ по п.1, отличающийся тем, что, по меньшей мере, часть синтезированного аммиака превращают в карбамид путем взаимодействия с диоксидом углерода.
3. Способ по п.1 или 2, отличающийся тем, что из конвертированного синтез-газа извлекают CO2, используя, по меньшей мере, одну ступень абсорбционной очистки, и, по меньшей мере, часть извлеченного CO2 направляют на синтез карбамида.
4. Способ по п.1 или 2, отличающийся, тем, что CO2 из конвертированного синтез-газа извлекают путем физической промывки метанолом при температуре от -70 до -20°C.
5. Способ по п.1 или 2, отличающийся тем, что путем абсорбционной очистки жидким азотом из синтез-газа извлекают содержащий CO газ, который направляют на каталитическую конверсию.
6. Способ по п.1 или 2, отличающийся тем, что смесь азота и водорода направляют на стадию синтеза аммиака в реакторы, содержащие, по меньшей мере, два катализатора, причем указанная смесь служит охлаждающей средой для косвенного охлаждения находящегося в одном из реакторов катализатора.
7. Способ по п.1 или 2, отличающийся тем, что объемное соотношение H2:CO2 в образующемся при конверсии синтез-газе составляет от 2,5:1 до 3,0:1 в пересчете на сухое состояние.
8. Способ по п.1 или 2, отличающийся тем, что на стадию абсорбционной очистки синтез-газа жидким азотом направляют природный газ под давлением от 10 до 100 бар, осуществляя его дросселирование до 8 бар.
RU2003117224/15A 2000-11-10 2001-10-24 Способ синтеза аммиака из смеси азота и водорода, полученной из природного газа RU2284296C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10055818A DE10055818A1 (de) 2000-11-10 2000-11-10 Verfahren zum Herstellen von Ammoniak aus einem Stickstoff-Wasserstoff-Gemisch aus Erdgas
DE10055818.6 2000-11-10

Publications (2)

Publication Number Publication Date
RU2003117224A RU2003117224A (ru) 2004-11-27
RU2284296C2 true RU2284296C2 (ru) 2006-09-27

Family

ID=7662866

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003117224/15A RU2284296C2 (ru) 2000-11-10 2001-10-24 Способ синтеза аммиака из смеси азота и водорода, полученной из природного газа

Country Status (16)

Country Link
US (1) US7470415B2 (ru)
EP (1) EP1337466B1 (ru)
CN (1) CN1246225C (ru)
AR (1) AR031308A1 (ru)
AT (1) ATE265986T1 (ru)
AU (2) AU1905402A (ru)
CA (1) CA2428263C (ru)
DE (2) DE10055818A1 (ru)
DK (1) DK1337466T3 (ru)
EG (1) EG24129A (ru)
MX (1) MXPA03004159A (ru)
MY (1) MY136389A (ru)
RU (1) RU2284296C2 (ru)
SA (1) SA01220591B1 (ru)
UA (1) UA75901C2 (ru)
WO (1) WO2002038499A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2479484C2 (ru) * 2007-08-08 2013-04-20 Аммония Касале С.А. Способ получения синтез-газа для синтеза аммиака
RU2524720C2 (ru) * 2008-12-11 2014-08-10 Бп П.Л.К. Комплексная установка для переработки газа
RU2719425C1 (ru) * 2016-06-17 2020-04-17 Касале Са Способ производства аммиака
RU2764453C2 (ru) * 2017-02-28 2022-01-17 Касале Са Способ и установка, предназначенные для совместного получения аммиака и мочевины
RU2788872C2 (ru) * 2018-09-11 2023-01-25 Касале Са Способ синтеза аммиака

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055818A1 (de) 2000-11-10 2002-05-23 Ammonia Casale Sa Verfahren zum Herstellen von Ammoniak aus einem Stickstoff-Wasserstoff-Gemisch aus Erdgas
CN102530867A (zh) 2003-03-06 2012-07-04 国际石油开发帝石株式会社 制备合成气的方法,使用合成气制备二甲醚的方法和合成气制备炉
KR101123052B1 (ko) * 2003-11-17 2012-03-15 할도르 토프쉐 에이/에스 요소 제조방법
DE102004049774B4 (de) * 2004-10-12 2007-04-26 Lurgi Ag Verfahren zur Herstellung von Harnstoff aus Erdgas
DE102006054472B4 (de) * 2006-11-18 2010-11-04 Lurgi Gmbh Verfahren zur Gewinnung von Kohlendioxid
EP2464600A4 (en) * 2009-08-12 2015-08-05 4A Technologies Llc MODULAR SYSTEM AND METHOD FOR UREA PRODUCTION FROM SUPERFLUENT NATURAL GAS
DE102010035885A1 (de) 2010-08-30 2012-03-01 Uhde Gmbh Verfahren zur Herstellung von Synthesegas aus kohlenwasserstoffhaltigen Einsatzgasen
LT2723676T (lt) * 2011-06-23 2019-03-12 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Amoniako ir karbamido gamybos būdas
AU2013282904B2 (en) * 2012-06-27 2016-11-03 Grannus, Llc Polygeneration production of power and fertilizer through emissions capture
EP2801550A1 (en) * 2013-05-10 2014-11-12 Ammonia Casale S.A. A process for producing ammonia synthesis gas with high temperature shift and low steam-to-carbon ratio
CN103848760B (zh) * 2014-02-19 2016-04-06 山西阳煤丰喜肥业(集团)有限责任公司 利用钢铁联合企业中的煤气生产尿素的工艺
US9475696B2 (en) * 2014-02-24 2016-10-25 Linde Aktiengesellschaft Methods for producing synthesis gas for ammonia production
US20150280265A1 (en) * 2014-04-01 2015-10-01 Dustin Fogle McLarty Poly-generating fuel cell with thermally balancing fuel processing
DE102015210801A1 (de) 2015-06-12 2016-12-15 Thyssenkrupp Ag Mehrdruckverfahren zur Herstellung von Ammoniak ohne Anreicherung von Inertgas
CA3007124A1 (en) 2015-12-04 2017-06-08 Grannus, Llc Polygeneration production of hydrogen for use in various industrial processes
AR107517A1 (es) 2016-02-02 2018-05-09 Haldor Topsoe As Proceso y planta de amoníaco basados en atr
DE102016105127A1 (de) 2016-03-18 2017-09-21 Thyssenkrupp Ag Verfahren und Vorrichtung zur Behandlung eines Gasgemischs
CA3053690C (en) 2017-03-07 2023-11-14 Haldor Topsoe A/S Urea process with controlled excess of co2 and/or nh3
DE102017204208A1 (de) 2017-03-14 2018-09-20 Thyssenkrupp Ag Verfahren und Anlage zur Erzeugung und Aufbereitung eines Synthesegasgemisches
EP3658491B1 (en) * 2017-07-25 2023-08-30 Topsoe A/S Method for the preparation of ammonia synthesis gas
BR112020001511A2 (pt) * 2017-07-25 2020-09-08 Haldor Topsøe A/S processo para a coprodução de metanol e amônia
CN108439332A (zh) * 2018-04-19 2018-08-24 贵州赤天化桐梓化工有限公司 一种甲醇合成氢回收膜分离非渗透气回收的工艺方法
DE102018215884A1 (de) 2018-09-19 2020-03-19 Thyssenkrupp Ag Verfahren zur Entfernung von Inertgasen aus flüssigem Ammoniak
US20200140271A1 (en) * 2018-11-07 2020-05-07 L'air Liquide, Societé Anonyme Pour L'etude Et L'exploitation Des Procédés Georges Claude Novel process for integrating a partial oxidation syngas production plant with an oxygen combustion process
US10618818B1 (en) * 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
EP3962856A1 (en) * 2019-05-02 2022-03-09 Haldor Topsøe A/S Atr-based hydrogen process and plant
US20230271829A1 (en) * 2020-08-17 2023-08-31 Topsoe A/S ATR-Based Hydrogen Process and Plant
EP4066921B1 (de) 2021-03-31 2023-12-27 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und anlage zum herstellen von methanol und ammoniak
DE102021209338A1 (de) 2021-08-25 2023-03-02 Thyssenkrupp Ag Ammoniaksynthese mit CO2-neutralem Wasserstoff
BE1029714B1 (de) 2021-08-25 2023-03-27 Thyssenkrupp Ag Ammoniaksynthese mit CO2-neutralem Wasserstoff
WO2023025759A1 (de) 2021-08-25 2023-03-02 Thyssenkrupp Industrial Solutions Ag Ammoniaksynthese mit co2-neutralem wasserstoff

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615200A (en) * 1967-06-14 1971-10-26 Toyo Engineering Corp Process for concentrating inert components in pressurized synthesis loop
US3872025A (en) * 1969-10-31 1975-03-18 Bethlehem Steel Corp Production and utilization of synthesis gas
DE1958033A1 (de) * 1969-11-19 1971-06-03 Metallgesellschaft Ag Erzeugung von Wasserstoff oder Ammoniaksynthesegas bei mittlerem Durck
GB1574723A (en) * 1976-03-10 1980-09-10 Haldor Topsoe As Apparatus for the synthesis of ammonia
FR2368435A1 (fr) * 1976-10-21 1978-05-19 Air Liquide Procede et installation de traitement de gaz lors d'une preparation de gaz destines a la synthese d'ammoniac
ZA802258B (en) * 1979-04-24 1981-04-29 Foster Wheeler Ltd Synthesis gas for ammonia production
DE3201776A1 (de) * 1982-01-21 1983-09-08 Krupp-Koppers Gmbh, 4300 Essen Verfahren zur gleichzeitigen erzeugung von methanol- und ammoniak-synthesegas.
US4479925A (en) * 1982-09-13 1984-10-30 The M. W. Kellogg Company Preparation of ammonia synthesis gas
US4863707A (en) * 1982-09-30 1989-09-05 Engelhard Corporation Method of ammonia production
NO171409C (no) 1982-09-30 1993-03-10 Engelhard Corp Fremgangsmaate ved fremstilling av en hydrogenrik gass vedautotermisk reformering av et hydrokarbonholdig utgangsmateriale
DE3239605A1 (de) 1982-10-26 1984-04-26 Linde Ag, 6200 Wiesbaden Verfahren zur kombinierten herstellung von ammoniak und harnstoff
US4822521A (en) * 1983-06-09 1989-04-18 Uop Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US4725381A (en) * 1984-03-02 1988-02-16 Imperial Chemical Industries Plc Hydrogen streams
DE3679090D1 (de) * 1985-03-08 1991-06-13 Ici Plc Synthesegas.
DE3731055A1 (de) 1987-09-16 1989-04-06 Metallgesellschaft Ag Verfahren zur erzeugung eines ammoniak-synthesegases
US5068058A (en) * 1989-05-04 1991-11-26 Air Products And Chemicals, Inc. Production of ammonia synthesis gas
DE69221556T2 (de) * 1991-07-09 1997-12-18 Ici Plc Synthesegaserzeugung
US5180570A (en) * 1992-01-23 1993-01-19 Lee Jing M Integrated process for making methanol and ammonia
US5736116A (en) * 1995-10-25 1998-04-07 The M. W. Kellogg Company Ammonia production with enriched air reforming and nitrogen injection into the synthesis loop
US5935544A (en) * 1996-06-06 1999-08-10 Brown & Root, Inc. Moderate excess nitrogen Braun Purifier™ process and method for retrofitting non-Braun Purifier™ ammonia plants
DE69708627T2 (de) 1997-09-20 2002-08-08 Urea Casale Sa Verfahren zur kombinierten Erzeugung von Ammoniak und Harnstoff
DK173745B1 (da) 1998-08-27 2001-09-03 Topsoe Haldor As Fremgangsmåde til autotermisk reforming af carbonhydridmateriale
EP0999178B1 (en) 1998-11-03 2006-07-26 Ammonia Casale S.A. Process for the production of synthesis gas
AU774093B2 (en) 1999-07-29 2004-06-17 Sasol Technology (Pty) Ltd. Natural gas conversion to hydrocarbons and ammonia
DE10055818A1 (de) 2000-11-10 2002-05-23 Ammonia Casale Sa Verfahren zum Herstellen von Ammoniak aus einem Stickstoff-Wasserstoff-Gemisch aus Erdgas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Производство аммиака. Под ред. В.П.Семенова, М.: Химия, 1985, с.52-80. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2479484C2 (ru) * 2007-08-08 2013-04-20 Аммония Касале С.А. Способ получения синтез-газа для синтеза аммиака
RU2524720C2 (ru) * 2008-12-11 2014-08-10 Бп П.Л.К. Комплексная установка для переработки газа
RU2719425C1 (ru) * 2016-06-17 2020-04-17 Касале Са Способ производства аммиака
RU2764453C2 (ru) * 2017-02-28 2022-01-17 Касале Са Способ и установка, предназначенные для совместного получения аммиака и мочевины
RU2788872C2 (ru) * 2018-09-11 2023-01-25 Касале Са Способ синтеза аммиака

Also Published As

Publication number Publication date
MXPA03004159A (es) 2004-12-02
MY136389A (en) 2008-09-30
DK1337466T3 (da) 2004-07-26
UA75901C2 (en) 2006-06-15
DE50102227D1 (de) 2004-06-09
EP1337466B1 (de) 2004-05-06
EP1337466A1 (de) 2003-08-27
US7470415B2 (en) 2008-12-30
AU2002219054B2 (en) 2006-11-02
ATE265986T1 (de) 2004-05-15
AU1905402A (en) 2002-05-21
US20040028595A1 (en) 2004-02-12
DE10055818A1 (de) 2002-05-23
WO2002038499A1 (de) 2002-05-16
CA2428263C (en) 2008-03-25
CN1246225C (zh) 2006-03-22
EG24129A (en) 2008-07-28
CA2428263A1 (en) 2002-05-16
CN1474782A (zh) 2004-02-11
SA01220591B1 (ar) 2006-12-06
AR031308A1 (es) 2003-09-17

Similar Documents

Publication Publication Date Title
RU2284296C2 (ru) Способ синтеза аммиака из смеси азота и водорода, полученной из природного газа
US4553981A (en) Enhanced hydrogen recovery from effluent gas streams
CA3056430C (en) Method for producing hydrogen and methanol
US4524056A (en) Process for the production of ammonia
JP4268128B2 (ja) 天然ガスから合成ガスを生成・分離するための装置および方法
RU2386611C2 (ru) Способ синтеза метанола
KR101717121B1 (ko) 메탄올 및 암모니아의 공동 제조
GB2337212A (en) Production of a high purity hydrogen gas stream and a high purity carbon monoxide gas stream
RU2597920C2 (ru) Способ производства аммиака
JPS6183623A (ja) アンモニア合成ガスの製法
EP0411506A2 (en) Production of hydrogen, carbon monoxide and mixtures thereof
CN112262106A (zh) 甲醇生产方法
AU747184B2 (en) Reducing methanol emissions from a syngas unit
GB2186870A (en) Ammonia synthesis
CA1254749A (en) Hydrogen streams
EP0243350A1 (en) Enhanced hydrogen recovery from effluent gas streams
JPH0733253B2 (ja) アンモニア及びメタノールの併産方法
WO2002048027A1 (en) Process and apparatus for the production of ammonia
CN113891850B (zh) 用于分离一氧化碳、氢气和至少一种酸性气体的混合物的方法和装置
JPH03242302A (ja) 水素及び一酸化炭素の製造方法
US20220233994A1 (en) Process and apparatus for the separation of two gaseous streams each containing carbon monoxide, hydrogen and at least one acid gas
RU2774658C1 (ru) Способ производства метанола
US5059411A (en) Process and apparatus for the production of carbon monoxide
RU2800065C2 (ru) Способ синтеза водородсодержащего соединения
CA1250432A (en) Enhanced hydrogen recovery from effluent gas streams