RU2264550C2 - Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха - Google Patents

Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха Download PDF

Info

Publication number
RU2264550C2
RU2264550C2 RU2002120461/06A RU2002120461A RU2264550C2 RU 2264550 C2 RU2264550 C2 RU 2264550C2 RU 2002120461/06 A RU2002120461/06 A RU 2002120461/06A RU 2002120461 A RU2002120461 A RU 2002120461A RU 2264550 C2 RU2264550 C2 RU 2264550C2
Authority
RU
Russia
Prior art keywords
temperature
pressure
air
exhaust gas
amount
Prior art date
Application number
RU2002120461/06A
Other languages
English (en)
Other versions
RU2002120461A (ru
Inventor
Герхард ЭНГЕЛЬ (DE)
Герхард ЭНГЕЛЬ
Манфред БИРК (DE)
Манфред БИРК
Томас БЛАЙЛЕ (DE)
Томас БЛАЙЛЕ
Франк МАЙЕР (DE)
Франк МАЙЕР
Бенедикт КРАУС (DE)
Бенедикт КРАУС
Петер РУПП (DE)
Петер РУПП
Вольфганг КРЭМЕР (DE)
Вольфганг КРЭМЕР
Original Assignee
Роберт Бош Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7934733&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2264550(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Роберт Бош Гмбх filed Critical Роберт Бош Гмбх
Publication of RU2002120461A publication Critical patent/RU2002120461A/ru
Application granted granted Critical
Publication of RU2264550C2 publication Critical patent/RU2264550C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Изобретение относится к двигателестроению, в частности к способам и устройствам управления двигателями внутреннего сгорания. Изобретение позволяет упростить устройство управления. В способе управления двигателем внутреннего сгорания (ДВС) с системой впуска воздуха на основании, по меньшей мере, одной управляющей величины и, по меньшей мере, одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью, по меньшей мере, одной модели определяют, по меньшей мере, одну величину, характеризующую параметры системы впуска воздуха. Модель состоит, по меньшей мере, из первой и второй субмоделей, при этом выходные величины определяют с помощью субмодели на основании входных величин. В качестве входных величин для первой субмодели помимо, по меньшей мере, одной выходной величины второй субмодели дополнительно учитывают управляющую величину и измеряемую величину. При этом в качестве управляющей величины учитывают, по меньшей мере, одну величину, характеризующую количество впрыскиваемого топлива. 2 н. и 15 з.п. ф-лы, 8 ил.

Description

Изобретение относится к способу и устройству управления двигателем внутреннего сгорания (ДВС) с системой впуска воздуха.
Способ и устройство управления ДВС с системой впуска воздуха известны, например, из заявки DE 19756619. В заявке описана система для эксплуатации ДВС, установленного прежде всего на транспортном средстве, или автомобиле, при этом воздух подают в камеру сгорания через расположенный во впускной (всасывающей) трубе дроссельный клапан, при этом регистрируют расход воздуха через дроссельный клапан. При этом имеется трубопровод рециркуляции отработавших газов (ОГ), в котором установлен клапан, причем определяют также расход газов через этот клапан в трубопроводе рециркуляции ОГ. На основании обоих измеряемых значений расхода определяют расход воздуха, подаваемого в камеру сгорания. При использовании этого устройства возникает проблема, которая состоит в том, что различные необходимые для вычислений величины очень трудно определять с помощью датчиков. Поэтому недостаток известных систем и способов состоит в том, что для определения различных величин необходимо использовать большое количество датчиков.
В основу изобретения положена задача устранения вышеупомянутых недостатков уровня техники. Для этого в соответствии с изобретением предлагается способ управления ДВС с системой впуска воздуха. Согласно предлагаемому способу на основании по меньшей мере одной управляющей величины и по меньшей мере одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью по меньшей мере одной модели определяют по меньшей мере одну величину, характеризующую параметры системы впуска воздуха. Отличие предлагаемому способа состоит в том, что используемая модель состоит по меньшей мере из первой и второй субмоделей, при этом выходные величины определяют с помощью субмодели на основании входных величин, в качестве входных величин для первой субмодели помимо по меньшей мере одной выходной величины второй субмодели дополнительно учитывают управляющую величину и измеряемую величину, при этом в качестве управляющей величины учитывают по меньшей мере одну величину, характеризующую количество впрыскиваемого топлива.
С помощью предлагаемых в изобретении способа и устройства можно определить по меньшей мере одну величину, которая характеризует систему впуска воздуха. При этом требуется лишь небольшое число измеряемых величин, которые легко определяются посредством простых, дешевых датчиков. Кроме, того, используются величины, которые при управлении ДВС "зашиты" (сохранены) в устройстве управляющем (приборе).
Как указано выше, модель включает в себя по меньшей мере первую и вторую субмодели, которые определяют выходные величины на основании входных величин, при этом в качестве входных величин первой субмодели наряду по меньшей мере с одной выходной величиной второй субмодели дополнительно учитывают управляющую величину и/или измеряемые величины.
Наиболее простая структура модели получается в том случае, если в качестве управляющей величины использовать количество (расход) топлива, характеризующий количество впрыскиваемого топлива в единицу времени, скважность импульсов для управления системой рециркуляции ОГ, которая характеризует управляющий сигнал, подаваемый на исполнительный орган для воздействия на процесс рециркуляции ОГ, и/или скважность импульсов для управления компрессором, характеризующую, управляющий сигнал подаваемый на исполнительный орган для воздействия на рабочие характеристики турбины и приводимого ею компрессора. Наряду с расходом топлива предпочтительно дополнительно использовать скважность импульсов, используемых для управления системой рециркуляции ОГ, и/или скважность импульсов, используемых для управления компрессором. Это зависит от того, оснащен ли ДВС системой рециркуляции ОГ и/или компрессором.
В качестве измеряемой величины в частном случае осуществления способа используют по меньшей мере частоту вращения, характеризующую частоту вращения вала ДВС, температуру окружающей среды, характеризующую температуру окружающего воздуха, и/или давление окружающей среды, характеризующее давление окружающего воздуха. Предпочтительным является использование частоты вращения, температуру окружающей среды и давления окружающей среды.
Далее в частных вариантах с помощью модели компрессора на основании по меньшей мере частоты вращения вала компрессора, давления окружающей среды, давления наддува и температуры окружающей среды можно определять по меньшей мере количество воздуха, проходящего через компрессор, производительность компрессора и температуру наддувочного воздуха. В этом случае количество воздуха определяют на основании плотности и объема воздуха, проходящего через компрессор, причем плотность воздуха определяют на основании температуры окружающей среды и давления окружающей среды, а объем воздуха определяют на основании частоты вращения вала компрессора и перепада энтальпий, который в свою очередь определяют на основании давления окружающей среды и давления наддува.
Кроме того, с помощью модели трубопровода подачи свежего воздуха высокого давления на основании по меньшей мере количества воздуха, поступающего в трубопровод подачи свежего воздуха высокого давления, содержания в этом воздухе кислорода, температуры наддувочного воздуха и температуры в линии рециркуляции ОГ можно определять по меньшей мере давление наддува, содержание кислорода в воздухе, подаваемом в ДВС, и температуру смеси. В этом случае содержание кислорода, поступающего в ДВС, определяют на основании количества воздуха, поступающего в трубопровод подачи свежего воздуха высокого давления, и содержания в нем кислорода, а также на основании по меньшей мере одной константы, и/или давление наддува определяют путем интегрирования величин изменения давления, задаваемых на основании количества входящего и/или выходящего воздуха и его температуры.
Далее с помощью модели цилиндра на основании по меньшей мере расхода топлива, частоты вращения вала ДВС, давления наддува, температуры смеси и содержания кислорода в воздухе, поступающем в ДВС, можно вычислять по меньшей мере температуру ОГ, количество воздуха, поступающего в ДВС, и количество воздуха, выходящего из ДВС, а также содержание кислорода в этом воздухе. В этом случае температуру ОГ определяют на основании расхода топлива и температуры смеси и/или количество воздуха, поступающего в ДВС и выходящего из него, определяют на основании температуры и давления поступающего в ДВС газа, частоты вращения вала двигателя и/или расхода топлива.
С помощью модели турбины на основании по меньшей мере значения хода исполнительного органа компрессора, температуры ОГ, давления за турбиной и количества воздуха, проходящего через турбину, можно определять по меньшей мере давление ОГ, частоту вращения вала компрессора и температуру в выпускном трубопроводе. При этом давление ОГ определяют на основании значения хода исполнительного органа компрессора, количества воздуха, проходящего через турбину, давления за турбиной и температуры ОГ и/или перепад энтальпий в турбине определяют на основании перепада давлений в турбине, вычисляемого как разность давления ОГ и давления за турбиной, и температуры ОГ, и/или температуру в выпускном трубопроводе определяют на основании перепада энтальпий и температуры ОГ, и/или частоту вращения вала компрессора определяют на основании перепада энтальпий, производительности компрессора и количества воздуха, проходящего через турбину.
С помощью модели турбины на основании по меньшей мере значения хода исполнительного органа компрессора, количества воздуха, проходящего через турбину, давления за турбиной и температуры ОГ можно определять по меньшей мере давление ОГ, частоту вращения вала компрессора и температуру в выпускном трубопроводе. В этом случае давление ОГ определяют на основании значения хода исполнительного органа компрессора, количества воздуха, проходящего через турбину, давления за турбиной и температуры ОГ и/или перепад энтальпий в турбине определяют на основании перепада давлений в турбине и температуры ОГ и/или температуру в выпускном трубопроводе определяют на основании перепада энтальпий и температуры ОГ и/или частоту вращения вала компрессора определяют на основании перепада энтальпий, производительности компрессора и количества воздуха, проходящего через турбину.
С помощью модели выпускного трубопровода на основании по меньшей мере количества воздуха, проходящего через турбину, давления окружающей среды и температуры в выпускном трубопроводе можно определять давление за турбиной.
Кроме того, с помощью модели рециркуляции ОГ на основании значения хода исполнительного органа системы рециркуляции ОГ, температуры и давления на входе и выходе клапана системы рециркуляции ОГ можно определять температуру и количество воздуха, проходящего по трубопроводу системы рециркуляции ОГ. В этом случае количество воздуха, проходящего через клапан системы рециркуляции ОГ, определяют на основании перепада давлений в этом клапане системы рециркуляции ОГ, температуры воздуха, проходящего через этот клапан системы рециркуляции ОГ, и значения хода исполнительного органа системы рециркуляции ОГ, при этом в качестве температуры воздуха в трубопроводе системы рециркуляции ОГ в зависимости от перепада давлений в клапане системы рециркуляции ОГ по выбору используют либо температуру наддувочного воздуха, либо температуру ОГ.
Объектом изобретения является также устройство управления ДВС с системой впуска воздуха. В таком устройстве на основании по меньшей мере одной управляющей величины и по меньшей мере одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью по меньшей мере одной модели определяют по меньшей мере одну величину, характеризующую параметры системы впуска воздуха. Отличие предлагаемого устройства состоит в том, что модель состоит по меньшей мере из первой и второй субмоделей, с помощью которых на основании входных величин определяются выходные величины, при этом в качестве входных величин для первой субмодели помимо по меньшей мере одной выходной величины второй субмодели дополнительно учитываются управляющая величина и измеряемая величина, причем в качестве управляющей величины учитывается по меньшей мере одна величина, характеризующая количество впрыскиваемого топлива.
Ниже изобретение более подробно рассмотрено на примере предпочтительных вариантов его выполнения со ссылкой на прилагаемые чертежи, на которых показано:
на фиг.1 - блок-схема ДВС вместе с системой впуска воздуха,
на фиг.2 - блок-схема общей модель системы впуска воздуха, и
на фиг.3-8 - блок-схемы различных субмоделей.
Ниже предлагаемые в изобретении способ и устройство рассмотрены на примере дизельного двигателя внутреннего сгорания. Однако применение изобретения не ограничено дизельными двигателями внутреннего сгорания, его можно применять также на других ДВС, прежде всего на бензиновых ДВС с непосредственным впрыскиванием топлива.
В ДВС, условно представленный блоком 100, по трубопроводу подачи свежего воздуха высокого давления, обозначенному позицией 102, подают определенное количество ML22 газа с определенным содержанием МO22 кислорода. Величина МO22 обозначает также содержание, или концентрацию, кислорода в воздухе перед сгоранием. Трубопровод 102 подачи свежего воздуха высокого давления состоит из двух частей. Первая часть обозначена позицией 102а, вторая часть обозначена позицией 102b. Первая часть соответствует трубопроводу на участке до места примешивания ОГ. Вторая часть 102b соответствует трубопроводу на участке после места примешивания ОГ. В первой части 102а может находиться охладитель наддувочного воздуха, условно представленный блоком 104. Воздух в первой части трубопровода 102а подачи свежего воздуха высокого давления характеризуется температурой Т2 и давлением Р2.
По трубопроводу подачи свежего воздуха низкого давления, обозначенному позицией 108, воздух из окружающей среды поступает в компрессор, обозначенный позицией 106, и затем проходит через охладитель 104 наддувочного воздуха в трубопровод 102 подачи свежего воздуха высокого давления. Через компрессор воздух в количестве ML21 с соответствующим содержанием МO21 кислорода проходит в трубопровод 102 подачи свежего воздуха высокого давления. Количество ML21 воздуха, проходящего через трубопровод 108 подачи свежего воздуха низкого давления и характеризующегося содержанием МO21 кислорода, соответствует количеству воздуха, проходящего через компрессор 106, соответственно охладитель 104 наддувочного воздуха и характеризующегося соответствующим содержанием кислорода. Значения температуры Т1 и давления Р1 в трубопроводе 108 подачи свежего воздуха низкого давления соответствуют параметрам (условиям) окружающей среды, т.е. давлению и температуре окружающего воздуха.
Из ДВС 100 количество ML31 воздуха с содержанием МO31 кислорода поступает в выпускной трубопровод 110 ОГ высокого давления. Величина МO31 обозначает также содержание кислорода после сгорания. В выпускном трубопроводе 110 высокого давления ОГ находятся при температуре Т3 и давлении Р3. Эти величины обозначают также давление Р3 ОГ и температуру Т3 ОГ.
Количество ML32 воздуха поступает из выпускного трубопровода 110 ОГ высокого давления в турбину, обозначенную позицией 112, эта величина ML32 обозначает также количество воздуха, проходящего через турбину. Из турбины 112 отработавшие газы поступают в выпускной трубопровод 114 низкого давления, который называют также выхлопным трубопроводом 114. Среда в выпускном трубопроводе ОГ низкого давления характеризуется температурой Т4 и давлением Р4.
Турбина 112 с помощью вала, обозначенного позицией 111, выполняет функцию привода компрессора 106. Частоту NL вращения вала называют также частотой вращения вала компрессора. Посредством исполнительного органа компрессора, обозначенного позицией 113, можно влиять на рабочие параметры турбины и в результате на рабочие параметры компрессора в целом. При управлении на исполнительный элемент компрессора подается управляющий сигнал LTV, в результате чего происходит регулировка компрессора на величину хода LH. Величину LH называют также ходом компрессора, а величину LTV - скважностью импульсов, подаваемых на исполнительный орган компрессора.
Между выпускным трубопроводом 110 ОГ высокого давления и трубопроводом 102 подачи свежего воздуха высокого давления имеется связь, которая называется линией 116 рециркуляции ОГ. По этой линии 116 рециркуляции ОГ проходит количество МА воздуха, содержание кислорода в котором имеет обозначение МОА. Проходное сечение линии 116 рециркуляции ОГ предпочтительно регулировать с помощью клапана рециркуляции ОГ, обозначенного позицией 118. При управлении на обозначенный позицией 119 исполнительный орган системы рециркуляции ОГ подают управляющий сигнал ATV, в результате чего происходит перемещение клапана 118 рециркуляции ОГ на величину хода АН. Величину АН называют также ходом исполнительного органа системы рециркуляции ОГ, а величину LTV - скважностью импульсов, подаваемых на исполнительный орган системы рециркуляции ОГ.
Частоту N вращения предпочтительно измерять на кривошипе и/или распределительном вале ДВС с помощью датчика частоты вращения, условно представленного блоком 101. Кроме того, предусмотрены исполнительные органы системы подачи, условно представленные блоком 103 и определяющие расход ME впрыскиваемого топлива, подаваемого в ДВС. Для этого на исполнительные органы 103 подают сигнал ME, характеризующий количество, или расход, впрыскиваемого топлива.
Для прецизионного управления ДВС, соответственно исполнительными органами 118 и 113 необходимо знать ряд из представленных выше величин. Прежде всего необходимо знать количество подаваемого в ДВС кислорода, соответственно содержание МO22 кислорода. От количества кислорода вместе с впрыснутым количеством ME топлива зависит количество вредных веществ в ОГ, прежде всего количество сажи, выбрасываемой дизельными ДВС. Кроме того, предпочтительно, чтобы были известны различные значения давления и температуры. Предпочтительно также, чтобы была известна частота NL вращения вала компрессора. Эти величины можно использовать для контроля системы в целом и/или для управления/регулирования.
Более предпочтительно, если эти величины можно определять не прямым методом, а опосредованно с помощью модели и/или одной или нескольких субмоделей. В этом случае не требуются соответствующие датчики.
Согласно изобретению предусмотрена возможность с помощью по меньшей мере одной модели вычислять одну из величин или несколько величин, которые характеризуют систему впуска воздуха, на основании одной или нескольких управляющих величин, прежде всего количества ME впрыскиваемого топлива (расхода топлива), управляющей величины ATV для клапана системы рециркуляции ОГ и управляющей величины LTV для турбины 112, а также по меньшей мере одной измеряемой величины, характеризующей температуру Т1 окружающей среды и/или давление Р1 окружающей среды. Более предпочтительно, если одну или несколько величин, которые характеризуют систему впуска воздуха, можно определять, на основании количества (расхода) ME впрыскиваемого топлива, частоты N вращения, величин, характеризующих температуру Т1 окружающей среды и давление Р1 окружающей среды, и при этом дополнительно используются управляющая величина для клапана 118 рециркуляции ОГ и управляющая величина для компрессора 112. В этом случае особое преимущество состоит в том, что не требуется вычислять расход впрыскиваемого топлива, поскольку эта величина уже предварительно задана и она используется в процессе управления ДВС. Прежде всего для этого используется величина, "зашитая" (сохраненная) в устройстве управления. Кроме того, известна частота вращения N вала ДВС, поскольку она также необходима для управления ДВС. Сказанное относится также к величинам, характеризующим температуру Т1 и давление Р1. Соответствующая изложенная информация относится и к управляющим сигналам, подаваемым на исполнительные органы 118 и 112.
Более предпочтительно создать различные субмодели для соответствующих подсистем, при этом каждая субмодель вычисляет различные входные величины и на основании их вычисляет различные выходные величины. При этом предусмотрено получать различные входные величины для различных моделей на основе выходных величин других моделей. В качестве входных величин общей модели в сумме различных субмоделей требуются только легко получаемые измеряемые величины, соответственно известные управляющие величины.
Общая модель системы впуска воздуха и разделение системы впуска воздуха на субмодели показаны на фиг.2.
К современным ДВС предъявляются все более жесткие требования по содержанию вредных веществ в ОГ и удельному расходу топлива. За счет управляемого изменения положения направляющих лопаток турбины турбокомпрессор с изменяемой геометрией турбины позволяет осуществлять подстройку к фактическому режиму работы двигателя. Благодаря этому можно избежать замедленной реакции турбокомпрессора и одновременно увеличить коэффициент полезного действия (кпд) ДВС. Одновременно с помощью рециркуляции ОГ обеспечивается возврат прецизионно регулируемого количества ОГ в трубопровод подачи свежего воздуха высокого давления, благодаря чему значительно уменьшается содержание в ОГ оксидов азота.
В результате системы впуска воздуха современных ДВС вследствие высокой степени взаимодействия контуров регулирования обладают выраженной нелинейностью. Определение существенно важных величин, характеризующих состояние системы впуска воздуха, например, давления в выпускном трубопроводе ОГ высокого давления, которое также называют как противодавление Р3 ОГ, или текущего количества МА рециркулируемых ОГ, с точки зрения метрологии сопряжено с очень высокими трудозатратами или вовсе невыполнимо. Соответствующие датчики или не производятся, или отличаются очень высокой стоимостью.
В современных системах сигналы датчиков при управлении системой впуска воздуха используются для решения ограниченной задачи, т.е. сигнал, характеризующий количество воздуха, соответственно количество ML21 воздуха, проходящего по трубопроводу 108 подачи свежего воздуха низкого давления, используется только для управления или регулирования положения клапана 118 рециркуляции ОГ. Измеряемое значение давления Р2 наддува используют только для воздействия на исполнительный орган турбины 112.
Наличие перекрестных связей, обусловленных строением современных систем управления, не принимается во внимание и поэтому воспринимается в отдельных контурах управления в виде помех.
Согласно предлагаемым в изобретении способу и устройству известная динамика системы описывается приближенно с помощью моделей. При этом выбирают такой уровень абстрагирования от реального поведения системы, чтобы в блоке управления двигателем можно было рассчитывать имеющиеся модели в режиме реального времени. При этом несмотря на упрощенность моделей обеспечивается возможность правильного отражения физических факторов (эффектов) и взаимосвязей между отдельными системами, существенно важных для управления.
Согласно изобретению физические взаимосвязи значительно упрощаются. Предлагаемую в изобретении модель всей системы впуска воздуха, включающую несколько субмоделей, можно применять для решения различных задач. Таким образом, на основании имеющихся сигналов от датчиков или управляющих величин можно приближенно вычислить, например, не поддающиеся измерению параметры системы впуска воздуха, соответственно очень тяжело измеряемые параметры системы впуска воздуха. Имеющуюся информацию, получаемую от датчиков, можно оптимальным образом интегрировать и в результате уменьшать погрешность измерений. Измеряемые величины и вычисляемые величины можно отфильтровывать без потери времени (фазы), т.е. без динамических потерь. Вместо показаний вышедшего из строя датчика можно использовать имеющую физический смысл подставную величину. Кроме того, можно значительно упростить функциональные структуры, для чего необходимо обрабатывать моделируемые неизмеряемые величины. Контроль работы компрессора можно осуществлять благодаря использованию оценочной частоты вращения вала компрессора.
На фиг.2 показана общая модель в виде блок-схемы или структурной схемы. По существу общая модель включает различные субмодели для отдельных компонентов системы впуска воздуха. Субмодель для компрессора 106 условно представлена блоком 206. Субмодель, условно представленную блоком 202 и моделирующую трубопровод 102 подачи свежего воздуха высокого давления, называют моделью трубопровода подачи свежего воздуха высокого давления. Охладитель наддувочного воздуха учитывается в модели 206 компрессора. Еще одна субмодель, условно представленная блоком 200, моделирует ДВС 100, и ее также называют моделью цилиндра. Еще одну субмодель, условно представленную блоком 212, называют моделью турбины, и она моделирует работу турбины 112. Следующая субмодель, условно представленная блоком 218, моделирует процесс рециркуляции ОГ и обозначается также как модель 218 рециркуляции ОГ. Еще одна субмодель, условно представленная блоком 214, моделирует выпускной трубопровод 114, и она называется также моделью выпускного трубопровода низкого давления.
К входным величинам общей модели предпочтительно относятся скважность импульсов LTV, подаваемых на исполнительный орган 113 компрессора, расход ME впрыскиваемого топлива, фактическая частота N вращения вала двигателя, скважность импульсов ATV, подаваемых на исполнительный орган 118 системы рециркуляции ОГ, давление Р1 атмосферы и температура Т1 воздуха окружающей среды. Эти входные величины на фиг.2 условно представлены малыми квадратами.
Вместо этих величин можно также использовать сигналы, характеризующие эти величины. Таким образом можно также вместо величины, характеризующей расход впрыскиваемого топлива, использовать величину, характеризующую расход впрыскиваемого топлива, или сигнал, указывающий на продолжительность впрыска. Вместо скважности импульсов можно использовать, например, непосредственно величину, характеризующую ход исполнительного органа.
В качестве выходной величины можно использовать любую вычисляемую с помощью модели величину, если таковая необходима в процессе управления ДВС. Более предпочтительно использовать следующие выходные величины. К ним относятся давление Р2 наддува, которое соответствует давлению в трубопроводе 102 подачи свежего воздуха высокого давления, противодавление Р3 ОГ, которое соответствует давлению в выпускном трубопроводе 110 ОГ высокого давления между турбиной 112 и ДВС 100, ход LH исполнительного органа 113 турбины 112, частота NL вращения вала компрессора, количество ML21 воздуха, проходящего через компрессор 106, температура Т3 ОГ на входе в турбину, противодавление Р4 ОГ, которое соответствует давлению Р4 в выпускном трубопроводе за турбиной, ход АН исполнительного органа 118 системы рециркуляции ОГ, количество МА воздуха в трубопроводе 116 рециркуляции ОГ, содержание МO31 кислорода после сгорания и содержание кислорода МO22 до сгорания.
Путем простого пересчета предпочтительно с использованием нормирующих констант можно определить также другие сигналы, которые характеризуют соответствующие величины.
Некоторые из этих вычисленных с помощью модели величин не поддаются измерению на ДВС или требуют для решения этой задачи больших трудозатрат. Другие величины, например давление Р2 наддува, могут представлять собой сигналы датчиков. Путем сравнения измеренной и вычисленной с помощью модели величины можно оценить эффективность отображения моделью фактической ситуации. Соответствующие обозначения выходных величин модели, соответственно субмоделей, указаны в кругах, соответственно эллипсах.
На фиг.3 более подробно показана модель компрессора, в которой также учитываются свойства охладителя наддувочного воздуха. В качестве входных величин в модели компрессора обрабатываются сигналы, которые характеризуют различные величины. К ним относятся частота NL вращения вала компрессора, температура Т1 окружающей среды, которая соответствует температуре воздуха на входе в компрессор, давление Р1 окружающей среды, которое соответствует давлению на входе в компрессор, и давление Р2 наддува, которое соответствует давлению на выходе из компрессора. На основании этих сигналов рассчитывают различные выходные величины. К ним относятся в основном снимаемая с вала 111 механическая мощность, или производительность PL компрессора, температура Т2 наддувочного воздуха, которая соответствует температуре сжатого газа на выходе из охладителя наддувочного воздуха, а также количество ML21 воздуха, проходящего через компрессор, соответственно через впускной трубопровод 108.
Частота NL вращения вала компрессора подается на вход блока 300 вычисления объема проходящего через компрессор воздуха. Давление Р1 окружающей среды подается на вход блока 310 вычисления плотности и блока 320 вычисления энтальпии. На вход блока 320 вычисления энтальпии подается также давление Р2 наддува. Температура Т1 окружающей среды на входе в компрессор подается на вход блока 380 вычисления температуры, блока 320 вычисления энтальпии и блока 310 вычисления плотности. Сигнал на выходе блока 300 вычисления объема проходящего через компрессор воздуха и сигнал на выходе блока 310 вычисления плотности поступают на вход блока 330 вычисления массового расхода, который выдает сигнал количества (массового расхода) ML21 воздуха. Сигнал на выходе блока 320 вычисления энтальпии поступает сначала в блок 300 вычисления объема проходящего через компрессор воздуха и далее в блок 350 вычисления количества энергии. Сигнал на выходе блока 350 вычисления количества энергии подается на вход блока 340 вычисления мощности и блока 360 вычисления температуры. Дополнительно в блок 340 вычисления мощности поступает сигнал количества (массового расхода) ML21 воздуха. На выходе блока 340 вычисления мощности снимается сигнал PL, характеризующий производительность (механическую мощность на валу) компрессора. Сигнал на выходе блока 360 вычисления температуры подается в модель 370 охладителя наддувочного воздуха, которая в свою очередь подает сигнал в блок 380 вычисления температуры. На выходе блока 380 вычисления температуры получают сигнал, характеризующий температуру Т2.
Объем воздуха, проходящего через компрессор в единицу времени, вычисляется в зависимости от частоты вращения вала компрессора и перепада энтальпий между стороной низкого давления (всасывания) и стороной высокого давления (нагнетания), т.е. между трубопроводом 102 подачи свежего воздуха высокого давления и трубопроводом 108 подачи свежего воздуха низкого давления. Перепад энтальпий вычисляется блоком 320 вычисления энтальпии. При этом объем проходящего через компрессор воздуха увеличивается с увеличением частоты вращения вала компрессора и уменьшается с увеличением перепада энтальпий. Эта зависимость воспроизводится в блоке 300 вычисления объема с помощью рабочей характеристики или путем вычислений. С помощью различных констант осуществляется согласование модели со специфическими характеристиками компрессора.
На основании давления Р1 и температуры Т1 на входе в компрессор блок 310 вычисления плотности вычисляет плотность газа на входе в компрессор в 108 трубопроводе подачи свежего воздуха низкого давления. В блоке 330 вычисления количества вычисляется количество (массовый расход) ML21 воздуха, проходящего через компрессор, путем умножения объемного расхода на плотность воздуха.
В блоке 320 вычисления энтальпии определяется перепад энтальпий газа как разность энтальпий на входе в компрессор и на выходе из компрессора в зависимости от температуры Т1 на входе в компрессор и отношения давления Р1 на входе в компрессор к давлению Р2 на выходе из компрессора. Кроме того, учитываются различные константы, такие как газовая постоянная и экспонента изотропности.
Путем деления перепада энтальпий на кпд компрессора в блоке 350 вычисления количества энергии определяется величина энергии, сообщаемой определенному количеству сжатого газа. Значение кпд компрессора предпочтительно сохранять в запоминающем устройстве. В блоке 340 вычисления мощности происходит умножение величины энергии на величину ML21 проходящего через компрессор потока воздуха. В результате этого умножения получается производительность (мгновенная мощность) PL.
В блоке 360 вычисления температуры вычисляется количество энергии, сообщенной газу при сжатии, т.е. на нагрев газа в компрессоре. Часть этого тепла газ снова отдает в охладителе 104 наддувочного воздуха. Это условие учитывается в условно представленной блоком 370 модели охладителя наддувочного воздуха. Доля тепла, отдаваемая газом, тем больше, чем выше эффективность охладителя наддувочного воздуха, т.е. в зависимости от эффективности охладителя наддувочного воздуха уменьшается характеризующая температуру величина, вычисленная в блоке 360 вычисления температуры. В блоке 380 вычисления температуры к этой величине температуры, на которую нагрелся воздух в компрессоре, прибавляется величина температуры Т1 газа на входе в компрессор, в результате чего получается величина температуры Т2 газа на выходе из компрессора, соответственно за компрессором и охладителем наддувочного воздуха. Если модель необходимо адаптировать к двигателю без охладителя наддувочного воздуха, то величина, характеризующая эффективность радиатора, выставляется на нуль, т.е. в модели 370 охладителя наддувочного воздуха вычитается нуль.
Согласно изобретению количество ML воздуха вычисляется с учетом плотности и объема воздуха, проходящего через компрессор. Плотность определяется по температуре Т1 и давлению Р1 воздуха окружающей среды. Объем потока воздуха вычисляется с учетом частоты вращения вала компрессора и перепада энтальпий на впуске и выпуске из компрессора. При этом перепад энтальпий вычисляется с учетом разности давлений и температуры Т1 газа. Это означает, что с учетом частоты NL вращения вала компрессора, давления Р1 окружающей среды, давления Р2 наддува и температуры Т1 окружающей среды с помощью модели компрессора вычисляются количество ML21 воздуха, проходящего через компрессор, производительность PL компрессора и температура наддувочного воздуха.
Более предпочтительно, если с помощью датчиков измеряются только температура Т1 и давление Р1, а остальные величины определяются с помощью других моделей.
На фиг.4 показана субмодель трубопровода подачи свежего воздуха высокого давления, т.е. модель впускного трубопровода 102 в виде блок-схемы. Подводящий трубопровод между компрессором 106 и впускным клапаном цилиндра моделируется как емкость, в которой параметры состояния газа связаны между собой с помощью уравнения состояния идеального газа. С целью упрощения в модели не учтены скорость потока свежего воздуха и все связанные со скоростью получающиеся результаты. В качестве входных величин для этой модели предпочтительно использовать количество ML21 воздуха, выходящего из компрессора, температуру Т2 наддувочного воздуха на выходе из охладителя 104 наддувочного воздуха, количество ML22 воздуха, которое поступает в ДВС, количество МА воздуха, которое рециркулируется ОГ в трубопровод 102 подачи свежего воздуха высокого давления, температуру ТА в системе рециркуляции ОГ, соответствующую температуре рециркулируемых ОГ, и содержание кислорода МОА в рециркулируемых ОГ.
На основании этих входных величин посредством физически обоснованных логических операций вычисляются выходные величины. В качестве выходных величин вычисляются давление Р2 наддува в трубопроводе 102 подачи свежего воздуха высокого давления, температура Т2 наддувочного воздуха в трубопроводе подачи свежего воздуха высокого давления и содержание МO2 кислорода в подаваемом в ДВС воздухе.
Субмодель трубопровода 102 подачи свежего воздуха высокого давления по существу включает в себя блок 400 вычисления количества кислорода, блок 410 вычисления давления, блок 420 вычисления температуры, а также интегратор 432, на котором вычисляется общая масса.
В состав блока 400 вычисления количества кислорода входят по существу первый субблок 402 вычисления количества кислорода, второй субблок 404 вычисления количества кислорода и третий субблок 406 вычисления количества кислорода, результаты или выходные сигналы которых суммируются в блоке 408 суммирования с соответствующим знаком и затем интегрируются в блоке 409 интегрирования. На вход первого субблока вычисления количества кислорода подаются величины, соответствующие количеству ML22 воздуха, которое соответствует поступающему в ДВС количеству воздуха, и содержание МO22 кислорода в воздухе, поступающем в ДВС. На вход второго субблока 404 второго вычисления количества кислорода подается сигнал ML21, соответствующий нагнетаемому компрессором количеству воздуха. На вход третьего субблока вычисления количества кислорода подается сигнал МОА, соответствующий содержанию кислорода в трубопроводе рециркуляции ОГ, и сигнал МА, соответствующий протекающему в трубопроводе рециркуляции ОГ количеству воздуха.
Путем умножения каждого соответствующего количества воздуха на соответствующее содержание кислорода, получаемое на выходе первого, второго и третьего субблоков вычисления количества кислорода, определяют количество кислорода в каждом соответствующем количестве воздуха. При этом во втором субблоке вычисления количества кислорода количество ML21 воздуха умножается на постоянный коэффициент, который соответствует содержанию кислорода в воздухе окружающей среды при нормальных условиях. Различные количества кислорода интегрируют с учетом знака, т.е. поступающие со знаком плюс и отходящие со знаком минус.
В сумматоре 430 и интеграторе 432 отдельные количества воздуха, поступающие в трубопровод 102 подачи свежего воздуха высокого давления и выходящие из него, интегрируются также с учетом знака. В результате получается мгновенное количество воздуха в емкости. На основании этого общего количества воздуха в емкости и определенного в блоке 400 содержания кислорода в трубопроводе 102 подачи свежего воздуха высокого давления рассчитывается содержание МO22 кислорода в поступающем в ДВС количестве воздуха. Это вычисление производится блоком 440 деления.
На основании значений расхода, характеризующихся соответствующей температурой, объемом и газовой постоянной R, вычисляется изменение значений парциального давления в трубопроводе 102 подачи свежего воздуха высокого давления. В первом субблоке 412 вычисления парциального давления парциальное давление вычисляется на основании количества ML21 воздуха, проходящего через компрессор 106, и температуры Т2 на выходе из охладителя 104 наддувочного воздуха. Во втором субблоке 414 вычисления парциального давления парциальное давление вычисляется на основании количества ML22 воздуха, поступающего в ДВС, и температуры Т22, соответствующей температуре количества воздуха непосредственно перед впуском в ДВС. Эту температуру называют также температурой Т22 смеси. В третьем субблоке 416 вычисления парциального давления парциальное давление вычисляется с учетом количества МА воздуха, проходящего через трубопровод 116 рециркуляции ОГ, и температуры ТА в трубопроводе рециркуляции ОГ. Расчеты парциального давления предпочтительно проводить как расчеты, в которых величины вычисляют на основании входных величин по соответствующей формуле.
С увеличением количества воздуха и/или повышением температуры соответственно повышается парциальное давление. В сумматоре 418 суммирования с учетом знака суммируются изменения величин парциальных давлений. Подводимые порции в операции алгебраического сложения учитываются как величины с положительным знаком и отходящие порции учитываются как величины с отрицательным знаком. В результате получается изменение давления Р2 в трубопроводе подачи свежего воздуха высокого давления. Путем интегрирования изменения давления в функции времени получают фактическое давление Р2 наддува.
На основании вычисленного давления Р2 в трубопроводе подачи свежего воздуха высокого давления, расчет которого проведен в соответствии с изложенным выше порядком, и с учетом количества газа, вычисленного в интеграторе 432, в блоке 420 вычисления температуры вычисляется непосредственно температура Т22 смеси с помощью уравнения состояния идеального газа при использовании газовой постоянной R.
С помощью модели трубопровода подачи свежего воздуха высокого давления вычисляются давление Р2 наддува, содержание МO22 кислорода в газе, поступающем в ДВС, и температура Т22 смеси на основании проходящих в трубопроводе подачи свежего воздуха высокого давления или выходящих из него количеств ML21, ML22 и МА воздуха и значений содержания кислорода в них, температуры Т2 наддувочного воздуха и температуры ТА в трубопроводе рециркуляции ОГ.
Согласно изобретению содержание МO22 кислорода в количестве ML22 воздуха, поступающего в ДВС, вычисляется на основании количества ML22 воздуха, количества ML21 воздуха, проходящего через компрессор, количества МА воздуха, проходящего через трубопровод рециркуляции ОГ, соответствующих значениям содержания кислорода и различных констант. Давление Р2 наддува предпочтительно получать в результате интегрирования отдельных вкладов в изменения давления, обусловленных приточными, соответственно отходящими количествами воздуха и их температурами.
Более предпочтительно, если с помощью датчика измеряется только температура Т2 наддувочного воздуха, а остальные величины определяются с помощью других моделей. В более предпочтительном варианте температура наддувочного воздуха определяется с помощью модели компрессора.
На фиг.5 более подробно показана модель цилиндра 200. В качестве входных величин в модель 200 цилиндра подводятся сигналы. К ним относятся сигналы, характеризующие количество ME впрыснутого топлива или расход впрыскиваемого топлива, температуру Т22 смеси, равную температуре воздуха, подаваемого в цилиндр, давление Р2 наддува, соответствующее давлению на входе в цилиндр, частоту N вращения вала ДВС и содержание МO22 кислорода в воздухе, подаваемом в ДВС.
В качестве выходных величин эта модель формирует различные сигналы, которые характеризуют следующие величины. К ним относятся температура Т3 ОГ, этот сигнал характеризует температуру газа в выпускном трубопроводе 110 ОГ высокого давления, количество ML31 воздуха, выходящего из ДВС в выпускной трубопровод 110 ОГ высокого давления, количество ML22 воздуха, поступающего в ДВС, и содержание МO31 кислорода в количестве ML31 воздуха, отходящего из ДВС.
Сигнал, характеризующий расход ME впрыскиваемого топлива, сначала подается на вход блока 500 вычисления нагрева, затем в сумматор 510, далее с отрицательным знаком в сумматор 520 и в умножитель 530. Сигнал, характеризующий температуру Т22 смеси, сначала подается на вход блока 540 вычисления всасываемого количества и затем в сумматор 550. Сигнал, характеризующий давление Р2 наддува, подается на вход блока 540 вычисления всасываемого количества воздуха. Сигнал, характеризующий частоту N вращения, сначала подается на вход блока 560 коррекции степени наполнения цилиндра (объемного к.п.д) и затем в умножитель 570. Сигнал, характеризующий содержание МO22 кислорода, подается на вход умножителя 580.
Сигналы на выходе блока 560 коррекции степени наполнения и блока 540 вычисления всасываемого количества воздуха подаются в умножитель 590, выходной сигнал которого в свою очередь подается в сумматор 510, умножитель 570 и умножитель 580.
Сигнал на выходе сумматора 550 характеризует температуру Т3 ОГ. Сигналы с выходов умножителя 530 и умножителя 570 подаются в сумматор 595, формирующий сигнал количества ML31 воздуха. Сигнал на выходе умножителя 570 дает количество ML22 воздуха. Содержание МO31 кислорода представлено сигналом на выходе умножителя 585, который делит выходной сигнал сумматора 520 на выходной сигнал сумматора 510.
При известном рабочем объеме ДВС на основании давления Р2 наддува и температуры Т2 смеси поступающего в ДВС свежего воздуха блок 540 вычисления всасываемого количества воздуха при помощи уравнения состояния идеального газа вычисляет теоретически возможное количество газа в цилиндре. Эта величина возрастает в прямой зависимости от давления Р2 наддува и уменьшается при повышении температуры воздуха. Эта теоретическая величина наполнения цилиндра корректируется умножителем 590 умножения с учетом фактической частоты N вращения на основании сигнала, полученного на выходе блока 560 коррекции степени наполнения цилиндра, что позволяет учесть динамические эффекты, проявляющиеся при наполнении цилиндра. Из полученного таким образом количества газа в расчете на длину хода и частоту N вращения в умножителе 570 вычисляется количество ML22 поступающего в ДВС воздуха предпочтительно с помощью умножения обеих величин и/или умножения на различные константы.
Сигнал количества ML31 воздуха, соответствующий количеству ОГ (в потоке), получается в сумматоре 595 путем сложения количества ML22 воздуха, поступающего в ДВС, и количества топлива. Расход топлива вычисляется в умножителе 530 путем логического объединения умножения количества ME впрыскиваемого топлива и частоты N вращения. Для этого оба сигнала перемножаются и умножаются на различные константы.
В блоке 500 вычисления нагрева вычисляются величины, характеризующие нагрев наполнения цилиндра в зависимости от количества ME впрыскиваемого топлива и количества газа в цилиндре. Чем больше топлива впрыскивается и чем меньше газа в цилиндре, тем больше нагрев. Индивидуальная для каждого двигателя связь расхода ME впрыскиваемого топлива и теплоты, сообщаемой газу, учитывается на основе характеристики двигателя. В этом случае температура Т3 ОГ получается в сумматоре 550 путем сложения выходного сигнала блока 500 вычисления нагрева и сигнала температуры Т2 наддувочного воздуха.
Общее количество газа в цилиндре получают сложением количества впрыскиваемого топлива и количества газа в расчете на один рабочий ход, которое с умножителя 590 поступает на сумматор 510.
На основании содержания МO22 кислорода в подаваемом в цилиндр количестве воздуха и общем количестве газа, соответствующем выходному сигналу умножителя 590, в умножителе 580 рассчитывается количество кислорода в цилиндре до сгорания. В первом приближении израсходованное количество кислорода в наполнении цилиндра пропорционально количеству (расходу) ME впрыскиваемого топлива. Таким образом, величина, характеризующая количество кислорода после сгорания, получается в сумматоре 520 в результате вычитания этого зависящего от расхода топлива количества кислорода из количества кислорода в цилиндре до сгорания. Результатом вычисления в сумматоре 520 является количество кислорода, оставшегося после сгорания. В результате вычисления отношения этого количества кислорода к общему количеству газа, которое соответствует выходному сигналу сумматора 510, в умножителе 585 получается содержание МO31 кислорода после сгорания.
Согласно изобретению температура Т3 ОГ вычисляется на основании впрыскиваемого ME количества топлива и температуры Т22 смеси. Температура смеси соответствует температуре газа, поступающего в ДВС. Температура ОГ соответствует температуре газа, выпускаемого из ДВС. Затем на основании температуры Т22 смеси и давления Р2 наддува поступающего в ДВС газа, частоты N вращения вала ДВС и расхода ME впрыскиваемого топлива вычисляются величины, характеризующие количества ML22 и ML31 воздуха, поступающего в ДВС и отходящего из ДВС. Это вычисление становится возможным по существу благодаря тому, что на основании температуры, давления, количества топлива, частоты вращения и известных констант вычисляются различные величины, которые затем соответствующим образом логически объединяются.
На фиг.6 более подробно показана модель 212 турбины. В показанной на чертеже модели отражена турбина с изменяемыми геометрическими параметрами. В качестве входных величин предпочтительно применять различные сигналы, которые характеризуют следующие рабочие параметры. К ним относятся количество ML32 воздуха, проходящего через турбину, давление Р4 в выпускном трубопроводе 114, сигнал, характеризующий давление за турбиной, температура Т3 ОГ, характеризующая температуру газа на входе в турбину, ход исполнительного органа управления компрессором, характеризующий положение направляющих лопаток, а также снимаемая с вала 111 производительность PL, характеризующая сообщаемую компрессору механическую мощность.
С помощью приемлемой операции объединения этих величин и с учетом различных физических, а также специфичных для системы констант получают различные выходные величины. К ним относятся давление Р3 ОГ, которое характеризует давление на входе в турбину, температура Т4 в выпускном трубопроводе, т.е. на выходе из турбины, и частота NL вращения вала компрессора.
Сигналы, характеризующие ход LH исполнительного органа компрессора, количество ML32 воздуха, проходящего через турбину, давление Р4 в выпускном трубопроводе и температуру ОГ, подаются на вход блока 600 вычисления давления. На выходе блока 600 вычисления давления формируется сигнал давления Р3 ОГ. Сигналы, характеризующие давление на входе в турбину, соответствующее давлению Р3 ОГ, и давление за турбиной, соответствующее давлению Р4, а также температуру Т3 ОГ, подаются на вход блока 610 вычисления перепада энтальпий. Его выходной сигнал подается на вход блока 620 вычисления частоты вращения вала компрессора; в котором дополнительно учитываются количество ML32 проходящего через турбину воздуха и производительность PL компрессора. На выходе блока 620 получают сигнал частоты NL вращения вала компрессора. Сигнал температуры Т3 ОГ и сигнал на выходе блока 610 вычисления перепада энтальпий подаются на вход блока 630 вычисления температуры, который на выходе формирует сигнал температуры Т4 в выпускном трубопроводе.
На основании хода LH исполнительного органа компрессора, характеризующего положение направляющих лопаток турбины, с помощью рабочей характеристики положение направляющих лопаток предпочтительно пересчитывают в эффективную площадь проходного сечения компрессора. При этом открытое положение направляющих лопаток соответствует большой площади. При известном значении эффективной площади проходного сечения на основании количества ML32 воздуха, давления Р4 за турбиной, температуры Т3 на входе в турбину, а также различных физических констант в блоке 600 вычисления давления вычисляется давление Р3 на входе в турбину. Эти вычисления выполняются в блоке 600 вычисления давления с помощью формулы.
Увеличение расхода воздуха, повышение температуры Т3 на входе в турбину и давления Р4 за турбиной приводят соответственно к повышению давления Р3 на входе в турбину. С другой стороны, увеличение эффективной площади проходного сечения приводит к падению давления Р3 на входе в турбину.
На основании давления Р3 на входе в турбину, давления Р4 за турбиной, температуры Т3 на входе в турбину, а также различных физических констант, в блоке 610 вычисления перепада энтальпий вычисляется разность энтальпий газа на входе в турбину и на выходе из нее, т.е. в этом блоке вычисляется разность энергий в пересчете на количество газа. Перепад энтальпий увеличивается с повышением отношения давления на входе в турбину к давлению за турбиной и с повышением температуры на входе в турбину.
Мгновенная мощность, развиваемая турбиной, вычисляется как произведение перепада энтальпий, кпд турбины и количества ML32 воздуха, проходящего через турбину. Разность мощности турбины и мощности компрессора приводит к изменению энергии вращения вала 111, т.е. к повышению или снижению угловой скорости и в результате частоты NL вращения вала компрессора. С помощью соответствующего коэффициента это изменение пересчитывается в число оборотов в минуту, соответственно в частоту вращения вала компрессора. На основании этой величины блок 620 вычисления частоты вращения вала компрессора вычисляет частоту NL вращения вала компрессора. При этом кпд турбины компрессора предпочтительно принимать за постоянную величину или кпд можно сохранить в базе рабочих характеристик.
В блоке вычисления температуры на основании перепада энтальпий и кпд турбины вычисляется отдаваемая газом (срабатываемая на турбине) энергия. Посредством физических констант эта отдаваемая энергия напрямую прямо пропорционально связана с разностью температур на входе в турбину и за турбиной. На основании температуры Т3 на входе в турбину и этой разности температур в блоке 630 вычисления степени охлаждения газа вычисляется температура Т4 в выпускном трубопроводе (за турбиной).
Согласно изобретению давление Р3 ОГ вычисляется на основании хода LH исполнительного органа компрессора, количества ML32 воздуха, проходящего через турбину, давления Р4 за турбиной и температуры Т3 ОГ. На основании перепада давления на в турбине, вычисляемого как разность давления Р3 ОГ и давления Р4 за турбиной, и температуры ОГ вычисляется перепад энтальпий в/на турбине. На основании перепада энтальпий и температуры Т3 ОГ вычисляется температура Т4 в выпускном трубопроводе. На основании перепада энтальпий, производительности PL компрессора и количества ML32 воздуха, проходящего через турбину, вычисляется частота вращения вала компрессора.
На фиг.7 представлена модель выпускного трубопровода, т.е. выпускного трубопровода 114 ОГ низкого давления. На основании количества ML32 воздуха, проходящего через турбину, давления Р1 окружающей среды и температуры Т4 в выпускном трубопроводе, т.е. за турбиной, с помощью этой модели вычисляется давление Р4 за турбиной.
Модель 214 тракта ОГ используется для моделирования влияния тракта ОГ на давление за турбиной. Весь тракт ОГ моделируется как локализованная в пространстве диафрагма. С учетом величины эффективной поверхности диафрагмы с помощью модели 214 вычисляются давление Р4 за турбиной, которое соответствует давлению над диафрагмой, на основании количества ML32 воздуха, давления Р1 окружающей среды, которое соответствует давлению под диафрагмой, температуры Т4 над диафрагмой, а также двух констант, характеризующих физические свойства вещества.
При этом давление Р4 за турбиной повышается с увеличением количества ML32 воздуха, повышением давления Р1 атмосферы и температуры Т4 за турбиной. Увеличение эффективной площади проходного сечения приводит к падению давления за турбиной. Эффективную площадь проходного сечения диафрагмы предпочтительно считать постоянной величиной.
На фиг.8 более подробно показана модель 218 рециркуляции ОГ. Модель рециркуляции ОГ учитывает изменения системы впуска воздуха, если часть ОГ перепускается во впускной тракт (всасывания). В качестве входных сигналов в модели 218 рециркуляции ОГ учитываются следующие сигналы: давление Р3 ОГ, которое характеризует давление в выпускном трубопроводе ОГ высокого давления, температуру Т3 ОГ, давление Р2 наддува, температура Т2 наддувочного воздуха и ход АН исполнительного органа рециркуляции ОГ, который характеризует длину хода клапана 118 системы рециркуляции ОГ.
На основании этих величин с помощью соответствующих логических операций вычисляются выходные величины. К ним относятся прежде всего количество МА воздуха, проходящего через клапан 118 системы рециркуляции ОГ, температура ТА, характеризующая температуру ОГ непосредственно перед смешением со свежим воздухом.
Давление Р2 наддува и давление Р3 ОГ, которые характеризуют перепад давлений на клапане системы рециркуляции ОГ, подаются на вход переключателя 805.
Все сигналы за исключением сигнала температуры Т2 наддувочного воздуха подаются на вход первого блока 800 вычисления количества воздуха. Все сигналы за исключением сигнала температуры Т3 ОГ подаются на вход второго блока 810 вычисления количества воздуха.
Сигналы температуры Т3 ОГ и температуры Т2 наддувочного воздуха поступают, соответственно, на первый вход 831 и второй вход 832 второго переключателя 830.
Сигнал на выходе блока 800 вычисления количества воздуха поступает на первый вход 821, а сигнал на выходе блока 810 - после прохождения через знакоинвертор 815 - на второй вход 822 первого 820 переключателя.
На выходе 823 первого переключателя 820 формируется сигнал количества МА воздуха, проходящего через клапан системы рециркуляции ОГ. На выходе 833 второго переключателя 830 формируется сигнал температуры ТА в трубопроводе рециркуляции ОГ. Сигнал на выходе переключателя 805 переключения поступает в оба переключателя 820 и 830.
В блоке 800, соответственно 810 вычисления количества воздуха вычисляется количество МА воздуха, проходящего через клапан системы рециркуляции ОГ, предпочтительно с помощью уравнения дросселя. Количество МА воздуха, проходящего через клапан системы рециркуляции ОГ, по существу зависит от давления и температуры на входе в клапан системы рециркуляции ОГ, и давления на выходе из клапана системы рециркуляции ОГ, а также эффективной площади проходного сечения клапана рециркуляции ОГ.
При этом количество воздуха увеличивается с увеличением разности давлений и увеличением эффективной поверхности. Оно уменьшается с повышением температуры на входе в клапан.
Направление потока воздуха через клапан системы рециркуляции ОГ зависит от того, больше или меньше давление Р3 ОГ в выпускном трубопроводе ОГ высокого давления, чем давление Р2 наддува в трубопроводе подачи свежего воздуха высокого давления. Именно по этой причине предусмотрены два блока вычисления количества воздуха. Положение переключателя 820 определяет, результат которого из двух блоков задает количество воздуха. Положение переключателя 820 зависит от перепада давлений в клапане системы рециркуляции ОГ. От этого перепада давлений и, следовательно, также от направления потока зависит величина температуры ТА в трубопроводе рециркуляции ОГ.
Эффективная площадь проходного сечения дросселя представляет собой функцию хода АН исполнительного органа клапана рециркуляции ОГ и предпочтительно учитывается в виде реализуемой рабочей характеристики. Если давление Р3 ОГ больше давления Р2 наддува, то сигнал на выходе первого блока вычисления количества воздуха используется как сигнал количества МА воздуха, а сигнал температуры Т3 ОГ - как сигнал температуры ТА. Эти условия соответствуют показанному на фиг.8 положению переключателя.
Если же давление Р2 наддува больше давления Р3 ОГ, то переключатели устанавливаются в другое, не показанное на чертеже положение, и сигнал на выходе второго блока 810 вычисления количества воздуха определяет количество МА воздуха и, соответственно, температура ТА соответствует температуре Т2 наддувочного воздуха.
Согласно изобретению количество МА воздуха, проходящего через клапан системы рециркуляции ОГ, вычисляется на основании перепада давлений в клапане системы рециркуляции ОГ, температуры воздуха, проходящего через клапан системы рециркуляции ОГ, и хода АН исполнительного органа системы рециркуляции ОГ. Перепад давлений рассчитывается по разности давления Р3 ОГ и давления Р2 наддува. В зависимости от этой разности давлений по выбору используют температуру Т2 наддувочного воздуха или температуру Т3 ОГ как температуру воздуха в трубопроводе системы рециркуляции ОГ.
Управление рециркуляцией ОГ можно существенно улучшить, если имеется сигнал, характеризующий количество воздуха, проходящего через клапан системы рециркуляции ОГ. Датчик, подающий такой сигнал, сложно изготовить, поскольку он подвергается воздействию очень высоких температур и сильного загрязнения вследствие своего положения в потоке ОГ.
В современных системах используют прием непрямого решения задачи. При этом снабженный пневматическим приводом клапан системы рециркуляции ОГ остается открытым или закрытым до тех пор, пока измеряемое датчиком количество ML21 воздуха не достигнет номинального значения. Рециркулируемое количество ОГ представляет собой разность количества ML22 воздуха, поступающего в ДВС, и количества ML21 воздуха, проходящего через компрессор.
Этот способ решения имеет два существенных недостатка. При небольших количествах рециркулируемых ОГ низкая точность датчика обуславливает определение расхода рециркулируемых ОГ с очень большими ошибками. Контур автоматического управления клапаном системы рециркуляции ОГ содержит много элементов, некоторые из которых имеют малое быстродействие, поэтому динамичность работы системы остается ограниченной. Оба фактора, т.е. низкая чувствительность и недостаточное быстродействие ведут к ухудшению качества ОГ.
При применении исполнительных элементов системы рециркуляции ОГ со встроенным датчиком можно очень быстро и точно регулировать положение клапана с помощью подчиненной системы автоматического регулирования.
В электромагнитном клапане системы рециркуляции ОГ необходимое усилие создается с помощью электромагнита. При применении подчиненной системы автоматического регулирования положения фактическое положение клапана измеряют с помощью датчика скорости и задают такую продолжительность изменения электрического тока, пока клапан не займет требуемое положение. В этом конечном положении электрический ток представляет собой меру необходимой удерживающей силы. Ее величина зависит в основном от разности давления на впуске в клапан и выпуске из клапана. Электрический ток, протекающий в катушке, представляет собой измеряемый сигнал, соответствующий разности давлений в клапане системы рециркуляции ОГ.
На основании известных геометрических характеристик клапана, хода рециркуляции ОГ и разности давлений рассчитывается нормированный по температуре расход через клапан. Геометрические характеристики клапана заданы его конструкцией. Длина хода определяется встроенным (интегрированным) датчиком скорости. Перепад давлений определяется по величине тока в катушке.
Возникающий в позиционно регулируемом электромагнитном клапане системы рециркуляции ОГ сигнал величины электрического тока используется для вычисления разности давлений в клапане системы рециркуляции ОГ.
На основании величин давления Р2 наддува, перепада давлений, хода АН исполнительного органа рециркуляции ОГ и геометрических характеристик клапана можно определить зависящее от температуры количество МА воздуха, проходящего через клапан системы рециркуляции ОГ.
Согласно изобретению эта величина используется как фактическая величина в подчиненной системе автоматического регулирования для количества МА воздуха. Благодаря этому можно быстро и точно настроить зависящее от температуры количество воздуха, проходящего через клапан системы рециркуляции ОГ.
Путем прямого измерения количества МА воздуха можно обеспечить более высокую точность при регулировании скорости рециркуляции ОГ. С помощью вспомогательного регулирования нормированного количества МА воздуха можно обеспечить существенное улучшение быстродействия.
Вследствие разности давлений между выпускным трубопроводом ОГ высокого давления и трубопроводом подачи свежего воздуха высокого давления на клапан системы рециркуляции ОГ действует силой FP от давления газов. Чтобы удержать клапан на месте, эту силу нужно уравновесить силой электромагнита FM. Эта сила имеет прямую зависимость от силы электрического тока Im, проходящего в обмотке электромагнита.
Таким образом получается уравнение, связывающее измеряемые величины с разностью давлений:
Р3-P2=ƒ1 (FM)=ƒ2(AH, Im)
Нелинейная зависимость ƒ2 определяется путем измерений на соответствующем испытательном оборудовании. На основании известной зависимости ƒ2, длины хода АН и силы электрического тока Im, протекающего в обмотке электромагнита, определяется фактическая разность давлений.
Нормированный по температуре расход через клапан вычисляется согласно уравнению расхода:
Figure 00000002
где МАнорм. - нормированный по температуре расход;
МА - количество среды, проходящей в единицу времени (массовый поток);
Р2 - давление наддува;
Р3 - давление ОГ;
Т3 - температура ОГ;
А(АН) - коэффициент дросселирования;
ψ - функция расхода.
Изменение коэффициента дросселирования как функции хода исполнительного органа, а также точная характеристика (форма кривой) функции расхода должны рассчитываться заранее путем измерений на соответствующем измерительном оборудовании.
С помощью приведенного выше уравнения вычисляется нормированное по температуре количество воздуха. На основании нормированного по температуре количества воздуха вместе с измеренной или оцененной величиной для температуры Т3 ОГ вычисляется количество МА воздуха, проходящего через клапан системы рециркуляции ОГ. Это вычисление осуществляется, например, блоками 800 и 810 вычисления количества воздуха.
Для этого решения другие субмодели не являются обязательно необходимыми. Так, давление наддува можно измерять непосредственно и вычислять давление Р3 ОГ на основании перепада давлений и давления Р2 наддува. При этом перепад давлений предпочтительно вычислять на основании хода АН клапана системы рециркуляции ОГ и количества воздуха, проходящего через клапан.
Вычисление хода исполнительного органа компрессора на основании скважности импульсов LTV, подаваемых на исполнительный орган компрессора, выполняется в блоке 213. Соответствующее преобразование управляющего сигнала ATV для клапана системы рециркуляции ОГ в ход АН клапана системы рециркуляции ОГ выполняется в блоке 219 (фиг.2).
Блоки 213 и 219 конструктивно выполнены примерно одинаково и отличаются друг от друга только способом выполнения пересчета. В блоке по существу предусмотрены характеристические параметры, соответственно порядок пересчета каждого значения скважности импульсов LTV, соответственно скважности ATV импульсов в длину хода исполнительного органа. На первой стадии скважность импульсов ограничивается имеющей физический смысл величиной в пределах от 0% до 100%. Динамика электропневматического преобразователя асимметрична, т.е. ход исполнительного элемента в одном направлении характеризуется заметно более высокой скоростью, чем в другом направлении. Такой процесс моделируется с помощью асимметричного звена РТ1 задержки, т.е. для возрастающих и убывающих выходных величин АН или LH активными являются различные постоянные времени. Выходная величина элемента звена РТ1 служит в качестве входной величины для применяемых характеристических параметров (характеристической кривой). В этом месте скважность импульсов пересчитывается в относительную длину хода, принимающую значения в пределах от 0 до 100%. В таком случае ход LH, соответственно ход АН служит в качестве входной величины, используемой в различных моделях.

Claims (17)

1. Способ управления двигателем внутреннего сгорания (ДВС) с системой впуска воздуха, при этом на основании, по меньшей мере, одной управляющей величины и, по меньшей мере, одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью, по меньшей мере, одной модели определяют, по меньшей мере, одну величину, характеризующую параметры системы впуска воздуха, отличающийся тем, что модель состоит, по меньшей мере, из первой и второй субмоделей, при этом выходные величины определяют с помощью субмодели на основании входных величин, в качестве входных величин для первой субмодели помимо, по меньшей мере, одной выходной величины второй субмодели дополнительно учитывают управляющую величину и измеряемую величину, при этом в качестве управляющей величины учитывают, по меньшей мере, одну величину, характеризующую количество впрыскиваемого топлива.
2. Способ по п.1, отличающийся тем, что в качестве управляющей величины используют расход (ME) топлива, характеризующий количество впрыскиваемого топлива, скважность импульсов (ATV) для управления системой рециркуляции отработавших газов (ОГ), характеризующую управляющий сигнал, подаваемый на исполнительный орган для воздействия на процесс рециркуляции ОГ, и/или скважность импульсов (LTV) для управления компрессором, характеризующую управляющий сигнал, подаваемый на исполнительный орган для воздействия на рабочие характеристики компрессора.
3. Способ по п.1 или 2, отличающийся тем, что в качестве измеряемой величины используют, по меньшей мере, частоту вращения (N), характеризующую частоту вращения вала ДВС, температуру (Т1) окружающей среды, характеризующую температуру окружающего воздуха, и/или давление (Р1) окружающей среды, характеризующее давление окружающего воздуха.
4. Способ по п.1, отличающийся тем, что с помощью модели (206) компрессора на основании, по меньшей мере, частоты вращения (NL) вала компрессора, давления (Р1) окружающей среды, давления (Р2) наддува и температуры (Т1) окружающей среды определяют, по меньшей мере, количество (ML21) воздуха, проходящего через компрессор, производительность (PL) компрессора и температуру (Т2) наддувочного воздуха.
5. Способ по п.4, отличающийся тем, что количество (ML21) воздуха определяют на основании плотности и объема воздуха, проходящего через компрессор, при этом плотность воздуха определяют на основании температуры (Т1) окружающей среды и давления (Р1) окружающей среды, а объем воздуха определяют на основании частоты вращения (NL) вала компрессора и перепада энтальпий, который, в свою очередь, определяют на основании давления (Р1) окружающей среды и давления (Р2) наддува.
6. Способ по п.1, отличающийся тем, что с помощью модели трубопровода подачи свежего воздуха высокого давления на основании по меньшей мере количества (ML21, ML22 и МА) воздуха, поступающего в трубопровод подачи свежего воздуха высокого давления, содержания в этом воздухе кислорода, температуры (Т2) наддувочного воздуха и температуры (ТА) в линии рециркуляции ОГ определяют, по меньшей мере, давление (Р2) наддува, содержание (МO22) кислорода в воздухе, подаваемом в ДВС, и температуру (Т22) смеси.
7. Способ по п.6, отличающийся тем, что содержание (МO22) кислорода, поступающего в ДВС, определяют на основании количества (ML21, ML22 и МА) воздуха, поступающего в трубопровод подачи свежего воздуха высокого давления, и содержания в нем кислорода, а также на основании, по меньшей мере, одной константы и/или давление (Р2) наддува определяют путем интегрирования величин изменения давления, задаваемых на основании количества входящего и/или выходящего воздуха и его температуры.
8. Способ по п.1, отличающийся тем, что с помощью модели цилиндра на основании, по меньшей мере, расхода топлива (ME), частоты вращения (N) вала ДВС, давления (Р2) наддува, температуры (Т22) смеси и содержания кислорода (МO22) в воздухе, поступающем в ДВС, вычисляют, по меньшей мере, температуру (Т3) ОГ, количество (ML22) воздуха, поступающего в ДВС, и количество (ML31) воздуха, выходящего из ДВС, а также содержание (МO31) кислорода в этом воздухе.
9. Способ по п.8, отличающийся тем, что температуру (Т3) ОГ определяют на основании расхода (ME) топлива и температуры (Т22) смеси и/или количество (ML22 и ML31) воздуха, поступающего в ДВС и выходящего из него, определяют на основании температуры (Т22) и давления (Р2) поступающего в ДВС газа, частоты вращения (N) вала двигателя и/или расхода (ME) топлива.
10. Способ по п.1, отличающийся тем, что с помощью модели турбины на основании, по меньшей мере, значения хода исполнительного органа компрессора, температуры (Т3) ОГ, давления (Р4) за турбиной и количества (ML32) воздуха, проходящего через турбину, определяют, по меньшей мере, давление (Р3) ОГ, частоту вращения (NL) вала компрессора и температуру (Т4) в выпускном трубопроводе.
11. Способ по п.10, отличающийся тем, что давление (Р3) ОГ определяют на основании значения хода (LH) исполнительного органа компрессора, количества (ML32) воздуха, проходящего через турбину, давления (Р4) за турбиной и температуры (Т3) ОГ и/или перепад энтальпий в турбине определяют на основании перепада давлений в турбине, вычисляемой как разность давления (Р3) ОГ и давления (Р4) за турбиной, и температуры ОГ, и/или температуру (Т4) в выпускном трубопроводе определяют на основании перепада энтальпий и температуры (Т3) ОГ, и/или частоту вращения вала компрессора определяют на основании перепада энтальпий, производительности (PL) компрессора и количества (ML32) воздуха, проходящего через турбину.
12. Способ по п.1, отличающийся тем, что с помощью модели турбины на основании, по меньшей мере, значения хода (LH) исполнительного органа компрессора, количества (ML32) воздуха, проходящего через турбину, давления (Р4) за турбиной и температуры (Т3) ОГ определяют, по меньшей мере, давление (Р3) ОГ, частоту вращения (NL) вала компрессора и температуру (Т4) в выпускном трубопроводе.
13. Способ по п.12, отличающийся тем, что давление (Р3) ОГ определяют на основании значения хода (LH) исполнительного органа компрессора, количества (ML32) воздуха, проходящего через турбину, давления (Р4) за турбиной и температуры (Т3) ОГ, и/или перепад энтальпий в турбине определяют на основании перепада давлений в турбине и температуры (Т3) ОГ, и/или температуру (Т4) в выпускном трубопроводе определяют на основании перепада энтальпий и температуры (Т3) ОГ, и/или частоту вращения вала компрессора определяют на основании перепада энтальпий, производительности (PL) компрессора и количества (ML32) воздуха, проходящего через турбину.
14. Способ по п.1, отличающийся тем, что с помощью модели выпускного трубопровода на основании, по меньшей мере, количества (ML32) воздуха, проходящего через турбину, давления (Р1) окружающей среды и температуры (Т4) в выпускном трубопроводе определяют давление за турбиной.
15. Способ по п.1, отличающийся тем, что с помощью модели рециркуляции ОГ на основании значения хода (АН) исполнительного органа системы рециркуляции ОГ, температуры (Т2, Т3) и давления (Р2, Р3) на входе и выходе клапана системы рециркуляции ОГ определяют температуру.
16. Способ по п.15, отличающийся тем, что количество (МА) воздуха, проходящего через клапан системы рециркуляции ОГ, определяют на основании перепада давлений в этом клапане системы рециркуляции ОГ, температуры воздуха, проходящего через этот клапан системы рециркуляции ОГ, и значения хода (АН) исполнительного органа системы рециркуляции ОГ, при этом в качестве температуры воздуха в трубопроводе системы рециркуляции ОГ в зависимости от перепада давлений в клапане системы рециркуляции ОГ по выбору используют либо температуру (Т2) наддувочного воздуха, либо температуру (Т3) ОГ.
17. Устройство управления двигателем внутреннего сгорания (ДВС) с системой впуска воздуха, при этом на основании, по меньшей мере, одной управляющей величины и, по меньшей мере, одной измеряемой величины, характеризующей состояние окружающего воздуха, с помощью, по меньшей мере, одной модели определяют, по меньшей мере, одну величину, характеризующую параметры системы впуска воздуха, отличающееся тем, что модель состоит, по меньшей мере, из первой и второй субмоделей, с помощью которых на основании входных величин определяются выходные величины, при этом в качестве входных величин для первой субмодели помимо, по меньшей мере, одной выходной величины второй субмодели дополнительно учитываются управляющая величина и измеряемая величина, причем в качестве управляющей величины учитывается, по меньшей мере, одна величина, характеризующая количество впрыскиваемого топлива.
RU2002120461/06A 1999-12-28 2000-09-13 Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха RU2264550C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963358.4 1999-12-28
DE19963358A DE19963358A1 (de) 1999-12-28 1999-12-28 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Luftsystem

Publications (2)

Publication Number Publication Date
RU2002120461A RU2002120461A (ru) 2004-02-10
RU2264550C2 true RU2264550C2 (ru) 2005-11-20

Family

ID=7934733

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002120461/06A RU2264550C2 (ru) 1999-12-28 2000-09-13 Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха

Country Status (7)

Country Link
US (1) US6715287B1 (ru)
EP (1) EP1247016B2 (ru)
JP (1) JP4646178B2 (ru)
DE (2) DE19963358A1 (ru)
ES (1) ES2240169T5 (ru)
RU (1) RU2264550C2 (ru)
WO (1) WO2001048363A1 (ru)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490487C2 (ru) * 2008-04-21 2013-08-20 Вертзиле Швайц Аг Система контроля рабочих характеристик продувки и способ контроля технологического режима в процессе продувки большого двухтактного дизельного двигателя с прямоточной продувкой
RU2544682C2 (ru) * 2009-09-09 2015-03-20 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. Способ диагностики эффективности охладителя системы рециркуляции выхлопного газа в дизельном двигателе
RU2555091C2 (ru) * 2009-11-12 2015-07-10 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. Устройство и способ защиты компрессора и охладителя воздуха турбонаддува в двигателе внутреннего сгорания, двигатель внутреннего сгорания и устройство управления
RU2563441C1 (ru) * 2011-11-04 2015-09-20 Тойота Дзидося Кабусики Кайся Устройство управления для дизельного двигателя с турбонаддувом
RU2569410C2 (ru) * 2010-08-05 2015-11-27 Форд Глобал Технолоджис, ЛЛК Способ наддува впускного коллектора двигателя
RU2577675C2 (ru) * 2010-10-20 2016-03-20 Форд Глобал Технолоджис, ЛЛК Способ контроля за системой рециркуляции отработавших газов
RU2586230C2 (ru) * 2012-04-27 2016-06-10 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ эксплуатации двигателя (варианты)
RU2615177C2 (ru) * 2012-02-17 2017-04-04 Рено С.А.С. Система и способ оценки соотношения между давлением на входе и давлением на выходе турбины двигателя с наддувом автотранспортного средства
RU2665010C2 (ru) * 2013-08-26 2018-08-24 Уэстпорт Пауэр Инк. Прямая система рециркуляции выхлопных газов
RU2675645C2 (ru) * 2014-03-12 2018-12-21 Ман Трак Унд Бас Аг Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства
RU2680454C2 (ru) * 2014-06-06 2019-02-21 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ для двигателя с турбонагнетателем (варианты) и система двигателя внутреннего сгорания
RU2698225C2 (ru) * 2014-09-12 2019-08-23 Ман Трак Унд Бас Аг Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства, в частности для автомобиля промышленного назначения
RU2702207C2 (ru) * 2014-11-13 2019-10-04 Ман Трак Унд Бас Аг Способ и устройство для коррекции импульсности выходного сигнала датчика массового расхода воздуха

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401457B1 (en) * 2001-01-31 2002-06-11 Cummins, Inc. System for estimating turbocharger compressor outlet temperature
DE10111775B4 (de) * 2001-03-12 2008-10-02 Volkswagen Ag Verfahren und Vorrichtung zur Bestimmung der Gasaustrittstemperatur der Turbine eines Abgasturboladers eines Kraftfahrzeugs
DE10157047B4 (de) * 2001-11-21 2012-05-31 GM Global Technology Operations LLC Verfahren und System zur variablen Verdichtung bei Verbrennungsmotoren, sowie Nachrüstbausatz hierfür
DE10158249B4 (de) * 2001-11-28 2010-10-21 Volkswagen Ag Verfahren zur Bestimmung des Abgasrückführmassenstroms eines Verbrennungsmotors mit Abgasrückführung und entsprechend ausgestaltetes Steuersystem für einen Verbrennungsmotor
EP1507967A2 (de) 2001-11-28 2005-02-23 Volkswagen Aktiengesellschaft Verfahren zur bestimmung der zusammensetzung des gasgemisches in einem brennraum eines verbrennungsmotors mit abgasrückführung
DE10162970B4 (de) * 2001-12-20 2016-02-18 Volkswagen Ag Verfahren und Vorrichtung zur Bestimmung des Abgasrückführmassenstroms eines Verbrennungsmotors
DE10202146B4 (de) * 2002-01-21 2005-12-22 Siemens Ag Verfahren zur Ansteuerung eines elektrisch angetriebenen Verdichters
DE10202111B4 (de) * 2002-01-21 2006-02-02 Siemens Ag Verfahren zur Diagnose eines elektrisch angetriebenen Verdichters
DE10215361B4 (de) * 2002-04-08 2008-12-24 Continental Automotive Gmbh Verfahren zur Modellierung eines Massenstroms durch eine Umgehungsleitung zu einem Abgasturbolader
US6622548B1 (en) * 2002-06-11 2003-09-23 General Motors Corporation Methods and apparatus for estimating gas temperatures within a vehicle engine
JP2004100517A (ja) * 2002-09-06 2004-04-02 Mitsubishi Fuso Truck & Bus Corp 内燃機関の故障検出装置
DE10241886A1 (de) * 2002-09-10 2004-03-11 Volkswagen Ag Verfahren zur Erkennung der Strömungsumkehr an der Verdichtungsdrosselklappe bei mehrfach aufgeladener Brennkraftmaschine
DE10241884B4 (de) * 2002-09-10 2013-04-11 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE10242234B4 (de) * 2002-09-12 2006-03-23 Daimlerchrysler Ag Verfahren zur Bestimmung einer Abgasrückführmenge für einen Verbrennungsmotor mit Abgasrückführung
DE10300794B4 (de) * 2003-01-13 2015-07-02 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors
JP2004257361A (ja) * 2003-02-27 2004-09-16 Honda Motor Co Ltd 排気還流弁の制御装置
DE10312387B4 (de) * 2003-03-20 2017-01-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
DE10319333B4 (de) * 2003-04-29 2007-11-22 Siemens Ag System und Verfahren zur Beeinflussung der Ansauggastemperatur im Brennraum eines Verbrennungsmotors
JP4134816B2 (ja) * 2003-06-03 2008-08-20 いすゞ自動車株式会社 ターボチャージャ付エンジン
DE10329330B4 (de) * 2003-06-30 2005-06-09 Siemens Ag Verfahren zum Ermitteln des Abgasgegendruckes einer Verbrennungskraftmaschine mit Turboaufladung
FR2859501B1 (fr) * 2003-09-05 2007-05-04 Siemens Vdo Automotive Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse
GB0403718D0 (en) * 2004-02-19 2004-03-24 Epicam Ltd An engine and an apparatus for providing forced aspiration to an engine
US7031824B2 (en) * 2004-04-07 2006-04-18 General Motors Corporation Multivariable actuator control for an internal combustion engine
DE102004019315B8 (de) * 2004-04-21 2017-04-27 Volkswagen Ag Verfahren zur Bestimmung von Zustandsgrößen eines Gasgemisches in einer einem Verbrennungsmotor zugeordneten Luftstrecke und entsprechend ausgestaltete Motorsteuerung
DE102004035317B4 (de) * 2004-07-21 2020-10-01 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102004035316B4 (de) 2004-07-21 2018-10-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
FR2873409B1 (fr) * 2004-07-22 2006-10-13 Siemens Vdo Automotive Sas Procede de determination de la pression d'echappement d'un moteur a combustion interne turbocompresse
US7848910B2 (en) 2004-07-22 2010-12-07 Avl List Gmbh Method for analyzing the behavior of complex systems, especially internal combustion engines
DE102004036064A1 (de) * 2004-07-24 2006-03-16 Volkswagen Ag Diagnoseverfahren zur Erkennung von Fehlern bei der Ladedruckregelung eines Abgasturboladers eines Verbrennungsmotors
DE102004038156A1 (de) * 2004-08-06 2006-02-23 Mtu Friedrichshafen Gmbh Einrichtung und Verfahren zur Regelung eines Abgasturboladers mit veränderbarer Turbinengeometrie
DE102004041767A1 (de) 2004-08-28 2006-03-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
FR2876739B1 (fr) * 2004-10-18 2009-11-13 Peugeot Citroen Automobiles Sa Procede de regulation d'un systeme d'admission d'un moteur a combustion interne et vehicule automobile mettant en oeuvre ce procede
JP4367335B2 (ja) * 2004-12-27 2009-11-18 日産自動車株式会社 エンジンの制御装置。
DE102005005559B4 (de) * 2005-02-07 2018-11-15 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasturbolader
DE102005015609B4 (de) * 2005-04-05 2008-01-17 Siemens Ag Vorrichtung zum Steuern einer Brennkraftmaschine
US20070074512A1 (en) * 2005-10-03 2007-04-05 Deere & Company, A Delaware Corporation Turbocharged internal combustion engine with EGR system having reverse flow
DE102005054525A1 (de) * 2005-11-14 2007-05-16 Porsche Ag Verfahren und Steuergerät zur Steuerung eines Turboladers mit turbinenseitiger Ladedruck-Regelung und einem Umluftventil
FR2894616B1 (fr) * 2005-12-13 2008-01-11 Renault Sas Procede d'estimation du debit d'air entrant dans un moteur a combustion interne
FR2894617B1 (fr) * 2005-12-13 2008-02-15 Renault Sas Procede d'estimation de temperature de gaz d'echappement avant turbine.
US8082736B2 (en) * 2006-01-04 2011-12-27 Cummins Inc. Temperature determination technique for a turbocharger
DE102006009241A1 (de) 2006-02-28 2007-09-06 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006026219B4 (de) * 2006-06-06 2016-01-07 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4735465B2 (ja) * 2006-08-02 2011-07-27 トヨタ自動車株式会社 内燃機関の排気還流装置
DE102006042872B4 (de) * 2006-09-13 2010-02-25 Ford Global Technologies, LLC, Dearborn Verfahren zur Bestimmung des Abgasgegendrucks stromaufwärts einer Turbine eines Abgasturboladers
JP4673818B2 (ja) * 2006-10-26 2011-04-20 トヨタ自動車株式会社 ターボチャージャ付き内燃機関の制御装置
FR2910059A1 (fr) * 2006-12-19 2008-06-20 Renault Sas Procede d'estimation de la pression des gaz d'echappement en amont d'une turbine de turbocompresseur
DE102007017845A1 (de) * 2007-04-16 2008-11-27 Siemens Ag Turboaufgeladene Brennkraftmaschine und Verfahren
US7819095B2 (en) 2007-09-17 2010-10-26 Denso Corporation Electronic valve system
US7966815B2 (en) * 2007-09-17 2011-06-28 Denso Corporation Engine load estimation
US7992388B2 (en) * 2007-09-18 2011-08-09 Ford Global Technologies, Llc Method for estimating compressor output temperature for a two-stage turbocharger
FR2923537A1 (fr) * 2007-11-12 2009-05-15 Renault Sas Systeme et procede d'estimation de la pression en aval d'une turbine de turbocompresseur et moteur thermique associe
FR2923538A3 (fr) * 2007-11-12 2009-05-15 Renault Sas Systeme et procede d'estimation de la pression en amont d'une turbine de turbocompresseur et moteur thermique associ associe
DE102008009522B4 (de) * 2008-02-16 2021-12-16 Zf Cv Systems Hannover Gmbh Verfahren zur Kalibrierung von Radgeschwindigkeiten
DE102009020804B4 (de) * 2008-05-27 2015-08-20 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Diagnosesystem für einen luftgekühlten Ladeluftkühler für Verbrennungsmotoren
FR2941267B1 (fr) * 2009-01-22 2011-01-21 Renault Sas Procede et dispositif de determination de la pression en amont d'une turbine d'un turbocompresseur de suralimentation d'un moteur thermique.
EP3633169B1 (en) 2009-12-23 2022-10-12 FPT Motorenforschung AG Method and apparatus for measuring and controlling the egr rate in a combustion engine
FR2956160B1 (fr) * 2010-02-08 2012-10-12 Peugeot Citroen Automobiles Sa Procede de controle d'un moteur a combustion thermique equipe de deux boucles de recirculation de gaz d'echappement
WO2011099173A1 (ja) * 2010-02-09 2011-08-18 三菱重工業株式会社 ターボチャージャ付きエンジンの制御装置
JP5742535B2 (ja) * 2011-07-20 2015-07-01 日産自動車株式会社 吸気コレクターの内部状態推定装置
US20130066615A1 (en) * 2011-09-14 2013-03-14 General Electric Company System and method for simulating gas turbine operation
US9476365B2 (en) * 2012-05-17 2016-10-25 Ford Global Technologies, Llc Coordination of cam timing and blow-through air delivery
DE102013209815B3 (de) * 2013-05-27 2014-09-18 Continental Automotive Gmbh Verfahren und System zur Steuerung einer Brennkraftmaschine
DE102013223900A1 (de) 2013-11-22 2015-05-28 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Steuern eines Ladedrucks einer aufgeladenen Brennkraftmaschine
US9145852B2 (en) * 2014-01-03 2015-09-29 Deere & Company Power system comprising an EGR system
DE102014212447A1 (de) 2014-06-27 2015-12-31 Volkswagen Aktiengesellschaft Verfahren und Steuerung zum Betreiben eines Abgasturboladers
DE102015203940A1 (de) * 2015-03-05 2016-09-08 Volkswagen Ag Verfahren und Steuervorrichtung zum Ermitteln eines Wirkgrößen-Verlaufs
JP6542592B2 (ja) * 2015-06-10 2019-07-10 三菱重工エンジン&ターボチャージャ株式会社 ターボ過給機付きエンジンの制御装置
US9909490B2 (en) * 2016-03-24 2018-03-06 Ford Global Technologies, Llc Methods and systems for boost control
US10215665B2 (en) * 2016-05-03 2019-02-26 General Electric Company System and method to model power output of an engine
DE102017122928A1 (de) * 2016-10-11 2018-01-18 FEV Europe GmbH Verfahren zum Bestimmen eines Effizienzwertes einer Turbine mit einer variablen Geometrie
DE102017122932A1 (de) * 2016-10-12 2018-01-18 FEV Europe GmbH Verfahren zum Bestimmen eines Drehmoments einer Turbine mit einer variablen Geometrie
DE102018202477A1 (de) * 2018-02-19 2019-08-22 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Verbrennungskraftmaschine
FR3081193B1 (fr) * 2018-05-16 2020-07-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compresseur et procede de controle du debit
US11434843B1 (en) * 2021-05-21 2022-09-06 Garrett Transportation I Inc. Engine mass flow observer with fault mitigation
US11614041B2 (en) 2021-06-11 2023-03-28 Caterpillar Inc. Engine intake air and exhaust control system
US20230212993A1 (en) * 2022-01-06 2023-07-06 Transportation Ip Holdings, Llc Sensor system and method
FR3140908A1 (fr) * 2022-10-14 2024-04-19 Psa Automobiles Sa Procédé d’estimation de la pression de suralimention naturelle dans un moteur thermique essence équipé d’un turbocompresseur de type à géometrie variable

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176739A (ja) * 1984-09-19 1986-04-19 Nippon Denso Co Ltd デイ−ゼル機関用電子制御式燃料噴射装置
JPH04311643A (ja) * 1991-04-10 1992-11-04 Hitachi Ltd エンジンの気筒流入空気量算出方法
DE4214648A1 (de) * 1992-05-02 1993-11-04 Bosch Gmbh Robert System zur steuerung einer brennkraftmaschine
US5753805A (en) * 1996-12-02 1998-05-19 General Motors Corporation Method for determining pneumatic states in an internal combustion engine system
DE19756619B4 (de) 1997-04-01 2007-03-15 Robert Bosch Gmbh System zum Betreiben einer Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19730578A1 (de) * 1997-07-17 1999-01-21 Bosch Gmbh Robert Verfahren und Vorrichtung zum Schutz eines Turboladers
JP3743195B2 (ja) * 1999-02-26 2006-02-08 ふそうエンジニアリング株式会社 予混合圧縮着火内燃機関
US6295816B1 (en) * 2000-05-24 2001-10-02 General Electric Company Turbo-charged engine combustion chamber pressure protection apparatus and method
US6408624B1 (en) * 2001-01-29 2002-06-25 Cummins, Inc. System for controlling transient compressor surge in a turbocharged internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490487C2 (ru) * 2008-04-21 2013-08-20 Вертзиле Швайц Аг Система контроля рабочих характеристик продувки и способ контроля технологического режима в процессе продувки большого двухтактного дизельного двигателя с прямоточной продувкой
RU2544682C2 (ru) * 2009-09-09 2015-03-20 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. Способ диагностики эффективности охладителя системы рециркуляции выхлопного газа в дизельном двигателе
RU2555091C2 (ru) * 2009-11-12 2015-07-10 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. Устройство и способ защиты компрессора и охладителя воздуха турбонаддува в двигателе внутреннего сгорания, двигатель внутреннего сгорания и устройство управления
RU2569410C2 (ru) * 2010-08-05 2015-11-27 Форд Глобал Технолоджис, ЛЛК Способ наддува впускного коллектора двигателя
RU2577675C2 (ru) * 2010-10-20 2016-03-20 Форд Глобал Технолоджис, ЛЛК Способ контроля за системой рециркуляции отработавших газов
RU2563441C1 (ru) * 2011-11-04 2015-09-20 Тойота Дзидося Кабусики Кайся Устройство управления для дизельного двигателя с турбонаддувом
RU2615177C2 (ru) * 2012-02-17 2017-04-04 Рено С.А.С. Система и способ оценки соотношения между давлением на входе и давлением на выходе турбины двигателя с наддувом автотранспортного средства
RU2586230C2 (ru) * 2012-04-27 2016-06-10 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ эксплуатации двигателя (варианты)
RU2665010C2 (ru) * 2013-08-26 2018-08-24 Уэстпорт Пауэр Инк. Прямая система рециркуляции выхлопных газов
RU2675645C2 (ru) * 2014-03-12 2018-12-21 Ман Трак Унд Бас Аг Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства
RU2680454C2 (ru) * 2014-06-06 2019-02-21 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ для двигателя с турбонагнетателем (варианты) и система двигателя внутреннего сгорания
RU2698225C2 (ru) * 2014-09-12 2019-08-23 Ман Трак Унд Бас Аг Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства, в частности для автомобиля промышленного назначения
US10436130B2 (en) 2014-09-12 2019-10-08 Man Truck & Bus Ag Combustion engine, in particular gas engine, for a vehicle, in particular for a commercial vehicle
RU2702207C2 (ru) * 2014-11-13 2019-10-04 Ман Трак Унд Бас Аг Способ и устройство для коррекции импульсности выходного сигнала датчика массового расхода воздуха

Also Published As

Publication number Publication date
RU2002120461A (ru) 2004-02-10
ES2240169T5 (es) 2008-12-16
EP1247016A1 (de) 2002-10-09
ES2240169T3 (es) 2005-10-16
JP4646178B2 (ja) 2011-03-09
JP2003518581A (ja) 2003-06-10
DE19963358A1 (de) 2001-07-12
US6715287B1 (en) 2004-04-06
WO2001048363A1 (de) 2001-07-05
EP1247016B1 (de) 2005-04-06
EP1247016B2 (de) 2008-08-13
DE50010016D1 (de) 2005-05-12

Similar Documents

Publication Publication Date Title
RU2264550C2 (ru) Способ и устройство управления двигателем внутреннего сгорания с системой впуска воздуха
US7438061B2 (en) Method and apparatus for estimating exhaust pressure of an internal combustion engine
US7318342B2 (en) Method for model-based determination of the fresh air mass flowing into the cylinder combustion chamber of an internal combustion engine during an intake phase
EP1416138B1 (en) EGR-gas flow rate estimation apparatus for internal combustion engine
KR101974654B1 (ko) 내연기관을 구비한 엔진 시스템에서 물리적 변수를 위한 모델링 값을 결정하는 방법 및 그 장치
US6981492B2 (en) Method for determining an exhaust gas recirculation amount
RU2488011C2 (ru) Способ определения расхода воздуха на входе в двигатель внутреннего сгорания и двигатель внутреннего сгорания
RU2557079C2 (ru) Способ и устройство для измерения и управления степенью рециркуляции выхлопного газа в двигателе внутреннего сгорания
CN101903636B (zh) 用于监控内燃机中的再循环废气的方法和装置
US7174250B2 (en) Method for determining an exhaust gas recirculation quantity for an internal combustion engine provided with exhaust gas recirculation
KR20000064611A (ko) 외부배기가스를재순환하는내연기관의실린더로유입되는맑은공기의매스를모델을통해결정하기위한방법
JPH0524341B2 (ru)
RU2698225C2 (ru) Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства, в частности для автомобиля промышленного назначения
RU2675645C2 (ru) Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства
CN104819061A (zh) 确定增压空气质量流速的方法和装置
RU2645856C2 (ru) Способ диагностики двигателя с наддувом и соответствующий двигатель
JP2013194587A (ja) 内燃機関のシリンダ吸入空気量推定装置
US7542841B2 (en) Method and device for controlling an internal combustion engine
US11555460B2 (en) Mass flow measurement system using adaptive calibration and sensor diagnostics
US6985806B2 (en) Method for determining an estimated value of a mass flow in the intake channel of an internal combustion engine
US9482164B2 (en) Engine control using calculated cylinder air charge
JP4689678B2 (ja) エンジンのポンピング・トルクを推定する方法
JP4490428B2 (ja) ターボチャージドエンジンを制御するための空気供給制御方法
JP4665843B2 (ja) 内燃機関の異常判定装置
EP2846027A1 (en) Method to determine exhaust manifold pressure

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170914