RU2200608C2 - Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна - Google Patents

Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна Download PDF

Info

Publication number
RU2200608C2
RU2200608C2 RU98116061/12A RU98116061A RU2200608C2 RU 2200608 C2 RU2200608 C2 RU 2200608C2 RU 98116061/12 A RU98116061/12 A RU 98116061/12A RU 98116061 A RU98116061 A RU 98116061A RU 2200608 C2 RU2200608 C2 RU 2200608C2
Authority
RU
Russia
Prior art keywords
evaporator
liquid
evaporation
glycols
glycol
Prior art date
Application number
RU98116061/12A
Other languages
English (en)
Other versions
RU98116061A (ru
Inventor
Юрген МОР
Франс ВАНСАНТ
Аксель ПОЛЬТ
Штефан ШОЛЛЬ
Зигфрид Крюгер
Хармут ШТААТЦ
Original Assignee
Басф Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Акциенгезелльшафт filed Critical Басф Акциенгезелльшафт
Publication of RU98116061A publication Critical patent/RU98116061A/ru
Application granted granted Critical
Publication of RU2200608C2 publication Critical patent/RU2200608C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/06Evaporators with vertical tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/06Evaporators with vertical tubes
    • B01D1/065Evaporators with vertical tubes by film evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/15Special material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Описывается способ испарения содержащей гликоли жидкости в испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности в форме испарительных трубок, который заключается в том, что, в основном, полное смачивание жидкостью всей нагретой твердой поверхности осуществляют путем регулирования подводимого к испарителю потока жидкости, равномерного распределения жидкости на входе испарителя с помощью, по крайней мере, двух расположенных друг над другом и смещенных относительно друг друга перфорированных коробчатых распределителей и теплоизоляции трубной/трубных решетки/решеток. Данный способ можно применять для получения высокочистых гликолей испарением. Кроме того, описывается испаритель с падающей пленкой, содержащий обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, выполненное в виде, по меньшей мере, двух расположенных друг под другим и смещенных относительно друг друга перфорированных коробчатых распределителей, а верхняя трубная решетка и/или нижняя трубная решетка выполнена(ы) с теплоизоляцией. Данный испаритель можно применять в качестве испарителя кубового остатка ректификационной колонны. Изобретение позволяет избежать каталитического окисления гликолей за счет предотвращения контакта их паровой фазы с частицами железа или окислов железа, попадающих на испарение. 4 с. и 2 з.п.ф-лы, 3 ил., 3 табл.

Description

Изобретение относится к технологии испарения легко окисляющихся соединений, более конкретно к способу испарения содержащей гликоли жидкости, способу получения высокочистых гликолей, испарителю с падающей пленкой и ректификационной колонне.
В технике используют для самых различных целей большое количество выпарных аппаратов (испарителей). Примерами испарителей являются котельные испарители, трубчатые испарители, пленочные испарители, испарители мгновенного вскипания, пластинчатые испарители, а также специальные испарители для высоковязких растворов, для инкрустирующих и агрессивных растворов (см., например, Ullmanns Enzyklopedie der Technischen Chemie, 4-е изд., том 2, стр. 650-663).
К трубчатым выпарным аппаратам относятся аппараты со свободной и принудительной циркуляцией, косотрубные аппараты, аппараты с ускоренной циркуляцией, прямоточные аппараты, аппараты с поднимающейся пленкой жидкости и аппараты с нисходящим потоком, соответственно с падающей пленкой жидкости.
Указанные выпарные аппараты (испарители) применяются также и для испарения жидкостей, содержащих легко окисляемые соединения.
Такая жидкость получается, например, при получении гликолей, в частности этиленгликоля. При осуществлении промышленного способа получения этиленгликоля этиленоксид подвергают взаимодействию с приблизительно десятикратным молярным избытком воды либо при нормальном давлении и температурах 50-70oС в присутствии катализатора, либо при избыточном давлении 20-40 бар и температуре 140-230oС без катализатора. При этом получение этиленгликоля происходит почти исключительно в реакторе, включенном после стадии прямого окисления этилена. Образующийся водный раствор гликоля-сырца концентрируют в выпарном аппарате до приблизительно 30% и подвергают фракционированной перегонке в нескольких вакуумных колоннах (K.Weissermel, H.-J.Arpe. Industrielle organische Chemie, VCH Verlagsgesellschaft, 3-e изд., стр. 161).
Гликоли, особенно при повышенной температуре, чувствительны к окислению. Они легко окисляются, в частности, до альдегидов. Для определенных применений, например для получения полиэфиров, требуется особенно высокая чистота этиленгликоля (99,9 мас. %). Эти гликоли должны удовлетворять требованиям относительно специфических пределов кипения, содержания воды и кислотного числа (см. Ullmanns Enzyklopedie der Technischen Chemie, 4-е изд., том 8, стр. 200-210; K. Weissermel, H. -J.Arpe, в цитированной выше работе, стр. 162).
Известен испаритель с падающей пленкой, содержащий обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубную решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости к испарительным трубкам, представляющее собой две расположенные одна под другой нижнюю и верхнюю коробки, причем верхняя коробка снабжена сливными отверстиями, выполненными в днище и стенке, а нижняя коробка выполнена из сегментов, каждый их которых снабжен трехточечной опорой, выполнен с возможностью регулирования по высоте и снабжен сливными штуцерами, выполненными в днище, при этом сегменты выполнены с возможностью разъемного соединения (см. заявку DE 3904357 А1, В 01 D 1/06, 16.08.1990 г.).
Недостатком известного испарителя является сложность конструкции его устройства для подвода жидкости к испарительным трубкам.
Ближайшим аналогом является способ испарения содержащей гликоли жидкости в многоступенчатом испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности за счет распределения жидкости по испарительным трубкам с помощью центрального выпуска, выполненного в днище сборников. Многоступенчатый испаритель с падающей пленкой для осуществления способа содержит обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, представляющее собой последовательно расположенные по высоте испарительных трубок коробки, разделяющие испарительные трубки на секции и снабженные центральным выпуском, сообщающимся с верхней трубной решеткой каждой секции, а нижняя трубная решетка каждой секции сообщается с нижеследующей коробкой через ее верхнюю стенку (см. заявку GB 2084885, В 01 D 1/06, 21.04.1982 г.).
Недостатком известного способа является то, что при испарении содержащих гликоли жидкостей имеет место окисление гликолей в результате контакта их паровой фазы с частицами железа, выделяемыми из выполненных из углеродистой стали частей установки производства гликолей и попадающими в испаритель. Эти частицы железа в виде металла или окислов железа выступают в качестве катализатора. Было установлено, что каталитическое окисление протекает существенно быстрее, чем автоокисление, т.е. непосредственное термическое разложение гликолей кислородом в отсутствии катализатора.
Задачей изобретения является избежание каталитического окисления гликолей за счет предотвращения контакта их паровой фазы с частицами железа или окислов железа, попадающих на испарение.
Поставленная задача решается в способе испарения содержащей гликоли жидкости в испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности в форме испарительных трубок, заключающемся в том, что, в основном, полное смачивание жидкостью всей нагретой твердой поверхности осуществляют путем регулирования подводимого к испарителю потока жидкости, равномерного распределения жидкости на входе испарителя с помощью, по крайней мере, двух расположенных друг над другом и смещенных друг относительно друга перфорированных коробчатых распределителей и теплоизоляции трубной/трубных решетки/решеток.
Подаваемая на испарение жидкость преимущественно содержит воду, а в качестве гликоля содержит преимущественно этиленгликоль.
Поставленная задача также решается испарителем с падающей пленкой, содержащим обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, выполненное в виде по меньшей мере, двух расположенных друг под другим и смещенных друг относительно друга перфорированных коробчатых респределителей, а верхняя трубная решетка и/или нижняя трубная решетка выполнена(ы) с теплоизоляцией.
Согласно предпочтительному признаку изобретения обогреваемая твердая поверхность выполнена из коррозионностойкой стали.
Дальнейшими объектами изобретения являются способ получения высокочистых гликолей путем испарения из жидкости, в котором применяют предлагаемый способ, и ректификационная колонна, в которую включен предлагаемый испаритель с падающей пленкой в качестве испарителя кубового остатка.
Процесс испарения осуществляют при пониженном давлении. Так, например, в случае этиленгликоля испарение происходит при пониженном давлении, обычно при давлениях 50-300 мбар, как правило, около 200 мбар.
Согласно форме выполнения изобретения жидкость пропускают через испаритель в качестве циркулирующего кубового остатка, в частности в том случае, когда испаряется не все подаваемое в испаритель количество жидкости.
Ниже изобретение подробнее поясняется на примерах его осуществления со ссылкой на прилагаемые чертежи, на которых показаны:
на фиг.1 - схема агрегата, состоящего из колонны и испарителя с падающей пленкой жидкости, с раздельным кубовым остатком,
на фиг.2 - верхняя часть испарителя с падающей пленкой жидкости с двухступенчатым перфорированным коробчатым распределителем и
на фиг.3 - нижняя часть испарителя с падающей пленкой жидкости с выходной зоной для греющей среды и продукта в поперечном сечении.
Испаритель с падающей пленкой жидкости позволяет поддерживать невысокую термическую нагрузку продукта благодаря краткому времени пребывания при высокой температуре, небольшой потере давления и, как следствие этого, незначительном повышении температуры кипения в сравнении с изобарными условиями, а также при незначительной движущей разности температур между продуктом и греющей средой.
В описываемом варианте испаритель с падающей пленкой жидкости работает в режиме с раздельным кубовым остатком. Это позволяет избежать при работе с системой этиленгликоль/вода повышения температуры кубового продукта при неизменном качестве кубового продукта. Режим работы с раздельным кубовым остатком подробно описан в патенте ФРГ 3338488.
Объединение испарителя с ректификационной колонной показано на фиг.1. При этом поз.1 обозначает испаритель с падающей пленкой жидкости с впускным патрубком 2 для греющего пара и выпускными патрубками 3 для конденсата и 4 для несконденсированных газов, поз.5 - показанную только в ее нижней части ректификационную колонну, поз.6 - насос для подачи кубового остатка колонны в распределительное устройство на верхней трубной решетке испарителя 1, и поз.7 - насос для откачивания кубового продукта по линии 8 из испарителя.
Кубовый остаток ректификационной колонны 5 насосом 6 подается в распределительное устройство на верхней трубной решетке испарителя 1 с падающей пленкой жидкости, в котором вертикально расположен ряд трубок, как показано на чертеже. Испаритель нагревается греющим паром 2, причем конденсат и несконденсированные газы отбираются раздельно по патрубкам 3, 4. Кубовый остаток испарителя отбирается насосом 7. Циркулирующий поток кубового остатка (т.е. жидкости, выходящей из самой нижней части колонны), должен быть отрегулирован так, чтобы все трубы испарителя в достаточной мере снабжались жидкостью. Количество подаваемой жидкости должно быть таким, чтобы на выходе из трубок испарителя имелось еще достаточно жидкости для образования устойчивой пленки жидкости по всему периметру трубок испарителя. Таким образом предотвращается прямой контакт паровой фазы, например гликольсодержащей паровой фазы, с нагреваемой внутренней стороной трубок испарителя.
Таким образом, поток жидкости, поданный в испаритель, испаряется предпочтительно лишь частично. Образовавшийся соковый пар направляется вместе с неиспарившейся жидкостью (снова) в колонну, поскольку низ испарителя полностью заполнен кубовым остатком, который в виде вытекшего из указанных трубок кубового остатка испарителя, отделенного от кубового остатка колонны, находится ниже трубок испарителя. Из этого отделенного кубового остатка потока неиспарившейся жидкости с помощью насоса 7 на выходе из нижней части испарителя отбирается кубовый продукт.
Подаваемая в испаритель 1 жидкость должна быть равномерно распределена по всем испарительным трубкам 9, чтобы обеспечить вышеописанное образование устойчивой пленки жидкости в всех трубках. Согласно изобретению равномерное распределение жидкости может быть осуществлено посредством двухступенчатого перфорированного коробчатого распределителя, показанного на фиг.2.
Подача жидкости на испарение осуществляется через трубу 10, после чего жидкость равномерно распределяется через предварительный распределитель 11 и затем - через главный распределитель 12 по всей входной поверхности испарительных трубок 9. Оба перфорированных короба (предварительный распределитель 11 и главный распределитель 12) расположены смещенными так, чтобы во все испарительные трубки подавалось приблизительно равномерно большое количество жидкости. Жидкость затем поступает в испарительные трубки, на стенках которых она стекает вниз и частично испаряется. Приток жидкости регулируют при этом таким образом, чтобы испарялась не вся жидкость, но чтобы и на нижнем конце трубки находилась еще устойчивая пленка жидкости, покрывающая всю внутреннюю стенку трубки.
Необходимую для испарения энергию дает греющий пар, который подводится через входной патрубок 2 в испаритель с падающей пленкой жидкости, в частности через паровой раструб, соответственно через паровой пояс 13. Возможно применение и других подходящих теплоносителей, например высококипящих органических соединений.
Согласно одному признаку изобретения верхняя трубная решетка испарителя с падающей пленкой жидкости выполнена теплоизолированной. Благодаря этому никакие обогреваемые компоненты испарителя не могут быть не покрыты пленкой жидкости. Разумеется, нельзя исключать того, что на верхней трубной решетке могут откладываться занесенные из предвключенных агрегатов частицы оксида железа, соответственно частицы магнетита. Эти частицы могут иметь по меньшей мере частично контакт с гликольсодержащей паровой фазой согласно варианту осуществления изобретения, если верхняя трубная решетка 14 не теплоизолирована. Обычно верхняя трубная решетка 14 своей нижней стороной непосредственно контактирует с греющей средой, которая в большинстве случаев является водяным паром. Во избежание этого непосредственного контакта ниже верхней трубной решетки размещена промежуточная решетка 15, как показано на фиг.2. Промежуточное пространство между верхней трубной решеткой 14 и промежуточной решеткой 15 может быть заполнено подходящим изоляционным материалом. Проникновение греющего пара в промежуточное пространство между верхней трубной решеткой 14 и промежуточной решеткой 15 может быть предотвращено путем минимизации допусков на отверстия для испарительных трубок 9 в промежуточной решетке 15 так, что между испарительными трубками 9 и промежуточной решеткой 15 практически не остается никакого зазора. Расстояние D между верхней трубной решеткой 14 и промежуточной решеткой 15 может составлять при этом 20-200 мм.
От теплоизоляции верхней трубной решетки можно отказаться, если другие описанные выше признаки изобретения будут обеспечивать постоянное полное смачивание нагретых поверхностей верхней трубной решетки пленкой жидкости. В крайнем случае теплоизоляцией снабжены верхняя и нижняя трубные решетки.
Согласно другому признаку изобретения только нижняя трубная решетка теплоизолирована, что показано на фиг.3. При этом испарительные трубки 9 пропущены через нижнюю трубную решетку 16 вниз, предпочтительно настолько, насколько это позволяет, соответственно требует, конструкция испарителя с падающей пленкой жидкости. Это может быть ограничено, например, тем, что испарительные трубки 9 должны быть сварены с нижней трубной решеткой 16 снизу, как показано на фиг.3. На нижней трубной решетке 16, на ее нижней стороне, расположено круглое кольцо 17, соединенное на нижней стороне с листовым металлическим экраном 18, который закрывает нижнюю сторону трубок 9. Пространство между трубками 9, нижней трубной решеткой 16 и листовым металлическим экраном 18 может быть при этом заполнено изоляционным материалом 19. Экран 18 защищает при этом изоляционный материал 19 от паровой фазы. Такое конструктивное выполнение нижней трубной решетки препятствует нагреванию листового металлического экрана 18 и тем самым непосредственному контакту сухих нагретых поверхностей, например, с гликольсодержащей паровой фазой.
Согласно варианту осуществления изобретения, промежуточное пространство между нижней трубной решеткой 16 и листовым металлическим экраном 18 не заполняют изоляционным материалом 19, а охлаждают промывкой подходящей для этого жидкостью, например охлаждающей водой, соответственно продувкой газом. С этой целью промежуточное пространство между нижней трубной решеткой 16 и листовым металлическим экраном 18 всесторонне уплотняют. Подвод и отвод охлаждающей среды может происходить при этом через отверстия 20, как показано на фиг.3, в виде вентиляционных отверстий для промежуточного пространства.
На выходе из трубок испарителя с падающей пленкой для исключения потерь давления, а также для экранирования поверхности жидкости в нижней части испарителя могут быть предусмотрены направляющие щитки 21, показанные в качестве примера на фиг.3. Через штуцер 22 в колонну 5 подводится соковый пар. Через штуцер 23 насосом 7 из испарителя отбирается кубовый продукт.
Испаритель 1 с падающей пленкой жидкости может работать с любой греющей средой. Предпочтительно из энергетических соображений он работает на водяном паре, возможно, на перегретом водяном паре с повышенным давлением.
Если в качестве греющей среды применяется водяной пар, называемый также греющим паром, то разрушение импульса греющего пара может происходить за пределами испарителя в паровом раструбе или паровом поясе 13. Для защиты испарителя от эрозии частицами жидкости, увлеченными паром, дополнительно на стороне подвода греющего пара может быть расположено жалюзи для защиты трубок испарителя.
Во избежание образования частиц оксида железа, соответственно частиц магнетита, испаритель с падающей пленкой жидкости изготавливается из специальной стали, например специальной стали 1.4541 или равноценной стали.
Предлагаемый испаритель с падающей пленкой жидкости загружают испаряемой жидкостью так, чтобы по всей длине трубок в испарителе образовывалась устойчивая пленка жидкости. С этой целью соответствующим образом регулируются массовый расход жидкости, подаваемой из колонны 5 насосом 6, так же, как и температура греющей среды и давление на стороне пара в испарителе.
Влияние контакта между паром испаряемого гликоля и частицами железа, соответственно оксида железа, в частности частицами магнетита, подробнее разъясняется в примерах.
Пример 1
В лабораторных испытаниях исследуют влияние различных материалов в дистилляционной аппаратуре на окисление этиленгликоля, т.е. образование альдегида. С этой целью вначале проводят опыты по дистилляции с этиленгликолем.
Применяемая простая дистилляционная аппаратура состоит из выпарного куба с капилляром, насадочной колонны (длина 40 см, диаметр 2,5 см), нисходящего холодильника, приемника и устройства для создания разрежения. В выпарной куб загружают этиленгликоль и подвергают перегонке при 200 мбар и температуре 150-160oС в нижней части куба. Перегонку прекращают, когда отгоняют 87% первоначальной кубовой жидкости, т.е. когда остается 13% кубового остатка. Продолжительность опыта составляет около 2 часов. Колонна содержит насадку. В разных опытах в качестве насадки применяют кольца из стекла, специальной стали или железа. Через капилляр выпарного куба барботируют воздух или азот (на выбор). В таблице 1 представлены результаты, причем численные значения указывают содержание альдегида в дистилляте, соответственно в кубовом остатке в ч/млн (части на 1 миллион частей).
Определение концентрации альдегида проводят по методу "МВТН", как он описан у Е. Savicky et al. в Analyt. Chem. 33, 93-96 (1961). Этот метод служит для фотометрического определения свободного и связанного альдегида. Разность между свободным и общим альдегидом представляет собой так называемый "связанный альдегид", который в данном случае присутствует, например, в виде ацеталей и, следовательно, непосредственному определению недоступен.
Указанные балансовые значения дают соответствующие средние содержания общего альдегида в этиленгликоле, причем учитывают соотношение кубового остатка к дистилляту 13:87.
Из таблицы 1 видно, что при барботировании воздуха при всех применяемых насадках происходит повышенное образование альдегида.
Кроме того, наиболее высокое образование альдегида имеет место при применении железных колец в качестве насадки, самое низкое - при применении в качестве насадки колец из специальной стали. Следовательно, выбор материала для насадки колонны оказывает влияние на образование альдегида при дистилляции этиленгликоля. Наличие железных колец в качестве насадки способствует образованию альдегида из этиленгликоля. При этом на железных кольцах в качестве насадки наблюдают во время дистилляции образование зернистого, легкоподвижного черного осадка, в то время как кольца из специальной стали лишь тускнеют.
Пример 2
В следующем эксперименте этиленгликоль нагревают в вышеописанной аппаратуре с обратным холодильником, при прочих равных условиях. Следовательно, отгонку этиленгликоля не проводят. Это дает возможность установить в течение продолжительного времени контакт между паровой фазой и исследуемым материалом, применяемым в качестве насадки.
В этом эксперименте колонна работает в режиме пустой стеклянной колонны или заполненной железными опилками стеклянной колонны. Это служит для моделирования "обратного холодильника" из железа или соответствующего испарителя с газофазным контактом из этого материала. Результаты опыта представлены в таблице 2, причем соответствующее содержание общего альдегида указано в ч/млн.
Исходная концентрация альдегида составляет 23 ч/млн.
Из определенного содержания альдегида следует, что окисление этиленгликоля при доступе воздуха на железной поверхности происходит существенно сильнее, чем при соответствующих контрольных опытах в пустой стеклянной колонне (опыт 4) или в атмосфере азота (опыт 3). В результате продолжительных времен пребывания и контакта влияние применяемого материала в холодильнике, соответственно в колонне, выражено существенно сильнее, чем в предыдущем примере. Из примера ясно, что контакт паровой фазы с железом приводит к существенно более интенсивному образованию альдегида в качестве продукта окисления этиленгликоля.
Пример 3
В качестве сравнительного опыта нагревают этиленгликоль в вышеописанной аппаратуре с обратным холодильником, причем применяют пустую стеклянную колонну. В качестве атмосферы служит воздух. При кипячении с обратным холодильником в кубовую жидкость помещают железные опилки, соответственно стальные кольца из стали V2A, которые полностью покрыты кубовой жидкостью, т.е. не могут вступить в контакт с газовой фазой.
Содержание альдегида в кубовой жидкости в начале эксперимента составляет 23 ч/млн. В таблице 3 приведены значения общего альдегида, замеренные после 20 часов опыта.
Из замеренного содержания альдегида в конце эксперимента ясно следует, что железо или сталь, соответственно присутствующие в перегонном кубе, но не имеющие контакта с газовой фазой, не оказывают практически никакого влияния на окисление этиленгликоля до альдегида. Концентрация альдегида не изменяется при применении погруженного железа или стали в сравнении с пустой стеклянной аппаратурой. Тем самым ясно, что повышенное образование альдегида при испарении этиленгликоля происходит в газовой фазе.
Пример 4 (сравнительный)
Для испарения получающейся в качестве побочного продукта смеси этиленгликоля с водой на промышленной установке получения этиленгликоля применяют обычный испаритель с падающей пленкой жидкости, изготовленный из углеродистой стали. При работе испарителя содержание альдегида в испаряемом продукте повышается более чем до 50 ч/млн.
Пример 5
При проведении промышленного способа получения этиленгликоля согласно примеру 4 обычный испаритель с падающей пленкой жидкости заменяют испарителем с падающей пленкой жидкости согласно изобретению, представленным на фиг. 1-3. Испаритель с падающей пленкой жидкости состоит при этом из специальной стали 1.4541. Испаритель эксплуатируют в режиме с раздельным кубовым остатком. Количество подаваемой в испаритель жидкости устанавливают таким, чтобы на выходе из труб испарителя было достаточно жидкости для образования устойчивой пленки жидкости по всему периметру испарительных трубок. Равномерное распределение жидкости достигается при этом согласно изобретению с помощью двухступенчатого перфорированного коробчатого распределителя, изображенного на фиг.2. Необходимую для испарения энергию получают от греющего пара. У применяемого испарителя с падающей пленкой жидкости нижняя трубная решетка выполнена теплоизолированной, как это было подробно описано выше. При этом пространство между трубами, нижней трубной решеткой и металлическим листовым экраном было заполнено изоляционным материалом. Площадь трубной решетки полностью занята поперечными сечениями трубок.
В испарителе у нижнего выхода трубок были расположены направляющие щитки для потока жидкости, показанные на фиг.3.
При применении испарителя с падающей пленкой жидкости согласно изобретению, содержание альдегида, даже при работе в течение длительного периода времени, составляет менее 10 ч/млн.
По результатам опытов видно, что путем предотвращения непосредственного контакта между образовавшейся паровой фазой испаряемого гликоля и имеющейся в испарителе нагретой твердой поверхностью окисление гликоля может быть практически исключено. Исключение контакта нагретой твердой поверхности с имеющимися в системе частицами железа или оксида железа, например частицами магнетита, приводит к более эффективному испарению с небольшим образованием продуктов окисления.

Claims (6)

1. Способ испарения содержащей гликоли жидкости в испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности в форме испарительных трубок, отличающийся тем, что, в основном, полное смачивание жидкостью всей нагретой твердой поверхности осуществляют путем регулирования подводимого к испарителю потока жидкости, равномерного распределения жидкости на входе испарителя с помощью, по крайней мере, двух расположенных друг над другом и смещенных относительно друг друга перфорированных коробчатых распределителей и теплоизоляции трубной/трубных решетки/решеток.
2. Способ по п. 1, отличающийся тем, что гликоль является этиленгликолем, а жидкость содержит воду.
3. Способ получения высокочистых гликолей путем испарения из жидкости, отличающийся тем, что процесс осуществляют с использованием способа по пп. 1 и 2.
4. Испаритель с падающей пленкой, содержащий обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, отличающийся тем, что устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам выполнено в виде, по меньшей мере, двух расположенных друг под другом и смещенных относительно друг друга перфорированных коробчатых распределителей, а верхняя трубная решетка и/или нижняя трубная решетка выполнена(ы) с теплоизоляцией.
5. Испаритель по п. 4, отличающийся тем, что обогреваемая твердая поверхность выполнена из коррозионно-стойкой стали.
6. Ректификационная колонна, снабженная испарителем кубового остатка, отличающаяся тем, что в качестве испарителя кубового остатка она содержит испаритель по пп. 4 и 5.
RU98116061/12A 1996-01-25 1997-01-20 Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна RU2200608C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19602640.7 1996-01-25
DE19602640A DE19602640A1 (de) 1996-01-25 1996-01-25 Verfahren und Verdampfer zur Verdampfung oxidationsempfindlicher Verbindungen

Publications (2)

Publication Number Publication Date
RU98116061A RU98116061A (ru) 2000-06-20
RU2200608C2 true RU2200608C2 (ru) 2003-03-20

Family

ID=7783664

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98116061/12A RU2200608C2 (ru) 1996-01-25 1997-01-20 Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна

Country Status (15)

Country Link
US (1) US6066232A (ru)
EP (1) EP0880385B1 (ru)
JP (1) JP3325271B2 (ru)
KR (1) KR100467730B1 (ru)
CN (1) CN1128646C (ru)
AR (1) AR005531A1 (ru)
BR (1) BR9707072A (ru)
DE (2) DE19602640A1 (ru)
ES (1) ES2159833T3 (ru)
MY (1) MY129470A (ru)
PL (1) PL185951B1 (ru)
RU (1) RU2200608C2 (ru)
SA (1) SA97180477B1 (ru)
UA (1) UA61904C2 (ru)
WO (1) WO1997026970A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462286C1 (ru) * 2011-03-14 2012-09-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ испарения жидкости в испарителе
RU2619684C1 (ru) * 2016-04-19 2017-05-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ повышения интенсивности теплоотдачи в испарителе

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855911A1 (de) * 1998-12-03 2000-06-08 Basf Ag Verfahren zur Isolierung von Glykolen
US6464943B1 (en) * 1999-09-07 2002-10-15 Felix H. Yiu Solid phase evaporator device
DE10036958A1 (de) * 2000-07-28 2002-02-07 Basf Ag Verfahren zur Herstellung von tert.-C4-C8-Alkylestern der (Meth)acrylsäure
DE10124904A1 (de) * 2001-05-22 2002-11-28 Bayer Ag Gekammerter Umlaufverdampfer
DE10135716A1 (de) * 2001-07-21 2003-02-06 Basf Ag Verbesserter Fallfilmverdampfer zur Auftrennung von Stoffgemischen
DE10215124A1 (de) * 2002-04-05 2003-10-16 Wme Ges Fuer Windkraftbetr Ene Verdampferrohr für eine Meerwasserentsalzungsanlage
DE10221122A1 (de) * 2002-05-13 2003-12-04 Bayer Ag Verfahren zur schonenden destillativen Trennung von Stoffgemischen
DE10341896A1 (de) * 2003-09-10 2005-04-14 Uhde Gmbh Mehrphasen-Flüssigkeitsverteiler für einen Rieselbettreaktor
AT412951B (de) * 2003-10-02 2005-09-26 Vtu Engineering Planungs Und B Dünnschichtverdampfer
DE102004045671A1 (de) * 2004-09-17 2006-03-23 Uhde Gmbh Teillastfähiger Fallfilmverdampfer und Verfahren zum Teillastbetrieb
US7790001B2 (en) * 2006-04-17 2010-09-07 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Method of corrosion prevention
US20110177440A1 (en) * 2010-01-21 2011-07-21 Hiroshi Yamada Method of manufacturing toner and toner manufactured by the method
CN101766916B (zh) * 2010-03-03 2011-08-31 南京斯迈柯特种金属装备股份有限公司 高效蒸发器
DE102011102224A1 (de) * 2011-05-23 2012-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Verdampfung flüssiger Kohlenwasserstoffverbindungen oder von Flüssigkeiten in denen Kohlenwasserstoffverbindungen enthalten sind sowie deren Verwendung
US20130055755A1 (en) * 2011-08-31 2013-03-07 Basf Se Distributor device for distributing liquid to tubes of a tube-bundle apparatus, and also tube-bundle apparatus, in particular falling-film evaporator
WO2013030332A1 (de) 2011-08-31 2013-03-07 Basf Se Verteilervorrichtung zur verteilung von flüssigkeit auf rohre eines rohrbündelapparates sowie rohrbündelapparat, insbesondere fallfilmverdampfer
KR101152305B1 (ko) * 2011-10-31 2012-06-11 (주)송산피엔이 증발기
JP2013141658A (ja) * 2012-01-12 2013-07-22 Sumitomo Chemical Co Ltd 蒸発装置、蒸発システム及び蒸発方法
EP2807439B1 (en) 2012-01-27 2017-08-23 Carrier Corporation Evaporator and liquid distributor
CN110494197B (zh) 2017-02-14 2022-07-15 科思创德国股份有限公司 尤其用于降膜蒸发器的分布器设备及其用途
KR101975720B1 (ko) * 2018-11-23 2019-08-28 이상조 박막 강하형 증발 농축 장치
US12006869B2 (en) * 2022-10-04 2024-06-11 General Electric Company Heat exchanger for a gas turbine engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH378290A (de) * 1960-01-29 1964-06-15 Wiegand Apparatebau Gmbh Verfahren und Vorrichtung zur gleichmässigen Verteilung der einzudampfenden Flüssigkeit auf die Heizrohre eines Fallstromverdampfers
CH565576A5 (ru) * 1973-12-14 1975-08-29 Escher Wyss Ag
IT1100716B (it) * 1978-12-15 1985-09-28 Snam Progetti Apparecchiatura per la distribuzione di liquido in forma di film all'interno di tubi verticali
US4264538A (en) * 1980-05-14 1981-04-28 Norton Company Liquid distributor
FR2501348A1 (fr) * 1981-03-09 1982-09-10 Stein Industrie Procede de vaporisation d'un liquide pur
DE3338488A1 (de) * 1982-10-29 1984-05-03 Basf Ag, 6700 Ludwigshafen Verfahren zur gewinnung von temperaturempfindlichen produkten durch thermisch schonende destillation mittels eines mit einer destillationskolonne verbundenen duennschichtverdampfers und eine anordnung zur durchfuehrung des verfahrens
JPS6054702A (ja) * 1983-09-05 1985-03-29 Toyo Eng Corp 蒸発器
DE3643816A1 (de) * 1986-02-19 1987-08-20 Man Technologie Gmbh Eindampf-vorrichtung mit einer verdampfer-kondensator-einheit
FI76699C (fi) * 1986-06-25 1988-12-12 Ahlstroem Oy Indunstare av roertyp.
JPS6438590A (en) * 1987-08-04 1989-02-08 Toshiba Corp Heat exchanger
DE3904357A1 (de) * 1989-02-14 1990-08-16 Krupp Industrietech Verteilervorrichtung fuer fallstromverdampfer
US5770020A (en) * 1990-12-14 1998-06-23 Keeran Corporation N.V. Distillation apparatus
US5246541A (en) * 1991-05-14 1993-09-21 A. Ahlstrom Corporation Evaporator for liquid solutions
US5849148A (en) * 1993-08-12 1998-12-15 Ancon Chemical Pty. Ltd. Distributor plate and evaporator
FI97694C (fi) * 1994-09-27 1997-02-10 Hadwaco Ltd Oy Haihduttimen nesteenjakaja

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОГАН В.Б. и др. Оборудование для разделения смесей под вакуумом. - Л.: Машиностроение (Ленинградское отд-ние), 1976, с.62. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462286C1 (ru) * 2011-03-14 2012-09-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ испарения жидкости в испарителе
RU2619684C1 (ru) * 2016-04-19 2017-05-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ повышения интенсивности теплоотдачи в испарителе

Also Published As

Publication number Publication date
EP0880385A1 (de) 1998-12-02
SA97180477B1 (ar) 2006-08-20
WO1997026970A1 (de) 1997-07-31
KR19990081981A (ko) 1999-11-15
ES2159833T3 (es) 2001-10-16
DE59703791D1 (de) 2001-07-19
EP0880385B1 (de) 2001-06-13
BR9707072A (pt) 1999-07-20
PL328158A1 (en) 1999-01-18
JP3325271B2 (ja) 2002-09-17
AR005531A1 (es) 1999-06-23
JPH11504858A (ja) 1999-05-11
CN1128646C (zh) 2003-11-26
MY129470A (en) 2007-04-30
DE19602640A1 (de) 1997-07-31
PL185951B1 (pl) 2003-09-30
KR100467730B1 (ko) 2005-03-16
UA61904C2 (en) 2003-12-15
CN1213982A (zh) 1999-04-14
US6066232A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
RU2200608C2 (ru) Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна
FI80218B (fi) Foerfarande och anlaeggning foer rening av en tvaokomponentvaetskeblandning medelst destillering.
CN101516820B (zh) 制备丙烯酸的方法
EP2334633B1 (en) Control of a process for the purification of (meth) acrylic acid using on-line, near ir analysis
EP1242345B1 (de) Verfahren zur herstellung von alkalimethylaten
US5780679A (en) Separation of (meth)acrylic acid from the reaction gas mixture formed in the catalytic gas phase oxidation of C3 /C4 compounds
US6069261A (en) Method of chemically reacting substances in a reaction column
US4169856A (en) Process for the preparation and the recovery of ethanolamines
EP0002298B1 (en) Process and apparatus for the removal of ammonium carbamate from a urea-synthesis solution
EP1910265A1 (de) Anordnung zur behandlung eines polymerisationsfähigen stoffes
RU2762260C1 (ru) Способ производства (мет)акриловой кислоты или ее эфира
US3458404A (en) Apparatus for distilling liquids
RU2241660C2 (ru) Способ приготовления концентрированного раствора и концентрированные водные растворы перекиси водорода, полученные этим способом
RU2102376C1 (ru) Способ получения бис-фторметилового эфира и способ получения дифторметана
US3174911A (en) Formaldehyde manufacture
JP2023100734A (ja) 不飽和カルボン酸エステルの製造方法
US5296103A (en) Method for the fractional distillation of liquid mixtures and apparatus for carrying out the method
CA2244271C (en) Evaporation of oxidation-sensitive compounds and evaporator for this purpose
US4440960A (en) Continuous preparation of 3-alkyl-buten-1-als
US3428423A (en) Method for the removal and recovery of promoter from crude phthalic anhydride made by the vapor phase oxidation of orthoxylene in the presence of promoter
US5955041A (en) Natural circulation reactor and use for producing linear and cyclic acetals
US4256675A (en) Method for generating super atmospheric pressures of sensitive materials in a gas stream
RU2792186C2 (ru) Способ получения эфира ненасыщенной карбоновой кислоты
US2484918A (en) Liquid-vapor contact apparatus
US5475128A (en) Process for preparing dialkyl vinylphosphonates