RU2200608C2 - Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна - Google Patents
Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна Download PDFInfo
- Publication number
- RU2200608C2 RU2200608C2 RU98116061/12A RU98116061A RU2200608C2 RU 2200608 C2 RU2200608 C2 RU 2200608C2 RU 98116061/12 A RU98116061/12 A RU 98116061/12A RU 98116061 A RU98116061 A RU 98116061A RU 2200608 C2 RU2200608 C2 RU 2200608C2
- Authority
- RU
- Russia
- Prior art keywords
- evaporator
- liquid
- evaporation
- glycols
- glycol
- Prior art date
Links
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 239000007788 liquid Substances 0.000 title claims abstract description 82
- 238000001704 evaporation Methods 0.000 title claims abstract description 48
- 230000008020 evaporation Effects 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 19
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 150000002334 glycols Chemical class 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 15
- 238000009413 insulation Methods 0.000 claims abstract description 8
- 238000009736 wetting Methods 0.000 claims abstract description 7
- 239000011552 falling film Substances 0.000 claims description 16
- 238000004821 distillation Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 4
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 31
- 229910052742 iron Inorganic materials 0.000 abstract description 14
- 239000002245 particle Substances 0.000 abstract description 14
- 239000012808 vapor phase Substances 0.000 abstract description 12
- 230000003647 oxidation Effects 0.000 abstract description 11
- 238000007254 oxidation reaction Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 abstract 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 24
- 239000010408 film Substances 0.000 description 23
- 238000002474 experimental method Methods 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- 239000002184 metal Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 238000006887 Ullmann reaction Methods 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/06—Evaporators with vertical tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/06—Evaporators with vertical tubes
- B01D1/065—Evaporators with vertical tubes by film evaporating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B63/00—Purification; Separation; Stabilisation; Use of additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S159/00—Concentrating evaporators
- Y10S159/15—Special material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Описывается способ испарения содержащей гликоли жидкости в испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности в форме испарительных трубок, который заключается в том, что, в основном, полное смачивание жидкостью всей нагретой твердой поверхности осуществляют путем регулирования подводимого к испарителю потока жидкости, равномерного распределения жидкости на входе испарителя с помощью, по крайней мере, двух расположенных друг над другом и смещенных относительно друг друга перфорированных коробчатых распределителей и теплоизоляции трубной/трубных решетки/решеток. Данный способ можно применять для получения высокочистых гликолей испарением. Кроме того, описывается испаритель с падающей пленкой, содержащий обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, выполненное в виде, по меньшей мере, двух расположенных друг под другим и смещенных относительно друг друга перфорированных коробчатых распределителей, а верхняя трубная решетка и/или нижняя трубная решетка выполнена(ы) с теплоизоляцией. Данный испаритель можно применять в качестве испарителя кубового остатка ректификационной колонны. Изобретение позволяет избежать каталитического окисления гликолей за счет предотвращения контакта их паровой фазы с частицами железа или окислов железа, попадающих на испарение. 4 с. и 2 з.п.ф-лы, 3 ил., 3 табл.
Description
Изобретение относится к технологии испарения легко окисляющихся соединений, более конкретно к способу испарения содержащей гликоли жидкости, способу получения высокочистых гликолей, испарителю с падающей пленкой и ректификационной колонне.
В технике используют для самых различных целей большое количество выпарных аппаратов (испарителей). Примерами испарителей являются котельные испарители, трубчатые испарители, пленочные испарители, испарители мгновенного вскипания, пластинчатые испарители, а также специальные испарители для высоковязких растворов, для инкрустирующих и агрессивных растворов (см., например, Ullmanns Enzyklopedie der Technischen Chemie, 4-е изд., том 2, стр. 650-663).
К трубчатым выпарным аппаратам относятся аппараты со свободной и принудительной циркуляцией, косотрубные аппараты, аппараты с ускоренной циркуляцией, прямоточные аппараты, аппараты с поднимающейся пленкой жидкости и аппараты с нисходящим потоком, соответственно с падающей пленкой жидкости.
Указанные выпарные аппараты (испарители) применяются также и для испарения жидкостей, содержащих легко окисляемые соединения.
Такая жидкость получается, например, при получении гликолей, в частности этиленгликоля. При осуществлении промышленного способа получения этиленгликоля этиленоксид подвергают взаимодействию с приблизительно десятикратным молярным избытком воды либо при нормальном давлении и температурах 50-70oС в присутствии катализатора, либо при избыточном давлении 20-40 бар и температуре 140-230oС без катализатора. При этом получение этиленгликоля происходит почти исключительно в реакторе, включенном после стадии прямого окисления этилена. Образующийся водный раствор гликоля-сырца концентрируют в выпарном аппарате до приблизительно 30% и подвергают фракционированной перегонке в нескольких вакуумных колоннах (K.Weissermel, H.-J.Arpe. Industrielle organische Chemie, VCH Verlagsgesellschaft, 3-e изд., стр. 161).
Гликоли, особенно при повышенной температуре, чувствительны к окислению. Они легко окисляются, в частности, до альдегидов. Для определенных применений, например для получения полиэфиров, требуется особенно высокая чистота этиленгликоля (99,9 мас. %). Эти гликоли должны удовлетворять требованиям относительно специфических пределов кипения, содержания воды и кислотного числа (см. Ullmanns Enzyklopedie der Technischen Chemie, 4-е изд., том 8, стр. 200-210; K. Weissermel, H. -J.Arpe, в цитированной выше работе, стр. 162).
Известен испаритель с падающей пленкой, содержащий обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубную решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости к испарительным трубкам, представляющее собой две расположенные одна под другой нижнюю и верхнюю коробки, причем верхняя коробка снабжена сливными отверстиями, выполненными в днище и стенке, а нижняя коробка выполнена из сегментов, каждый их которых снабжен трехточечной опорой, выполнен с возможностью регулирования по высоте и снабжен сливными штуцерами, выполненными в днище, при этом сегменты выполнены с возможностью разъемного соединения (см. заявку DE 3904357 А1, В 01 D 1/06, 16.08.1990 г.).
Недостатком известного испарителя является сложность конструкции его устройства для подвода жидкости к испарительным трубкам.
Ближайшим аналогом является способ испарения содержащей гликоли жидкости в многоступенчатом испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности за счет распределения жидкости по испарительным трубкам с помощью центрального выпуска, выполненного в днище сборников. Многоступенчатый испаритель с падающей пленкой для осуществления способа содержит обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, представляющее собой последовательно расположенные по высоте испарительных трубок коробки, разделяющие испарительные трубки на секции и снабженные центральным выпуском, сообщающимся с верхней трубной решеткой каждой секции, а нижняя трубная решетка каждой секции сообщается с нижеследующей коробкой через ее верхнюю стенку (см. заявку GB 2084885, В 01 D 1/06, 21.04.1982 г.).
Недостатком известного способа является то, что при испарении содержащих гликоли жидкостей имеет место окисление гликолей в результате контакта их паровой фазы с частицами железа, выделяемыми из выполненных из углеродистой стали частей установки производства гликолей и попадающими в испаритель. Эти частицы железа в виде металла или окислов железа выступают в качестве катализатора. Было установлено, что каталитическое окисление протекает существенно быстрее, чем автоокисление, т.е. непосредственное термическое разложение гликолей кислородом в отсутствии катализатора.
Задачей изобретения является избежание каталитического окисления гликолей за счет предотвращения контакта их паровой фазы с частицами железа или окислов железа, попадающих на испарение.
Поставленная задача решается в способе испарения содержащей гликоли жидкости в испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности в форме испарительных трубок, заключающемся в том, что, в основном, полное смачивание жидкостью всей нагретой твердой поверхности осуществляют путем регулирования подводимого к испарителю потока жидкости, равномерного распределения жидкости на входе испарителя с помощью, по крайней мере, двух расположенных друг над другом и смещенных друг относительно друга перфорированных коробчатых распределителей и теплоизоляции трубной/трубных решетки/решеток.
Подаваемая на испарение жидкость преимущественно содержит воду, а в качестве гликоля содержит преимущественно этиленгликоль.
Поставленная задача также решается испарителем с падающей пленкой, содержащим обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, выполненное в виде по меньшей мере, двух расположенных друг под другим и смещенных друг относительно друга перфорированных коробчатых респределителей, а верхняя трубная решетка и/или нижняя трубная решетка выполнена(ы) с теплоизоляцией.
Согласно предпочтительному признаку изобретения обогреваемая твердая поверхность выполнена из коррозионностойкой стали.
Дальнейшими объектами изобретения являются способ получения высокочистых гликолей путем испарения из жидкости, в котором применяют предлагаемый способ, и ректификационная колонна, в которую включен предлагаемый испаритель с падающей пленкой в качестве испарителя кубового остатка.
Процесс испарения осуществляют при пониженном давлении. Так, например, в случае этиленгликоля испарение происходит при пониженном давлении, обычно при давлениях 50-300 мбар, как правило, около 200 мбар.
Согласно форме выполнения изобретения жидкость пропускают через испаритель в качестве циркулирующего кубового остатка, в частности в том случае, когда испаряется не все подаваемое в испаритель количество жидкости.
Ниже изобретение подробнее поясняется на примерах его осуществления со ссылкой на прилагаемые чертежи, на которых показаны:
на фиг.1 - схема агрегата, состоящего из колонны и испарителя с падающей пленкой жидкости, с раздельным кубовым остатком,
на фиг.2 - верхняя часть испарителя с падающей пленкой жидкости с двухступенчатым перфорированным коробчатым распределителем и
на фиг.3 - нижняя часть испарителя с падающей пленкой жидкости с выходной зоной для греющей среды и продукта в поперечном сечении.
на фиг.1 - схема агрегата, состоящего из колонны и испарителя с падающей пленкой жидкости, с раздельным кубовым остатком,
на фиг.2 - верхняя часть испарителя с падающей пленкой жидкости с двухступенчатым перфорированным коробчатым распределителем и
на фиг.3 - нижняя часть испарителя с падающей пленкой жидкости с выходной зоной для греющей среды и продукта в поперечном сечении.
Испаритель с падающей пленкой жидкости позволяет поддерживать невысокую термическую нагрузку продукта благодаря краткому времени пребывания при высокой температуре, небольшой потере давления и, как следствие этого, незначительном повышении температуры кипения в сравнении с изобарными условиями, а также при незначительной движущей разности температур между продуктом и греющей средой.
В описываемом варианте испаритель с падающей пленкой жидкости работает в режиме с раздельным кубовым остатком. Это позволяет избежать при работе с системой этиленгликоль/вода повышения температуры кубового продукта при неизменном качестве кубового продукта. Режим работы с раздельным кубовым остатком подробно описан в патенте ФРГ 3338488.
Объединение испарителя с ректификационной колонной показано на фиг.1. При этом поз.1 обозначает испаритель с падающей пленкой жидкости с впускным патрубком 2 для греющего пара и выпускными патрубками 3 для конденсата и 4 для несконденсированных газов, поз.5 - показанную только в ее нижней части ректификационную колонну, поз.6 - насос для подачи кубового остатка колонны в распределительное устройство на верхней трубной решетке испарителя 1, и поз.7 - насос для откачивания кубового продукта по линии 8 из испарителя.
Кубовый остаток ректификационной колонны 5 насосом 6 подается в распределительное устройство на верхней трубной решетке испарителя 1 с падающей пленкой жидкости, в котором вертикально расположен ряд трубок, как показано на чертеже. Испаритель нагревается греющим паром 2, причем конденсат и несконденсированные газы отбираются раздельно по патрубкам 3, 4. Кубовый остаток испарителя отбирается насосом 7. Циркулирующий поток кубового остатка (т.е. жидкости, выходящей из самой нижней части колонны), должен быть отрегулирован так, чтобы все трубы испарителя в достаточной мере снабжались жидкостью. Количество подаваемой жидкости должно быть таким, чтобы на выходе из трубок испарителя имелось еще достаточно жидкости для образования устойчивой пленки жидкости по всему периметру трубок испарителя. Таким образом предотвращается прямой контакт паровой фазы, например гликольсодержащей паровой фазы, с нагреваемой внутренней стороной трубок испарителя.
Таким образом, поток жидкости, поданный в испаритель, испаряется предпочтительно лишь частично. Образовавшийся соковый пар направляется вместе с неиспарившейся жидкостью (снова) в колонну, поскольку низ испарителя полностью заполнен кубовым остатком, который в виде вытекшего из указанных трубок кубового остатка испарителя, отделенного от кубового остатка колонны, находится ниже трубок испарителя. Из этого отделенного кубового остатка потока неиспарившейся жидкости с помощью насоса 7 на выходе из нижней части испарителя отбирается кубовый продукт.
Подаваемая в испаритель 1 жидкость должна быть равномерно распределена по всем испарительным трубкам 9, чтобы обеспечить вышеописанное образование устойчивой пленки жидкости в всех трубках. Согласно изобретению равномерное распределение жидкости может быть осуществлено посредством двухступенчатого перфорированного коробчатого распределителя, показанного на фиг.2.
Подача жидкости на испарение осуществляется через трубу 10, после чего жидкость равномерно распределяется через предварительный распределитель 11 и затем - через главный распределитель 12 по всей входной поверхности испарительных трубок 9. Оба перфорированных короба (предварительный распределитель 11 и главный распределитель 12) расположены смещенными так, чтобы во все испарительные трубки подавалось приблизительно равномерно большое количество жидкости. Жидкость затем поступает в испарительные трубки, на стенках которых она стекает вниз и частично испаряется. Приток жидкости регулируют при этом таким образом, чтобы испарялась не вся жидкость, но чтобы и на нижнем конце трубки находилась еще устойчивая пленка жидкости, покрывающая всю внутреннюю стенку трубки.
Необходимую для испарения энергию дает греющий пар, который подводится через входной патрубок 2 в испаритель с падающей пленкой жидкости, в частности через паровой раструб, соответственно через паровой пояс 13. Возможно применение и других подходящих теплоносителей, например высококипящих органических соединений.
Согласно одному признаку изобретения верхняя трубная решетка испарителя с падающей пленкой жидкости выполнена теплоизолированной. Благодаря этому никакие обогреваемые компоненты испарителя не могут быть не покрыты пленкой жидкости. Разумеется, нельзя исключать того, что на верхней трубной решетке могут откладываться занесенные из предвключенных агрегатов частицы оксида железа, соответственно частицы магнетита. Эти частицы могут иметь по меньшей мере частично контакт с гликольсодержащей паровой фазой согласно варианту осуществления изобретения, если верхняя трубная решетка 14 не теплоизолирована. Обычно верхняя трубная решетка 14 своей нижней стороной непосредственно контактирует с греющей средой, которая в большинстве случаев является водяным паром. Во избежание этого непосредственного контакта ниже верхней трубной решетки размещена промежуточная решетка 15, как показано на фиг.2. Промежуточное пространство между верхней трубной решеткой 14 и промежуточной решеткой 15 может быть заполнено подходящим изоляционным материалом. Проникновение греющего пара в промежуточное пространство между верхней трубной решеткой 14 и промежуточной решеткой 15 может быть предотвращено путем минимизации допусков на отверстия для испарительных трубок 9 в промежуточной решетке 15 так, что между испарительными трубками 9 и промежуточной решеткой 15 практически не остается никакого зазора. Расстояние D между верхней трубной решеткой 14 и промежуточной решеткой 15 может составлять при этом 20-200 мм.
От теплоизоляции верхней трубной решетки можно отказаться, если другие описанные выше признаки изобретения будут обеспечивать постоянное полное смачивание нагретых поверхностей верхней трубной решетки пленкой жидкости. В крайнем случае теплоизоляцией снабжены верхняя и нижняя трубные решетки.
Согласно другому признаку изобретения только нижняя трубная решетка теплоизолирована, что показано на фиг.3. При этом испарительные трубки 9 пропущены через нижнюю трубную решетку 16 вниз, предпочтительно настолько, насколько это позволяет, соответственно требует, конструкция испарителя с падающей пленкой жидкости. Это может быть ограничено, например, тем, что испарительные трубки 9 должны быть сварены с нижней трубной решеткой 16 снизу, как показано на фиг.3. На нижней трубной решетке 16, на ее нижней стороне, расположено круглое кольцо 17, соединенное на нижней стороне с листовым металлическим экраном 18, который закрывает нижнюю сторону трубок 9. Пространство между трубками 9, нижней трубной решеткой 16 и листовым металлическим экраном 18 может быть при этом заполнено изоляционным материалом 19. Экран 18 защищает при этом изоляционный материал 19 от паровой фазы. Такое конструктивное выполнение нижней трубной решетки препятствует нагреванию листового металлического экрана 18 и тем самым непосредственному контакту сухих нагретых поверхностей, например, с гликольсодержащей паровой фазой.
Согласно варианту осуществления изобретения, промежуточное пространство между нижней трубной решеткой 16 и листовым металлическим экраном 18 не заполняют изоляционным материалом 19, а охлаждают промывкой подходящей для этого жидкостью, например охлаждающей водой, соответственно продувкой газом. С этой целью промежуточное пространство между нижней трубной решеткой 16 и листовым металлическим экраном 18 всесторонне уплотняют. Подвод и отвод охлаждающей среды может происходить при этом через отверстия 20, как показано на фиг.3, в виде вентиляционных отверстий для промежуточного пространства.
На выходе из трубок испарителя с падающей пленкой для исключения потерь давления, а также для экранирования поверхности жидкости в нижней части испарителя могут быть предусмотрены направляющие щитки 21, показанные в качестве примера на фиг.3. Через штуцер 22 в колонну 5 подводится соковый пар. Через штуцер 23 насосом 7 из испарителя отбирается кубовый продукт.
Испаритель 1 с падающей пленкой жидкости может работать с любой греющей средой. Предпочтительно из энергетических соображений он работает на водяном паре, возможно, на перегретом водяном паре с повышенным давлением.
Если в качестве греющей среды применяется водяной пар, называемый также греющим паром, то разрушение импульса греющего пара может происходить за пределами испарителя в паровом раструбе или паровом поясе 13. Для защиты испарителя от эрозии частицами жидкости, увлеченными паром, дополнительно на стороне подвода греющего пара может быть расположено жалюзи для защиты трубок испарителя.
Во избежание образования частиц оксида железа, соответственно частиц магнетита, испаритель с падающей пленкой жидкости изготавливается из специальной стали, например специальной стали 1.4541 или равноценной стали.
Предлагаемый испаритель с падающей пленкой жидкости загружают испаряемой жидкостью так, чтобы по всей длине трубок в испарителе образовывалась устойчивая пленка жидкости. С этой целью соответствующим образом регулируются массовый расход жидкости, подаваемой из колонны 5 насосом 6, так же, как и температура греющей среды и давление на стороне пара в испарителе.
Влияние контакта между паром испаряемого гликоля и частицами железа, соответственно оксида железа, в частности частицами магнетита, подробнее разъясняется в примерах.
Пример 1
В лабораторных испытаниях исследуют влияние различных материалов в дистилляционной аппаратуре на окисление этиленгликоля, т.е. образование альдегида. С этой целью вначале проводят опыты по дистилляции с этиленгликолем.
В лабораторных испытаниях исследуют влияние различных материалов в дистилляционной аппаратуре на окисление этиленгликоля, т.е. образование альдегида. С этой целью вначале проводят опыты по дистилляции с этиленгликолем.
Применяемая простая дистилляционная аппаратура состоит из выпарного куба с капилляром, насадочной колонны (длина 40 см, диаметр 2,5 см), нисходящего холодильника, приемника и устройства для создания разрежения. В выпарной куб загружают этиленгликоль и подвергают перегонке при 200 мбар и температуре 150-160oС в нижней части куба. Перегонку прекращают, когда отгоняют 87% первоначальной кубовой жидкости, т.е. когда остается 13% кубового остатка. Продолжительность опыта составляет около 2 часов. Колонна содержит насадку. В разных опытах в качестве насадки применяют кольца из стекла, специальной стали или железа. Через капилляр выпарного куба барботируют воздух или азот (на выбор). В таблице 1 представлены результаты, причем численные значения указывают содержание альдегида в дистилляте, соответственно в кубовом остатке в ч/млн (части на 1 миллион частей).
Определение концентрации альдегида проводят по методу "МВТН", как он описан у Е. Savicky et al. в Analyt. Chem. 33, 93-96 (1961). Этот метод служит для фотометрического определения свободного и связанного альдегида. Разность между свободным и общим альдегидом представляет собой так называемый "связанный альдегид", который в данном случае присутствует, например, в виде ацеталей и, следовательно, непосредственному определению недоступен.
Указанные балансовые значения дают соответствующие средние содержания общего альдегида в этиленгликоле, причем учитывают соотношение кубового остатка к дистилляту 13:87.
Из таблицы 1 видно, что при барботировании воздуха при всех применяемых насадках происходит повышенное образование альдегида.
Кроме того, наиболее высокое образование альдегида имеет место при применении железных колец в качестве насадки, самое низкое - при применении в качестве насадки колец из специальной стали. Следовательно, выбор материала для насадки колонны оказывает влияние на образование альдегида при дистилляции этиленгликоля. Наличие железных колец в качестве насадки способствует образованию альдегида из этиленгликоля. При этом на железных кольцах в качестве насадки наблюдают во время дистилляции образование зернистого, легкоподвижного черного осадка, в то время как кольца из специальной стали лишь тускнеют.
Пример 2
В следующем эксперименте этиленгликоль нагревают в вышеописанной аппаратуре с обратным холодильником, при прочих равных условиях. Следовательно, отгонку этиленгликоля не проводят. Это дает возможность установить в течение продолжительного времени контакт между паровой фазой и исследуемым материалом, применяемым в качестве насадки.
В следующем эксперименте этиленгликоль нагревают в вышеописанной аппаратуре с обратным холодильником, при прочих равных условиях. Следовательно, отгонку этиленгликоля не проводят. Это дает возможность установить в течение продолжительного времени контакт между паровой фазой и исследуемым материалом, применяемым в качестве насадки.
В этом эксперименте колонна работает в режиме пустой стеклянной колонны или заполненной железными опилками стеклянной колонны. Это служит для моделирования "обратного холодильника" из железа или соответствующего испарителя с газофазным контактом из этого материала. Результаты опыта представлены в таблице 2, причем соответствующее содержание общего альдегида указано в ч/млн.
Исходная концентрация альдегида составляет 23 ч/млн.
Из определенного содержания альдегида следует, что окисление этиленгликоля при доступе воздуха на железной поверхности происходит существенно сильнее, чем при соответствующих контрольных опытах в пустой стеклянной колонне (опыт 4) или в атмосфере азота (опыт 3). В результате продолжительных времен пребывания и контакта влияние применяемого материала в холодильнике, соответственно в колонне, выражено существенно сильнее, чем в предыдущем примере. Из примера ясно, что контакт паровой фазы с железом приводит к существенно более интенсивному образованию альдегида в качестве продукта окисления этиленгликоля.
Пример 3
В качестве сравнительного опыта нагревают этиленгликоль в вышеописанной аппаратуре с обратным холодильником, причем применяют пустую стеклянную колонну. В качестве атмосферы служит воздух. При кипячении с обратным холодильником в кубовую жидкость помещают железные опилки, соответственно стальные кольца из стали V2A, которые полностью покрыты кубовой жидкостью, т.е. не могут вступить в контакт с газовой фазой.
В качестве сравнительного опыта нагревают этиленгликоль в вышеописанной аппаратуре с обратным холодильником, причем применяют пустую стеклянную колонну. В качестве атмосферы служит воздух. При кипячении с обратным холодильником в кубовую жидкость помещают железные опилки, соответственно стальные кольца из стали V2A, которые полностью покрыты кубовой жидкостью, т.е. не могут вступить в контакт с газовой фазой.
Содержание альдегида в кубовой жидкости в начале эксперимента составляет 23 ч/млн. В таблице 3 приведены значения общего альдегида, замеренные после 20 часов опыта.
Из замеренного содержания альдегида в конце эксперимента ясно следует, что железо или сталь, соответственно присутствующие в перегонном кубе, но не имеющие контакта с газовой фазой, не оказывают практически никакого влияния на окисление этиленгликоля до альдегида. Концентрация альдегида не изменяется при применении погруженного железа или стали в сравнении с пустой стеклянной аппаратурой. Тем самым ясно, что повышенное образование альдегида при испарении этиленгликоля происходит в газовой фазе.
Пример 4 (сравнительный)
Для испарения получающейся в качестве побочного продукта смеси этиленгликоля с водой на промышленной установке получения этиленгликоля применяют обычный испаритель с падающей пленкой жидкости, изготовленный из углеродистой стали. При работе испарителя содержание альдегида в испаряемом продукте повышается более чем до 50 ч/млн.
Для испарения получающейся в качестве побочного продукта смеси этиленгликоля с водой на промышленной установке получения этиленгликоля применяют обычный испаритель с падающей пленкой жидкости, изготовленный из углеродистой стали. При работе испарителя содержание альдегида в испаряемом продукте повышается более чем до 50 ч/млн.
Пример 5
При проведении промышленного способа получения этиленгликоля согласно примеру 4 обычный испаритель с падающей пленкой жидкости заменяют испарителем с падающей пленкой жидкости согласно изобретению, представленным на фиг. 1-3. Испаритель с падающей пленкой жидкости состоит при этом из специальной стали 1.4541. Испаритель эксплуатируют в режиме с раздельным кубовым остатком. Количество подаваемой в испаритель жидкости устанавливают таким, чтобы на выходе из труб испарителя было достаточно жидкости для образования устойчивой пленки жидкости по всему периметру испарительных трубок. Равномерное распределение жидкости достигается при этом согласно изобретению с помощью двухступенчатого перфорированного коробчатого распределителя, изображенного на фиг.2. Необходимую для испарения энергию получают от греющего пара. У применяемого испарителя с падающей пленкой жидкости нижняя трубная решетка выполнена теплоизолированной, как это было подробно описано выше. При этом пространство между трубами, нижней трубной решеткой и металлическим листовым экраном было заполнено изоляционным материалом. Площадь трубной решетки полностью занята поперечными сечениями трубок.
При проведении промышленного способа получения этиленгликоля согласно примеру 4 обычный испаритель с падающей пленкой жидкости заменяют испарителем с падающей пленкой жидкости согласно изобретению, представленным на фиг. 1-3. Испаритель с падающей пленкой жидкости состоит при этом из специальной стали 1.4541. Испаритель эксплуатируют в режиме с раздельным кубовым остатком. Количество подаваемой в испаритель жидкости устанавливают таким, чтобы на выходе из труб испарителя было достаточно жидкости для образования устойчивой пленки жидкости по всему периметру испарительных трубок. Равномерное распределение жидкости достигается при этом согласно изобретению с помощью двухступенчатого перфорированного коробчатого распределителя, изображенного на фиг.2. Необходимую для испарения энергию получают от греющего пара. У применяемого испарителя с падающей пленкой жидкости нижняя трубная решетка выполнена теплоизолированной, как это было подробно описано выше. При этом пространство между трубами, нижней трубной решеткой и металлическим листовым экраном было заполнено изоляционным материалом. Площадь трубной решетки полностью занята поперечными сечениями трубок.
В испарителе у нижнего выхода трубок были расположены направляющие щитки для потока жидкости, показанные на фиг.3.
При применении испарителя с падающей пленкой жидкости согласно изобретению, содержание альдегида, даже при работе в течение длительного периода времени, составляет менее 10 ч/млн.
По результатам опытов видно, что путем предотвращения непосредственного контакта между образовавшейся паровой фазой испаряемого гликоля и имеющейся в испарителе нагретой твердой поверхностью окисление гликоля может быть практически исключено. Исключение контакта нагретой твердой поверхности с имеющимися в системе частицами железа или оксида железа, например частицами магнетита, приводит к более эффективному испарению с небольшим образованием продуктов окисления.
Claims (6)
1. Способ испарения содержащей гликоли жидкости в испарителе с падающей пленкой путем, в основном, полного смачивания жидкостью всей нагретой твердой поверхности в форме испарительных трубок, отличающийся тем, что, в основном, полное смачивание жидкостью всей нагретой твердой поверхности осуществляют путем регулирования подводимого к испарителю потока жидкости, равномерного распределения жидкости на входе испарителя с помощью, по крайней мере, двух расположенных друг над другом и смещенных относительно друг друга перфорированных коробчатых распределителей и теплоизоляции трубной/трубных решетки/решеток.
2. Способ по п. 1, отличающийся тем, что гликоль является этиленгликолем, а жидкость содержит воду.
3. Способ получения высокочистых гликолей путем испарения из жидкости, отличающийся тем, что процесс осуществляют с использованием способа по пп. 1 и 2.
4. Испаритель с падающей пленкой, содержащий обогреваемую твердую поверхность в форме испарительных трубок, имеющих верхнюю и нижнюю трубные решетки, устройство для обогрева испарительных трубок и устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам, отличающийся тем, что устройство для подвода жидкости, содержащей гликоли, к испарительным трубкам выполнено в виде, по меньшей мере, двух расположенных друг под другом и смещенных относительно друг друга перфорированных коробчатых распределителей, а верхняя трубная решетка и/или нижняя трубная решетка выполнена(ы) с теплоизоляцией.
5. Испаритель по п. 4, отличающийся тем, что обогреваемая твердая поверхность выполнена из коррозионно-стойкой стали.
6. Ректификационная колонна, снабженная испарителем кубового остатка, отличающаяся тем, что в качестве испарителя кубового остатка она содержит испаритель по пп. 4 и 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19602640A DE19602640A1 (de) | 1996-01-25 | 1996-01-25 | Verfahren und Verdampfer zur Verdampfung oxidationsempfindlicher Verbindungen |
DE19602640.7 | 1996-01-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU98116061A RU98116061A (ru) | 2000-06-20 |
RU2200608C2 true RU2200608C2 (ru) | 2003-03-20 |
Family
ID=7783664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU98116061/12A RU2200608C2 (ru) | 1996-01-25 | 1997-01-20 | Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна |
Country Status (15)
Country | Link |
---|---|
US (1) | US6066232A (ru) |
EP (1) | EP0880385B1 (ru) |
JP (1) | JP3325271B2 (ru) |
KR (1) | KR100467730B1 (ru) |
CN (1) | CN1128646C (ru) |
AR (1) | AR005531A1 (ru) |
BR (1) | BR9707072A (ru) |
DE (2) | DE19602640A1 (ru) |
ES (1) | ES2159833T3 (ru) |
MY (1) | MY129470A (ru) |
PL (1) | PL185951B1 (ru) |
RU (1) | RU2200608C2 (ru) |
SA (1) | SA97180477B1 (ru) |
UA (1) | UA61904C2 (ru) |
WO (1) | WO1997026970A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2462286C1 (ru) * | 2011-03-14 | 2012-09-27 | Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) | Способ испарения жидкости в испарителе |
RU2619684C1 (ru) * | 2016-04-19 | 2017-05-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Способ повышения интенсивности теплоотдачи в испарителе |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19855911A1 (de) * | 1998-12-03 | 2000-06-08 | Basf Ag | Verfahren zur Isolierung von Glykolen |
US6464943B1 (en) * | 1999-09-07 | 2002-10-15 | Felix H. Yiu | Solid phase evaporator device |
DE10036958A1 (de) * | 2000-07-28 | 2002-02-07 | Basf Ag | Verfahren zur Herstellung von tert.-C4-C8-Alkylestern der (Meth)acrylsäure |
DE10124904A1 (de) * | 2001-05-22 | 2002-11-28 | Bayer Ag | Gekammerter Umlaufverdampfer |
DE10135716A1 (de) * | 2001-07-21 | 2003-02-06 | Basf Ag | Verbesserter Fallfilmverdampfer zur Auftrennung von Stoffgemischen |
DE10215124A1 (de) * | 2002-04-05 | 2003-10-16 | Wme Ges Fuer Windkraftbetr Ene | Verdampferrohr für eine Meerwasserentsalzungsanlage |
DE10221122A1 (de) * | 2002-05-13 | 2003-12-04 | Bayer Ag | Verfahren zur schonenden destillativen Trennung von Stoffgemischen |
DE10341896A1 (de) * | 2003-09-10 | 2005-04-14 | Uhde Gmbh | Mehrphasen-Flüssigkeitsverteiler für einen Rieselbettreaktor |
AT412951B (de) * | 2003-10-02 | 2005-09-26 | Vtu Engineering Planungs Und B | Dünnschichtverdampfer |
DE102004045671A1 (de) * | 2004-09-17 | 2006-03-23 | Uhde Gmbh | Teillastfähiger Fallfilmverdampfer und Verfahren zum Teillastbetrieb |
US7790001B2 (en) * | 2006-04-17 | 2010-09-07 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Method of corrosion prevention |
US20110177440A1 (en) * | 2010-01-21 | 2011-07-21 | Hiroshi Yamada | Method of manufacturing toner and toner manufactured by the method |
CN101766916B (zh) * | 2010-03-03 | 2011-08-31 | 南京斯迈柯特种金属装备股份有限公司 | 高效蒸发器 |
DE102011102224A1 (de) * | 2011-05-23 | 2012-11-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur Verdampfung flüssiger Kohlenwasserstoffverbindungen oder von Flüssigkeiten in denen Kohlenwasserstoffverbindungen enthalten sind sowie deren Verwendung |
WO2013030332A1 (de) | 2011-08-31 | 2013-03-07 | Basf Se | Verteilervorrichtung zur verteilung von flüssigkeit auf rohre eines rohrbündelapparates sowie rohrbündelapparat, insbesondere fallfilmverdampfer |
US20130055755A1 (en) * | 2011-08-31 | 2013-03-07 | Basf Se | Distributor device for distributing liquid to tubes of a tube-bundle apparatus, and also tube-bundle apparatus, in particular falling-film evaporator |
KR101152305B1 (ko) * | 2011-10-31 | 2012-06-11 | (주)송산피엔이 | 증발기 |
JP2013141658A (ja) * | 2012-01-12 | 2013-07-22 | Sumitomo Chemical Co Ltd | 蒸発装置、蒸発システム及び蒸発方法 |
CN104067081B (zh) | 2012-01-27 | 2017-04-05 | 开利公司 | 蒸发器和液体分布器 |
HUE068793T2 (hu) | 2017-02-14 | 2025-01-28 | Covestro Deutschland Ag | Elosztókészülék különösen vékonyfilm-lepárlókhoz, valamint annak alkalmazása |
KR101975720B1 (ko) * | 2018-11-23 | 2019-08-28 | 이상조 | 박막 강하형 증발 농축 장치 |
US12006869B2 (en) * | 2022-10-04 | 2024-06-11 | General Electric Company | Heat exchanger for a gas turbine engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2420362A1 (fr) * | 1978-03-20 | 1979-10-19 | Goeppner Kaiserslautern Eisen | Evaporateur alimente par gravite |
GB2084886A (en) * | 1980-10-03 | 1982-04-21 | Autostills Meriden Ltd | Water distillation still |
DE3338488A1 (de) * | 1982-10-29 | 1984-05-03 | Basf Ag, 6700 Ludwigshafen | Verfahren zur gewinnung von temperaturempfindlichen produkten durch thermisch schonende destillation mittels eines mit einer destillationskolonne verbundenen duennschichtverdampfers und eine anordnung zur durchfuehrung des verfahrens |
DE3904357A1 (de) * | 1989-02-14 | 1990-08-16 | Krupp Industrietech | Verteilervorrichtung fuer fallstromverdampfer |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH378290A (de) * | 1960-01-29 | 1964-06-15 | Wiegand Apparatebau Gmbh | Verfahren und Vorrichtung zur gleichmässigen Verteilung der einzudampfenden Flüssigkeit auf die Heizrohre eines Fallstromverdampfers |
CH565576A5 (ru) * | 1973-12-14 | 1975-08-29 | Escher Wyss Ag | |
IT1100716B (it) * | 1978-12-15 | 1985-09-28 | Snam Progetti | Apparecchiatura per la distribuzione di liquido in forma di film all'interno di tubi verticali |
US4264538A (en) * | 1980-05-14 | 1981-04-28 | Norton Company | Liquid distributor |
FR2501348A1 (fr) * | 1981-03-09 | 1982-09-10 | Stein Industrie | Procede de vaporisation d'un liquide pur |
JPS6054702A (ja) * | 1983-09-05 | 1985-03-29 | Toyo Eng Corp | 蒸発器 |
DE3643816A1 (de) * | 1986-02-19 | 1987-08-20 | Man Technologie Gmbh | Eindampf-vorrichtung mit einer verdampfer-kondensator-einheit |
FI76699C (fi) * | 1986-06-25 | 1988-12-12 | Ahlstroem Oy | Indunstare av roertyp. |
JPS6438590A (en) * | 1987-08-04 | 1989-02-08 | Toshiba Corp | Heat exchanger |
US5770020A (en) * | 1990-12-14 | 1998-06-23 | Keeran Corporation N.V. | Distillation apparatus |
US5246541A (en) * | 1991-05-14 | 1993-09-21 | A. Ahlstrom Corporation | Evaporator for liquid solutions |
US5849148A (en) * | 1993-08-12 | 1998-12-15 | Ancon Chemical Pty. Ltd. | Distributor plate and evaporator |
FI97694C (fi) * | 1994-09-27 | 1997-02-10 | Hadwaco Ltd Oy | Haihduttimen nesteenjakaja |
-
1996
- 1996-01-25 DE DE19602640A patent/DE19602640A1/de not_active Withdrawn
-
1997
- 1997-01-20 EP EP97901560A patent/EP0880385B1/de not_active Expired - Lifetime
- 1997-01-20 DE DE59703791T patent/DE59703791D1/de not_active Expired - Lifetime
- 1997-01-20 JP JP52651397A patent/JP3325271B2/ja not_active Expired - Lifetime
- 1997-01-20 WO PCT/EP1997/000245 patent/WO1997026970A1/de active IP Right Grant
- 1997-01-20 RU RU98116061/12A patent/RU2200608C2/ru active
- 1997-01-20 CN CN97193227A patent/CN1128646C/zh not_active Expired - Lifetime
- 1997-01-20 KR KR10-1998-0705699A patent/KR100467730B1/ko not_active Expired - Lifetime
- 1997-01-20 ES ES97901560T patent/ES2159833T3/es not_active Expired - Lifetime
- 1997-01-20 BR BR9707072A patent/BR9707072A/pt not_active IP Right Cessation
- 1997-01-20 UA UA98084551A patent/UA61904C2/uk unknown
- 1997-01-20 PL PL97328158A patent/PL185951B1/pl unknown
- 1997-01-20 US US09/117,213 patent/US6066232A/en not_active Expired - Lifetime
- 1997-01-22 MY MYPI97000239A patent/MY129470A/en unknown
- 1997-01-23 AR ARP970100277A patent/AR005531A1/es active IP Right Grant
- 1997-10-08 SA SA97180477A patent/SA97180477B1/ar unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2420362A1 (fr) * | 1978-03-20 | 1979-10-19 | Goeppner Kaiserslautern Eisen | Evaporateur alimente par gravite |
GB2084886A (en) * | 1980-10-03 | 1982-04-21 | Autostills Meriden Ltd | Water distillation still |
DE3338488A1 (de) * | 1982-10-29 | 1984-05-03 | Basf Ag, 6700 Ludwigshafen | Verfahren zur gewinnung von temperaturempfindlichen produkten durch thermisch schonende destillation mittels eines mit einer destillationskolonne verbundenen duennschichtverdampfers und eine anordnung zur durchfuehrung des verfahrens |
DE3904357A1 (de) * | 1989-02-14 | 1990-08-16 | Krupp Industrietech | Verteilervorrichtung fuer fallstromverdampfer |
Non-Patent Citations (1)
Title |
---|
КОГАН В.Б. и др. Оборудование для разделения смесей под вакуумом. - Л.: Машиностроение (Ленинградское отд-ние), 1976, с.62. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2462286C1 (ru) * | 2011-03-14 | 2012-09-27 | Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) | Способ испарения жидкости в испарителе |
RU2619684C1 (ru) * | 2016-04-19 | 2017-05-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Способ повышения интенсивности теплоотдачи в испарителе |
Also Published As
Publication number | Publication date |
---|---|
CN1128646C (zh) | 2003-11-26 |
ES2159833T3 (es) | 2001-10-16 |
KR100467730B1 (ko) | 2005-03-16 |
WO1997026970A1 (de) | 1997-07-31 |
JP3325271B2 (ja) | 2002-09-17 |
DE59703791D1 (de) | 2001-07-19 |
KR19990081981A (ko) | 1999-11-15 |
UA61904C2 (en) | 2003-12-15 |
SA97180477B1 (ar) | 2006-08-20 |
PL185951B1 (pl) | 2003-09-30 |
EP0880385A1 (de) | 1998-12-02 |
US6066232A (en) | 2000-05-23 |
DE19602640A1 (de) | 1997-07-31 |
BR9707072A (pt) | 1999-07-20 |
JPH11504858A (ja) | 1999-05-11 |
MY129470A (en) | 2007-04-30 |
EP0880385B1 (de) | 2001-06-13 |
CN1213982A (zh) | 1999-04-14 |
AR005531A1 (es) | 1999-06-23 |
PL328158A1 (en) | 1999-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2200608C2 (ru) | Способ испарения содержащей гликоли жидкости, способ получения высокочистых гликолей, испаритель с падающей пленкой и ректификационная колонна | |
EP1242345B1 (de) | Verfahren zur herstellung von alkalimethylaten | |
EP2334633B1 (en) | Control of a process for the purification of (meth) acrylic acid using on-line, near ir analysis | |
FI80218B (fi) | Foerfarande och anlaeggning foer rening av en tvaokomponentvaetskeblandning medelst destillering. | |
CN101516820B (zh) | 制备丙烯酸的方法 | |
US5780679A (en) | Separation of (meth)acrylic acid from the reaction gas mixture formed in the catalytic gas phase oxidation of C3 /C4 compounds | |
US2826601A (en) | System for producing cyanohydrins | |
US4169856A (en) | Process for the preparation and the recovery of ethanolamines | |
RU2736379C1 (ru) | Способ очистки, способ получения и устройство для дистилляции акрилонитрила | |
EP0002298B1 (en) | Process and apparatus for the removal of ammonium carbamate from a urea-synthesis solution | |
WO2007003358A1 (de) | Anordnung zur behandlung eines polymerisationsfähigen stoffes | |
JP2023100734A (ja) | 不飽和カルボン酸エステルの製造方法 | |
US3458404A (en) | Apparatus for distilling liquids | |
RU2241660C2 (ru) | Способ приготовления концентрированного раствора и концентрированные водные растворы перекиси водорода, полученные этим способом | |
RU2102376C1 (ru) | Способ получения бис-фторметилового эфира и способ получения дифторметана | |
US3174911A (en) | Formaldehyde manufacture | |
US5296103A (en) | Method for the fractional distillation of liquid mixtures and apparatus for carrying out the method | |
CA2244271C (en) | Evaporation of oxidation-sensitive compounds and evaporator for this purpose | |
US4440960A (en) | Continuous preparation of 3-alkyl-buten-1-als | |
SU757513A1 (ru) | Способ получения циклогексанона, циклогексанола и адипиновой кислоты 1 | |
US3428423A (en) | Method for the removal and recovery of promoter from crude phthalic anhydride made by the vapor phase oxidation of orthoxylene in the presence of promoter | |
US5955041A (en) | Natural circulation reactor and use for producing linear and cyclic acetals | |
KR20230031309A (ko) | 물질 교환 공정을 수행하기 위한 장치 | |
US4256675A (en) | Method for generating super atmospheric pressures of sensitive materials in a gas stream | |
RU2792186C2 (ru) | Способ получения эфира ненасыщенной карбоновой кислоты |