RU2193397C2 - Приготовление полых микрокапсул - Google Patents
Приготовление полых микрокапсул Download PDFInfo
- Publication number
- RU2193397C2 RU2193397C2 RU96116133/14A RU96116133A RU2193397C2 RU 2193397 C2 RU2193397 C2 RU 2193397C2 RU 96116133/14 A RU96116133/14 A RU 96116133/14A RU 96116133 A RU96116133 A RU 96116133A RU 2193397 C2 RU2193397 C2 RU 2193397C2
- Authority
- RU
- Russia
- Prior art keywords
- microcapsules
- solution
- aqueous solvent
- liquid
- wall
- Prior art date
Links
- 239000003094 microcapsule Substances 0.000 title claims abstract description 147
- 238000002360 preparation method Methods 0.000 title claims description 3
- 238000000034 method Methods 0.000 claims abstract description 56
- 239000007788 liquid Substances 0.000 claims abstract description 43
- 239000000126 substance Substances 0.000 claims abstract description 38
- 239000000243 solution Substances 0.000 claims abstract description 33
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 30
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 16
- 102000009027 Albumins Human genes 0.000 claims abstract description 15
- 108010088751 Albumins Proteins 0.000 claims abstract description 15
- 238000005507 spraying Methods 0.000 claims abstract description 10
- 238000002604 ultrasonography Methods 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000009835 boiling Methods 0.000 claims description 10
- 238000001704 evaporation Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 239000002872 contrast media Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 108010010803 Gelatin Proteins 0.000 claims description 4
- 229920000159 gelatin Polymers 0.000 claims description 4
- 239000008273 gelatin Substances 0.000 claims description 4
- 235000019322 gelatine Nutrition 0.000 claims description 4
- 235000011852 gelatine desserts Nutrition 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 4
- 241001465754 Metazoa Species 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 2
- 108010035532 Collagen Proteins 0.000 claims description 2
- 229920001436 collagen Polymers 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 230000001954 sterilising effect Effects 0.000 claims description 2
- 238000004659 sterilization and disinfection Methods 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 2
- 239000003153 chemical reaction reagent Substances 0.000 claims 1
- 238000002595 magnetic resonance imaging Methods 0.000 claims 1
- 238000002834 transmittance Methods 0.000 claims 1
- 239000012460 protein solution Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 239000000725 suspension Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 12
- 239000007921 spray Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 238000001694 spray drying Methods 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- -1 for example Proteins 0.000 description 9
- 210000002216 heart Anatomy 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 230000036770 blood supply Effects 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 229910000619 316 stainless steel Inorganic materials 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 102000008100 Human Serum Albumin Human genes 0.000 description 6
- 108091006905 Human Serum Albumin Proteins 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 239000000787 lecithin Substances 0.000 description 6
- 235000010445 lecithin Nutrition 0.000 description 6
- 210000005240 left ventricle Anatomy 0.000 description 6
- 229920001993 poloxamer 188 Polymers 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000012285 ultrasound imaging Methods 0.000 description 6
- 210000003462 vein Anatomy 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000002107 myocardial effect Effects 0.000 description 5
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 238000005188 flotation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Polymers OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 108010020346 Polyglutamic Acid Proteins 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 210000004351 coronary vessel Anatomy 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000002592 echocardiography Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 210000005246 left atrium Anatomy 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000002861 ventricular Effects 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002643 polyglutamic acid Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229940068965 polysorbates Drugs 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000001698 pyrogenic effect Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-UHFFFAOYSA-N 2-(1,2-dihydroxyethyl)oxolane-3,4-diol Polymers OCC(O)C1OCC(O)C1O JNYAEWCLZODPBN-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910000551 Silumin Inorganic materials 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002169 extracardiac Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229960001025 iohexol Drugs 0.000 description 1
- NTHXOOBQLCIOLC-UHFFFAOYSA-N iohexol Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NTHXOOBQLCIOLC-UHFFFAOYSA-N 0.000 description 1
- 229960004647 iopamidol Drugs 0.000 description 1
- XQZXYNRDCRIARQ-LURJTMIESA-N iopamidol Chemical compound C[C@H](O)C(=O)NC1=C(I)C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C1I XQZXYNRDCRIARQ-LURJTMIESA-N 0.000 description 1
- 229960001707 ioxaglic acid Drugs 0.000 description 1
- TYYBFXNZMFNZJT-UHFFFAOYSA-N ioxaglic acid Chemical compound CNC(=O)C1=C(I)C(N(C)C(C)=O)=C(I)C(C(=O)NCC(=O)NC=2C(=C(C(=O)NCCO)C(I)=C(C(O)=O)C=2I)I)=C1I TYYBFXNZMFNZJT-UHFFFAOYSA-N 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 210000003492 pulmonary vein Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 description 1
- 229940066675 ricinoleate Drugs 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- JNYAEWCLZODPBN-CTQIIAAMSA-N sorbitan Polymers OCC(O)C1OCC(O)[C@@H]1O JNYAEWCLZODPBN-CTQIIAAMSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/04—Making microcapsules or microballoons by physical processes, e.g. drying, spraying
- B01J13/043—Drying and spraying
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/223—Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Acoustics & Sound (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Изобретение относится к приготовлению полых белковых микрокапсул. Способ образования микрокапсул включает (I) получение раствора белка в водном растворе и (II) распыление указанного раствора в газе для испарения водного растворителя и тем самым образования полых микрокапсул, отличающийся тем, что водный раствор содержит жидкость с большей летучестью, чем воды. В качестве белка предпочтительно используют альбумин, а в качестве летучей жидкости предпочтительно этанол. Технический результат: микрокапсулы могут быть использованы в качестве ультразвуковых эхогеничных контрастных веществ. 6 с. и 12 з.п.ф-лы, 5 табл., 1 ил.
Description
Настоящее изобретение относится к приготовлению полых белковых микрокапсул. Одним из назначений этих микрокапсул является улучшение качества ультразвуковой визуализации.
Уже некоторое время известен тот факт, что для эхокардиографии могут быть использованы воздушные пузырьки в организме.
В WO 92/18164 описывается сушка распылением раствора стенкообразующего вещества, предпочтительно белка, как, например, альбумина, с целью образования микрокапсул. В WO 94/08627 для образования более крупных микрокапсул уменьшают давление, при котором раствор распыляют в нагретой камере, или увеличивают период полужизни микрокапсул в кровотоке, например, включением поверхностно-активного вещества в распыляемый раствор, или нацеливают микрокапсулы на выбранную часть организма, например, суспендированием их в растворе электрически заряженного соединения.
В US-А-4420442 (Sands; PQ Соrрn. ) предлагается вводить органические растворители в дисперсии пленкообразующих твердых частиц до сушки суспензией распылением с целью образования полых микросфер, но растворители (например, целлозольв или диглим) были менее летучими, чем вода.
Нами было установлено, что вводя летучее соединение в водный раствор, который подвергают сушке распылением, можно образовывать микрокапсулы с улучшенными свойствами, при большем выходе, с более узким распределением по размеру и с более тонкими оболочками.
Согласно одному аспекту изобретения предлагается способ образования микрокапсул, содержащий: (I) получение раствора водорастворимого вещества в водном растворителе и (II) распыление указанного раствора в газе для испарения водного растворителя и, следовательно, образования полых микрокапсул, отличающийся тем, что водный раствор содержит жидкость с большей летучестью, чем у воды.
К числу подходящих летучих жидкостей относятся этанол (предпочтительная летучая жидкость) (точка кипения 78,3oС), метанол (т.к. 64,5oС) и ацетон (т. к. 56oС). Летучая жидкость должна действовать как растворитель для стенкообразующего вещества и смешиваться с водой при используемых соотношениях.
Относительное содержание летучей жидкости в водном растворе будет меняться в соответствии с видом летучего соединения, концентрации и вида пленкообразующего вещества, температуры и давлений, при который должен распыляться раствор, и желаемого продукта из микрокапсул. Относительное содержание летучей жидкости в растворе обычно составляет 0,1-80 об.%/об., предпочтительно 1-50 об. %/об. и наиболее предпочтительно 5-30 об.%/об., например, около 20 об. %/об. Можно использовать смеси летучих жидкостей, причем в этом случае эти процентные содержания означают общее содержание летучей жидкости.
Сушка распылением может представлять собой одностадийный процесс, например, для немедленного получения желаемого продукта в виде микрокапсул. Альтернативно непосредственно полученный продукт можно подвергнуть дополнительным стадиям обработки, например, нагреванию для дальнейшего сшивания и перевода в нерастворимую форму вещества в белковой оболочке микрокапсул. Это представляет собой двухстадийный процесс.
Для получения продукта, который должен будет вводиться в кровоток человека, например, в качестве эхогенного контрастного агента при ультразвуковых диагностических методах (что является одним из назначений продукта), весь процесс предпочитается проводить в стерильных условиях. Таким образом, белковый раствор является стерильным и непирогенным, газ в камере вначале пропускают через 0,2 мкм фильтр, распылительную сушилку вначале стерилизуют в автоклаве и т.д. Альтернативно (или также) можно стерилизовать конечный продукт, подвергая его действию ионизирующего излучения.
Стенкообразующим веществом является водорастворимое вещество, предпочтительно белок (термин, при использовании включающий невстречающиеся в природе полилептиды и полиаминокислоты). Например, им может быть коллаген, желатин или (сывороточный) альбумин, причем в каждом случае (если микрокапсулы должны вводиться в людей) предпочтительно человеческого происхождения (т.е. извлеченные из людей или по структуре соответствующие человеческому белку) либо полилизин или полиглутамат. Он может быть человеческим сывороточным альбумином /ЧА/, полученным из донорских доз или при брожении, вызванном микроорганизмами (включая клеточные линии), которые преобразовывали или подвергали трансфекции для экспрессии ЧА. Альтернативно можно использовать простые или сложные углеводороды, простые аминокислоты или жирные кислоты, например лизин, маннит, декстран, пальмитиновую кислоту или бегеновую кислоту.
Способы получения ЧА (этот термин включает в себя аналоги и осколки человеческого альбумина, например, описанные в ЕР-А-322094), и полимеры мономерного альбумина (описаны, например, в ЕР-А-201239 и ЕР-А-286424). Все ссылки приведены здесь для сведения. "Аналоги и осколки" ЧА включают в себя все полипептиды, (I) которые способны образовывать микрокапсулы при изобретенном способе и (II) из которых непрерывная область, по крайней мере, 50% (предпочтительно, по крайней мере, 75, 80, 90 или 95%) аминокислотной последовательности является, по крайней мере, 80% гомологической (предпочтительно, по крайней мере, 90, 95 или 90% гомологической) с непрерывной областью, по крайней мере, 50% (предпочтительно 75, 80, 90% или 95%) природно-идентичного человеческого альбумина. Можно использовать ЧА, который произведен методами ДНК-рекомбинации. Таким образом, ЧА может быть произведен экспрессией ЧА-кодирующей нуклеотидной последовательности в дрожжах или в другом микроорганизме и очисткой продукта известным способом. Такое вещество не имеет жирных кислот, ассоциируемых с веществом, произведенном из сыворотки. Предпочтительно, чтобы ЧА был по существу свободен от жирных кислот, т.е. содержал менее 1% от содержания жирных кислот в веществе, полученном из сыворотки. Предпочтительно, чтобы жирная кислота была необнаруживаемой в ЧА.
Водный раствор или дисперсия предпочтительно содержит 0,1-50 вес.%/об., более предпочтительно около 1,0-25,0 вес.%/об. или 5,0-30,0 вес./об. белка, особенно когда этим веществом является альбумин. Оптимальным является около 5-15 вес. %/об. Можно использовать смеси стенкообразующих веществ, причем в этом случае процентные содержания, приведенные в последних двух предложениях, относятся к общему содержанию стенкообразующего вещества.
Кроме стенкообразующего вещества, воды и летучей жидкости, распыливаемый состав может содержать и другие вещества. Таким образом, водная фаза может в качестве стабилизаторов содержать 1-20 вес.% водорастворимых гидрофильных соединений, подобных сахарам и полимерам, например, поливиниловый спирт (ПВС), поливинилпирролидон (ПВП), полиэтиленгликоль (ПЭГ), желатин, полиглутаминовую кислоту и полисахариды, как, например, крахмал, декстран, агар, ксантан и т.п.
Могут быть введены функциональные добавки, например, в количестве 1,0-40,0 вес. %/вес., как, например, рентгеновские контрастные вещества, например, "гексабрикс" (иоксагловая кислота), "оптирэй" (иоверсол), "омнипак" (иогексол) или "изовайс" (иопамидол), или вещества для получения изображения методом магнитного резонанса (например, коллоидальная окись железа или хелатные соединения гадолиния, например, гадопентетовая кислота).
В качестве жидкого носителя могут быть использованы сходные водные фазы, в которых конечный продукт в виде микрокапсул находится во взвешенном состоянии до его использования. Можно использовать поверхностно-активные вещества (0,1-5 вес.%), включая большинство физиологически приемлемых поверхностно-активных веществ, например, яичный или соевой лецитины либо синтетические лецитины, как, например, насыщенные синтетические лецитины, в частности, димиристоилфосфатидилхолин, дипальмитоилфосфатидилхолин или дистеароилфосфатидилхолин, или ненасыщенные синтетические лецитины, в частности, диолеилфосфатидилхолин или дилинолеилфосфатидилхолин. В число других поверхностно-активных веществ входят свободные жирные кислоты, сложные эфиры жирных кислот с полиоксиалкиленовыми соединениями, например, с полиоксипропиленгликолем и полиоксиэтиленгликолем; простые эфиры жирных спиртов с полиоксиалкиленовыми гликолями; сложные эфиры жирных кислот с полиоксиалкилированными сорбитаном; мыла; глицеролполиалкиленовый стеарат; глицеролполиоксиэтиленовый рицинолеат; гомо- и сополимеры полиалкиленгликолей; полиэтоксилированные соевое масло и касторовое масло, а также гидрогенизированные производные; простые и сложные эфиры сахарозы или других углеводородов с жирными кислотами, жирными спиртами, необязательно полиоксиалкилированные; моно-, ди- и триглицериды насыщенных или ненасыщенных жирных кислот, глицериды соевого масла и сахарозы. Однако предпочитается, чтобы жидкий носитель не содержал поверхностно-активное вещество.
Для изменения физических свойств стенки микрокапсул, например, диспергируемости, эластичности и водопроницаемости, в нее могут быть введены добавки.
Среди полезных добавок можно отметить соединения, которые могут "гидрофобизировать" стенку для уменьшения ее проницаемости, как, например, жиры, воска и высокомолекулярные углеводороды. Добавками, которые увеличивают диспергируемость микрокапсул в инъецируемом жидком носителе, являются амфипатоновые соединения, например, фосфолипиды; они также увеличивают водопроницаемость и скорость биологического разложения. Однако предпочитается, чтобы микрокапсулы не содержали добавки, которые увеличивают диспергируемость микрокапсул, потому что, как мы установили, они не требуются, по крайней мере, тогда, когда микрокапсулы изготовлены из альбумина.
Количество добавок, вводимых в стенку, весьма изменчиво и зависит от потребностей. В некоторых случаях вообще не используют никаких добавок; в других случаях возможно, что количества добавок могут достигать около 40,0 вес.% вещества стенки.
Раствор стенкообразующего вещества распыляют и сушат распылением любым подходящим способом, который приводит к получению раздельных микрокапсул диаметром 0,05-50,0 мкм. Эти цифры относятся, по крайней мере, к 90% объема микрокапсул, диаметр которых измеряли с помощью устройства "Колтер Малтисайзер П". Термином "микрокапсулы" обозначаются полые частицы, заключающие в себе пространство, которое заполнено газом или паром, но не какими-либо твердыми веществами. Не образуются пористые частицы, похожие на кондитерские изделия, продаваемые в Великобритании под зарегистрированным товарным знаком "Молтизерс". Пространство в микрокапсулах необязательно должно быть полностью закрытым (хотя это предпочитается), а микрокапсулы необязательно должны быть точно сферическими, хотя они и являются в общем сферическими. Если микрокапсулы не являются сферическими, то тогда вышеупомянутые величины диаметров относятся к диаметру соответствующей сферической микрокапсулы, имеющей одинаковую массу и охватывающей одинаковый объем пустого пространства, как и несферическая микрокапсула.
Распыление представляет собой образование аэрозоля из состава посредством, например, нагнетания состава под давлением, по крайней мере, через одно отверстие или посредством использования центробежного распылителя в камеру с теплым воздухом или другим инертным газом. Камера должна быть достаточно большой, чтобы самые крупные впрыскиваемые капли не ударялись о стенки камеры до высыхания. Если микрокапсулы предназначены для инъекции в кровоток с целью получения диагностического изображения, то тогда газ или пар в камере должен быть чистым (т. е. предпочтительно стерильным и апирогенным) и нетоксичным, когда он вводится в кровоток в количествах, сопутствующих введению микрокапсул при эхокардиографии. Скорость испарения жидкости из белкового состава должна быть достаточно высокой для образования полых микрокапсул, но не такой высокой, чтобы приводить к разрыву микрокапсул. Скорость испарения можно регулировать изменением расхода газа, концентрации белка в белковом составе, скорости подачи раствора и, что наиболее важно, температуры газа, контактирующего с аэрозолем. При сушке распылением небольшие распределения по размеру достигаются при сочетании низкого расхода подаваемого материала с очень высокой степенью распыления в высушивающем воздухе. Результатом является производство микрокапсул очень ограниченного размера и с узким распределением по размеру. Несколько исследователей вывели уравнения для определения среднего размера капель, выходящих из воздушных сопел; простым уравнением для различных параметров, которые влияют на средний размер капель, являются следующее:
D=A/(V2•d)a+B•(Mair/Mliq)-b
где D - средний размер капель;
А - константа, связанная с конструкцией сопла;
В - константа, связанная с вязкостью жидкости;
V - относительная скорость воздуха между жидкостью и соплом;
d - плотность воздуха;
Mair и Mliq - масса потока воздуха и жидкости;
а и b - константы, связанные с конструкцией сопла.
D=A/(V2•d)a+B•(Mair/Mliq)-b
где D - средний размер капель;
А - константа, связанная с конструкцией сопла;
В - константа, связанная с вязкостью жидкости;
V - относительная скорость воздуха между жидкостью и соплом;
d - плотность воздуха;
Mair и Mliq - масса потока воздуха и жидкости;
а и b - константы, связанные с конструкцией сопла.
(Во избежание сомнения V возводится в квадрат, (V2•d) возводится в степень "а" и (Mair/Mliq) возводится в степень минус "в").
Ясно, что для любой данной конструкции сопла размер капель в наибольшей степени зависит от относительной скорости в сопле и одновременно от массового соотношения воздуха к жидкости. Для большинства обычных применений сушки соотношение воздуха к жидкости находится в пределах 0,1-10, и при этих соотношениях средний размер капель, по-видимому, составляет 15-20 мкм. Для изготовления микрокапсул в описанном здесь интервале размеров мы обычно используем соотношения воздуха к жидкости в пределах 20-1000. При изготовлении частиц при высоких соотношениях воздуха к жидкости они оказываются чрезвычайно небольшими по сравнительным стандартам и с очень узкими распределениями по размеру. При изготовлении микрокапсул при меньших соотношениях воздуха к жидкости образуются несколько более крупные частицы, но они тем не менее по-прежнему имеют узкие распределения по размеру, которые лучше, чем у микрокапсул, изготовленных эмульсионными методами.
При концентрации альбумина в воде в количестве 5,0-25,0% для обеспечения пустотелости обычно достаточна температура вводимого газа, по крайней мере, около 100oС, предпочтительно, по крайней мере, 110oС, причем эта температура может быть такой высокой, как 250oС, без разрыва капсул. Оптимальной, по крайней мере, для альбумина является температура около 180-240oС, предпочтительно около 210-230o С и наиболее предпочтительно около 220oС. При одностадийном варианте способа по изобретению эта температура может оказаться достаточной для перевода в нерастворимую форму, по крайней мере, части (обычно наружной части) стенкообразующего вещества и часто по существу всего стенкообразующего вещества. Так как температура газа, встречаемого аэрозолем, будет зависеть также от скорости, с которой подается аэрозоль, и от содержания жидкости в белковом составе, то можно регулировать температуру на выходе для обеспечения соответствующей температуры в камере. Как установлено, подходящей является температура на выходе, равная 40-150oС.
При двухстадийном способе, если стенкообразующим веществом является белок, промежуточные микрокапсулы обычно содержат 96-98% мономерного белка и сохраняют такую же растворимость в воде, как и у самого стенкообразующего вещества. Они имеют ограниченный срок существования в организме при ультразвуковом получении изображения. Однако они могут быть использованы для ультразвукового получения изображения или они могут храниться и транспортироваться до осуществления второй стадии двухстадийного способа. Поэтому они составляют другой аспект изобретения.
При второй стадии способа промежуточные микрокапсулы, приготовленные на первой стадии, фиксируют и делают менее водорастворимыми, с тем чтобы они дольше сохранялись, не будучи при этом настолько нерастворимыми и инертными, что не являются биологически разрушаемыми. При этой стадии также упрочняют микрокапсулы, с тем чтобы они обладали лучшей способностью противостоять жестким условиям их введения, сосудистому сдвигу и вентрикулярному давлению. Если микрокапсулы разрываются, то становятся менее эхогеничными. Как показали Шнайдер и др. (1992) Invest. Radiol, 27, 134-139, известные альбуминовые микрокапсулы, обработанные ультразвуком, не обладают этой прочностью и быстро теряют свою эхогеничностъ, когда подвергаются давлениям, типичным для левого желудочка. При второй стадии способа можно применять нагрев (например, СВЧ-нагрев, нагрев лучистой теплотой или горячим воздухом, например, в обычном термостате), ионизирующее облучение (например, с дозой гамма-лучей в 10,0-100,0 кГр ) или химическое сшивание в растворителях, используя, например, формальдегид, глутаральдегид, окись этилена или вещества для сшивания протеинов, и проводить их с по существу сухими промежуточными микрокапсулами, образованными при первой стадии, или с суспензией таких микрокапсул в жидкости, в которой микрокапсулы не растворимы, например, в подходящем растворителе. При одностадийном варианте способа сшивающее вещество, как, например, глутаральдегид можно распылять в камере для сушки распылением или можно вводить в белковый состав непосредственно перед распыляющим устройством. Альтернативно температура в камере может быть достаточно высокой для перевода микрокапсул в нерастворимую форму.
Конечный продукт, измеренный таким же образом, как и промежуточные микрокапсулы, может, по желанию, состоять из микрокапсул, имеющих диаметр 0,1-50,0 мкм, но при способе по изобретению можно получить микрокапсулы диаметром 0,1-20,0 мкм и особенно 1,0-8,0 мкм, которые являются предпочтительными для эхокардиографии. Необходимо учитывать тот факт, что на второй стадии может изменяться размер микрокапсул, определенный на первой стадии изготовления микрокапсул.
Было установлено, что способ по изобретению можно контролировать с целью получения микрокапсул с желаемыми свойствами. Таким образом, можно изменять давление, под которым белковый раствор подают в распылительное сопло, например, в пределах 1,0-20,0•105 Па, предпочтительно 5,0-10,0•105 Па и наиболее предпочтительно около 7,5•105 Па. Точно также можно изменять расход жидкости. Другие параметры можно изменять так, как описано выше и ниже. Таким образом, можно получить новые микрокапсулы. Как нами установлено, микрокапсулы, образованные из исходных материалов, содержащих летучие компоненты, представляют собой более целые полые капсулы с более гладкой поверхностью и с меньшими размерами, чем у капсул, образованных при отсутствии летучего компонента. В частности, может быть получен продукт, имеющий высокую отражательную способность относительно количества стенкообразующего вещества. Например, однородная суспензия из 13 мкг/мл микрокапсул может обеспечить отражательную способность, по крайней мере, -1,0 дБ при использовании ультразвука с частотой 3,5 МГЦ. Отражательные способности более -0,3 могут быть ненужными, а подходящей является отражательная способность около -0,7÷0,5.
Предпочтительно, чтобы было сшито, по крайней мере, 50% белка в стенках микрокапсул. Предпочтительно, чтобы было достаточно сшито, по крайней мере, 75, 90, 95, 98,0, 98,5 или 99% белка для обеспечения его сопротивления экстракции в 1%-ном растворе НСl в течение 2 мин. Экстрагированный белок обнаруживают при использовании количественного анализа на белок по методу Брэдфорда с применением кумаси голубого. Степень сшивания регулируют изменением нагрева, облучения или химической обработки белка. В процессе сшивания протеиновый мономер образует поперечные связи и быстро становится недействующим при простом процессе растворения, что обнаруживалось путем гельпроникающей высокоэффективной жидкостной хроматографии (ВЭЖХ) или гель-электрофореза, как это показано ниже в примере 3. Продолженная обработка приводит к дальнейшему сшиванию уже сшитого материала, так что он становится недействующим при вышеописанной экстракции посредством НСl. В период нагревания при 175oС микрокапсулы из ЧА в соответствии с изобретением за 20 мин утрачивают около 99% белка, способного экстрагироваться под действием НСl, в то время как во время нагревания при 150oС в течение 20 мин устраняется только около 5%, за 30 мин - 47,5%, 40 мин - 83%, 60 мин - 93%, 80 мин - 97% и 100 мин - 97,8% белка, способного экстрагироваться под действием НСl. Поэтому для достижения хороших уровней сшивания микрокапсулы можно нагревать при 175oС в течение, по крайней мере, 17-20 мин, при 150oС в течение, по крайней мере, 80 мин и при других температурах в течение соответственно более длительных или более коротких периодов времени.
Микрокапсулы по настоящему изобретению можно хранить сухими в присутствии или в отсутствии добавок, улучшающих их сохранение, предотвращающих коалесценцию или способствующих повторному суспендированию. В качестве добавок можно выбрать в количестве от 0,1 до 200,0 вес.% водорастворимые физиологически совместимые соединения, как например, маннит, галактоза, лактоза или сахароза, либо гидрофильные полимеры, например, декстран, ксантан, агар, крахмал, поливинилпирролидон, полиглутаминовая кислота, поливиниловый спирт и желатин. Полезное время жизни микрокапсул в инъецируемом жидком носителе, т. е. период времени, в течение которого наблюдаются полезные эхографические сигналы, можно регулировать по продолжительности от нескольких минут до нескольких месяцев в зависимости от потребностей; это можно делать, контролируя пористость, растворимость или степень сшивания вещества стенки. Эти параметры можно контролировать правильным выбором стенкообразующих веществ и добавок и регулированием скорости испарения и температуры в камере для сушки распылением.
Для уменьшения до минимума какой-либо агломерации микрокапсул они могут быть перетерты с подходящим инертным наполнителем, используя центробежную стержневую мельницу "Фрич", оснащенную 0,5 мм ситом, или воздушную ударную струйную мельницу " Глен Крестон ". Подходящими наполнителями являются тонкоизмельченные порошки, которые являются инертными и пригодны для внутривенного применения, как, например, лактоза, глюкоза, маннит, сорбит, галактоза, мальтоза или хлорит натрия. Перетертую смесь микрокапсул с наполнителем можно суспендировать в водной среде с целью способствования удалению непригодных и поврежденных микрокапсул или без дальнейшей обработки поместить в конечные контейнеры для реализации. Чтобы облегчить последующее восстановление в водной фазе, можно для предотвращения агломерации ввести поверхностно-активное вещество в следовых количествах на стадии перетирания и/или в водную среду. В число анионных, катионных и неионных поверхностно-активных веществ, пригодных для этой цели, входят полоксамеры, сорбитановые эфиры, полисорбаты и лецитин.
Суспензии из микрокапсул можно затем дать возможность разделиться посредством флотации или ее можно центрифугировать для осаждения любых поврежденных частиц с поверхностными дефектами, которые при использовании частиц приводили бы к их заполнению жидкостью, так, что они не были бы эхогеничными.
Суспензию из микрокапсул затем можно вновь перемещать для обеспечения равномерного распределения частиц, промыть и восстановить в буфере, пригодном для внутривенной инъекции, как, например, изотоническом манните. Суспензию можно обезвожить для сушки вымораживанием и последующей стерилизации, например, гамма-облучением, сухим нагревом или окисью этилена.
Альтернативным способом деагломерации микрокапсул, переведенных в нерастворимую форму или фиксированных, является суспендирование их непосредственно в водной среде, содержащей подходящее поверхностно-активное вещество, например, полоксамеры, сорбитановые эфиры, полисорбаты и лецитин. Деагломерации затем можно достигнуть, используя подходящий гомогенизатор.
Суспензии из микрокапсул можно затем дать возможность разделиться посредством флотации или ее можно центрифугировать для осаждения дефектных частиц, как описывалось выше, и подвергнуть дальнейшей вышеописанной обработке.
В предпочтительном варианте осуществления изобретения продукт стадии термофиксации является деагломерированным посредством вышеописанного перетирания.
Хотя микрокапсулы по этому изобретению можно сбывать в сухом состоянии, особенно когда они предназначены для применения при ограниченном сроке жизни после инъекции, может оказаться желательным продажа готовых препаратов, т.е. суспензий микрокапсул в водном жидком носителе, готовых для инъекции.
Однако продукт обычно поставляется и хранится в виде сухого порошка и суспендируется в подходящей стерильной, непирогенной жидкости непосредственно перед введением. Суспензию обычно применяют путем инъекции около 1,0-10,0 мл в соответствующую вену, как, например, локтевую вену или в другой кровяносный сосуд. Подходящей является концентрация микрокапсул в размере около 1,0•105-1,0•1012 частиц/мл, предпочтительно около 5,0•105-5,0•109.
Хотя ультразвуковой способ получения изображения можно применять в отношении различных систем и органов животного и человеческого организма, одним из его главных применений является получение изображений ткани миокарда и картин кровоснабжения или кровотока.
При этом способе применяют ультразвуковое сканирующее оборудование, состоящее из сканера и устройства для получения изображения. Это оборудование создает визуальные изображения заранее определенной области, в данном случае - сердечной области человеческого тела. Обычно преобразователь помещают прямо на кожу над областью, изображение которой необходимо получить. Сканер содержит различные электронные устройства, включая ультразвуковые преобразователи. Преобразователь создает ультразвуковые волны, которые совершают секторное сканирование области сердца. Ультразвуковые волны отражаются различными частями области сердца, воспринимаются принимающим преобразователем и обрабатываются в соответствии с методами импульс-эхо, известными в технике. После обработки сигналы направляются для наблюдения в устройство для получения изображения (также хорошо известное в технике).
При способе по настоящему изобретению после "приготовления" пациента и установки сканера на место делают инъекцию суспензии из микрокапсул, например, через вену руки. Контрастное вещество течет по вене к правой венозной стороне сердца, по главной легочной артерии, ведущей к легким, через легкие, по капиллярам, в легочную вену и, наконец, в левое предсердие и левую желудочковую полость сердца.
При использовании микрокапсул по этому изобретению можно проводить наблюдения и диагнозы в отношении количества времени, необходимого для прохождения крови через легкие, особенностей кровотока, размера левого предсердия, компетенции митрального клапана (который разделяет левое предсердие и левый желудочек), размеров левой желудочковой полости и нарушений в движении стенки. По выбросу контрастного вещества из левого желудочка можно также анализировать компетенцию аортального клапана и, кроме того, долю выброса или процентное количество объема, выброшенного из левого желудочка. Наконец, контрастные изображения ткани покажут возможные области, которые не имеют достаточного кровоснабжения.
Резюмируя, такая картина изображений будет способствовать диагностике необычной особенности кровотока в сердце, вальвулярной компетенции, размеров полости и движения стенки и будет потенциальным показателем кровоснабжения миокарда.
Путем внутривенных инъекций микрокапсул можно получить изображения левых отделов сердца. Альбуминовые микрокапсулы при их инъекции в периферическую вену могут быть способны к транслегочному прохождению. В результате становится возможным эхокардиографическое контрастирование полости левого желудочка (ЛЖ), а также ткани миокарда.
Кроме сканера, кратко описанного выше, существуют другие ультразвуковые сканеры, например, которые описаны в патентах США 4134554 и 4315435. Эти патенты, в основном, относятся к различным способам, включая динамическую эхографию по сечениям (ДСЭ ) для получения последовательных двухмерных изображений тонких слоев сечения животного или человеческого организма посредством ультразвуковой энергии при частоте кадров, достаточной для возможности динамической визуализации движущихся органов. Аппараты, используемые при ДСЭ, обычно называют сканерами типа ДСЭ. Они передают и принимают короткие звуковые импульсы в виде узких лучей или линий. Уровень отраженных сигналов является функцией времени, которое преобразуется в положение с использованием номинальной скорости звука и воспроизводится на электронно-лучевой трубке или других подходящих устройствах способом, отчасти аналогичным способу воспроизведения на радиолокационных или звуковых индикаторных устройствах. Хотя ДСЭ можно использовать для получения изображений многих органов и систем, включая печень, желчный пузырь, поджелудочную железу и почку, его часто применяют для получения зрительного образа ткани и важнейших кровеносных сосудов сердца.
Микрокапсулы можно использовать для получения изображений самых разнообразных областей, даже при инъекции микрокапсул в периферическом венозном месте. К числу этих областей относятся (без ограничения): 1) система венозного оттока к сердцу; 2) характеристика ткани и кровоснабжения миокарда во время теста на переносимость физической нагрузки или т.п. и 3) ткань миокарда после перорального приема внутрь или внутривенной инъекции лекарственных средств, предназначенных для увеличения кровотока к ткани. Кроме того, микрокапсулы могут быть полезными при выявлении изменений в кровоснабжении ткани миокарда вследствие таких вмешательств, как, например, 1) пересадка вены в качестве коронарной артерии; 2) реконструкция коронарной артерии (расширение баллонным катетером суженной артерии); 3) использование тромболитических веществ (как например, стрептокиназы) для растворения сгустков в коронарных артериях; или 4) дефекты или изменения в кровоснабжении вследствие недавнего сердечного приступа.
Кроме того, при коронарографии (или ангиографии с цифровым вычитанием) инъекция микрокапсул может предоставить данные в отношении особенностей кровоснабжения ткани, которые увеличивали и дополняли бы данные, полученные при ангиографии и лишь идентифицирующие анатомию кровеносных сосудов.
Благодаря использованию микрокапсул по настоящему изобретению можно повысить качество изображений других экстракардиальных органов и систем, включая печени, селезенки и почки, которые в настоящее время получают с помощью ультразвуковых способов, и/или получать новые изображения, показывающие особенности кровоснабжения и кровотока, которые ранее не поддавались показу при использовании известных ультразвуковых способов получения изображений.
Предпочтительные стороны настоящего изобретения будут теперь описаны в качестве примера и со ссылкой на фиг.1, которая является перспективным видом спереди и сбоку (с частичным вырывом) подходящего устройства для сушки распылением на первой стадии способа по изобретению.
Пример 1
Оборудование для сушки распылением
Подходящая распылительная сушилка (фиг.1) поставляется фирмой "А/С Ниро Атомайзер", Себорг, Дания под торговым обозначением "Мобайл Майнэр". Распылительная сушилка содержит в себе резервуар 1 для белкового раствора и потолочный воздухораспределитель 2, который обеспечивает эффективный контроль за режимом потока воздуха. Закрученный поток воздуха направляется вокруг вращающегося распылителя или соплового распылителя 3 (например, типа "М-02В Майнер"), приводимого в действие воздушной турбиной при давлении воздуха от минимума 4,0•105 Па до максимума в 6,0•105 Па. При давлении воздуха в 6,0•105 Па частота вращения колеса распылителя достигает приблизительно 33000 об/мин. Включение и отключение подачи сжатого воздуха в распылитель осуществляются посредством клапана, расположенного на пульте управления 9. Максимальный расход сжатого воздуха, подаваемого в распылитель, составляет 17 нм3/ч при давлении 6,0•105 Па. Все части, входящие в соприкосновении с жидким подаваемым материалом и порошком, изготовлены из нержавеющей стали AISI 316, за исключением подающей трубы насоса и колеса распылителя, которое изготовлено из нержавеющей стали AISI 329, чтобы противостоять большой центробежной силе.
Оборудование для сушки распылением
Подходящая распылительная сушилка (фиг.1) поставляется фирмой "А/С Ниро Атомайзер", Себорг, Дания под торговым обозначением "Мобайл Майнэр". Распылительная сушилка содержит в себе резервуар 1 для белкового раствора и потолочный воздухораспределитель 2, который обеспечивает эффективный контроль за режимом потока воздуха. Закрученный поток воздуха направляется вокруг вращающегося распылителя или соплового распылителя 3 (например, типа "М-02В Майнер"), приводимого в действие воздушной турбиной при давлении воздуха от минимума 4,0•105 Па до максимума в 6,0•105 Па. При давлении воздуха в 6,0•105 Па частота вращения колеса распылителя достигает приблизительно 33000 об/мин. Включение и отключение подачи сжатого воздуха в распылитель осуществляются посредством клапана, расположенного на пульте управления 9. Максимальный расход сжатого воздуха, подаваемого в распылитель, составляет 17 нм3/ч при давлении 6,0•105 Па. Все части, входящие в соприкосновении с жидким подаваемым материалом и порошком, изготовлены из нержавеющей стали AISI 316, за исключением подающей трубы насоса и колеса распылителя, которое изготовлено из нержавеющей стали AISI 329, чтобы противостоять большой центробежной силе.
Установка имеет ступени 5 для доступа к верху камеры и включатель 6 воздушного клапана для приведения в действие пневматического подъемного устройства, которое поднимает крышку камеры.
Сушильная камера изнутри сделана из нержавеющей стали AISI 316, с хорошим изолированием минеральной ватой "Роквулл" (зарегистрированный товарный знак) и покрыта снаружи листовым материалом из низкоуглеродистой стали. Крыша сушильной камеры изготовлена изнутри из нержавеющей стали AISI 316 и снаружи из нержавеющей стали AISI 304.
Воздухораспределитель 2, изготовленный из нержавеющей стали AISI 304, используется для распределения воздуха в сушильной камере с целью достижения наибольшего возможного сушильного эффекта. Воздухопровод 4, изготовленный из нержавеющей стали AISI 316, обеспечивает вторичную транспортировку отходящего воздуха и порошка в циклон 7, который изготовлен из нержавеющей стали AISI 316 и предназначен для разделения порошка и воздуха.
Закрывающий клапан типа дроссельной заслонки, также изготовленный из нержавеющей стали AISI 316 и имеющий прокладку из силиконовой резины, используется для выгрузки порошка снизу циклона в стеклянную банку 8 для сбора порошка, плотно установленную под циклоном посредством пружинного устройства.
Центробежный вытяжной вентилятор 10, изготовленный из силумина и снабженный 3-фазным асинхронным электродвигателем с короткозамкнутым ротором мощностью 0,25 кВт и клиноременной передачей с ограждением ремней, протягивает воздух и порошок через сушильную камеру и циклон. Поток воздуха регулируют заслонкой 11.
Воздухонагреватель 12 нагревает сушильный воздух с использованием электричества (общее потребление - 7,5 кВт/ч, плавное регулирование) и может обеспечить температуры приточного воздуха до около 350oС, хотя такие температуры, в общем, являются слишком высокими для приготовления микрокапсул по изобретению (см. таблицу 1).
Может быть применена установка для распыления в сопле с подачей в него двух текучих сред, которое изготовлено из нержавеющей стали AISI 316 и состоит из входной трубы с соплодержателем и сопла, размещаемого на потолке сушильной камеры. Установка включает в себя водомаслоразделитель, редукционный клапан и манометр для сжатого воздуха, подаваемого в сопло для двух текучих сред. Расход сжатого воздуха: 8-15 кг/ч при давлении 0,5-2,0•105 Па.
Подходящим питающим насосом для транспортировки стенкообразующего состава, подаваемого в распылитель, является перистальтический насос. Насос снабжен электродвигателем (1•220 В, 50 Гц, 0,18 кВт) и бесступенчатой зубчатой передачей для регулирования вручную. Питающая труба, изготовленная из силиконового шланга, ведет от питающего резервуара (местная подача) через питающий насос к распылителю.
Для обработки входящего сушильного газа с целью его полной очистки используется абсолютный воздушный фильтр, состоящий из фильтра для предварительной очистки, корпуса фильтра из нержавеющей стали и абсолютного воздушного фильтра.
Способ
10,0 вес. %/об. раствор стерильного, апирогенного ЧА в апирогенной воде (пригодной для инъекции) с 25,0 об.%/об. этанола перекачивали в сопло соплового распылителя для двух текучих сред, установленного в вышеописанной промышленной распылительной сушилке. Скорость работы перистальтического насоса поддерживали при подаче приблизительно 4,0 г/мин, с тем чтобы при температуре приточного воздуха 220oС температура отходящего воздуха поддерживалась равной 95oС.
10,0 вес. %/об. раствор стерильного, апирогенного ЧА в апирогенной воде (пригодной для инъекции) с 25,0 об.%/об. этанола перекачивали в сопло соплового распылителя для двух текучих сред, установленного в вышеописанной промышленной распылительной сушилке. Скорость работы перистальтического насоса поддерживали при подаче приблизительно 4,0 г/мин, с тем чтобы при температуре приточного воздуха 220oС температура отходящего воздуха поддерживалась равной 95oС.
В сопло для распыления двух текучих сред подавали сжатый воздух при давлении 2,0-6,0•105 Па. При этом интервале давлений получали микрокапсулы со средним размером в 2,0-3,0 мкм.
Увеличение среднего размера частиц (посредством снижения давления распыления) обычно приводило к увеличению количества микрокапсул размером более 100 мкм (см. таблицу 2).
В этом конкретном примере для образования микрокапсул использовали давление в 5,0•105 Па.
При второй стадии способа 5 г микрокапсул нагревали в стеклянном химическом стакане, используя снабженный вентилятором термостат "Галленкамп". Температура 175oС в течение 1 ч была достаточной для получения микрокапсул с 100%-ной фиксацией, как это было определено посредством высокоэффективной жидкостной хроматографии (ВЭЖХ). Результатом этой термофиксации было увеличение эхогеничной полужизни в склянке от нескольких секунд до свыше 30 мин. Изменяя температуру и продолжительность выдерживания в термостате, можно изменять степень фиксации в пределах между около 1 и 100%.
Вслед за термофиксацией микрокапсулы деагломерировали и диспергировали в воде одним из двух способов. Способ 1 включал в себя вначале перемешивание термофиксированных сфер с равным весовым количеством тонкоизмельченной лактозы (средний диаметр 5 мкм). Смесь затем пропускали через центробежную мельницу "Фрич" с 0,5 мм ситом и 12-зубьевым ротором. Перетертые сферы собирали и повторно пропускали через мельницу, чтобы обеспечить полное перемешивание. Перетертый порошок затем вновь суспендировали в воде, содержащей 1 мг/мл "Плюроник Ф 68" (зарегистрированный товарный знак). Обычно 10 г микрокапсул и лактозы добавляли к 100 мл воды и "Плюроник Ф 68". Способ деагломерирования 2 включает в себя добавление 5 г термофиксированных микрокапсул к 100 мл воды, содержащей 100 мг "Плюроник Ф 68". Микрокапсулы диспергировали с использованием гомогенизатора "Сильверсон" (модель L4R с 2,54 см трубчатым гомогенизирующим щупом и ситом с большим сдвигающим усилием). Гомогенизировали в течение 60 с.
Вновь суспендированные сферы разделяли на целые (газосодержащие) и разрушенные сферы, используя способ флотации. Газосодержащие сферы, понятно, всплывали к поверхности за 1 ч. Их декантировали от осаждающейся фракции, которая не содержит необходимый газ.
Процесс разделения может быть ускорен центрифугированием. Для разделения двух фракций достаточно 30-секундное центрифугирование при 5000g.
После отделения целые микрокапсулы подвергали сушке вымораживанием в присутствии лактозы и "Плюроник Ф 68". Оптимальный режим сушки вымораживанием включал в себя повторное суспендирование 30 мг микрокапсул в 5 мл воды, содержащей 50 мг лактозы и 5 мг "Плюроник Ф 68". Микрокапсулы, высушенные вымораживанием, могут быть вновь диспергированы в жидкости (например, воде, физиологическом растворе) для получения монодисперсного распределения.
Пример 2
Микрокапсулы приготавливали так, как и в Примере 1, но при условиях, подробно описанных ниже.
Микрокапсулы приготавливали так, как и в Примере 1, но при условиях, подробно описанных ниже.
В качестве исходного материала использовали 100±10 мг/мл раствора стерильного, апирогенного сывороточного человеческого альбумина в апирогенной воде (пригодной для инъекции) с 25 вес.%/вес. этанола.
Используя перистальтический насос, перекачивали альбуминовый исходный материал со скоростью 4±1,5 г/мин, с тем чтобы при температуре на входе, равной 220±0,5oС, поддерживать на выходе температуру, равную 80±10oС.
Дополнительные условия сушки распылением были следующими: поток воздуха - 50±2%; избыточное давление распыления - 8,0±0,5•105 Па; поток сушильного воздуха - 9±2 мм вод.ст.
Изготовленные микрокапсулы термофиксировали при температуре 176±2oС в течение 55±5 мин в 5±1 г аликвотных пробах, используя 250 мл химические стаканы из нержавеющей стали.
После термофиксации микрокапсулы подвергали деагломерации. Добавляли к объединенным микрокапсулам в соотношении 2:1, перемешивали и перетирали в воздушной ударной струйной мельнице "Глен Крестон".
Деагломерированными микрокапсулами заполняли стеклянные пузырьки, которые продували азотом, герметизировали и закрывали колпачками. Продукт окончательно стерилизовали облучением при дозе 25-35 кГр.
Пример 3
Количественный анализ свободного мономерного альбумина в микрокапсулах
1 мл этанола добавляли к 100 мг микрокапсул в 20 мл стеклянной склянке и обрабатывали ультразвуком в течение 30 с. К этой суспензии добавляли 19 мл Н2О.
Количественный анализ свободного мономерного альбумина в микрокапсулах
1 мл этанола добавляли к 100 мг микрокапсул в 20 мл стеклянной склянке и обрабатывали ультразвуком в течение 30 с. К этой суспензии добавляли 19 мл Н2О.
Смесь в течение 20 с центрифугировали в лабораторной центрифуге ("Гильсон"), после чего анализировали чистую фракцию. Анализ проводили, загружая автоматически 50 мл этой фракции в прибор типа "Shimadzu C6A" для высокоэффективной жидкостной хроматографии (ВЭЖХ) и хроматографировали на гельпроникающей хроматографической колонке ТСК при объемной скорости потока 1 мл/мин с использованием буферного раствора фосфата натрия (рН 7,0).
Регистрировали пиковые высоты, представляющие мономерный ЧА, и использовали их для определения концентрации мономера с применением стандартной кривой между 1 и 10 мг/мл мономерного ЧА.
Процент свободного мономерного ЧА вычисляли, измеряя концентрацию мономера в фиксированных микрокапсулах и представляя эту цифру в виде процента концентрации мономера в нефиксированных микрокапсулах.
Нагрев высушенных микрокапсул в термостате (как это описано в Примере 1) приводит к уменьшению количества мономера, который может быть обнаружен. Это уменьшение количества обнаруживаемого мономерного ЧА вызвано денатурацией и сшиванием мономерного ЧА в нерастворимые полимеры, которые невозможно количественно определить с помощью вышеописанного метода ВЭЖХ.
Ясно, что при использовании метода ВЭЖХ для определения анализируемых количеств ЧА уже после 15 мин выдерживания в термостате не обнаруживается никакого мономерного ЧА, присутствующего в микрокапсулах из ЧА. Однако при нагреве в течение более длительных периодов времени все еще возможно дальнейшее сшивание в микрокапсулах из ЧА.
Длительный нагрев приводит к повышенному уровню сшивания в микрокапсулах, что, в свою очередь, позволяет изготовить микрокапсулы с увеличенной прочностью и соответственно с большей сопротивляемостью давлению.
Тщательно контролируя температуру и время выдерживания в термостате, можно изготовить микрокапсулы с регулируемой степенью сшивания (и, следовательно, сопротивляемостью давлению).
Пример 4. Классификация микрокапсул
Преимущество изобретенного способа заключается в том, что он позволяет контролировать средний размер и распределение микрокапсул по размеру. Однако при желании можно еще больше отобрать микрокапсул желаемых размеров, например флотацией. В гомогенной дисперсии из микрокапсул более крупные частицы будут подниматься к поверхности быстрее, чем более мелкие частицы, вследствие меньшей плотности (больше заключенного воздуха) более крупных частиц. Следовательно, когда суспензии предоставят возможность отстаиваться, будет со временем происходить изменение распределения частиц по размеру на любом уровне раствора.
Преимущество изобретенного способа заключается в том, что он позволяет контролировать средний размер и распределение микрокапсул по размеру. Однако при желании можно еще больше отобрать микрокапсул желаемых размеров, например флотацией. В гомогенной дисперсии из микрокапсул более крупные частицы будут подниматься к поверхности быстрее, чем более мелкие частицы, вследствие меньшей плотности (больше заключенного воздуха) более крупных частиц. Следовательно, когда суспензии предоставят возможность отстаиваться, будет со временем происходить изменение распределения частиц по размеру на любом уровне раствора.
Микрокапсулы диспергировали в 2000 мл водного раствора, содержащего 6 вес.%/об. хлористого натрия и 0,1 вес.%/об. "Плюроник Ф 68" (зарегистрированный товарный знак) и находящегося в стеклянной склянке при высоте столба жидкости приблизительно 165 мм. На 50 мм ниже верхней поверхности жидкости находилась пробоотборная трубка, позволяющая отбирать пробы через определенные интервалы времени.
Изменяя продолжительность отстаивания и концентрацию хлористого натрия, можно было получать различные распределения частиц по размеру и классифицировать микрокапсулы вплоть до размера в 2 мкм.
В число других мокрых методов классификации входят гидродинамическая хроматография и разделение в поле скоростей потока. "Сухие" способы классификации, использующие принципы отмучивания и разделения в поперечном потоке, могут быть осуществлены в имеющихся на рынке классификаторах "Майкрэсплит" ("Бритиш Рем."), "Зиг-заг" ("Альпайн") и "Турбо" ("Ниссюин").
Пример 5. Исследование микрокапсулы из человеческого сывороточного альбумина
Как установлено, при изобретенном способе изготовления полых микрокапсул благодаря их меньшему среднему размеру и улучшениям в свойствах оболочки количество стенкообразующего вещества, используемого при их производстве, значительно меньше, чем при прежних способах изготовления микрокапсул. Однако, несмотря на это, эхогеничность микрокапсул превосходит эхогеничность ранее изготавливаемых микрокапсул. Это новое свойство измеряется и выражается в децибелах (дБ) эхогеничности на микрограмм/мл альбумина. Эхогеничность может быть определена как способность материала отражать или "обратно рассеивать" ультразвуковые волны. При анализе изображений интенсивность обратного рассеяния количественно определяется в децибелах. Чем больше сила сигнала, тем более эхогеничным является образец.
Как установлено, при изобретенном способе изготовления полых микрокапсул благодаря их меньшему среднему размеру и улучшениям в свойствах оболочки количество стенкообразующего вещества, используемого при их производстве, значительно меньше, чем при прежних способах изготовления микрокапсул. Однако, несмотря на это, эхогеничность микрокапсул превосходит эхогеничность ранее изготавливаемых микрокапсул. Это новое свойство измеряется и выражается в децибелах (дБ) эхогеничности на микрограмм/мл альбумина. Эхогеничность может быть определена как способность материала отражать или "обратно рассеивать" ультразвуковые волны. При анализе изображений интенсивность обратного рассеяния количественно определяется в децибелах. Чем больше сила сигнала, тем более эхогеничным является образец.
Вся вода, применявшаяся при анализе, была апирогенной и взятой за два дня до ее использования, чтобы она могла дегазироваться на воздухе.
В 400 мл полипропиленовый лабораторный стакан ("Файсонз Сайэнтифик Эквипмент", Великобритания) вводили 350 мл воды, и перед использованием воды позволяли любым воздушным пузырькам всплыть на поверхность.
Использовали ультразвуковой аппарат "Хьюлетт Паккард Сонос 1000", при этом органы управления устанавливали следующим образом: полное регулирование усиления 1, 2, 3, 4, 5, 6, 7, все=128; сжатие =128 дВ и похождение - 60 дВ. Использовали преобразователь на 3,5 МГц с регулировкой на глубину 8 см.
Помещали преобразователь в воду на глубину 1,5 см и устанавливали магнитный повторитель на 75 об/мин. Первоначально делали фоновую регистрацию интенсивности обратного рассеяния. Использовали анализатор изображений ("Сискэн", Кембридж, Великобритания) для записи ультразвукового "скана" в течение 1,2 с и затем разделяли запись на 10 отдельных временных кадров. Анализировали каждый кадр на интенсивность обратного рассеяния и вычисляли статистические результаты.
Осторожно вводили однородный объем суспендированных микрокапсул, избегая внесения воздушных пузырьков. Введенный объем был таким, что после его введения концентрация микрокапсул в ультразвуковой опытной ячейке составляла 1•106/мл. Микрокапсулам давали возможность равномерно диспергировать в воде до того, как был "уловлен" ультразвуковой "скан" в реальном времени с использованием анализатора изображений и измерена интенсивность обратного рассеяния.
Ультразвуковой прибор тарировали по отношению к отражателю из нержавеющей стали и ряду блоков из силиконового каучука, увеличивающих эхоотражательную имитацию тканей и поставляемых "АТС Лэборетэри Инс.", Бриджпорт, СТ 06608, США. Была построена тарировочная кривая, и последующие измерения, сделанные на нижеуказанных видеодисплеях, преобразовывали обратно в децибеллы по полученной тарировочной кривой. Это испытание повторяли три раза с вычислением средней измеренной интенсивности.
Используя модифицированный метод Кельдаля, определяли содержание белка в микрокапсулах из человеческого сывороточного альбумина. При этом методе определяют содержание азота в пробе из микрокапсул, которое затем пересчитывает в общую концентрацию белка; по этому результату можно рассчитать содержание белка в постоянном числе микрокапсул и, в частности, содержание белка в пробе, взятой для анализа эхогеничности.
Используя "Текэйтор Дайджэсчэн Систем 12", сбраживали микрокапсулы, при этом любой углеводород, присутствующий в пробе, окисляли перекисью водорода. Во время сбраживания любой белок (и, следовательно, присутствующий азот) превращается в сульфат аммония. При перегонке с водяным паром в щелочных условиях он, в свою очередь, превращается в аммиак. Высвободившийся аммиак конденсируют и абсорбируют в борной кислоте, а количество абсорбированного аммиака определяют титрованием соляной кислотой. Эта процедура автоматизирована благодаря использованию анализатора "Кельтек Ото 1030". Используя соответствующие стандарты, можно рассчитать количество белка, присутствующего в пробе.
По общему анализу на белок определяли количество белка, введенного в ячейку для испытания на эхогеничность. Количество введенных микрокапсул вычисляли как вес введенного белка, и поэтому эхогеничность определяли на микрограмм/мл микрокапсул ( табл. 3 и 4).
Пример 6. Оптимизация режима сушки распылением для максимального увеличения количества целых газосодержащих частиц
Выше мы описывали изготовление гладких, сферических и полых микрочастиц для использования при эхоконтрастном получении изображений. Желательно уменьшить до минимума количество частиц крупнее 6 мкм и максимально увеличить количество газосодержащих полых частиц. При условиях, описанных в Примере 1, был проведен ряд экспериментов по исследованию влияния скорости подачи жидкости на выход целых сферических частиц. Как нами установлено, увеличение скорости подачи жидкости уменьшает количество целых микрочастиц, образовавшихся во время первоначальной сушки распылением (табл. 5). При увеличении расхода жидкости с 4 до 16 мл/мин, не изменяется средний размер частиц и общая сопротивляемость давлению, т.е. толщина оболочки, но изменяется общая эхогеничность. Считаем, что более медленные скорости испарения (при более высоких расходах жидкости) приводят к меньшему количеству образующихся целых газосодержащих частиц.
Выше мы описывали изготовление гладких, сферических и полых микрочастиц для использования при эхоконтрастном получении изображений. Желательно уменьшить до минимума количество частиц крупнее 6 мкм и максимально увеличить количество газосодержащих полых частиц. При условиях, описанных в Примере 1, был проведен ряд экспериментов по исследованию влияния скорости подачи жидкости на выход целых сферических частиц. Как нами установлено, увеличение скорости подачи жидкости уменьшает количество целых микрочастиц, образовавшихся во время первоначальной сушки распылением (табл. 5). При увеличении расхода жидкости с 4 до 16 мл/мин, не изменяется средний размер частиц и общая сопротивляемость давлению, т.е. толщина оболочки, но изменяется общая эхогеничность. Считаем, что более медленные скорости испарения (при более высоких расходах жидкости) приводят к меньшему количеству образующихся целых газосодержащих частиц.
Claims (18)
1. Способ образования микрокапсул, включающий получение раствора стенкообразующего вещества в водном растворителе и распыление полученного раствора в газе для испарения водного растворителя и образования полых микрокапсул, отличающийся тем, что получают раствор стенкообразующего вещества в водном растворителе, дополнительно содержащий жидкость с температурой кипения между 20 и 100oС при атмосферном давлении.
2. Способ по п. 1, отличающийся тем, что получают раствор, дополнительно содержащий в качестве жидкости с температурой кипения между 20 и 100oС метанол или этанол.
3. Способ по п. 1 или 2, отличающийся тем, что жидкость с температурой кипения между 20 и 100oС составляет 0,1-80,0 об. %/об. водного раствора.
4. Способ по п. 3, отличающийся тем, что жидкость с температурой кипения между 20 и 100oС составляет 5,0-50,0 об. %/об. водного раствора.
5. Способ по любому из пп. 1-4, отличающийся тем, что в качестве стенкообразующего вещества используют белок.
6. Способ по п. 5, отличающийся тем, что в качестве белка используют альбумин, или коллаген, или желатин.
7. Способ по п. 6, отличающийся тем, что в качестве белка используют альбумин.
8. Способ по любому из пп. 1-7, отличающийся тем, что получают раствор стенкообразующего вещества концентрацией 1,0-25 вес. %/об.
9. Способ по п. 8, отличающийся тем, что получают раствор стенкообразующего вещества концентрацией 5,0-15,0 вес. %/об.
10. Способ по любому из пп. 1-9, отличающийся тем, что получают раствор, дополнительно содержащий рентгеновское контрастное вещество или контрастное вещество для получения изображений методом магнитного резонанса.
11. Способ по любому из пп. 1-10, отличающийся тем, что полученные микрокапсулы перед использованием подвергают дополнительной обработке, например, термообработке для перевода в нерастворимую форму, или облучению для стерилизации.
12. Способ по любому из пп. 1-11, отличающийся тем, что целевой продукт получают в виде стерильного, внутривенно инъецируемого препарата.
13. Способ по любому из пп. 1-12, отличающийся тем, что целевой продукт в виде стерильных сухих микрокапсул помещают в герметизированный пузырек.
14. Микрокапсулы, характеризующиеся тем, что являются образованными посредством получения раствора стенкообразующего вещества в водном растворителе, дополнительно содержащего жидкость с температурой кипения между 20 и 100oС при атмосферном давлении, и распыления полученного раствора в газе для испарения водного растворителя и образования полых микрокапсул.
15. Ультразвуковой контрастный реагент, содержащий полые микрокапсулы, отличающийся тем, что содержит микрокапсулы, образованные посредством получения раствора стенкообразующего вещества в водном растворителе, дополнительно содержащего жидкость с температурой кипения между 20 и 100oС при атмосферном давлении, и распыления полученного раствора в газе для испарения водного растворителя и образования полых микрокапсул, при суспендировании которых в дегазированной воде при 20oС до гомогенной концентрации микрокапсул 13 мкг/мл указанный реагент характеризуется отражательной способностью к ультразвуку в 3,5 МГц, равной, по меньше мере, -1,0 дБ.
16. Фармацевтическая композиция, содержащая микрокапсулы, отличающаяся тем, что она содержит микрокапсулы, образованные посредством получения раствора стенкообразующего вещества в водном растворителе, дополнительно содержащего жидкость с температурой кипения между 20 и 100oС при атмосферном давлении, и распыления полученного раствора в газе для испарения водного растворителя и образования полых микрокапсул, и является стерильной и высушенной.
17. Фармацевтическая композиция, содержащая стерильные микрокапсулы, образованные посредством получения раствора стенкообразующего вещества в водном растворителе, дополнительно содержащего жидкость с температурой кипения между 20 и 100oС при атмосферном давлении, и распыления полученного раствора в газе для испарения водного растворителя и образования полых микрокапсул, суспендированные в стерильной, внутривенно инъецируемой среде.
18. Способ получения изображения участка тела больного человека или животного, отличающийся тем, что больному вводят микрокапсулы, образованные посредством получения раствора стенкообразующего вещества в водном растворителе, дополнительно содержащего жидкость с температурой кипения между 20 и 100oС при атмосферном давлении, и распыления полученного раствора в газе для испарения водного растворителя и образования полых микрокапсул, пропускают излучение и получают изображение на основе отражательной способности, или пропускательной способности, или резонанса микрокапсул в исследуемой части тела.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9423419.2 | 1994-11-19 | ||
GB9423419A GB9423419D0 (en) | 1994-11-19 | 1994-11-19 | Preparation of hollow microcapsules |
Publications (2)
Publication Number | Publication Date |
---|---|
RU96116133A RU96116133A (ru) | 1998-11-10 |
RU2193397C2 true RU2193397C2 (ru) | 2002-11-27 |
Family
ID=10764705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU96116133/14A RU2193397C2 (ru) | 1994-11-19 | 1995-11-15 | Приготовление полых микрокапсул |
Country Status (19)
Country | Link |
---|---|
US (2) | US5741478A (ru) |
EP (1) | EP0743860B2 (ru) |
JP (1) | JP4592831B2 (ru) |
KR (1) | KR100188356B1 (ru) |
CN (1) | CN1072966C (ru) |
AT (1) | ATE216595T1 (ru) |
AU (1) | AU681815B2 (ru) |
CA (1) | CA2177492C (ru) |
DE (1) | DE69526491T3 (ru) |
DK (1) | DK0743860T3 (ru) |
ES (1) | ES2174968T3 (ru) |
GB (2) | GB9423419D0 (ru) |
HK (1) | HK1013405A1 (ru) |
NO (1) | NO313491B1 (ru) |
PT (1) | PT743860E (ru) |
RU (1) | RU2193397C2 (ru) |
SG (1) | SG81230A1 (ru) |
WO (1) | WO1996015814A1 (ru) |
ZA (1) | ZA959801B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136699A1 (fr) * | 2007-05-04 | 2008-11-13 | Igor Alexandrovich Bazikov | Patch transdermique à microcapsules et procédé de fabrication correspondant |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391343B1 (en) | 1991-01-15 | 2002-05-21 | Hemosphere, Inc. | Fibrinogen-coated particles for therapeutic use |
GB9107628D0 (en) | 1991-04-10 | 1991-05-29 | Moonbrook Limited | Preparation of diagnostic agents |
GB9221329D0 (en) * | 1992-10-10 | 1992-11-25 | Delta Biotechnology Ltd | Preparation of further diagnostic agents |
US7425543B2 (en) * | 1992-11-16 | 2008-09-16 | The Corporation Of Mercer University | Microencapsulated materials and method of making same |
US6051256A (en) * | 1994-03-07 | 2000-04-18 | Inhale Therapeutic Systems | Dispersible macromolecule compositions and methods for their preparation and use |
GB9423419D0 (en) * | 1994-11-19 | 1995-01-11 | Andaris Ltd | Preparation of hollow microcapsules |
GB9610830D0 (en) * | 1996-05-23 | 1996-07-31 | Andaris Ltd | Use of hollow microcapsules |
US5874064A (en) * | 1996-05-24 | 1999-02-23 | Massachusetts Institute Of Technology | Aerodynamically light particles for pulmonary drug delivery |
US5985309A (en) * | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
US5976501A (en) * | 1996-06-07 | 1999-11-02 | Molecular Biosystems, Inc. | Use of pressure resistant protein microspheres encapsulating gases as ultrasonic imaging agents for vascular perfusion |
US6017310A (en) * | 1996-09-07 | 2000-01-25 | Andaris Limited | Use of hollow microcapsules |
EP0949932A1 (en) * | 1996-10-19 | 1999-10-20 | Quadrant Healthcare (UK) Limited | Use of hollow microcapsules in diagnosis and therapy |
HU224218B1 (hu) * | 1996-10-21 | 2005-06-28 | Amersham Health As | Továbbfejlesztett kontrasztanyagok |
ATE284714T1 (de) * | 1996-10-21 | 2005-01-15 | Quadrant Drug Delivery Ltd | Plättchen-ersatzmittel und geeignetes konjugations-herstellungsverfahren |
US6068600A (en) * | 1996-12-06 | 2000-05-30 | Quadrant Healthcare (Uk) Limited | Use of hollow microcapsules |
US20030203036A1 (en) * | 2000-03-17 | 2003-10-30 | Gordon Marc S. | Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients |
GB9701274D0 (en) | 1997-01-22 | 1997-03-12 | Andaris Ltd | Ultrasound contrast imaging |
JP2002503254A (ja) | 1997-06-05 | 2002-01-29 | ヘモスフィア,インコーポレイテッド | フィブリノゲンをコーティングしたミクロスフィア |
GB9717542D0 (en) * | 1997-08-19 | 1997-10-22 | Nycomed Imaging As | Process |
US6946117B1 (en) * | 1997-09-29 | 2005-09-20 | Nektar Therapeutics | Stabilized preparations for use in nebulizers |
US6565885B1 (en) * | 1997-09-29 | 2003-05-20 | Inhale Therapeutic Systems, Inc. | Methods of spray drying pharmaceutical compositions |
US6309623B1 (en) | 1997-09-29 | 2001-10-30 | Inhale Therapeutic Systems, Inc. | Stabilized preparations for use in metered dose inhalers |
US20060165606A1 (en) | 1997-09-29 | 2006-07-27 | Nektar Therapeutics | Pulmonary delivery particles comprising water insoluble or crystalline active agents |
US6433040B1 (en) | 1997-09-29 | 2002-08-13 | Inhale Therapeutic Systems, Inc. | Stabilized bioactive preparations and methods of use |
MEP4108A (xx) * | 1997-09-29 | 2010-02-10 | Inhale Therapeutic Syst | Perforisane mikročestice i postupci za njihovu primjenu |
US20020017295A1 (en) * | 2000-07-07 | 2002-02-14 | Weers Jeffry G. | Phospholipid-based powders for inhalation |
GB9727102D0 (en) * | 1997-12-22 | 1998-02-25 | Andaris Ltd | Microparticles and their therapeutic use |
US6511325B1 (en) * | 1998-05-04 | 2003-01-28 | Advanced Research & Technology Institute | Aortic stent-graft calibration and training model |
GB9811116D0 (en) * | 1998-05-23 | 1998-07-22 | Andaris Ltd | Method of altering heartbeat |
GB9901270D0 (en) | 1999-01-21 | 1999-03-10 | Quadrant Healthcare Uk Ltd | Method and apparatus for ultrasound contrast imaging |
ITMI991582A1 (it) * | 1999-07-16 | 2001-01-16 | Chiesi Farma Spa | Polveri costituite da particelle aventi la superficie perfettamente levigata da utilizzare come veicoli per la preparazione di miscele inala |
NL1014175C2 (nl) | 2000-01-25 | 2001-07-26 | Oldelft B V | Ultrageluid probe. |
US8404217B2 (en) | 2000-05-10 | 2013-03-26 | Novartis Ag | Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use |
ES2525087T5 (es) | 2000-05-10 | 2018-06-28 | Novartis Ag | Polvos basados en fosfolípidos para administración de fármacos |
US7871598B1 (en) | 2000-05-10 | 2011-01-18 | Novartis Ag | Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use |
US7575761B2 (en) * | 2000-06-30 | 2009-08-18 | Novartis Pharma Ag | Spray drying process control of drying kinetics |
WO2002009669A2 (en) * | 2000-08-01 | 2002-02-07 | Inhale Therapeutic Systems, Inc. | Apparatus and process to produce particles having a narrow size distribution and particles made thereby |
US7014610B2 (en) * | 2001-02-09 | 2006-03-21 | Medtronic, Inc. | Echogenic devices and methods of making and using such devices |
DE10115740A1 (de) * | 2001-03-26 | 2002-10-02 | Ulrich Speck | Zubereitung für die Restenoseprophylaxe |
US6797257B2 (en) * | 2001-06-26 | 2004-09-28 | The Board Of Trustees Of The University Of Illinois | Paramagnetic polymerized protein microspheres and methods of preparation thereof |
GB0120123D0 (en) * | 2001-08-17 | 2001-10-10 | Upperton Ltd | Preparation of microparticles |
AU2002342241B2 (en) * | 2001-11-01 | 2007-07-19 | Novartis Ag | Spray drying methods and compositions thereof |
US6753017B2 (en) * | 2001-11-07 | 2004-06-22 | Jrs Pharma Lp | Process for preparing dry extracts |
US7368102B2 (en) | 2001-12-19 | 2008-05-06 | Nektar Therapeutics | Pulmonary delivery of aminoglycosides |
GB0216562D0 (en) * | 2002-04-25 | 2002-08-28 | Bradford Particle Design Ltd | Particulate materials |
US9339459B2 (en) | 2003-04-24 | 2016-05-17 | Nektar Therapeutics | Particulate materials |
DE10234165B4 (de) * | 2002-07-26 | 2008-01-03 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zum Füllen eines Grabens, der in einem Substrat gebildet ist, mit einem isolierenden Material |
JP2006503865A (ja) * | 2002-09-30 | 2006-02-02 | アキュスフィア, インコーポレイテッド | 吸入のための徐放性の多孔性微粒子 |
US6962006B2 (en) * | 2002-12-19 | 2005-11-08 | Acusphere, Inc. | Methods and apparatus for making particles using spray dryer and in-line jet mill |
US20040121003A1 (en) * | 2002-12-19 | 2004-06-24 | Acusphere, Inc. | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
KR20050088243A (ko) * | 2002-12-30 | 2005-09-02 | 넥타르 테라퓨틱스 | 프리필름화 분무기 |
WO2004073748A1 (ja) * | 2003-02-20 | 2004-09-02 | Senju Pharmaceutical Co., Ltd. | 水性懸濁液剤 |
CN1856296A (zh) * | 2003-09-30 | 2006-11-01 | 阿库斯菲尔公司 | 可注射的、口服、或局部用缓释药物制剂 |
US20050171425A1 (en) * | 2004-01-16 | 2005-08-04 | Phantoms-By-Design | Medical devices having MRI-enhancing encapsulated fluids |
GB0520794D0 (en) | 2005-10-12 | 2005-11-23 | Innovata Biomed Ltd | Inhaler |
US20070148211A1 (en) * | 2005-12-15 | 2007-06-28 | Acusphere, Inc. | Processes for making particle-based pharmaceutical formulations for oral administration |
US20070178166A1 (en) * | 2005-12-15 | 2007-08-02 | Acusphere, Inc. | Processes for making particle-based pharmaceutical formulations for pulmonary or nasal administration |
KR100722607B1 (ko) * | 2006-05-11 | 2007-05-28 | 주식회사 펩트론 | 분산성 및 주사 투여능이 향상된 서방성 미립구의 제조방법 |
US7985058B2 (en) * | 2007-01-12 | 2011-07-26 | Mark Gray | Method and apparatus for making uniformly sized particles |
US9827205B2 (en) * | 2008-12-12 | 2017-11-28 | Mallinckrodt Pharma Ip Trading D.A.C. | Dry powder fibrin sealant |
CA2761903C (en) | 2009-05-28 | 2018-04-10 | Profibrix B.V. | Dry powder fibrin sealant |
GB0918450D0 (en) | 2009-10-21 | 2009-12-09 | Innovata Ltd | Composition |
WO2014010614A1 (ja) | 2012-07-12 | 2014-01-16 | 武田薬品工業株式会社 | マイクロカプセル粉末の製造方法 |
CN104288793B (zh) * | 2014-10-31 | 2017-08-01 | 苏州大学 | 纳米超声/荧光双模态造影剂、其制备方法与应用 |
EP3302781B1 (en) * | 2015-05-29 | 2020-09-16 | Givaudan S.A. | Spray drying |
CN111389315A (zh) * | 2020-03-27 | 2020-07-10 | 南京芬之怡生物科技有限公司 | 一种绿色除异净化剂及其制备方法 |
CN114265256B (zh) * | 2021-12-30 | 2023-04-28 | 广东志慧芯屏科技有限公司 | 一种电子纸显示设备的制造方法 |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2797201A (en) * | 1953-05-11 | 1957-06-25 | Standard Oil Co | Process of producing hollow particles and resulting product |
US3501419A (en) * | 1962-06-07 | 1970-03-17 | Tee Pak Inc | Cellulose microspherical product |
AU439432B2 (en) * | 1968-11-28 | 1972-08-15 | Dulux Australia Ltd | Polymer and coating composition |
US4173488A (en) * | 1968-12-23 | 1979-11-06 | Champion International Corporation | Oil-in-water emulsions containing hydropholeic starch |
US3781230A (en) * | 1968-12-23 | 1973-12-25 | Champion Int Corp | Microcapsular opacifier system |
US3937668A (en) * | 1970-07-15 | 1976-02-10 | Ilse Zolle | Method for incorporating substances into protein microspheres |
US3960583A (en) * | 1974-05-02 | 1976-06-01 | Philadelphia Quartz Company | Method of preparing modified hollow, largely spherical particles by spray drying |
US4107288A (en) * | 1974-09-18 | 1978-08-15 | Pharmaceutical Society Of Victoria | Injectable compositions, nanoparticles useful therein, and process of manufacturing same |
JPS5134879A (en) * | 1974-09-19 | 1976-03-24 | Eisai Co Ltd | Bishochukuryushinoseizoho |
US4089800A (en) * | 1975-04-04 | 1978-05-16 | Ppg Industries, Inc. | Method of preparing microcapsules |
JPS5231981A (en) * | 1975-08-18 | 1977-03-10 | Takeda Chem Ind Ltd | Microcapsule preparation method |
CA1077842A (en) * | 1975-10-09 | 1980-05-20 | Minnesota Mining And Manufacturing Company | Albumin medicament carrier system |
US4357259A (en) * | 1977-08-01 | 1982-11-02 | Northwestern University | Method of incorporating water-soluble heat-sensitive therapeutic agents in albumin microspheres |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
US4276885A (en) * | 1979-05-04 | 1981-07-07 | Rasor Associates, Inc | Ultrasonic image enhancement |
US4316391A (en) * | 1979-11-13 | 1982-02-23 | Ultra Med, Inc. | Flow rate measurement |
JPS5933017B2 (ja) * | 1980-03-14 | 1984-08-13 | 株式会社成和化成 | マイクロカプセル用壁財 |
WO1982001642A1 (en) * | 1980-11-17 | 1982-05-27 | Med Inc Ultra | Microbubble precursors and methods for their production and use |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4349530A (en) * | 1980-12-11 | 1982-09-14 | The Ohio State University | Implants, microbeads, microcapsules, preparation thereof and method of administering a biologically-active substance to an animal |
US4420442A (en) * | 1981-04-13 | 1983-12-13 | Pq Corporation | Manufacturing process for hollow microspheres |
DE3141641A1 (de) * | 1981-10-16 | 1983-04-28 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Ultraschall-kontrastmittel und dessen herstellung |
ZA831343B (en) * | 1982-04-08 | 1983-11-30 | Pq Corp | Hollow microspheres with organosilicon-silicate surfaces |
US4960351A (en) * | 1982-04-26 | 1990-10-02 | California Institute Of Technology | Shell forming system |
US4718433A (en) * | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US4808408A (en) * | 1983-05-11 | 1989-02-28 | Bend Research, Inc. | Microcapsules prepared by coacervation |
US4900540A (en) * | 1983-06-20 | 1990-02-13 | Trustees Of The University Of Massachusetts | Lipisomes containing gas for ultrasound detection |
DE3324754A1 (de) * | 1983-07-06 | 1985-01-17 | Schering AG, 1000 Berlin und 4709 Bergkamen | Ultraschallkontrastmittel sowie dessen herstellung |
AU588299B2 (en) * | 1985-04-08 | 1989-09-14 | Rafa Laboratories Ltd. | Artificial microcompartmentalization |
IE61591B1 (en) * | 1987-12-29 | 1994-11-16 | Molecular Biosystems Inc | Concentrated stabilized microbubble-type ultrasonic imaging agent and method of production |
US4844882A (en) * | 1987-12-29 | 1989-07-04 | Molecular Biosystems, Inc. | Concentrated stabilized microbubble-type ultrasonic imaging agent |
DE4219724A1 (de) * | 1992-06-13 | 1993-12-16 | Schering Ag | Verwendung von Mikrokapseln als Kontrastmittel für die Farbdoppler-Sonographie |
EP0586875A1 (de) * | 1988-02-05 | 1994-03-16 | Schering Aktiengesellschaft | Ultraschallkontrastmittel, Verfahren zu deren Herstellung und deren Verwendung als Diagnostika und Therapeutika |
US5425366A (en) * | 1988-02-05 | 1995-06-20 | Schering Aktiengesellschaft | Ultrasonic contrast agents for color Doppler imaging |
US4981625A (en) * | 1988-03-14 | 1991-01-01 | California Institute Of Technology | Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops |
IL90561A (en) * | 1988-06-08 | 1993-08-18 | Fountain Pharm Inc | Method for making solvent dilution microcarriers |
US4957656A (en) * | 1988-09-14 | 1990-09-18 | Molecular Biosystems, Inc. | Continuous sonication method for preparing protein encapsulated microbubbles |
GB8900376D0 (en) * | 1989-01-09 | 1989-03-08 | Nycomed As | Iodinated esters |
EP0381543B1 (en) * | 1989-01-31 | 1993-05-26 | Coletica | Use of solutions of atelocollagen and polyholosides, for example glycosaminoglycans, for the manufacture of microcapsules, microcapsules produced in this way, processes for the manufacture of such microcapsules and cosmetic, pharmaceutical or food compositions in which they are present |
US5543162A (en) * | 1989-02-10 | 1996-08-06 | Alko Group Ltd. | Polymeric capsules, method of making the same, and foodstuffs containing the same |
US5019400A (en) * | 1989-05-01 | 1991-05-28 | Enzytech, Inc. | Very low temperature casting of controlled release microspheres |
GB8917788D0 (en) * | 1989-08-03 | 1989-09-20 | Smith & Nephew | Adhesive dressing |
JPH04506931A (ja) * | 1989-11-06 | 1992-12-03 | アルカーメス コントロールド セラピューティクス,インコーポレイテッド | タンパク質マイクロスフェアを生産する方法 |
US5271961A (en) * | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
US5088499A (en) * | 1989-12-22 | 1992-02-18 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
DE4004430A1 (de) * | 1990-02-09 | 1991-08-14 | Schering Ag | Aus polyaldehyden aufgebaute kontrastmittel |
GB9003821D0 (en) * | 1990-02-20 | 1990-04-18 | Danbiosyst Uk | Diagnostic aid |
US4968562A (en) * | 1990-02-27 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
IN172208B (ru) * | 1990-04-02 | 1993-05-01 | Sint Sa | |
FR2660864A1 (fr) * | 1990-04-13 | 1991-10-18 | Guerbet Sa | Composition de contraste, procede de preparation de cette composition et application a l'imagerie. |
JPH03297475A (ja) * | 1990-04-16 | 1991-12-27 | Ken Ishihara | 共振音波により薬物の放出を制御する方法 |
US5190982A (en) * | 1990-04-26 | 1993-03-02 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
US5137928A (en) * | 1990-04-26 | 1992-08-11 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
US5205287A (en) * | 1990-04-26 | 1993-04-27 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
AU636481B2 (en) * | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
US5215680A (en) * | 1990-07-10 | 1993-06-01 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
JPH04145131A (ja) * | 1990-10-04 | 1992-05-19 | Japan Synthetic Rubber Co Ltd | 中空重合体粒子の製造方法 |
CA2068334C (en) * | 1990-10-05 | 1996-09-03 | Claude Giddey | Method for the preparation of stable suspensions of hollow gas-filled microspheres suitable for ultrasonic echography |
DE4100470A1 (de) * | 1991-01-09 | 1992-07-16 | Byk Gulden Lomberg Chem Fab | Echokontrastmittel |
YU48420B (sh) * | 1991-03-25 | 1998-07-10 | Hoechst Aktiengesellschaft | Postupak za dobijanje biološki razgradljivih mikročestica sa dugotrajnim delovanjem |
GB9106686D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
GB9106673D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
GB9107628D0 (en) * | 1991-04-10 | 1991-05-29 | Moonbrook Limited | Preparation of diagnostic agents |
US5147631A (en) * | 1991-04-30 | 1992-09-15 | Du Pont Merck Pharmaceutical Company | Porous inorganic ultrasound contrast agents |
GB9116610D0 (en) * | 1991-08-01 | 1991-09-18 | Danbiosyst Uk | Preparation of microparticles |
US5196183A (en) * | 1991-12-04 | 1993-03-23 | Sterling Winthrop Inc. | Contrast agents for ultrasound imaging |
IL104084A (en) * | 1992-01-24 | 1996-09-12 | Bracco Int Bv | Sustainable aqueous suspensions of pressure-resistant and gas-filled blisters, their preparation, and contrast agents containing them |
US5674468A (en) | 1992-03-06 | 1997-10-07 | Nycomed Imaging As | Contrast agents comprising gas-containing or gas-generating polymer microparticles or microballoons |
AU660824B2 (en) * | 1992-06-12 | 1995-07-06 | Teijin Limited | Pharmaceutical preparation for intra-airway administration |
ES2177544T3 (es) * | 1992-06-12 | 2002-12-16 | Teijin Ltd | Polvo ultrafinno para inhalar y metodo para su preparacion. |
GB9221329D0 (en) * | 1992-10-10 | 1992-11-25 | Delta Biotechnology Ltd | Preparation of further diagnostic agents |
WO1994009898A1 (de) * | 1992-10-26 | 1994-05-11 | Schwarz Pharma Ag | Verfahren zur herstellung von mikrokapseln |
CA2155947C (en) * | 1993-02-22 | 2007-08-21 | Mark W. Grinstaff | Methods for in vivo delivery of biologics and compositions useful therefor |
EP1550464A1 (en) * | 1993-07-30 | 2005-07-06 | IMCOR Pharmaceutical Co. | Stabilized microbubble composition for ultrasound |
GB9423419D0 (en) * | 1994-11-19 | 1995-01-11 | Andaris Ltd | Preparation of hollow microcapsules |
ATE234080T1 (de) * | 1994-12-16 | 2003-03-15 | Elan Drug Delivery Ltd | Vernetzte mikropartikel und ihre verwendung als arzneiträger |
-
1994
- 1994-11-19 GB GB9423419A patent/GB9423419D0/en active Pending
-
1995
- 1995-11-15 US US08/676,344 patent/US5741478A/en not_active Expired - Lifetime
- 1995-11-15 ES ES95936688T patent/ES2174968T3/es not_active Expired - Lifetime
- 1995-11-15 WO PCT/GB1995/002673 patent/WO1996015814A1/en active IP Right Grant
- 1995-11-15 CA CA002177492A patent/CA2177492C/en not_active Expired - Fee Related
- 1995-11-15 SG SG9800856A patent/SG81230A1/en unknown
- 1995-11-15 DK DK95936688T patent/DK0743860T3/da active
- 1995-11-15 JP JP51665396A patent/JP4592831B2/ja not_active Expired - Fee Related
- 1995-11-15 DE DE69526491T patent/DE69526491T3/de not_active Expired - Lifetime
- 1995-11-15 PT PT95936688T patent/PT743860E/pt unknown
- 1995-11-15 AU AU38533/95A patent/AU681815B2/en not_active Ceased
- 1995-11-15 AT AT95936688T patent/ATE216595T1/de not_active IP Right Cessation
- 1995-11-15 KR KR1019960703464A patent/KR100188356B1/ko not_active IP Right Cessation
- 1995-11-15 GB GB9610968A patent/GB2298628B/en not_active Expired - Fee Related
- 1995-11-15 EP EP95936688A patent/EP0743860B2/en not_active Expired - Lifetime
- 1995-11-15 CN CN95191282A patent/CN1072966C/zh not_active Expired - Fee Related
- 1995-11-15 RU RU96116133/14A patent/RU2193397C2/ru not_active IP Right Cessation
- 1995-11-17 ZA ZA959801A patent/ZA959801B/xx unknown
-
1996
- 1996-07-18 NO NO19962994A patent/NO313491B1/no not_active IP Right Cessation
-
1998
- 1998-02-13 US US09/023,696 patent/US6623722B1/en not_active Expired - Fee Related
- 1998-12-22 HK HK98114794A patent/HK1013405A1/xx not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
SCHROEDER M. et al Polymeric Microballons as Ultrasound Contrast Agents: Physical and Ultrasonics Properties Compared with Sonicated Albumin. Invest.Radiol. 1992, 27 (2), р.134-139. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136699A1 (fr) * | 2007-05-04 | 2008-11-13 | Igor Alexandrovich Bazikov | Patch transdermique à microcapsules et procédé de fabrication correspondant |
Also Published As
Publication number | Publication date |
---|---|
JPH09508067A (ja) | 1997-08-19 |
KR100188356B1 (ko) | 1999-06-01 |
EP0743860B1 (en) | 2002-04-24 |
DE69526491T3 (de) | 2009-07-30 |
EP0743860A1 (en) | 1996-11-27 |
SG81230A1 (en) | 2001-06-19 |
ZA959801B (en) | 1996-08-28 |
ES2174968T3 (es) | 2002-11-16 |
DE69526491T2 (de) | 2002-10-31 |
GB2298628B (en) | 1998-08-05 |
NO962994D0 (no) | 1996-07-18 |
US6623722B1 (en) | 2003-09-23 |
GB2298628A (en) | 1996-09-11 |
CA2177492C (en) | 2003-03-25 |
PT743860E (pt) | 2002-10-31 |
HK1013405A1 (en) | 1999-08-27 |
GB9423419D0 (en) | 1995-01-11 |
NO962994L (no) | 1996-07-18 |
CN1072966C (zh) | 2001-10-17 |
JP4592831B2 (ja) | 2010-12-08 |
EP0743860B2 (en) | 2008-12-31 |
ATE216595T1 (de) | 2002-05-15 |
GB9610968D0 (en) | 1996-07-31 |
DE69526491D1 (de) | 2002-05-29 |
US5741478A (en) | 1998-04-21 |
AU3853395A (en) | 1996-06-17 |
MX9602851A (es) | 1997-12-31 |
DK0743860T3 (da) | 2002-08-12 |
CN1138828A (zh) | 1996-12-25 |
CA2177492A1 (en) | 1996-05-30 |
WO1996015814A1 (en) | 1996-05-30 |
NO313491B1 (no) | 2002-10-14 |
AU681815B2 (en) | 1997-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2193397C2 (ru) | Приготовление полых микрокапсул | |
EP0972526B1 (en) | Preparation of diagnostic agents | |
US6264918B1 (en) | Hollow microcapsules for methods of ultrasound imaging | |
GB2302649A (en) | Long life diagnostic agents | |
MXPA96002851A (en) | Preparation of microcapsules hue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20041116 |