US20030203036A1 - Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients - Google Patents

Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients Download PDF

Info

Publication number
US20030203036A1
US20030203036A1 US10403548 US40354803A US2003203036A1 US 20030203036 A1 US20030203036 A1 US 20030203036A1 US 10403548 US10403548 US 10403548 US 40354803 A US40354803 A US 40354803A US 2003203036 A1 US2003203036 A1 US 2003203036A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
method
hydrophobic
hydrophilic
dry powder
mg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10403548
Inventor
Marc Gordon
Andrew Clark
Thomas Brewer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Pharma AG
Original Assignee
Nektar Therapeutics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. cannabinols, methantheline
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. cannabinols, methantheline
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/59Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7012Compounds having a free or esterified carboxyl group attached, directly or through a carbon chain, to a carbon atom of the saccharide radical, e.g. glucuronic acid, neuraminic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules

Abstract

Methods for preparing dry powders having hydrophobic and hydrophilic components comprise combining solutions of the components and spray drying them simultaneously in a spray dryer. The hydrophilic and hydrophobic component are separately dissolved in separate solvents and directed simultaneously through a nozzle, usually a coaxial nozzle, into the spray dryer. The method provides dry powders having relatively uniform characteristics.

Description

  • This application is a continuation-in-part of Provisional Application No. 60/034,837, filed on Dec. 31, 1996, the full disclosure of which is incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates generally to dry powder compositions and methods for their preparation and use. In particular, the present invention relates to methods for spray drying pharmaceutical and other compositions comprising a hydrophobic drug or other component and a hydrophilic excipient or other component. [0003]
  • Over the years, certain drugs have been sold in formulations suitable for oral inhalation (pulmonary delivery) to treat various conditions in humans. Such pulmonary drug delivery formulations are designed to be inhaled by the patient so that the active drug within the dispersion reaches the lung. It has been found that certain drugs delivered to the lung are readily absorbed through the alveolar region directly into blood circulation. Such pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs. [0004]
  • Pulmonary drug delivery can itself be achieved by different approaches, including liquid nebulizers, aerosol-based metered dose inhalers (MDI's), and dry powder dispersion devices. Aerosol-based MDI's are losing favor because they rely on the use of chlorofluorocarbons (CFC's), which are being banned because of their adverse effect on the ozone layer. Dry powder dispersion devices, which do not rely on CFC aerosol technology, are promising for delivering drugs that may be readily formulated as dry powders. [0005]
  • The ability to deliver pharmaceutical compositions as dry powders, however, is problematic in certain respects. The dosage of many pharmaceutical compositions is often critical, so it is desirable that dry powder delivery systems be able to accurately, precisely, and reliably deliver the intended amount of drug. Moreover, many pharmaceutical compositions are quite expensive. Thus, the ability to efficiently formulate, process, package, and deliver the dry powders with a minimal loss of drug is critical.. With dry powder drug delivery, both the delivered dose efficiency, i.e. the percentage of drug from a unit dose receptacle which is aerosolized and delivered from a delivery device, and the median particle size distribution, i.e. the deviation from the median size, are critical to the successful delivery of powders to a patient's lungs. [0006]
  • A particularly promising approach for the pulmonary delivery of dry powder drugs utilizes a hand-held device with a hand pump for providing a source of pressurized gas. The pressurized gas is abruptly released through a powder dispersion device, such as a venturi nozzle, and the dispersed powder made available for patient inhalation. While advantageous in many respects, such hand-held devices are problematic in a number of other respects. The particles being delivered are usually less than 5 μm in size, making powder handling and dispersion more difficult than with larger particles. The problems are exacerbated by the relatively small volumes of pressurized gas, which are available using hand-actuated pumps. In particular, venturi dispersion devices are unsuitable for difficult-to-disperse powders when only small volumes of pressurized gas are available with the handpump. Another requirement for hand-held and other powder delivery devices is efficiency. High device efficiency in delivering the drug to the patient with the optimal size distribution for pulmonary delivery is essential for a commercially viable product. [0007]
  • Spray drying is a conventional chemical processing unit operation used to produce dry particulate solids from a variety of liquid and slurry starting materials. The use of spray drying for the formulation of dry powder pharmaceuticals is known, but has usually been limited to spray drying of hydrophilic drugs in aqueous solutions, usually in combination with hydrophilic excipients. Many drugs, however, are hydrophobic, preventing spray drying in aqueous solutions. While spray drying of hydrophobic materials can often be accomplished using an organic solvent, the use of such non-aqueous solvents generally limits the ability to simultaneously spray dry a hydrophilic excipient. [0008]
  • For these reasons, it would be desirable to provide improved methods for spray drying pharmaceutical and other compositions which comprise both hydrophobic and hydrophilic components, such as hydrophobic drugs and hydrophilic excipients. Such spray drying methods should be compatible with a wide variety of hydrophobic drugs as well as conventional hydrophilic excipients, such as povidone (polyvinylpyrrolidone) and other water soluble polymers, citric acid, mannitol, pectin and other water soluble carbohydrates, and particularly with those excipients which are accepted for use in inhalation formulations, such as lactose, sodium chloride, and sodium citrate. Such spray drying methods will preferably produce particles having a uniform size distribution, with a mean particle size below 10 μm, preferably below 5 μm, and a standard deviation less than or equal to ±2 μm. Such powders should further exhibit uniform composition from batch to batch so that any tendency for particles of different compositions and/or sizes to separate in the lungs will have a reproducible impact on the therapeutic effect. Additionally, such spray drying methods should provide for dry powders which are physically and chemically stable and which have low levels of any residual organic solvents or other components which might be used in the spray drying process. At least some of the above objectives will be met by the various embodiments of the present invention which are described in detail below. [0009]
  • 2. Description of the Background Art [0010]
  • Methods for spray drying hydrophobic and other drugs and components are described in U.S. Pat. Nos. 5,000,888; 5,026,550; 4,670,419, 4,540,602; and 4,486,435. Bloch and Speison (1983) Pharm. Acta Helv 58:14-22 teaches spray drying of hydrochlorothiazide and chlorthalidone (lipophilic drugs) and a hydrophilic adjuvant (pentaerythritol) in azeotropic solvents of dioxane-water and 2-ethoxyethanol-water. A number of Japanese Patent application Abstracts relate to spray drying of hydrophilic-hydrophobic product combinations, including JP 806766; JP 7242568; JP 7101884; JP 7101883; JP 71018982; JP 7101881; and JP 4036233. Other foreign patent publications relevant to spray drying hydrophilic-hydrophobic product combinations include FR 2594693; DE 2209477; and WO 88/07870. [0011]
  • WO 96/09814 describes spray dried pharmaceutical powders. In particular, Example 7 describes spray drying budesonide and lactose in ethanol where the budesonide is partially soluble and the lactose is insoluble. U.S. Pat. Nos. 5,260,306; 4,590,206; GB 2 105 189; and EP 072 046 describe a method for spray drying nedocromil sodium to form small particles preferably in the range from 2 to 15 μm for pulmonary delivery. U.S. Pat. No. 5,376,386, describes the preparation of particulate polysaccharide carriers for pulmonary drug delivery, where the carriers comprise particles sized from 5 to 1000 μm. Mumenthaler et al. (1994) [0012] Pharm. Res. 11:12 describes recombinant human growth hormone and recombinant tissue-type plasminogen activator. WO 95/23613 describes preparing an inhalation powder of DNase by spray drying using laboratory-scale equipment. WO 91/16882 describes a method for spray drying proteins and other drugs in liposome carriers.
  • The following applications assigned to the assignee of the present application each describe that spray drying may be used to prepare dry powders of biological macromolecules; application Ser. No. 08/644,681, filed on May 8, 1996, which was a continuation-in-part of application Ser. No. 08/423,S15, filed on Apr. 14, 1995; application Ser. No. 08/383,475, which was a continuation-in-part of application Ser. No. 08/207,472, filed on Mar. 7, 1994; application Ser. No. 08/472,563, filed on Apr. 14, 1995, which was a continuation-in-part of application Ser. No. 08/417,507, filed on Apr. 4, 1995, now abandoned, which was a continuation of application Ser. No. 08/044,358, filed on Apr. 7, 1993, now abandoned; application Ser. No. 08/232,849, filed on Apr. 25, 1994, which was a continuation of application Ser. No. 07/953,397, now abandoned. WO 94/07514 claims priority from Ser. No. 07/953,397. WO 95/24183 claims priority from Ser. Nos. 08/207,472 and 08/383,475. [0013]
  • SUMMARY OF THE INVENTION
  • According to the present invention, methods for spray drying hydrophobic drugs and other materials are provided which overcome at least some of the deficiencies noted above with respect to prior spray drying processes. In particular, the spray drying methods of the present invention permit the simultaneous spray drying of the hydrophobic component with a hydrophilic component, such as a hydrophilic pharmaceutical excipient, under conditions which result in a dry powder comprising mixtures of both the hydrophilic and hydrophobic components. Although the methods of the present invention are particularly useful for forming pharmaceutical compositions where the hydrophobic component is a hydrophobic drug, usually present at from 0.01% to 95% of the powder, and the hydrophilic component is a hydrophilic excipient, usually present at from 99.99% to 5% of the powder, the methods may be applied more broadly to form dry powders comprising a variety of hydrophobic and hydrophilic components at different concentration ranges, including hydrophilic drugs and hydrophobic excipients. [0014]
  • The spray drying methods of the present invention are compatible with at least most hydrophilic pharmaceutical excipients, particularly including mannitol, povidone, pectin, lactose, sodium chloride, and sodium citrate. Use of the latter three excipients is particularly preferred for powders intended for pulmonary delivery as they are “generally recognized as safe” (GRAS) for such applications. The methods are also suitable for use with numerous hydrophobic drugs and nutrients, including steroids and their salts, such as budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone, and the like; peptides, such as cyclosporin and other water insoluble peptides; retinoids, such as all-cis retinoic acid, 13-trans retinoic acid, and other vitamin A and beta carotene derivatives; vitamins D, E, and K and water insoluble precursors and derivatives thereof; prostaglandins and leukotrienes and their activators and inhibitors including prostacyclin (epoprostanol), and prostaglandins E[0015] 1 E2; tetrahydrocannabinol; lung surfactant lipids; lipid soluble antioxidants; hydrophobic antibiotics and chemotherapeutic drugs such as amphotericin B, adriamycin, and the like.
  • The spray drying methods can produce a uniform particle size distribution. For example, the mean particle diameter can be controlled below 10 μm, preferably below 5 μm, with a size distribution (standard deviation) less than ±2 μm. The particles of the powders so produced have a minimum batch-to-batch variability in composition, and are physically and chemically stable. The powders have minimum residual organic solvents to the extent they may have been used in the spray drying process. [0016]
  • In particular, the method of the present invention comprises preparing an aqueous solution of a hydrophilic component and an organic solution of a hydrophobic component in an organic solvent. The aqueous solution and the organic solution are simultaneously spray dried to form particles comprising a mixture of the hydrophilic and hydrophobic components. Usually the hydrophilic component has a concentration in the aqueous solution from 1 mg/ml to 100 mg/ml, preferably from 5 mg/ml to 60 mg/ml. The hydrophobic component has a solubility in the organic solution of at least 0.01 mg/ml, preferably at least 0.05 mg/ml. The concentration of the hydrophobic component in the organic solution is usually in the range from 0.01 mg/ml to 10 mg/ml, preferably from 0.05 mg/ml to 5 mg/ml. Preferred organic solvents include alcohols, ketones, ethers, aldehydes, hydrocarbons, and polar aprotic solvents, and the like and mixtures thereof. The use of a separate aqueous and organic solution to carry the hydrophilic and hydrophobic components, respectively, is advantageous in that it allows a much broader range of selection for the organic solvent, since the organic solvent does not also have to solubilize the hydrophilic component. It is also particularly advantageous for spray drying hydrophobic components and hydrophilic components which are chemically or physically incompatible in solution, since the solutions of the hydrophobic components and hydrophilic components do not reside together until they are passing through the spray nozzle during spray drying. This severely minimizes the contact time between the two solutions before drying occurs, and hence minimizes the potential for undesirable reactions o occur. Usually, the aqueous solution and organic solution will be spray dried through a common spray nozzle, more usually through a coaxial spray nozzle. [0017]
  • Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use. For use as pharmaceuticals and other purposes, it will frequently be desirable to disrupt any agglomerates which may have formed by screening or other conventional techniques. For pharmaceutical uses, the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below. Alternatively, the powders may be packaged in multiple-dose containers. [0018]
  • The present invention further comprises dry powder compositions produced according to the methods described above, as well as unit dose and multidose packages of such dried powder compositions containing a therapeutically effective amount of the dry powder. [0019]
  • The present invention further provides methods for aerosolizing a dry powder composition comprising the steps of providing an amount of dry powder composition produced by any of the methods described above and subsequently dispersing the dry powder composition into a flowing gas stream.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating a spray drying system suitable for performing the methods of the present invention. [0021]
  • FIG. 2. illustrates a coaxial spray nozzle used in spray drying as described in the Experimental section. [0022]
  • FIG. 3 illustrates a two-tube spray nozzle used in spray drying as described in the Experimental section. [0023]
  • FIG. 3A is a detail cross-section view of region [0024] 3A in FIG. 3.
  • DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • The present invention relates to methods for preparing compositions comprising ultrafine dry powders having both hydrophobic and hydrophilic components. The methods are particularly suitable for producing ultrafine pharmaceutical dry powders where the hydrophobic component is a hydrophobic drug and the hydrophilic component is a hydrophilic excipient. The present invention, however, may find use for preparing a variety of other compositions including pharmaceutical compositions having hydrophilic drugs and hydrophobic excipients and compositions intended for non-pharmaceutical applications. The methods rely on spray drying liquid media in which the components are solubilized or suspended. In particular, the hydrophobic and hydrophilic components are solubilized in separate liquid media and the media are simultaneously spray dried through a common nozzle. [0025]
  • The term “hydrophobic component” refers to materials which are insoluble or sparingly or poorly soluble in water. As used herein, such compositions will have a solubility below 5 mg/ml, usually below 1 mg/ml. Exemplary hydrophobic drugs include certain steroids, such as budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone, and the like; certain peptides, such as cyclosporin cyclic peptide, retinoids, such as all-cis retinoic acid, 13-trans retinoic acid, and other vitamin A and beta carotene derivatives; vitamins D, E, and K and water insoluble precursors and derivatives thereof; prostagladins and leukotrienes and their activators and inhibitors including prostacyclin (epoprostanol), and prostaglandins E[0026] 1 E2; tetrahydrocannabinol; lung surfactant lipids; lipid soluble antioxidants; hydrophobic antibiotics and chemotherapeutic drugs such as amphotericin B and adriamycin and the like.
  • By “hydrophilic component,” it is meant that the component is highly soluble in water and frequently capable of swelling and formation of reversible gels. Typical aqueous solubilities of hydrophilic components will be greater than 5 mg/ml, usually greater than 50 mg/ml, often greater than 100 mg/ml and often much higher. In addition to their hydrophilic nature, the pharmaceutical excipients will generally be selected to provide stability, dispersibility, consistency and/or bulking characteristics to enhance the uniform pulmonary delivery of the dried powder composition to a patient. For pulmonary delivery, the excipients must be capable of being taken into the lungs with no significant adverse toxicological effects on the lungs. Exemplary hydrophilic excipients include carbohydrates and other materials selected from the group consisting of lactose, sodium citrate, mannitol, povidone, pectin, citric acid, sodium chloride, water soluble polymers, and the like. Particularly preferred are lactose, sodium chloride, sodium citrate, and citric acid which are generally accepted for pulmonary delivery in dry powder formulations. [0027]
  • The phrase “ultrafine dry powder” means a powder composition comprising a plurality of discrete, dry particles having the characteristics set forth below. In particular, the dry particles will have an average particle size below 10 μm, usually below 5 μm, preferably being in the range from 0.4 to 5 μm, more preferably from 0.4 to 4 μm. The average particle size of the powder will be measured as mass median diameter (MMD) by conventional techniques. A particular powder sizing technique uses a centrifugal sedimentary particle size analyzer (Horiba Capa 700). The powders will be capable of being readily dispersed in an inhalation device and subsequently inhaled by a patient so that the particles are able to penetrate into the alveolar regions of the lungs. [0028]
  • Of particular importance to the present invention, the ultrafine dry particle compositions produced by the method will have particle size distributions which enable them to target the alveolar region of the lung for pulmonary delivery of locally acting steroids, systemically acting proteins, and other biologically active materials that can be administered to or through the lungs. Such compositions advantageously may be incorporated into unit dosage and other forms without further size classification. Usually, the ultrafine dry powders will have a size distribution where at least 90% of the powder by weight will comprise particles having an average size in the range from 0.1 μm to 7 μm, with preferably at least 85% being in the range from 0.4 μm to 5 μm. Additionally, it is desirable that the particle size distribution avoid having an excess amount of particles with very small average diameters, i.e., below 0.4 μm. [0029]
  • The term “dry” means that the particles of the powder have a moisture and residual solvent content such that the powder is physically and chemically stable in storage at room temperature and is readily dispersible in an inhalation device to form an aerosol. Usually, the moisture and residual solvent content of the particles is below 10% by weight, usually being below 5% by weight, preferably being below 3% by weight, or lower. The moisture and residual solvent content will usually be controlled by the drying conditions, as described in more detail below. The term “dry” further means that the particles of the powder have a moisture and residual solvent content such that the powder is readily dispersible in an inhalation device to form an aerosol. In some cases, however, non-aqueous medium may be used for dispersing the components, in which case the aqueous content may approach zero. [0030]
  • The term “therapeutically effective amount” is the amount present in the composition that is needed to provide the desired level of hydrophobic drug in the subject to be treated to give the anticipated physiological response. This amount is determined for each drug on a case-by-case basis. The term “physiologically effective amount” is that amount delivered to a subject to give the desired palliative or curative effect. This amount is specific for each drug and its ultimate approval dosage level. [0031]
  • The therapeutically effective amount of hydrophobic drug will vary in the composition depending on the biological activity of the drug employed and the amount needed in a unit dosage form. Because the subject powders are dispersible, it is highly preferred that they be manufactured in a unit dosage form in a manner that allows for ready manipulation by the formulator and by the consumer. This generally means that a unit dosage will be between about 0.5 mg and 15 mg of total material in the dry powder composition, preferably between about 1 mg and 10 mg. Generally, the amount of hydrophobic drug in the composition will vary from about 0.01% w/w to about 95% w/w. Most preferably the composition will be about 0.05% w/w to about 25% w/w drug. [0032]
  • Referring now to FIG. 1, processes according to the present invention for preparing dispersible dry powders of hydrophobic and hydrophilic components comprise an atomization operation [0033] 10 which produces droplets of a liquid medium which are dried in a drying operation 20. Drying of the liquid droplets results in formation of the discrete particles which form the dry powder compositions which are then collected in a separation operation 30. Each of these unit operations will be described in greater detail below.
  • The atomization process [0034] 10 may utilize any one of several forms of atomizers, so long as the atomizer is specially designed to deliver the liquid containing the hydrophobic components and the liquid containing the hydrophilic components separately to the lower portion of the atomizer, for which FIG. 2 and FIG. 3 serve as nonlimiting examples. The atomization process increases the surface area of the starting liquid. Due to atomization there is an increase in the surface energy of the liquid, the magnitude of which is directly proportional to the surface area increase. The source of this energy increase depends on the type of atomizer used. Any atomizer (centrifugal, sonic, pressure, two fluid) capable of producing droplets with a mass median diameter of less than about 20 μm could be used. Preferred for the present invention is the use of two fluid atomizers where the liquid medium is delivered through a nozzle concurrently with a high pressure gas stream. Particularly preferred is the use of two-fluid atomization nozzles as described in copending application Ser. No. 08/644,681, which is capable of producing droplets having a median diameter less than 20 μm.
  • The atomization gas will usually be nitrogen which has been filtered or otherwise cleaned to remove particulates and other contaminants. Alternatively, other gases, such as air may be used. The atomization gas will be pressurized for delivery through the atomization nozzle, typically to a pressure above 5 psig, preferably being above 10 psig. Although flow of the atomization gas is generally limited to sonic velocity, the higher delivery pressures result in an increased atomization gas density. Such increased gas density has been found to reduce the droplet size formed in the atomization operation. Smaller droplet sizes, in turn, result in smaller particle sizes. The atomization conditions, including atomization gas flow rate, atomization gas pressure, liquid flow rate, and the like, will be controlled to produce liquid droplets having an average diameter below 20 μm as measured by phase doppler velocimetry. [0035]
  • The drying operation [0036] 20 will be performed next to evaporate liquid from the droplets produced by the atomization operation 10. Usually, the drying will require introducing energy to the droplets, typically by mixing the droplets with a heated gas which causes evaporation of the water or other liquid medium. Preferably, the heated gas stream will flow concurrently with the atomized liquid, but it would also be possible to employ counter-current flow, cross-current flow, or other flow patterns.
  • The drying rate may be controlled based on a number of variables, including the droplet size distribution, the inlet temperature of the gas stream, the outlet temperature of the gas stream, the inlet temperature of the liquid droplets, and the manner in which the atomized spray and hot drying gas are mixed. Preferably, the drying gas stream will have an inlet temperature of at least 70° C. The outlet temperature will usually be at least about 40° C. The drying gas will usually be air or nitrogen which has been filtered or otherwise treated to remove particulates and other contaminants. The gas will be moved through the system using conventional blowers or compressors. [0037]
  • The separation operation [0038] 30 will be selected in order to achieve very high efficiency collection of the ultrafine particles produced by the drying operation 20. Conventional separation operations may be used, although in some cases they should be modified in order to assure collection of sub-micron particles. In an exemplary embodiment, separation is achieved using a filter medium such as a membrane medium (bag filter), a sintered metal fiber filter, or the like. Alternatively, and often preferably, separation may be achieved using cyclone separators, although it is usually desirable to provide for high energy separation in order to assure the efficient collection of sub-micron particles. The separation operation should achieve collection of at least 80% of all particles above 1 μm in average particle size, preferably being above 85%, more preferably being above 90%, and even more preferably being above 95%, in collection efficiency.
  • In some cases, a cyclone separator can be used to separate very fine particles, e.g. 0.1 μm, from the final collected particles. The cyclone operating parameters can be selected to provide an approximate cutoff where particles above about 0.1 μm are collected while particles below 0.1 μm are carried over in the overhead exhaust. The presence of particles below 0.1 μm in the pulmonary powder is undesirable since they will generally not deposit in the alveolar regions of the lungs, but instead will be exhaled. [0039]
  • The present invention relies on proper selection of the liquid medium or media for solubilizing the hydrophobic drug or other component and hydrophilic excipient or other component as well as on the manner of introducing the component to the spray dryer. In particular, the compositions are spray dried by forming separate solutions of the hydrophobic drug or other component and the hydrophilic excipient or other component. The separate solutions are then concurrently but separately introduced to the spray nozzle, typically by passing through a common spray nozzle or nozzles in the spray dryers described above. This method has the advantage that both the hydrophobic drug and the hydrophilic excipient may be easily dissolved since it is generally straight forward to select compatible solvents capable of fully dissolving only one of the components. By properly directing the two solutions through a nozzle, such as a coaxial nozzle, spray dried powders having uniform characteristics may be achieved. This approach has the additional advantage that it minimizes the amount of organic solvent required since only the hydrophobic drug or other component requires an organic solvent for dissolution. The hydrophilic excipient is dissolved in water. [0040]
  • An exemplary coaxial spray nozzle [0041] 100 is illustrated in FIG. 2 and includes a housing 102 defining a chamber 103. A pair of inlets 104 are disposed at the top of the housing 102 for receiving the excipient solution (which is usually delivered at a higher volumetric flow rate than is the solution of the hydrophobic component). The excipient solution enters the chamber 103 at a pressure sufficient to achieve a desired flow rate through an outlet orifice 105 at the bottom of the housing 102. The hydrophobic component solution is fed through a feed tube 106 which usually terminates in a reduced diameter section 108 which is disposed coaxially within the orifice 105. The absolute and relative sizes of the orifice 105 and section 108 of feed tube 106 will depend on the total flow rates, operating pressures, and nature of materials being spray-dried. A specific example is described in the Experimental section hereinafter.
  • A second exemplary spray nozzle [0042] 200 is illustrated in FIGS. 3 and 3A. The nozzle 200 comprises a housing 202, inlets 204 and feed tube 206, generally similar to those described above for nozzle 100. Nozzle 200, however, is not coaxial and instead includes a second, parallel feed tube 208 which receives solution from chamber 203 defined within the housing 202. Both the feed tube 206 and feed tube 208 have outlet orifices 210 and 212, respectively, at their distal ends which direct the solution flow generally horizontally into a mixing chamber 214 disposed at the bottom of the housing 202. The mixing chamber is shown to have a conical geometry terminating at its bottom tip in outlet passage 216. The orifices 210 and 212 are preferably oriented as shown in FIG. 3A where the relative angle a is in the range from 5° to 25°, usually about 10°. Such an orifice arrangement results in a vortical mixing flow in the chamber 214 prior to ejection from the passage 216. A variety of other mixing chamber designs could also be utilized.
  • Once the dry powders have been prepared, they may be packaged in conventional ways. For pulmonary pharmaceutical applications, unit dosage forms may comprise a unit dosage receptacle containing a dry powder. The powder is placed within a suitable dosage receptacle in an amount sufficient to provide a subject with drug for a unit dosage treatment. The dosage receptacle is one that fits within a suitable inhalation device to allow for the aerosolization of the dry powder composition by dispersion into a gas stream to form an aerosol and then capturing the aerosol so produced in a chamber having a mouthpiece attached for subsequent inhalation by a subject in need of treatment. Such a dosage receptacle includes any container enclosing the composition known in the art such as gelatin or plastic capsules with a removable portion that allows a stream of gas (e.g., air) to be directed into the container to disperse the dry powder composition. Such containers are exemplified by those shown in U.S. Pat. Nos. 4,227,522 issued Oct. 14, 1980; 4,192,309 issued Mar. 11, 1980; and 4,105,027 issued Aug. 8, 1978. Suitable containers also include those used in conjunction with Glaxo's Ventolin Rotohaler® brand powder inhaler or Fison's Spinhaler® brand powder inhaler. Another suitable unit-dose container which provides a superior moisture barrier is formed from an aluminum foil plastic laminate. The pharmaceutical-based powder is filled by weight or by volume into the depression in the formable foil and hermetically sealed with a covering foil-plastic laminate. Such a container for use with a powder inhalation device is described in U.S. Pat. No. 4,778,054 and is used with Glaxo's Diskhaler® (U.S. Pat. Nos. 4,627,432; 4,811,731; and 5,035,237). Preferred dry powder inhalers are those described in U.S. patent application Ser. Nos. 08/309,691 and 08/487,184, assigned to the assignee of the present invention. The latter application has been published as WO 96/09085. [0043]
  • The following examples are offered by way of illustration, not by way of limitation. [0044]
  • Experimental [0045]
  • The following materials were used: [0046]
  • Budesonide (micronized to a median particle size of 1-2 μm; Steraloids) [0047]
  • Lactose monohydrate (NF grade; Foremost Ingredient Group) [0048]
  • Sodium Chloride (reagent grade from VWR and USP grade from EM Industries) [0049]
  • Deionized water [0050]
  • Ethanol, 200 proof (USP/NF; Spectrum Chemical Mfg. Corp.) [0051]
  • Acetone (for histology; EM Industries) [0052]
  • All batches were spray dried on Buchi 190 Mini Spray Dryers, with nozzles and cyclones that were designed to generate and catch very fine particles. A Buchi 190 Mini Spray Dryer was used that was modified so that it was supplied with nitrogen as the gas source and equipped with an oxygen sensor and other safety equipment to minimize the possibility of explosion. The solution feed rate was 5 ml/minute, inlet temperature was adjusted to obtain the outlet temperature noted in each example, and the top of the cyclone was jacketed and cooled to a temperature of-about 30° C. for the examples in Table 1, but it was not cooled for the examples in Table 2. The drying nitrogen flow rate was about 18 SCFM, and the atomizing nitrogen was supplied at 0.5 to 1.5 SCFM. The powders were further dried in the collector for 5 minutes by maintaining approximately the outlet temperature and air volume after the feeding of the liquid formulation was completed. [0053]
  • Particle size was determined with a Horiba Particle Size Analyzer, model CAPA 700. Median particle size refers to the volume based particle size distribution of the prepared bulk powders determined via centrifugal sedimentation as follows. A sample of the powder was suspended in an appropriate liquid medium (one that minimizes solubilizing the particle), sonicated to break up the agglomerates, and then centrifuged. The median particle size was determined by measuring the sedimentation rate during centrifugation. This method provides the median size of the “primary” particle, that is, the size of the particles produced by the manufacturing process, plus potential modification during sample preparation. Because these formulations are composed of both water soluble and water insoluble materials, it is likely that the suspension step during sample preparation does to some extent solubilize part of the particle, and thereby modify the particle size that is determined. Therefore, the resultant particle sizes should be viewed as estimated values, rather than absolute values. [0054]
  • Moisture content was determined by the Karl-Fischer Reagent titrimetric method. [0055]
  • Delivered dose efficiency refers to a measure of the percentage of powder which is drawn out of a blister package and which exits the mouthpiece of an inhaler device as described in U.S. patent application Ser. No. 08/487,184. Delivered dose efficiency is a measure of efficiency for the powder package/device combination. The test was performed by connecting a vacuum system to the device mouthpiece. The vacuum system was set to be similar to a human inhalation with regard to volume and flow rate (1.2 liters total at 30 liters/minute). A blister package containing 0.5 to 10 mg of the formulation to be evaluated (5 mg of powder was used for the following examples) was loaded into a device which was held in a testing fixture. The device was pumped and fired, and the vacuum “inhalation” was switched on. The aerosol cloud was thus drawn out of the device chamber by the vacuum, and the powder was collected on a filter placed between the mouthpiece and the vacuum source. The weight of the powder collected on the filter was determined. Delivered dose efficiency was calculated by multiplying this weight by one hundred and dividing by the fill weight in the blister. A higher number was a better result than a lower number. [0056]
  • MMAD (mass median aerodynamic diameter) refers to a measure of the particle size of the aerosolized powder. MMAD was determined with an Andersen cascade impactor. In a cascade impactor the aerosolized powder (which was aerosolized using an inhaler device as described in U.S. patent application Ser. No. 08/487,184) enters the impactor via an air stream, and encounters a series of stages that separate particles by their aerodynamic diameter (the smallest particles pass farthest down the impactor). The amount of powder collected on each stage is determined gravimetrically, and the mass median aerodynamic diameter is then calculated. [0057]
  • Coaxial Nozzle System: [0058]
  • Manufacturing procedure: [0059]
  • The budesonide was mixed in the organic solvent until all of the budesonide was completely dissolved to form a solution, with sonication if necessary. The excipient was mixed with the water until all of the excipient was completely dissolved to form a solution, with sonication, if necessary. The solutions were spray dried using a coaxial nozzle spray drying system having a nozzle as illustrated in FIG. 2 or FIG. 3. The FIG. 2 orifice [0060] 105 had a diameter of 1.0 mm and outlet tube section 108 had an outside diameter of 0.73 mm and an inside diameter of 0.6 mm. The FIG. 3 orifice 216 had a diameter of 1.0 mm and outlet orifices 210 and 212 had diameters of 0.15 mm.
  • The two solutions were fed to the nozzle at constant rates such that they both finished being fed to the nozzle at the same time. [0061]
  • Table 1 and Table 2 show the spray dryer atomization air pressure and outlet air temperature, the quantitative composition of example formulations, a description of the particle morphology, the moisture content, particle size, and delivered dose efficiency or MMAD of the resultant powders. Table 1 examples were spray dried using the nozzle illustrated in FIG. 2, whereas Table 2 examples were spray dried using the nozzle illustrated in FIG. 3. [0062]
    TABLE 1
    Batch No., Formula No.
    (Spray Dryer Atomization Particle Delivered
    Air Pressure/Outlet Air Quantitative Particle Moisture Size Dose
    Temperature) Composition Morphology Content (μm) Efficiency
    329-44 Budesonide 75 mg Slighdy 0.76% 2.11 42.0% (RSD = 25)
    B-13 Ethanol 25 ml wrinkled
    (20PSI/76° C.) Lactose 1425 mg spheres
    DI water 25 ml
    329-47 Budesonide 50 mg 1.09% 1.99 49.5% (RSD = 16)
    B-14 9:1 Acetone:water 1.25 ml
    (40PSI/77° C.) Lactose 950 mg
    DI water 98.75 ml
  • [0063]
    TABLE 2
    Batch No., Formula No., Particle Powder
    (Spray Drier Atomization Air Quantitative Particle Moisture Size MMAD
    Pressure/Outlet Air Temperature) Composition morphology Content (μm) (μm)
    446-63E-S Budesonide 187.5 mg Smooth 0.81% 1.34 μm 2.41
    13-38 Ethanol 62.5 ml irregular
    (40PSI/77° C.) Lactose 656.25 mg spheres
    NaCl 656.25 mg
    DI Water 12.5 ml
    529-44B-S Budesonide 165 mg 1.16% 1.33 μm 2.68
    B-48 Acetone 55 ml
    (30PSI/77 ° C.) Lactose 577.5 mg
    NaCl 577.5 mg
    DI Water 11 ml
  • Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims. [0064]

Claims (17)

    What is claimed is:
  1. 1. A method for preparing a dry powder composition, said method comprising:
    preparing an aqueous solution of a hydrophilic component;
    preparing an organic solution of a hydrophobic component in an organic solvent; and
    spray drying the aqueous solution and the organic solution simultaneously to form particles comprising a mixture of the hydrophilic and hydrophobic component.
  2. 2. A method as in claim 1, wherein the hydrophilic component has a concentration in the aqueous solution from 1 mg/ml to 100 mg/ml.
  3. 3. A method as in claim 2, wherein the hydrophobic component has a solubility of at least 0.01 mg/ml in the organic solvent.
  4. 4. A method as in claim 3, wherein the hydrophobic component has a concentration in the range from 0.01 mg/ml to 10 mg/ml in the organic solvent.
  5. 5. A method as in claim 1, wherein the organic solvent is selected from the group consisting of alcohols, ketones, ethers, aldehydes, hydrocarbons, and polar aprotic solvents and mixtures thereof.
  6. 6. A method as in claim 1, wherein the aqueous solution and the organic solution are sprayed through a common nozzle.
  7. 7. A method as in claim 6, wherein the nozzle is a coaxial spray nozzle.
  8. 8. A method as in claim 1, wherein the hydrophobic component comprises a hydrophobic drug.
  9. 9. A method as in claim 8, wherein the hydrophobic drug is a steroid selected from the group consisting of budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone, dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone.
  10. 10. A method as in claim 8, wherein the hydrophobic drug comprises a peptide, a retinoid, vitamin D, vitamin E, vitamin K, precursors and derivatives of these vitamins, a prostaglandin, a leukotriene, tetrahydrocannabinol, lung surfactant lipid, an antioxidant, a hydrophobic antibiotic, and a chemotherapeutic drug.
  11. 11. A method as in claim 1, wherein the hydrophilic component comprises an excipient for the hydrophobic drug.
  12. 12. A method as in claim 11, wherein the hydrophilic excipient comprises a material selected from the group consisting of lactose, sodium citrate, mannitol, povidone, pectin, citric acid, sodium chloride, and mixtures thereof.
  13. 13. A method as in claim 1, further comprising screening the spray dried particles to disrupt agglomerates.
  14. 14. A method as in claim 1, further comprising:
    measuring a single dosage of the dry powder; and
    sealing the single dosage in a package.
  15. 15. A dry powder composition prepared according to claim 1.
  16. 16. A unit dose of a dry powder composition comprising a unit dose receptacle having a therapeutically effective amount of a dry powder composition according to claim 1.
  17. 17. A method for aerosolizing a dry powder composition said method comprising:
    providing an amount of a dry powder composition according to claim 1; and
    dispersing the dry powder composition into a flowing gas stream.
US10403548 1996-12-31 2003-03-31 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients Abandoned US20030203036A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09528758 US6365190B1 (en) 1996-12-31 2000-03-17 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US10072407 US6572893B2 (en) 1996-12-31 2002-02-08 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US10403548 US20030203036A1 (en) 2000-03-17 2003-03-31 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10403548 US20030203036A1 (en) 2000-03-17 2003-03-31 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US12469634 US8802149B2 (en) 1996-12-31 2009-05-20 Systems and processes for spray drying hydrophobic and hydrophilic components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10072407 Continuation US6572893B2 (en) 1996-12-31 2002-02-08 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12469634 Continuation US8802149B2 (en) 1996-12-31 2009-05-20 Systems and processes for spray drying hydrophobic and hydrophilic components

Publications (1)

Publication Number Publication Date
US20030203036A1 true true US20030203036A1 (en) 2003-10-30

Family

ID=29253881

Family Applications (2)

Application Number Title Priority Date Filing Date
US10403548 Abandoned US20030203036A1 (en) 1996-12-31 2003-03-31 Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US12469634 Active 2019-07-23 US8802149B2 (en) 1996-12-31 2009-05-20 Systems and processes for spray drying hydrophobic and hydrophilic components

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12469634 Active 2019-07-23 US8802149B2 (en) 1996-12-31 2009-05-20 Systems and processes for spray drying hydrophobic and hydrophilic components

Country Status (1)

Country Link
US (2) US20030203036A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071871A1 (en) * 2000-08-01 2002-06-13 Herm Snyder Apparatus and process to produce particles having a narrow size distribution and particles made thereby
US20030044460A1 (en) * 2000-06-30 2003-03-06 Bennett David B. Spray drying process control of drying kinetics
US20030124193A1 (en) * 2001-11-01 2003-07-03 Inhale Therapeutic System, Inc. Spray drying methods and related compositions
US20040018696A1 (en) * 2002-07-26 2004-01-29 Karsten Wieczorek Method of filling an opening in a material layer with an insulating material
US20050276846A1 (en) * 1994-12-02 2005-12-15 Roser Bruce J Solid dose delivery vehicle and methods of making same
US20090087485A1 (en) * 2006-03-31 2009-04-02 Rubicon Research Private Limited Orally Disintegrating Tablets
US20100092564A1 (en) * 2006-12-21 2010-04-15 Jae Han Park Composition of and Method for Preparing Orally Disintegrating Tablets
US20100222220A1 (en) * 2000-11-09 2010-09-02 Hanna Mazen H Compositions of particulate coformulation
US7928089B2 (en) 2003-09-15 2011-04-19 Vectura Limited Mucoactive agents for treating a pulmonary disease
US7967221B2 (en) 2002-12-30 2011-06-28 Novartis Ag Prefilming atomizer
US8173168B2 (en) 1994-03-07 2012-05-08 Novartis Pharma Ag Dispersible macromolecule compositions and methods for their preparation and use
US8246934B2 (en) 1997-09-29 2012-08-21 Novartis Ag Respiratory dispersion for metered dose inhalers comprising perforated microstructures
US8273330B2 (en) 2002-04-25 2012-09-25 Nektar Therapeutics Particulate materials
US8293819B2 (en) 2006-11-24 2012-10-23 Canon Kabushiki Kaisha Method for producing particles and particles
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US8709484B2 (en) 2000-05-10 2014-04-29 Novartis Ag Phospholipid-based powders for drug delivery
US8715623B2 (en) 2001-12-19 2014-05-06 Novartis Ag Pulmonary delivery of aminoglycoside
US8802149B2 (en) 1996-12-31 2014-08-12 Novartis Pharma Ag Systems and processes for spray drying hydrophobic and hydrophilic components
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2411137B1 (en) 2009-03-27 2016-09-07 Bend Research, Inc. Spray-drying process
CN103228273B (en) 2010-09-29 2017-04-05 普马特里克斯营业公司 Monovalent metal cations dry inhalation powder
EP2611530A2 (en) 2010-09-03 2013-07-10 Bend Research, Inc. Spray-drying apparatus and methods of using the same
WO2012031129A3 (en) 2010-09-03 2012-04-26 Bend Research, Inc. Spray-drying apparatus and methods of using the same
US8815294B2 (en) 2010-09-03 2014-08-26 Bend Research, Inc. Pharmaceutical compositions of dextran polymer derivatives and a carrier material
US9248584B2 (en) 2010-09-24 2016-02-02 Bend Research, Inc. High-temperature spray drying process and apparatus
KR20150135328A (en) 2013-04-01 2015-12-02 풀매트릭스 인코퍼레이티드 Tiotropium dry powders
US9849115B2 (en) 2013-08-27 2017-12-26 Vasilios Voudouris Bendamustine pharmaceutical compositions

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294829A (en) * 1979-07-31 1981-10-13 Teijin Limited Powdery pharmaceutical composition and powdery preparation for application to the nasal mucosa, and method for administration thereof
US4486435A (en) * 1983-05-16 1984-12-04 Basf Wyandotte Corporation Spray-dried vitamin powders using hydrophobic silica
US4540602A (en) * 1979-04-13 1985-09-10 Freund Industry Company, Limited Process for the preparation of activated pharmaceutical compositions
US4590206A (en) * 1981-07-24 1986-05-20 Fisons Plc Inhalation pharmaceuticals
US4670419A (en) * 1982-07-28 1987-06-02 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its rectal use
US4721709A (en) * 1984-07-26 1988-01-26 Pyare Seth Novel pharmaceutical compositions containing hydrophobic practically water-insoluble drugs adsorbed on pharmaceutical excipients as carrier; process for their preparation and the use of said compositions
US4828844A (en) * 1982-08-05 1989-05-09 Roentgen Odenthal Renate Pulmonary surfactant
US4866051A (en) * 1981-10-19 1989-09-12 Glaxo Group Limited Micronised beclomethasone dipropionate monohydrate compositions and methods of use
US4898781A (en) * 1986-11-07 1990-02-06 Showa Denko K.K. Water-soluble microcapsules
US4999189A (en) * 1988-11-14 1991-03-12 Schering Corporation Sustained release oral suspensions
US5000888A (en) * 1990-05-23 1991-03-19 Basf Corporation Process for spray drying riboflavin to produce a granulate product having low binder content
US5011678A (en) * 1989-02-01 1991-04-30 California Biotechnology Inc. Composition and method for administration of pharmaceutically active substances
US5026550A (en) * 1987-09-16 1991-06-25 Nestec S.A. Process for the preparation of an antioxydant extract of spices
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
US5260306A (en) * 1981-07-24 1993-11-09 Fisons Plc Inhalation pharmaceuticals
US5348730A (en) * 1989-09-20 1994-09-20 Minnesota Mining And Manufacturing Company Method for preparing medicinal aerosol formulation containing coated medicament
US5356636A (en) * 1991-12-14 1994-10-18 Basf Aktiengesellschaft Stable vitamin and/or carotenoid products in powder form, and the preparation thereof
US5376386A (en) * 1990-01-24 1994-12-27 British Technology Group Limited Aerosol carriers
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
US5518187A (en) * 1992-11-25 1996-05-21 Nano Systems L.L.C. Method of grinding pharmaceutical substances
US5534270A (en) * 1995-02-09 1996-07-09 Nanosystems Llc Method of preparing stable drug nanoparticles
US5648096A (en) * 1992-10-26 1997-07-15 Schwarz Pharma Ag Process for the production of microcapsules
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
US5874064A (en) * 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5972388A (en) * 1992-06-12 1999-10-26 Teijin Limited Ultrafine particle power for inhalation and method for production thereof
US5976574A (en) * 1996-12-31 1999-11-02 Inhale Therapeutic Systems Processes for spray drying hydrophobic drugs in organic solvent suspensions
US6080721A (en) * 1992-09-29 2000-06-27 Inhale Therapeutic Systems Pulmonary delivery of active fragments of parathyroid hormone
US6258341B1 (en) * 1995-04-14 2001-07-10 Inhale Therapeutic Systems, Inc. Stable glassy state powder formulations
US6315983B1 (en) * 1996-01-24 2001-11-13 Byk Gulden Lomberg Chemische Fabrik Gmbh Process for the production of powdered pulmonary surfactant preparations
US6372258B1 (en) * 1992-07-08 2002-04-16 Inhale Therapeutic Systems Methods of spray-drying a drug and a hydrophobic amino acid

Family Cites Families (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE421211A (en) 1936-05-02
GB621785A (en) 1943-07-27 1949-04-20 Teco Sa Apparatus for the pulverisation of liquids in the form of aerosols
US2598525A (en) 1950-04-08 1952-05-27 E & J Mfg Co Automatic positive pressure breathing machine
DE1078283B (en) 1958-06-12 1960-03-24 Bayer Ag A process for coating or embedding pharmaceutical active ingredients
US3362405A (en) 1964-04-06 1968-01-09 Hamilton O. Hazel Method and apparatus for admixing gas with solid particles
DE1567348B2 (en) 1964-10-13 1976-10-14 A process for producing a starch hydrolyzate from dextroseproduktes
US3674901A (en) 1966-07-26 1972-07-04 Nat Patent Dev Corp Surgical sutures
US3425600A (en) 1966-08-11 1969-02-04 Abplanalp Robert H Pressurized powder dispensing device
DE2121066C3 (en) 1971-04-29 1974-05-30 Knapsack Ag, 5033 Huerth-Knapsack
US4052255A (en) 1971-10-07 1977-10-04 J. M. Huber Corporation Spray dryer discharge system
US3790079A (en) 1972-06-05 1974-02-05 Rnb Ass Inc Method and apparatus for generating monodisperse aerosol
US3825188A (en) 1973-03-23 1974-07-23 Par Wey Mfg Co Liquid spray head
US4069819A (en) 1973-04-13 1978-01-24 Societa Farmaceutici S.P.A. Inhalation device
GB1479283A (en) 1973-07-23 1977-07-13 Bespak Industries Ltd Inhaler for powdered medicament
FR2257351B1 (en) 1974-01-11 1978-03-24 Obert Jean Claude
US4005711A (en) 1975-01-13 1977-02-01 Syntex Puerto Rico, Inc. Inhalation device
US3964483A (en) 1975-01-13 1976-06-22 Syntex Puerto Rico, Inc. Inhalation device
FR2299011B1 (en) 1975-01-29 1979-02-23 Obert Jean Claude
US3956009A (en) 1975-05-14 1976-05-11 W. R. Grace & Co. Method for drying fructose solutions
US3991304A (en) 1975-05-19 1976-11-09 Hillsman Dean Respiratory biofeedback and performance evaluation system
US4153689A (en) 1975-06-13 1979-05-08 Takeda Chemical Industries, Ltd. Stable insulin preparation for nasal administration
GB1521000A (en) 1975-06-13 1978-08-09 Syntex Puerto Rico Inc Inhalation device
US4035317A (en) 1975-06-30 1977-07-12 American Cyanamid Company Rapidly dissolving, water-soluble polymers and spray drying method for their production
GB1527605A (en) 1975-08-20 1978-10-04 Takeda Chemical Industries Ltd Insulin preparation for intranasal administration
US3994421A (en) 1975-09-29 1976-11-30 American Cyanamid Company Unitary therapeutic aerosol dispenser
JPS559039B2 (en) 1975-10-31 1980-03-07
DK150716C (en) 1976-12-01 1987-10-26 Niro Atomizer As Procedures for treating a pulverulent or particulate product and apparatus for use in carrying out the method
FI54093C (en) 1976-12-20 1978-10-10 Outokumpu Oy Saett in that framstaella pulverformigt selen fraon raoselen
US4211769A (en) 1977-08-24 1980-07-08 Takeda Chemical Industries, Ltd. Preparations for vaginal administration
NL7712041A (en) 1977-11-01 1979-05-03 Handelmaatschappij Voorheen Be Suction equipment for powdery material - incorporates ejector type suction pump and cyclone type separator
DE2751354A1 (en) 1977-11-17 1979-05-23 Hoechst Ag A process for the preparation of mixtures of crystalline zeolite and sodium triphosphate
JPS5829150B2 (en) 1977-12-03 1983-06-21 Nakaya Sangyo Kk
US4268460A (en) 1977-12-12 1981-05-19 Warner-Lambert Company Nebulizer
EP0005585B1 (en) 1978-05-03 1981-08-12 FISONS plc Inhalation device
US4253468A (en) 1978-08-14 1981-03-03 Steven Lehmbeck Nebulizer attachment
US4192309A (en) 1978-09-05 1980-03-11 Syntex Puerto Rico, Inc. Inhalation device with capsule opener
US4227522A (en) 1978-09-05 1980-10-14 Syntex Puerto Rico, Inc. Inhalation device
US4503035B1 (en) 1978-11-24 1996-03-19 Hoffmann La Roche Protein purification process and product
EP0028162B1 (en) 1979-10-30 1985-01-23 Riker Laboratories, Inc. Breath actuated devices for administering powdered medicaments
US4294624A (en) 1980-03-14 1981-10-13 Veltman Preston Leonard Drying co-mingled carbohydrate solution and recycled product by dielectric heating
US4452239A (en) 1980-03-25 1984-06-05 Hilal Malem Medical nebulizing apparatus
US4484577A (en) 1981-07-23 1984-11-27 Key Pharmaceuticals, Inc. Drug delivery method and inhalation device therefor
GB2105189B (en) 1981-07-24 1985-03-20 Fisons Plc Inhalation drugs
US4823784B1 (en) 1982-04-30 1991-11-26 Cadema Medical Products Inc
US4659696A (en) 1982-04-30 1987-04-21 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its nasal or vaginal use
US4778054A (en) 1982-10-08 1988-10-18 Glaxo Group Limited Pack for administering medicaments to patients
JPS6237016B2 (en) 1983-03-09 1987-08-10 Teijin Ltd
CA1200416A (en) 1983-05-13 1986-02-11 Societe Des Produits Nestle S.A. Food process
US5038769A (en) 1983-06-29 1991-08-13 Krauser Robert S Method and apparatus for treating ailments
US4649911A (en) 1983-09-08 1987-03-17 Baylor College Of Medicine Small particle aerosol generator for treatment of respiratory disease including the lungs
DE3345722C2 (en) 1983-12-17 1991-03-21 Boehringer Ingelheim Kg, 6507 Ingelheim, De
GB8401770D0 (en) 1984-01-24 1984-02-29 Unilever Plc Detergent and bleaching compositions
US4534343A (en) 1984-01-27 1985-08-13 Trutek Research, Inc. Metered dose inhaler
US4624848A (en) 1984-05-10 1986-11-25 Ciba-Geigy Corporation Active agent containing hydrogel devices wherein the active agent concentration profile contains a sigmoidal concentration gradient for improved constant release, their manufacture and use
US4624251A (en) 1984-09-13 1986-11-25 Riker Laboratories, Inc. Apparatus for administering a nebulized substance
FR2575678B1 (en) 1985-01-04 1988-06-03 Saint Gobain Vitrage pneumatic ejector powder
US4942544A (en) 1985-02-19 1990-07-17 Kenneth B. McIntosh Medication clock
US4946828A (en) 1985-03-12 1990-08-07 Novo Nordisk A/S Novel insulin peptides
US4833125A (en) 1986-12-05 1989-05-23 The General Hospital Corporation Method of increasing bone mass
NL8601949A (en) 1985-07-30 1987-02-16 Glaxo Group Ltd Devices for administering medicaments to patients.
US4702799A (en) 1985-09-03 1987-10-27 Nestec S.A. Dryer and drying method
US5017372A (en) 1986-04-14 1991-05-21 Medicis Corporation Method of producing antibody-fortified dry whey
US4739754A (en) 1986-05-06 1988-04-26 Shaner William T Suction resistant inhalator
US4790305A (en) 1986-06-23 1988-12-13 The Johns Hopkins University Medication delivery system
US4926852B1 (en) 1986-06-23 1995-05-23 Univ Johns Hopkins Medication delivery system phase one
US5042975A (en) 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
JP2765700B2 (en) 1986-08-11 1998-06-18 イノベータ・バイオメド・リミテツド Pharmaceutical formulations containing microcapsules
GB8622565D0 (en) 1986-09-19 1986-10-22 Unilever Plc Detergent composition
US4871489A (en) 1986-10-07 1989-10-03 Corning Incorporated Spherical particles having narrow size distribution made by ultrasonic vibration
US4760093A (en) 1986-10-21 1988-07-26 American Home Products Corporation (Del.) Spray dried acetaminophen
DE3636669C2 (en) 1986-10-28 2001-08-16 Siemens Ag Arrangement for supplying aerosol to the airways and / or lungs of a patient
DE3787700T3 (en) 1986-10-29 1998-12-24 Kanegafuchi Chemical Ind Uniform polymer particles.
US5049388A (en) 1986-11-06 1991-09-17 Research Development Foundation Small particle aerosol liposome and liposome-drug combinations for medical use
DE3642106A1 (en) 1986-12-10 1988-06-16 Bayer Ag A process for producing polymer powders by spray-drying
US5114917A (en) 1986-12-24 1992-05-19 John Lezdey Treatment of inflammation using alpha 1-antichymotrypsin
US4784878A (en) 1987-04-06 1988-11-15 Damrow Company, Inc. Spray drying method and apparatus for concurrent particle coating
GB8710290D0 (en) 1987-04-30 1987-06-03 Unilever Plc Preparation of granular detergent composition
US4835187A (en) 1987-06-15 1989-05-30 American Home Products Corporation Spray dried ibuprofen
US5219575A (en) 1987-06-26 1993-06-15 Duphar International Research B.V. Compositions with controlled zero-order delivery rate and method of preparing these compositions
US5139016A (en) 1987-08-07 1992-08-18 Sorin Biomedica S.P.A. Process and device for aerosol generation for pulmonary ventilation scintigraphy
GB8723846D0 (en) 1987-10-10 1987-11-11 Danbiosyst Ltd Bioadhesive microsphere drug delivery system
WO1989004838A1 (en) 1987-11-25 1989-06-01 Immunex Corporation Interleukin-1 receptors
US4968607A (en) 1987-11-25 1990-11-06 Immunex Corporation Interleukin-1 receptors
US5081228A (en) 1988-02-25 1992-01-14 Immunex Corporation Interleukin-1 receptors
US4919853A (en) 1988-01-21 1990-04-24 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for spraying liquid materials
JP2524379B2 (en) 1988-01-29 1996-08-14 大川原化工機株式会社 Nozzle device and it incorporated by comprising spray - dryer - device
DE3806537C2 (en) 1988-03-01 1990-05-23 Herbert 7853 Steinen De Huettlin
EP0344375B1 (en) 1988-06-03 1993-12-08 NIRO-Sterner Inc. Spray drying method and apparatus for concurrent particle coating
US5066522A (en) 1988-07-14 1991-11-19 Union Carbide Chemicals And Plastics Technology Corporation Supercritical fluids as diluents in liquid spray applications of adhesives
EP0360340A1 (en) 1988-09-19 1990-03-28 Akzo N.V. Composition for nasal administration containing a peptide
EP0363060B1 (en) 1988-10-04 1994-04-27 The Johns Hopkins University Aerosol inhaler
US4984158A (en) 1988-10-14 1991-01-08 Hillsman Dean Metered dose inhaler biofeedback training and evaluation system
GB8903593D0 (en) 1989-02-16 1989-04-05 Pafra Ltd Storage of materials
NL8900598A (en) 1989-03-13 1990-10-01 Stork Friesland Bv Spray-drying device; process for the preparation of a spray-dried product with a desirable bulk density.
US5009367A (en) 1989-03-22 1991-04-23 Union Carbide Chemicals And Plastics Technology Corporation Methods and apparatus for obtaining wider sprays when spraying liquids by airless techniques
US5206306A (en) 1989-03-31 1993-04-27 The B. F. Goodrich Company Process for making a polymer for an optical substrate by hydrogenating a cycloolefin copolymer
US5096893A (en) * 1989-04-03 1992-03-17 The United States Of America As Represented By The Department Of Health And Human Services Regioselective substitutions in cyclodextrins
FR2646084B1 (en) * 1989-04-20 1994-09-16 Fbfc International Sa bone cavities filling material bioreactive
US5232707A (en) 1989-07-10 1993-08-03 Syntex (U.S.A.) Inc. Solvent extraction process
US5238920A (en) 1989-08-22 1993-08-24 Abbott Laboratories Pulmonary surfactant protein fragments
US5178878A (en) 1989-10-02 1993-01-12 Cima Labs, Inc. Effervescent dosage form with microparticles
US5106659A (en) 1989-10-04 1992-04-21 Nordson Corporation Method and apparatus for spraying a liquid coating containing supercritical fluid or liquified gas
US5707644A (en) 1989-11-04 1998-01-13 Danbiosyst Uk Limited Small particle compositions for intranasal drug delivery
US5542935A (en) 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
GB9001635D0 (en) 1990-01-24 1990-03-21 Ganderton David Aerosol carriers
US5113855A (en) 1990-02-14 1992-05-19 Newhouse Michael T Powder inhaler
DE4004904A1 (en) 1990-02-16 1990-09-13 Gerhard Brendel Drum applicator
JP2862311B2 (en) * 1990-02-23 1999-03-03 キヤノン株式会社 Surface position detecting system
US5076097A (en) 1990-06-28 1991-12-31 Tsi Incorporated Method and apparatus for determining concentration of macromolecules and colloids in a liquid sample
US5037912A (en) 1990-07-26 1991-08-06 The Goodyear Tire & Rubber Company Polymerization of 1,3-butadiene to trans-1,4-polybutadiene with organolithium and alkali metal alkoxide
GB9017155D0 (en) 1990-08-03 1990-09-19 Ici Plc Spray drying
US5235969A (en) 1990-08-20 1993-08-17 Intersurgical (Guernsey) Limited Nebulizer having combined structure for removing particles over two microns
US5230884A (en) 1990-09-11 1993-07-27 University Of Wales College Of Cardiff Aerosol formulations including proteins and peptides solubilized in reverse micelles and process for making the aerosol formulations
US5200399A (en) 1990-09-14 1993-04-06 Boyce Thompson Institute For Plant Research, Inc. Method of protecting biological materials from destructive reactions in the dry state
US5120188A (en) 1990-11-29 1992-06-09 Kenhar Products Inc. Fork stabilizing device
US5099833A (en) 1991-02-19 1992-03-31 Baxter International Inc. High efficiency nebulizer having a flexible reservoir
US5186164A (en) 1991-03-15 1993-02-16 Puthalath Raghuprasad Mist inhaler
EP0504459B1 (en) 1991-03-21 1996-06-05 PAUL RITZAU PARI-WERK GmbH Nebulizer, in particular for use in inhalation therapy apparatus
GB9106648D0 (en) 1991-03-28 1991-05-15 Rhone Poulenc Rorer Ltd New inhaler
GB9107628D0 (en) 1991-04-10 1991-05-29 Moonbrook Limited Preparation of diagnostic agents
US5993805A (en) 1991-04-10 1999-11-30 Quadrant Healthcare (Uk) Limited Spray-dried microparticles and their use as therapeutic vehicles
RU2093197C1 (en) 1991-04-15 1997-10-20 Лейрас Ой Device for dosing powder medicine substances
DE4117751A1 (en) 1991-05-30 1992-12-03 Bayer Ag A process for the isolation of polycarbonates
DK0592540T3 (en) 1991-07-02 2000-06-26 Inhale Inc Method and device for delivering aerosolized medications
US5161524A (en) 1991-08-02 1992-11-10 Glaxo Inc. Dosage inhalator with air flow velocity regulating means
US5269980A (en) 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
US6123924A (en) 1991-09-25 2000-09-26 Fisons Plc Pressurized aerosol inhalation compositions
KR100259989B1 (en) 1991-10-01 2000-08-01 모리다 가쓰라 Prolonged release microparticle preparation and production of the same
US5733731A (en) 1991-10-16 1998-03-31 Affymax Technologies N.V. Peptide library and screening method
US5206219A (en) 1991-11-25 1993-04-27 Applied Analytical Industries, Inc. Oral compositions of proteinaceous medicaments
DK1086688T3 (en) 1991-12-18 2004-08-16 Minnesota Mining & Mfg Aerosol formulations for suspensions
US5320094A (en) 1992-01-10 1994-06-14 The Johns Hopkins University Method of administering insulin
CA2127877A1 (en) 1992-01-21 1993-07-22 Robert M. Platz Improved process for preparing micronized polypeptide drugs
US5196575A (en) 1992-02-19 1993-03-23 Hoechst Celanese Corp. Supercritical separation of isomers of functional organic compounds at moderate conditions
US5639441A (en) 1992-03-06 1997-06-17 Board Of Regents Of University Of Colorado Methods for fine particle formation
US5376359A (en) 1992-07-07 1994-12-27 Glaxo, Inc. Method of stabilizing aerosol formulations
US6051256A (en) 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
GB9221329D0 (en) 1992-10-10 1992-11-25 Delta Biotechnology Ltd Preparation of further diagnostic agents
GB9226474D0 (en) 1992-12-18 1993-02-10 Ici Plc Production of particulate materials
US5364838A (en) 1993-01-29 1994-11-15 Miris Medical Corporation Method of administration of insulin
US5354934A (en) 1993-02-04 1994-10-11 Amgen Inc. Pulmonary administration of erythropoietin
US5916596A (en) 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5506203C1 (en) 1993-06-24 2001-02-06 Astra Ab Systemic administration of a therapeutic preparation
DE4329204A1 (en) 1993-08-31 1995-03-02 Degussa Dreistoffzerstäuberdüse and their use
EP0655237A1 (en) 1993-11-27 1995-05-31 Hoechst Aktiengesellschaft Medicinal aerosol formulation
US5595761A (en) 1994-01-27 1997-01-21 The Board Of Regents Of The University Of Oklahoma Particulate support matrix for making a rapidly dissolving tablet
US5635210A (en) 1994-02-03 1997-06-03 The Board Of Regents Of The University Of Oklahoma Method of making a rapidly dissolving tablet
DE69502179D1 (en) 1994-02-09 1998-05-28 Kinerton Ltd A process for drying a material from a solution
US5609919A (en) 1994-04-21 1997-03-11 Altamat Inc. Method for producing droplets
US5580856A (en) 1994-07-15 1996-12-03 Prestrelski; Steven J. Formulation of a reconstituted protein, and method and kit for the production thereof
US5785049A (en) 1994-09-21 1998-07-28 Inhale Therapeutic Systems Method and apparatus for dispersion of dry powder medicaments
US6117455A (en) 1994-09-30 2000-09-12 Takeda Chemical Industries, Ltd. Sustained-release microcapsule of amorphous water-soluble pharmaceutical active agent
US5716558A (en) 1994-11-14 1998-02-10 Union Carbide Chemicals & Plastics Technology Corporation Method for producing coating powders catalysts and drier water-borne coatings by spraying compositions with compressed fluids
GB9423419D0 (en) 1994-11-19 1995-01-11 Andaris Ltd Preparation of hollow microcapsules
US6290991B1 (en) 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
US5639475A (en) 1995-02-03 1997-06-17 Eurand America, Incorporated Effervescent microcapsules
EP0814861B1 (en) 1995-03-14 2002-06-05 Siemens Aktiengesellschaft Ultrasonic atomizer device with removable precision dosing unit
US5922253A (en) 1995-05-18 1999-07-13 Alkermes Controlled Therapeutics, Inc. Production scale method of forming microparticles
US5607697A (en) 1995-06-07 1997-03-04 Cima Labs, Incorporated Taste masking microparticles for oral dosage forms
US5687905A (en) 1995-09-05 1997-11-18 Tsai; Shirley Cheng Ultrasound-modulated two-fluid atomization
DE19536902A1 (en) 1995-10-04 1997-04-10 Boehringer Ingelheim Int Apparatus for generating high pressure in a fluid in miniature version
US5807578A (en) 1995-11-22 1998-09-15 Lab Pharmaceutical Research International Inc. Fast-melt tablet and method of making same
DE19615418A1 (en) 1996-04-22 1997-10-23 Merck Patent Gmbh Polyol composition
DE19617487A1 (en) 1996-05-02 1997-11-06 Merck Patent Gmbh Improve the taste of active pharmaceutical ingredients
ES2140998B1 (en) 1996-05-13 2000-10-16 Univ Sevilla Liquid atomization process.
US6116516A (en) 1996-05-13 2000-09-12 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
US6503480B1 (en) 1997-05-23 2003-01-07 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
JP3585654B2 (en) 1996-07-11 2004-11-04 株式会社パウダリングジャパン Two-stage drying spray dryer apparatus
US6017310A (en) 1996-09-07 2000-01-25 Andaris Limited Use of hollow microcapsules
US5874029A (en) 1996-10-09 1999-02-23 The University Of Kansas Methods for particle micronization and nanonization by recrystallization from organic solutions sprayed into a compressed antisolvent
US20030203036A1 (en) 2000-03-17 2003-10-30 Gordon Marc S. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US6383810B2 (en) 1997-02-14 2002-05-07 Invitrogen Corporation Dry powder cells and cell culture reagents and methods of production thereof
US6051257A (en) 1997-02-24 2000-04-18 Superior Micropowders, Llc Powder batch of pharmaceutically-active particles and methods for making same
US6034780A (en) * 1997-03-28 2000-03-07 Nikon Corporation Surface position detection apparatus and method
US6565885B1 (en) 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
GB9727102D0 (en) 1997-12-22 1998-02-25 Andaris Ltd Microparticles and their therapeutic use
US6451349B1 (en) 1998-08-19 2002-09-17 Quadrant Healthcare (Uk) Limited Spray-drying process for the preparation of microparticles
US6000241A (en) 1998-08-26 1999-12-14 Particle Technology, Inc. Process for making barium containing silicate glass powders
US6387410B1 (en) 1998-09-10 2002-05-14 Norton Healthcare Ltd Anti-inflammatory pharmaceutical formulations
GB9825883D0 (en) 1998-11-27 1999-01-20 Aea Technology Plc Formation of monodisperse particles
US6560897B2 (en) 1999-05-03 2003-05-13 Acusphere, Inc. Spray drying apparatus and methods of use
US6223455B1 (en) 1999-05-03 2001-05-01 Acusphere, Inc. Spray drying apparatus and methods of use
FR2795962B1 (en) 1999-07-08 2003-05-09 Prographarm Laboratoires Process for manufacturing granules of asphalt mask taste and immediate release of the active ingredient
US20020081266A1 (en) 1999-08-20 2002-06-27 Norton Healthcare Ltd. Spray dried powders for pulmonary or nasal administration
NL1013893C2 (en) 1999-12-20 2001-06-21 Stork Friesland Bv Squirt device for a liquid product, one of which provided with spray drying and conditioning device as well as a method for conditioning a liquid product.
US6316029B1 (en) 2000-05-18 2001-11-13 Flak Pharma International, Ltd. Rapidly disintegrating solid oral dosage form
US6656492B2 (en) 2000-06-30 2003-12-02 Yamanouchi Pharmaceutical Co., Ltd. Quick disintegrating tablet in buccal cavity and manufacturing method thereof
WO2002009669A3 (en) 2000-08-01 2002-05-30 Inhale Therapeutic Syst Apparatus and process to produce particles having a narrow size distribution and particles made thereby
US6455028B1 (en) 2001-04-23 2002-09-24 Pharmascience Ipratropium formulation for pulmonary inhalation
EP1392262A1 (en) 2001-05-24 2004-03-03 Alexza Molecular Delivery Corporation Delivery of drug esters through an inhalation route
EP1446104B2 (en) 2001-11-01 2011-08-03 Novartis AG Spray drying methods
US8502978B2 (en) * 2008-09-09 2013-08-06 Nikon Corporation Surface position detecting apparatus, exposure apparatus, surface position detecting method, and device manufacturing method
JP5732215B2 (en) 2010-09-01 2015-06-10 石川島建材工業株式会社 segment

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540602A (en) * 1979-04-13 1985-09-10 Freund Industry Company, Limited Process for the preparation of activated pharmaceutical compositions
US4294829A (en) * 1979-07-31 1981-10-13 Teijin Limited Powdery pharmaceutical composition and powdery preparation for application to the nasal mucosa, and method for administration thereof
US5260306A (en) * 1981-07-24 1993-11-09 Fisons Plc Inhalation pharmaceuticals
US4590206A (en) * 1981-07-24 1986-05-20 Fisons Plc Inhalation pharmaceuticals
US4866051A (en) * 1981-10-19 1989-09-12 Glaxo Group Limited Micronised beclomethasone dipropionate monohydrate compositions and methods of use
US4670419A (en) * 1982-07-28 1987-06-02 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its rectal use
US4828844A (en) * 1982-08-05 1989-05-09 Roentgen Odenthal Renate Pulmonary surfactant
US4486435A (en) * 1983-05-16 1984-12-04 Basf Wyandotte Corporation Spray-dried vitamin powders using hydrophobic silica
US4721709A (en) * 1984-07-26 1988-01-26 Pyare Seth Novel pharmaceutical compositions containing hydrophobic practically water-insoluble drugs adsorbed on pharmaceutical excipients as carrier; process for their preparation and the use of said compositions
US4898781A (en) * 1986-11-07 1990-02-06 Showa Denko K.K. Water-soluble microcapsules
US5026550A (en) * 1987-09-16 1991-06-25 Nestec S.A. Process for the preparation of an antioxydant extract of spices
US4999189A (en) * 1988-11-14 1991-03-12 Schering Corporation Sustained release oral suspensions
US5011678A (en) * 1989-02-01 1991-04-30 California Biotechnology Inc. Composition and method for administration of pharmaceutically active substances
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
US5348730A (en) * 1989-09-20 1994-09-20 Minnesota Mining And Manufacturing Company Method for preparing medicinal aerosol formulation containing coated medicament
US5376386A (en) * 1990-01-24 1994-12-27 British Technology Group Limited Aerosol carriers
US5000888A (en) * 1990-05-23 1991-03-19 Basf Corporation Process for spray drying riboflavin to produce a granulate product having low binder content
US5356636A (en) * 1991-12-14 1994-10-18 Basf Aktiengesellschaft Stable vitamin and/or carotenoid products in powder form, and the preparation thereof
US5972388A (en) * 1992-06-12 1999-10-26 Teijin Limited Ultrafine particle power for inhalation and method for production thereof
US6372258B1 (en) * 1992-07-08 2002-04-16 Inhale Therapeutic Systems Methods of spray-drying a drug and a hydrophobic amino acid
US6582728B1 (en) * 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US6080721A (en) * 1992-09-29 2000-06-27 Inhale Therapeutic Systems Pulmonary delivery of active fragments of parathyroid hormone
US5648096A (en) * 1992-10-26 1997-07-15 Schwarz Pharma Ag Process for the production of microcapsules
US5518187A (en) * 1992-11-25 1996-05-21 Nano Systems L.L.C. Method of grinding pharmaceutical substances
US5534270A (en) * 1995-02-09 1996-07-09 Nanosystems Llc Method of preparing stable drug nanoparticles
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
US6258341B1 (en) * 1995-04-14 2001-07-10 Inhale Therapeutic Systems, Inc. Stable glassy state powder formulations
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
US6315983B1 (en) * 1996-01-24 2001-11-13 Byk Gulden Lomberg Chemische Fabrik Gmbh Process for the production of powdered pulmonary surfactant preparations
US5874064A (en) * 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US6001336A (en) * 1996-12-31 1999-12-14 Inhale Therapeutic Systems Processes for spray drying aqueous suspensions of hydrophobic drugs and compositions thereof
US6365190B1 (en) * 1996-12-31 2002-04-02 Inhale Therapeutic Systems, Inc. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US5985248A (en) * 1996-12-31 1999-11-16 Inhale Therapeutic Systems Processes for spray drying solutions of hydrophobic drugs and compositions thereof
US6572893B2 (en) * 1996-12-31 2003-06-03 Inhale Therapeutic Systems, Inc. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US5976574A (en) * 1996-12-31 1999-11-02 Inhale Therapeutic Systems Processes for spray drying hydrophobic drugs in organic solvent suspensions

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173168B2 (en) 1994-03-07 2012-05-08 Novartis Pharma Ag Dispersible macromolecule compositions and methods for their preparation and use
US7744925B2 (en) 1994-12-02 2010-06-29 Quadrant Drug Delivery Limited Solid dose delivery vehicle and methods of making same
US20050276846A1 (en) * 1994-12-02 2005-12-15 Roser Bruce J Solid dose delivery vehicle and methods of making same
US7785631B2 (en) 1994-12-02 2010-08-31 Quadrant Drug Delivery Limited Solid dose delivery vehicle and methods of making same
US7780991B2 (en) 1994-12-02 2010-08-24 Quadrant Drug Delivery Limited Solid dose delivery vehicle and methods of making same
US8802149B2 (en) 1996-12-31 2014-08-12 Novartis Pharma Ag Systems and processes for spray drying hydrophobic and hydrophilic components
US8246934B2 (en) 1997-09-29 2012-08-21 Novartis Ag Respiratory dispersion for metered dose inhalers comprising perforated microstructures
US9554993B2 (en) 1997-09-29 2017-01-31 Novartis Ag Pulmonary delivery particles comprising an active agent
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US8709484B2 (en) 2000-05-10 2014-04-29 Novartis Ag Phospholipid-based powders for drug delivery
US9439862B2 (en) 2000-05-10 2016-09-13 Novartis Ag Phospholipid-based powders for drug delivery
US8337895B2 (en) 2000-06-30 2012-12-25 Novartis Ag Spray drying process control of drying kinetics
US7575761B2 (en) 2000-06-30 2009-08-18 Novartis Pharma Ag Spray drying process control of drying kinetics
US20030044460A1 (en) * 2000-06-30 2003-03-06 Bennett David B. Spray drying process control of drying kinetics
US20020071871A1 (en) * 2000-08-01 2002-06-13 Herm Snyder Apparatus and process to produce particles having a narrow size distribution and particles made thereby
US9120031B2 (en) 2000-11-09 2015-09-01 Nektar Therapeutics Compositions of particulate coformulation
US20100222220A1 (en) * 2000-11-09 2010-09-02 Hanna Mazen H Compositions of particulate coformulation
US20030124193A1 (en) * 2001-11-01 2003-07-03 Inhale Therapeutic System, Inc. Spray drying methods and related compositions
US8524279B2 (en) 2001-11-01 2013-09-03 Novartis Ag Spray drying methods and related compositions
US8936813B2 (en) 2001-11-01 2015-01-20 Novartis Ag Spray drying methods and related compositions
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside
US8715623B2 (en) 2001-12-19 2014-05-06 Novartis Ag Pulmonary delivery of aminoglycoside
US8273330B2 (en) 2002-04-25 2012-09-25 Nektar Therapeutics Particulate materials
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US20040018696A1 (en) * 2002-07-26 2004-01-29 Karsten Wieczorek Method of filling an opening in a material layer with an insulating material
US8616464B2 (en) 2002-12-30 2013-12-31 Novartis Ag Prefilming atomizer
US7967221B2 (en) 2002-12-30 2011-06-28 Novartis Ag Prefilming atomizer
US7928089B2 (en) 2003-09-15 2011-04-19 Vectura Limited Mucoactive agents for treating a pulmonary disease
US20090087485A1 (en) * 2006-03-31 2009-04-02 Rubicon Research Private Limited Orally Disintegrating Tablets
US8545890B2 (en) 2006-03-31 2013-10-01 Rubicon Research Private Limited Orally disintegrating tablets
US8293819B2 (en) 2006-11-24 2012-10-23 Canon Kabushiki Kaisha Method for producing particles and particles
US20100092564A1 (en) * 2006-12-21 2010-04-15 Jae Han Park Composition of and Method for Preparing Orally Disintegrating Tablets
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition

Also Published As

Publication number Publication date Type
US8802149B2 (en) 2014-08-12 grant
US20090285905A1 (en) 2009-11-19 application

Similar Documents

Publication Publication Date Title
US6309671B1 (en) Stable glassy state powder formulations
US6103270A (en) Methods and system for processing dispersible fine powders
US5654007A (en) Methods and system for processing dispersible fine powders
US7306787B2 (en) Engineered particles and methods of use
US6962006B2 (en) Methods and apparatus for making particles using spray dryer and in-line jet mill
Elversson et al. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying
US7172768B2 (en) Storage stable powder compositions of interleukin-4 receptor
US20040105821A1 (en) Sustained release pharmaceutical formulation for inhalation
US6673335B1 (en) Compositions and methods for the pulmonary delivery of aerosolized medicaments
Pilcer et al. Formulation strategy and use of excipients in pulmonary drug delivery
US6921527B2 (en) Composition for pulmonary administration comprising a drug and a hydrophobic amino acid
Johnson Preparation of peptide and protein powders for inhalation
US20020071871A1 (en) Apparatus and process to produce particles having a narrow size distribution and particles made thereby
EP0611567B1 (en) Ultrafine powder for inhalation and production thereof
EP2050437A1 (en) Improved pharmaceutical dry powder compositions for inhalation.
US6509006B1 (en) Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030129139A1 (en) Particulate compositions for pulmonary delivery
US6811767B1 (en) Liquid droplet aerosols of nanoparticulate drugs
Yang et al. High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers
US20040176391A1 (en) Aerosolizable pharmaceutical formulation for fungal infection therapy
US6136346A (en) Powdered pharmaceutical formulations having improved dispersibility
US20020177562A1 (en) Pulmonary delivery of polyene antifungal agents
US6187765B1 (en) Mometasone furoate suspensions for nebulization
US20060292081A1 (en) Methods for preparing pharmaceutical compositions
US20030191068A1 (en) Salts of the CGRP antagonist BIBN4096 and inhalable powdered medicaments containing them

Legal Events

Date Code Title Description
AS Assignment

Owner name: INHALE THERAPEUTIC SYSTEMS, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:INHALE THERAPEUTIC SYSTEMS;REEL/FRAME:021005/0151

Effective date: 19980604

AS Assignment

Owner name: NOVARTIS PHARMA AG, SWITZERLAND

Free format text: ASSIGNMENT OF PATENT RIGHTS;ASSIGNOR:NEKTAR THERAPEUTICS;REEL/FRAME:022071/0001

Effective date: 20081231

Owner name: NOVARTIS PHARMA AG,SWITZERLAND

Free format text: ASSIGNMENT OF PATENT RIGHTS;ASSIGNOR:NEKTAR THERAPEUTICS;REEL/FRAME:022071/0001

Effective date: 20081231