RU2185675C2 - Конденсатор с двойным электрическим слоем - Google Patents
Конденсатор с двойным электрическим слоем Download PDFInfo
- Publication number
- RU2185675C2 RU2185675C2 RU2000119106/09A RU2000119106A RU2185675C2 RU 2185675 C2 RU2185675 C2 RU 2185675C2 RU 2000119106/09 A RU2000119106/09 A RU 2000119106/09A RU 2000119106 A RU2000119106 A RU 2000119106A RU 2185675 C2 RU2185675 C2 RU 2185675C2
- Authority
- RU
- Russia
- Prior art keywords
- electrodes
- capacitor
- separator
- electrolyte
- pores
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 61
- 239000011148 porous material Substances 0.000 claims abstract description 38
- 239000003792 electrolyte Substances 0.000 claims abstract description 29
- -1 for example Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 239000005871 repellent Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 230000002940 repellent Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000004870 electrical engineering Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 239000011244 liquid electrolyte Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/72—Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Изобретение относится к электротехнике, в частности к конденсаторостроению, и может быть использовано при производстве конденсаторов высокой емкости, согласно изобретению конденсатор с двойным электрическим слоем содержит два электрода, из которых один или оба являются поляризуемыми, электролит и сепаратор. Степень заполнения электролитом порового пространства сепаратора и обоих электродов находится в интервале от 90 до 40% от общего объема пор. Техническим результатом изобретения является создание герметичного конденсатора, не нуждающегося в обслуживании. 5 з.п.ф-лы, 3 ил.
Description
Область техники
Изобретение относится к электротехнике, в частности, к конденсаторостроению, и может быть использовано для изготовления конденсаторов с высокой емкостью, использующих энергию двойного электрического слоя (ДЭС). Конденсаторы с ДЭС нашли применение в качестве резервных источников питания в системах, требующих бесперебойного снабжения электроэнергией, таких как вычислительная техника, аппараты связи, станки с числовым программным управлением, в производстве с непрерывным циклом; для электростартерного запуска двигателей внутреннего сгорания, для питания электродвигателей инвалидных колясок, тележек для гольфа и т.д.
Изобретение относится к электротехнике, в частности, к конденсаторостроению, и может быть использовано для изготовления конденсаторов с высокой емкостью, использующих энергию двойного электрического слоя (ДЭС). Конденсаторы с ДЭС нашли применение в качестве резервных источников питания в системах, требующих бесперебойного снабжения электроэнергией, таких как вычислительная техника, аппараты связи, станки с числовым программным управлением, в производстве с непрерывным циклом; для электростартерного запуска двигателей внутреннего сгорания, для питания электродвигателей инвалидных колясок, тележек для гольфа и т.д.
Уровень техники
Известны накопители электрической энергии в виде конденсаторов с двойным электрическим слоем (ДЭС), например, описанные в патентах США 4313084 (1982) и 4562511 (1985). Эти конденсаторы состоят из двух пористых поляризуемых электродов, между которыми расположен пористый сепаратор, из диэлектрического материала, а также из токоотводов. Жидкий раствор электролита, в качестве которого используют неводные и водные электролиты, находится в порах электродов, сепаратора и в некотором свободном объеме внутри корпуса конденсатора. Электрический заряд накапливается на межфазной поверхности в порах между материалом электрода и электролитом. В качестве материалов для изготовления поляризуемых электродов обычно используют различные пористые углеродные материалы. Для увеличения емкости конденсатора с двойным электрическим слоем эти углеродные материалы подвергают предварительной активации с целью увеличения их удельной поверхности вплоть до 300-3000 м2/г.
Известны накопители электрической энергии в виде конденсаторов с двойным электрическим слоем (ДЭС), например, описанные в патентах США 4313084 (1982) и 4562511 (1985). Эти конденсаторы состоят из двух пористых поляризуемых электродов, между которыми расположен пористый сепаратор, из диэлектрического материала, а также из токоотводов. Жидкий раствор электролита, в качестве которого используют неводные и водные электролиты, находится в порах электродов, сепаратора и в некотором свободном объеме внутри корпуса конденсатора. Электрический заряд накапливается на межфазной поверхности в порах между материалом электрода и электролитом. В качестве материалов для изготовления поляризуемых электродов обычно используют различные пористые углеродные материалы. Для увеличения емкости конденсатора с двойным электрическим слоем эти углеродные материалы подвергают предварительной активации с целью увеличения их удельной поверхности вплоть до 300-3000 м2/г.
Конденсаторы с ДЭС обладают намного большей емкостью по сравнению с обычными пленочными и электролитическими конденсаторами - до нескольких десятков фарад на грамм активных электродных материалов. Однако недостатком этих конденсаторов является довольно низкая удельная энергия - не более 3 Вт•ч/л.
Другим недостатком конденсаторов с ДЭС является выделение на электродах газов при перезаряде, например, кислорода на положительном электроде, или/и водорода на отрицательном электроде. Это обусловлено достижением при перезаряде потенциалов выделения этих газов на соответствующих электродах. В результате происходит повышение давления газов внутри корпуса конденсатора, которое может привести к разгерметизации и даже к его взрыву, если в нем не предусмотрен специальный клапан для стравливания давления. Однако надежность таких клапанов часто недостаточна для предотвращения разгерметизации или взрыва. Они могут, например, забиваться какой-либо грязью и т.п. По всем этим причинам конденсаторы с ДЭС имеют принципиальный недостаток - возможность их разгерметизации и даже взрыва и необходимость их специального обслуживания. Для более надежного предотвращения разгерметизации при заряде ради перестраховки существенно уменьшают конечное напряжение заряда, а значит, и начальное напряжение разряда, чтобы не доходить до опасного рубежа. Это, в свою очередь, приводит, к значительному уменьшению удельной энергии конденсатора с ДЭС, которое, как известно, пропорционально квадрату разности между начальным и конечным разрядными напряжениями.
Известен конденсатор с ДЭС [WO 97/07518 от 27.02.97], имеющий поляризуемый электрод, выполненный из волокнистого углеродного материала и неполяризуемый, выполненный из оксида никеля. В качестве электролита используется водный раствор карбоната или гидроксида щелочного металла. Такой конденсатор дает значительно большее по сравнению с двойнослойным конденсатором с двумя поляризуемыми электродами значение удельной энергии (максимально - 45 Дж/см3 или 12,5 Вт•ч/л) и максимальное напряжение 1,4 В.
Однако у данного конденсатора сохраняются существенные недостатки - нерешенность проблемы обеспечения полной герметичности и необходимость специального обслуживания. Результатом отсутствия полной герметичности являются также заниженные значения максимального зарядного напряжения и удельной энергии, а также недостаточно высокие зарядные токи, а значит, и слишком большие времена заряда.
Раскрытие сущности изобретения
Задачей изобретения является создание конденсатора с полной герметичностью и не нуждающегося в обслуживании. Другой задачей решаемой изобретением является повышение удельной энергии и уменьшение времени заряда.
Задачей изобретения является создание конденсатора с полной герметичностью и не нуждающегося в обслуживании. Другой задачей решаемой изобретением является повышение удельной энергии и уменьшение времени заряда.
Решение этих задач достигается описываемым далее изобретением, сущность которого заключается в том, что в конденсаторе с двойным электрическим слоем, содержащем два электрода, из которых один или оба являются поляризуемыми, жидкий электролит и сепаратор, степень заполнения электролитом порового пространства сепаратора и обоих электродов находится в интервале от 90 до 40% от общего объема пор.
Сущность данного технического решения заключается в том, что газообразный кислород, выделяющийся на положительном электроде конденсатора с ДЭС в конце заряда и при перезаряде, в принципе может полностью поглощаться на отрицательном электроде в процессе реакции его ионизации (электровосстановления) вследствие очень большой поляризации этой реакции (Eп≥1 В) и вследствие того, что активированный углерод является очень хорошим катализатором для данного процесса, для чего он применяется в топливных элементах [Багоцкий B.C., Скунден А.М. Химические источники тока. М.: Энергия, 1981, с. 80, 116]. С другой стороны, газообразный водород, который может выделяться на отрицательном электроде при перезаряде конденсатора с ДЭС, в принципе также может полностью поглощаться на положительном электроде в процессе реакции его ионизации (электроокисления) вследствие очень большой поляризации этой реакции (Еп≥1 В). Однако в обычных конденсаторах с ДЭС поры сепаратора и обоих электродов практически полностью заполнены электролитом и газовая пористость в этих пористых телах практически отсутствует. В этой ситуации имеют место очень большие диффузионные затруднения по переносу выделяющихся при заряде и перезаряде газов с одного электрода на другой. Дело в том, что механизм такого переноса состоит в растворении этих газов в жидком электролите, содержащемся в порах электрода, в котором он генерируется, в диффузии его в растворенном состоянии по затопленным порам этого электрода, сепаратора и противоположного электрода, и только после этого происходит реакция его ионизации. Вследствие очень малой растворимости водорода и кислорода в жидких электролитах в обычных условиях и вследствие очень малых значений соответствующих коэффициентов диффузии результирующая скорость ионизации этих газов на противоэлектродах при практически полной заполненности порового пространства сепаратора и обоих электродов очень мала. Эта скорость практически также мала даже в случае, если один или оба электрода будут иметь некоторую газовую пористость, а поры сепаратора будут практически полностью затоплены. Очень медленная скорость переноса газов между электродами намного меньше скорости их генерации при перезаряде, в результате чего при этом происходит рост давления внутри конденсатора, который может привести к его разгерметизации и даже к взрыву.
Идея, положенная в основу данного изобретения, заключается в создании в конденсаторе с ДЭС единой системы газовых пор во всей электрохимической группе конденсатора (ЭХГр), включающей в себя пористые электроды и пористый сепаратор. По этой системе газовых пор выделяющиеся при заряде и перезаряде газообразные кислород и водород очень быстро транспортируются к противоэлектродам, на которых и происходит их ионизация с образованием воды или соответствующих ионов (Н+, ОН- и др.). Дело в том, что коэффициенты диффузии газов в газовой фазе на 4 порядка выше, чем в жидкой фазе. Необходимая система газовых пор обеспечивается неполной заполненностью порового пространства обоих пористых электродов и пористого сепаратора со степенью заполненности их пор в интервале от 90 до 40% от общего объема пор. Следовательно, доля незаполненного объема газовых пор (газовая пористость) в каждом пористом теле ЭХГ, находится в интервале от 10 до 60%. В результате этого и образуется необходимая система газовых пор. Дальнейшее уменьшение степени заполненности электролитом ЭХГ нежелательно, так как оно может привести к заметному увеличению внутреннего сопротивления конденсатора.
Создание газовой пористости может обеспечиваться различными способами. Один из них может быть применен в случае, если электролит содержится только в порах электродов и сепаратора, т.е. при отсутствии свободного электролита в конденсаторе. Определенные значения степени заполненности объема пор в электродах и сепараторе в указанном выше интервале от 90 до 40% от общего объема достигается, во-первых, соответствующей дозировкой полного количества вводимого в конденсатор электролита, и, во-вторых, использованием электродов и сепаратора с определенными, взаимосогласованными между собой пористыми структурами. Дело в том, что распределение жидкости внутри системы контактирующих между собой пористых тел количественно зависит от кривых распределения пор но размерам (порограмм) этих пористых тел. Характер этой зависимости был установлен в работах [Вольфкович Ю.М. Журнал Электрохимия, 1978, т. 14, 4, с. 546; 6, с. 831; 10, с. 1477, Volfkovich Yu. M., Bagotzky V.S., J. Power Sources, 1994, v. 48, 327, 339]. Например, при увеличении в сепараторе доли крупных пор но сравнению с электродами степень заполненности пор в сепараторе уменьшается но сравнению с этими электродами. Контроль за выполнением заданных значений степени заполненности пор в каждом пористом теле ЭХГр может осуществляться, во-первых, путем взвешивания сепаратора и электродов как в полностью затопленном (под вакуумом) состоянии, так и после рабочей пропитки сепаратора и электродов, сборки конденсатора и последующей его разборки; и, во-вторых, путем измерения порограмм электродов и сепаратора, а также путем взвешивания всей ЭХГ до и после пропитки электролитом.
Для того, чтобы обеспечить выполнение предыдущего условия содержания электролита только в порах электродов и сепаратора целесообразно, чтобы один конденсатор или батарея конденсаторных элементов были сжаты между силовыми крышками корпуса. В противном случае возрастет внутреннее сопротивление конденсатора.
Другой способ обеспечения требуемой газовой пористости в электродах и сепараторе заключается в том, что в состав одного или обоих электродов и\или сепаратора вводится дисперсный гидрофобизатор, например, в виде политетрафторэтилена или полиэтилена. Гидрофобизация отрицательного электрода приводит к увеличению скорости диффузии растворенного в электролите кислорода внутри пор непосредственно к внутренней межфазной поверхности электрод/электролит и к ускорению в результате этого скорости его электровосстановления. Поскольку нельзя полностью исключить перезаряд конденсатора при его неправильной эксплуатации (при E-<0 В), то при этом возможно выделение водорода на отрицательном электроде. При введении дисперсного гидрофобизатора в состав положительного электрода резко ускоряется процесс доставки водорода к его внутренней поверхности и результирующий процесс электроокисления водорода на этом электроде. Таким образом, введение гидрофобизаторов в состав пористых электродов помогает решить проблему создания полностью герметичного конденсатора.
Для контролируемого заполнения гидрофильных пор электролитом перед заливкой его в конденсатор его внутренний объем вакуумируется. При этом гидрофобные поры останутся незаполненными электролитом.
Краткое описание чертежей
На фиг.1 показан вариант выполнения конденсатора в соответствии с настоящим изобретением.
На фиг.1 показан вариант выполнения конденсатора в соответствии с настоящим изобретением.
На фиг.2 показан другой вариант выполнения конденсатора в соответствии с настоящим изобретением.
На фиг.3 показан еще один вариант выполнения конденсатора в соответствии с настоящим изобретением.
Примеры осуществления изобретения
Пример 1
Конденсатор с двойным электрическим слоем (фиг.1) состоит из двух одинаковых поляризуемых электродов 5, выполненных из трех слоев активированной углеродной ткани типа "Вискумак" с удельной поверхностью 1200 м2/г и с суммарной толщиной 0,9 мм, пористого сепаратора 8 марки ФПП-20СА, изготовленного из перхлорвинила с суммарной толщиной 120 мкм; токоотводов 3, изготовленных из стали; стальной силовой крышки 1 корпуса толщиной 1 мм; силовой боковины 6 корпуса толщиной 0.3 мм; неэлектропроводного герметика 7 из атактического полипропилена и изолятора 2 из винипласта. Защитный слой 4 токоотвода выполнен из графитовой пленки, пропитанной кислотостойким полимером толщиной 0,3 мм, которая приклеена в нескольких точках к металлическому электроду токоотвода. Оба электрода выполнены в форме пластин с размерами 123•143 мм. В качестве электролита использовался водный раствор серной кислоты с плотностью 1,3 г/см3. Конденсатор был обжат, при этом давление сжатия ЭХГ составляло 3 кг/см2. Электролит находился только в порах ЭХГ. Измеренные способом взвешивания величины степеней заполненности порового пространства электролитом: для электродов - 73%, для сепаратора - 81%.
Пример 1
Конденсатор с двойным электрическим слоем (фиг.1) состоит из двух одинаковых поляризуемых электродов 5, выполненных из трех слоев активированной углеродной ткани типа "Вискумак" с удельной поверхностью 1200 м2/г и с суммарной толщиной 0,9 мм, пористого сепаратора 8 марки ФПП-20СА, изготовленного из перхлорвинила с суммарной толщиной 120 мкм; токоотводов 3, изготовленных из стали; стальной силовой крышки 1 корпуса толщиной 1 мм; силовой боковины 6 корпуса толщиной 0.3 мм; неэлектропроводного герметика 7 из атактического полипропилена и изолятора 2 из винипласта. Защитный слой 4 токоотвода выполнен из графитовой пленки, пропитанной кислотостойким полимером толщиной 0,3 мм, которая приклеена в нескольких точках к металлическому электроду токоотвода. Оба электрода выполнены в форме пластин с размерами 123•143 мм. В качестве электролита использовался водный раствор серной кислоты с плотностью 1,3 г/см3. Конденсатор был обжат, при этом давление сжатия ЭХГ составляло 3 кг/см2. Электролит находился только в порах ЭХГ. Измеренные способом взвешивания величины степеней заполненности порового пространства электролитом: для электродов - 73%, для сепаратора - 81%.
В результате испытаний были получены следующие характеристики: максимальное напряжение - 1 В; удельная энергия - 2 Вт•ч/л; максимальное избыточное давление газов, измеренное внутри корпуса, - 0,02 ат.
Пример 2
Конденсатор с двойным электрическим слоем (фиг.2) состоит из следующих составных частей.
Конденсатор с двойным электрическим слоем (фиг.2) состоит из следующих составных частей.
Отрицательный поляризуемый электрод (4) изготовлен из 10 слоев активированной углеродной ткани "Вискумак" с удельной поверхностью 1200 м2/г. Положительный неполяризуемый электрод 5 содержит активную массу из гидроксида никеля. Применялся сепаратор 6 марки ФПП-20СА толщиной 60 мкм, изготовленный из полипропилена. Токоотводы 3 обоих электродов изготовлены из листового никеля. Оба электрода выполнены в форме пластин с размерами 123•143 мм. Силовая крышка 1 корпуса и силовая боковина 8 корпуса из листовой стали применялись для стяжки ЭХГр конденсатора. Неэлектропроводный герметик 7 изготовлен из атактического полипропилена, а изолятор 2 из винипласта. В качестве электролита использовался 30%-ный водный раствор гидроксида калия. Давление сжатия ЭХГр составляло 10 кг/см2. Измеренные способом взвешивания величины степеней заполненности порового пространства электролитом составляли: для отрицательного электрода - 63%, для положительного электрода - 71%, для сепаратора - 79%. При сборке конденсатора применялось вакуумирование. Внешние габариты всей сборки: 130•150•14 мм.
В результате испытаний были получены следующие характеристики: максимальное напряжение - 1,45 В, удельная энергия - 16 Вт•ч/л; внутреннее сопротивление - 2,5 мОм; время заряда - 20 мин; максимальное избыточное давление газов, измеренное внутри корпуса, - 0,01 ат.
Пример 3
Конденсатор с двойным электрическим слоем (фиг.3) состоит из следующих составных частей.
Конденсатор с двойным электрическим слоем (фиг.3) состоит из следующих составных частей.
Отрицательный поляризуемый электрод 7 изготовлен путем прессования и спекания шихты, состоящей из 20% порошкообразного полиэтилена и 80% активированного углеродного порошка марки АГ-3 с удельной поверхностью 1100 м2/г. Толщина этого электрода 3 мм. Положительный неполяризуемый электрод 5 состоит из решетки, выполненной из сплава, содержащего 95% свинца и 5% сурьмы. Внутрь ячеек решетки вмазана шихта, состоящая из 85% сульфата свинца и 15% политетрафторэтилена. Применялся сепаратор 6 марки ФПП-20 СА толщиной 60 мкм, изготовленный из перхлорвинила и пропитанный 15% лака на основе политетрафторэтилена. Токоотводы 3 изготовлены из листовой стали. Защитный слой 4 токоотвода выполнен из графитовой пленки, пропитанной кислотостойким полимером толщиной 0,3 мм, которая приклеена в нескольких точках к металлическому электроду токоотвода. Оба электрода выполнены в форме пластин с размерами 123•143 мм. Силовая крышка 1 корпуса и силовая боковина корпуса 9 из листовой стали применялись для стяжки ЭХГр конденсатора. Неэлектропроводный герметик 8 изготовлен из атактического полипропилена, а изолятор 2 из винипласта. В качестве электролита использовался водный раствор серной кислоты с плотностью 1,05 г/см3. Давление сжатия ЭХГр составляло 10 кг/см2 . Измеренные способом взвешивания величины степеней заполненности порового пространства электролитом составляли: для отрицательного электрода - 63%, для положительного электрода - 71%, для сепаратора - 79%. При сборке конденсатора применялось вакуумирование. Внешние габариты всей сборки: 130•150•17 мм.
В результате испытаний были получены следующие характеристики: максимальное напряжение - 2 В, удельная энергия при разрядном токе 2,5 А составляла 51 Вт•ч/л; количество полученных зарядно-разрядных циклов - 6500; внутреннее сопротивление - 2 мОм; время заряда - 15 мин; максимальное избыточное давление газов, измеренное внутри корпуса, - 0,01 ат.
Как видно из представленных примеров фактического осуществления изобретения, полученные значения максимального избыточного давления газов, измеренные внутри корпуса всех исследованных конденсаторов с ДЭС, составили 0,01-0,02 ат. Это очень малые величины, гораздо меньшие прочности корпусов, и потому они не представляют никакой опасности разгерметизации конденсаторов.
Промышленная применимость
Описанное изобретение позволяет решить проблему обеспечения полной герметичности любых типов конденсаторов с ДЭС - имеющих как один поляризуемый электрод, так и оба поляризуемых электрода. В результате решения этой проблемы на практике достигается повышение удельной энергии за счет увеличения максимального зарядного напряжения вследствие отсутствия опасности разгерметизации конденсатора. По той же причине появляется возможность значительного увеличения зарядного тока, а значит, и соответствующего уменьшения времени заряда, что очень важно для многих практических применений конденсатора.
Описанное изобретение позволяет решить проблему обеспечения полной герметичности любых типов конденсаторов с ДЭС - имеющих как один поляризуемый электрод, так и оба поляризуемых электрода. В результате решения этой проблемы на практике достигается повышение удельной энергии за счет увеличения максимального зарядного напряжения вследствие отсутствия опасности разгерметизации конденсатора. По той же причине появляется возможность значительного увеличения зарядного тока, а значит, и соответствующего уменьшения времени заряда, что очень важно для многих практических применений конденсатора.
Еще одним положительным следствием применения предложенного здесь технического решения - содержания электролита только в части порового пространства электродов и сепаратора и отсутствие свободного электролита - является то, что работоспособность и характеристики конденсатора с ДЭС становятся полностью независимыми от его положения в пространстве - горизонтального, вертикального и т. п. По этой же причине этот конденсатор должен нормально работать в объектах, движущихся с большими ускорениями: автомобилях, самолетах, космических аппаратах и т. п.
Наконец, конденсаторы, выполненные в соответствии с настоящим изобретением, не требуют специального обслуживания.
Claims (6)
1. Конденсатор с двойным электрическим слоем, содержащий корпус, в который помещены два электрода, из которых один или оба являются поляризуемыми, сепаратор и электролит, причем оба электрода и сепаратор имеют пористую структуру, отличающийся тем, что степень заполнения электролитом порового пространства сепаратора и обоих электродов находится в интервале от 90 до 40% от общего объема пор.
2. Конденсатор по п. 1, отличающийся тем, что электролит содержится только в порах электродов и сепаратора, причем степень заполнения пор электролитом находится в интервале от 90 до 40% от общего объема пор.
3. Конденсатор по любому из предшествующих пунктов, отличающийся тем, что в состав материала одного или обоих электродов введен дисперсный гидрофобизатор, например, политетрафторэтилен или полиэтилен.
4. Конденсатор по любому из предшествующих пунктов, отличающийся тем, что в состав материала сепаратора введен дисперсный гидрофобизатор, например, политетрафторэтилен или полиэтилен.
5. Конденсатор по любому из предшествующих пунктов, отличающийся тем, что его внутреннее пространство вакуумировано.
6. Конденсатор по любому из предшествующих пунктов, отличающийся тем, что он подвергнут обжатию.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU1997/000410 WO1999031687A1 (fr) | 1997-12-18 | 1997-12-18 | Condensateur a couche electrique double |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2185675C2 true RU2185675C2 (ru) | 2002-07-20 |
RU2000119106A RU2000119106A (ru) | 2002-09-10 |
Family
ID=20130178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2000119106/09A RU2185675C2 (ru) | 1997-12-18 | 1997-12-18 | Конденсатор с двойным электрическим слоем |
Country Status (9)
Country | Link |
---|---|
US (1) | US6335858B1 (ru) |
EP (1) | EP1043743B1 (ru) |
JP (1) | JP2002509350A (ru) |
KR (1) | KR100523956B1 (ru) |
AU (1) | AU7240798A (ru) |
CA (1) | CA2314970C (ru) |
DE (1) | DE69736613T2 (ru) |
RU (1) | RU2185675C2 (ru) |
WO (1) | WO1999031687A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006036078A1 (en) * | 2004-08-31 | 2006-04-06 | Sergey Nikolaevich Razumov | Electrochemical capacitor |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377993B1 (en) * | 1997-09-26 | 2002-04-23 | Mci Worldcom, Inc. | Integrated proxy interface for web based data management reports |
EP1060480B1 (de) * | 1998-03-05 | 2002-09-18 | HSP Hochspannungsgeräte Porz GmbH | Durchführung für eine hohe elektrische spannung |
AUPQ253099A0 (en) * | 1999-08-30 | 1999-09-23 | Energy Storage Systems Pty Ltd | A charge storage device |
US6643120B2 (en) * | 2000-04-28 | 2003-11-04 | Showa Denko Kabushiki Kaisha | Niobium powder for capacitor, sintered body using the powder and capacitor using the same |
US20030107852A1 (en) * | 2001-12-11 | 2003-06-12 | Zheng Chen | Electrochemical capacitor having low internal resistance |
JP2006024611A (ja) * | 2004-07-06 | 2006-01-26 | Nisshinbo Ind Inc | 電気二重層キャパシタ |
CA2612642A1 (en) * | 2005-06-24 | 2007-01-04 | Valery Pavlovich Nedoshivin | Electrode and current collector for electrochemical capacitor having double electric layer and double electric layer electrochemical capacitor formed therewith |
CA2612636C (en) * | 2005-06-24 | 2013-10-15 | Samvel Avakovich Kazaryan | Heterogeneous electrochemical supercapacitor and method of manufacture |
MX2007016485A (es) * | 2005-06-24 | 2008-03-11 | Universal Supercapacitors Llc | Colector de corriente para capacitores electroquimicos de doble capa electrica y metodo de fabricacion del mismo. |
US20070128472A1 (en) * | 2005-10-27 | 2007-06-07 | Tierney T K | Cell Assembly and Casing Assembly for a Power Storage Device |
US20090035657A1 (en) * | 2006-10-23 | 2009-02-05 | Buiel Edward R | Electrode for Hybrid Energy Storage Device and Method of Making Same |
US8202653B2 (en) * | 2006-10-23 | 2012-06-19 | Axion Power International, Inc. | Electrode with reduced resistance grid and hybrid energy storage device having same |
US20080113268A1 (en) * | 2006-10-23 | 2008-05-15 | Buiel Edward R | Recombinant Hybrid Energy Storage Device |
US8023251B2 (en) * | 2006-10-23 | 2011-09-20 | Axion Power International, Inc. | Hybrid energy storage device and method of making same |
US7881042B2 (en) * | 2006-10-26 | 2011-02-01 | Axion Power International, Inc. | Cell assembly for an energy storage device with activated carbon electrodes |
CA2677888C (en) * | 2006-11-27 | 2013-07-09 | Universal Supercapacitors Llc | Electrode for use with double electric layer electrochemical capacitors having high specific parameters |
WO2008103681A1 (en) | 2007-02-19 | 2008-08-28 | Universal Supercapacitors Llc | Negative electrode current collector for heterogeneous electrochemical capacitor and method of manufacture thereof |
US20090103242A1 (en) * | 2007-10-19 | 2009-04-23 | Axion Power International, Inc. | Electrode with Reduced Resistance Grid and Hybrid Energy Storage Device Having Same |
JP5808955B2 (ja) * | 2011-06-13 | 2015-11-10 | 太陽誘電株式会社 | 電気化学キャパシタ |
US10312028B2 (en) | 2014-06-30 | 2019-06-04 | Avx Corporation | Electrochemical energy storage devices and manufacturing methods |
KR20180138564A (ko) | 2016-05-20 | 2018-12-31 | 에이브이엑스 코포레이션 | 고온용 울트라커패시터 |
JP7061971B2 (ja) | 2016-05-20 | 2022-05-02 | キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション | マルチセル・ウルトラキャパシタ |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3536963A (en) * | 1968-05-29 | 1970-10-27 | Standard Oil Co | Electrolytic capacitor having carbon paste electrodes |
US4313084A (en) | 1978-03-27 | 1982-01-26 | Nippon Electric Co., Ltd. | Laminated structure of double-layer capacitor |
SU890463A1 (ru) * | 1980-04-24 | 1981-12-15 | Ленинградский технологический институт им. Ленсовета | Способ изготовлени конденсаторов с оксидным диэлектриком |
WO1984000246A1 (en) | 1982-06-30 | 1984-01-19 | Matsushita Electric Ind Co Ltd | Double electric layer capacitor |
SU1735953A1 (ru) * | 1983-03-31 | 1992-05-23 | Научно-производственное объединение "Квант" | Способ изготовлени пористого электрода накопител электрической энергии |
US4952465A (en) * | 1986-04-30 | 1990-08-28 | The Standard Oil Company | Additive for energy storage devices that evolve oxygen and hydrogen |
JP3012240B2 (ja) * | 1987-09-25 | 2000-02-21 | 東洋紡績株式会社 | 分極性電極材の製造方法 |
JPH01117311A (ja) * | 1987-10-30 | 1989-05-10 | Hitachi Condenser Co Ltd | 電気二重層コンデンサ |
JPH0693413B2 (ja) | 1988-02-09 | 1994-11-16 | 株式会社村田製作所 | 電気二重層コンデンサ |
WO1992012521A1 (en) * | 1990-12-29 | 1992-07-23 | Nauchno-Proizvodstvennoe Obiedinenie 'kvant' | Capacitor with double electric layer and method of manufacture |
JPH06275470A (ja) * | 1993-03-24 | 1994-09-30 | Isuzu Motors Ltd | 電気2重層コンデンサ |
JPH07335501A (ja) * | 1994-06-06 | 1995-12-22 | Mitsubishi Chem Corp | 炭素質多孔体及びこれを使用した電気二重層コンデンサー用電極 |
WO1997007518A1 (fr) | 1995-08-14 | 1997-02-27 | Aktsionernoe Obschestvo Zakrytogo Tipa 'elton' | Condensateur a couche electrique double |
JPH09266143A (ja) * | 1996-03-28 | 1997-10-07 | Matsushita Electric Ind Co Ltd | 電気二重層キャパシタおよびその分極性電極の製造方法 |
JPH10275747A (ja) * | 1997-03-28 | 1998-10-13 | Nec Corp | 電気二重層コンデンサ |
US6134760A (en) * | 1997-09-22 | 2000-10-24 | Mushiake; Naofumi | Process for manufacturing electric double layer capacitor |
JP3341886B2 (ja) * | 1998-02-05 | 2002-11-05 | 日本電気株式会社 | 分極性電極、その製造方法、及びその分極性電極を用いた電気二重層コンデンサ |
US6083829A (en) * | 1998-05-22 | 2000-07-04 | Taiwan Semiconductor Manufacturing Company | Use of a low resistivity Cu3 Ge interlayer as an adhesion promoter between copper and tin layers |
-
1997
- 1997-12-18 JP JP2000539494A patent/JP2002509350A/ja active Pending
- 1997-12-18 DE DE69736613T patent/DE69736613T2/de not_active Expired - Lifetime
- 1997-12-18 AU AU72407/98A patent/AU7240798A/en not_active Abandoned
- 1997-12-18 WO PCT/RU1997/000410 patent/WO1999031687A1/ru active IP Right Grant
- 1997-12-18 CA CA002314970A patent/CA2314970C/en not_active Expired - Fee Related
- 1997-12-18 US US09/581,737 patent/US6335858B1/en not_active Expired - Lifetime
- 1997-12-18 KR KR10-2000-7006808A patent/KR100523956B1/ko not_active IP Right Cessation
- 1997-12-18 EP EP97955038A patent/EP1043743B1/en not_active Expired - Lifetime
- 1997-12-18 RU RU2000119106/09A patent/RU2185675C2/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006036078A1 (en) * | 2004-08-31 | 2006-04-06 | Sergey Nikolaevich Razumov | Electrochemical capacitor |
Also Published As
Publication number | Publication date |
---|---|
DE69736613D1 (de) | 2006-10-12 |
KR20010033344A (ko) | 2001-04-25 |
AU7240798A (en) | 1999-07-05 |
CA2314970A1 (en) | 1999-06-24 |
EP1043743B1 (en) | 2006-08-30 |
KR100523956B1 (ko) | 2005-10-26 |
WO1999031687A1 (fr) | 1999-06-24 |
US6335858B1 (en) | 2002-01-01 |
EP1043743A1 (en) | 2000-10-11 |
DE69736613T2 (de) | 2007-09-20 |
CA2314970C (en) | 2007-03-06 |
EP1043743A4 (en) | 2005-03-02 |
JP2002509350A (ja) | 2002-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2185675C2 (ru) | Конденсатор с двойным электрическим слоем | |
US6628504B2 (en) | Electric double layer capacitor | |
CA2446422C (en) | Electric double layer capacitor | |
US7006346B2 (en) | Positive electrode of an electric double layer capacitor | |
JP3815774B2 (ja) | 電解質を含む電気化学素子 | |
US4539268A (en) | Sealed bipolar multi-cell battery | |
RU2180144C1 (ru) | Конденсатор с двойным электрическим слоем | |
Jindra | Progress in sealed Ni-Zn cells, 1991–1995 | |
AU2002257436A1 (en) | Electric double layer capacitor | |
Sarangapani et al. | Advanced double layer capacitors | |
WO2011121967A1 (ja) | キャパシタ用電極体およびその製造方法とこの電極体を用いたキャパシタ | |
KR920007380B1 (ko) | 알칼리 축전지 및 그 제조방법 | |
US20190006122A1 (en) | Electrochemical energy storage devices | |
KR102410490B1 (ko) | 파우치형 전기이중층 커패시터 | |
KR102568421B1 (ko) | 막전극접합체 및 이를 포함하는 아연-브롬 슈퍼커패터리 | |
US6614647B2 (en) | Low impedance electrochemical cell | |
JP6523658B2 (ja) | キャパシタ空気電池用の中間層原料組成物、該原料組成物を含有する中間層を有する電極、および該電極を備えたキャパシタ空気電池 | |
RU2767987C1 (ru) | Сепараторная группа непроточного металл-бромного аккумулятора и способ ее изготовления | |
JP5035993B2 (ja) | 電気二重層コンデンサ | |
JP2010003717A (ja) | キャパシタ | |
CN1294748A (zh) | 具有双导电层的电容器 | |
RU2101807C1 (ru) | Электрохимический накопитель электрической энергии | |
JPH05258993A (ja) | 電気化学コンデンサ | |
CZ20002241A3 (cs) | Kondenzátor s dvojitou elektrickou vrstvou | |
Sarangapani et al. | Advanced double layer capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20051219 |
|
TK4A | Correction to the publication in the bulletin (patent) |
Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 20-2002 FOR TAG: (73) |
|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20120914 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20141219 |