RU2185368C2 - Способ окисления ароматических соединений до гидроксиароматических соединений - Google Patents

Способ окисления ароматических соединений до гидроксиароматических соединений Download PDF

Info

Publication number
RU2185368C2
RU2185368C2 RU98121227/04A RU98121227A RU2185368C2 RU 2185368 C2 RU2185368 C2 RU 2185368C2 RU 98121227/04 A RU98121227/04 A RU 98121227/04A RU 98121227 A RU98121227 A RU 98121227A RU 2185368 C2 RU2185368 C2 RU 2185368C2
Authority
RU
Russia
Prior art keywords
mmol
phenol
benzene
hydrogen peroxide
compounds
Prior art date
Application number
RU98121227/04A
Other languages
English (en)
Other versions
RU98121227A (ru
Inventor
Раффаэле Унгарелли
Луиджи Балдуччи
Даниеле Бьянки
Original Assignee
ЭНИКЕМ С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЭНИКЕМ С.п.А. filed Critical ЭНИКЕМ С.п.А.
Publication of RU98121227A publication Critical patent/RU98121227A/ru
Application granted granted Critical
Publication of RU2185368C2 publication Critical patent/RU2185368C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу синтеза гидроксилированных ароматических соединений окислением ароматического соединения перекисью водорода в органическом растворителе в присутствии синтетических цеолитов. Органический растворитель в количестве 10 - 90 мас.% от реакционной смеси выбирают из соединений общей формулы (I)
Figure 00000001

в которой R1, R2, R3 и R4, одинаковые или различные, представляют атом водорода или алкильную группу с 1-4 атомами углерода, или из соединений общей формулы (II)
Figure 00000002

в которой R и R', одинаковые или различные, представляют алкильный радикал с 1-4 атомами углероды. Ароматическим соединением является бензол, толуол, этилбензол, хлорбензол, анизол, фенол или нафтол. Катализатором может служить силикат титана. Технический результат - возможность проведения процесса при повышенных температурах в условиях гомогенизации смеси ароматического соединения и перекиси водорода. 18 з.п.ф-лы, 3 табл.

Description

Изобретение относится к улучшенному способу синтеза гидроксилированных ароматических соединений с помощью окисления ароматического субстрата перекисью водорода в органическом растворителе в присутствии синтетических цеолитов, в котором улучшение состоит в том, что органический растворитель выбирают из соединений обшей формулы (I) или (II).
Гидроксилированные ароматические соединения являются ценными промежуточными продуктами в получении фитолекарств, красителей, фармацевтических соединений, антиоксидантов, синтетических смол и инсектицидов.
Из гидроксилированных ароматических соединений, представляющих наибольший интерес с коммерческой точки зрения, необходимо отметить фенол, исходным веществом для промышленного получения которого является кумол.
Из уровня техники известны различные способы непосредственного окисления ароматических субстратов, в частности фенола, перекисью водорода в присутствии подходящих каталитических систем.
Например, патент США 4396783 описывает способ гидроксилирования ароматических углеводородов, в частности фенола, в котором используют в качестве катализатора силикалит титана (TS1). Реакцию осуществляют при температуре от 80 до 120oС в присутствии одного субстрата или предпочтительно также органического растворителя, выбранного из воды, метанола, уксусной кислоты, изопропанола или ацетонитрила.
В соответствии со способом, описанным в патенте Великобритании GB 2116974, гидроксилирование ароматических углеводородов осуществляют в ацетоне в условиях кипячения с обратным холодильником при температуре 80-120oС в присутствии TS1. Использование ацетона позволяет осуществлять реакцию с использованием особенно высоких соотношений загружаемых материалов (соотношение между молярным количеством Н2О2 и загруженного фенола) и с очень высоким выходом.
Несмотря на то, что вышеуказанные патенты предлагают использование большого количества ароматических углеводородов, которые можно гидроксилировать, нет никаких сообщений о результатах в отношении бензола.
Действительно, это соединение очень трудно окислить; хорошие селективности в отношении фенола получают при конверсии субстрата примерно 1%, тогда как при более высоких уровнях конверсии селективность значительно снижается.
Такие способы известного уровня техники осуществляют в органическом растворителе, способном повышать смешиваемость перекиси водорода и ароматического субстрата.
Растворители обычно выбирают из спиртов, таких как метанол, этанол или изопропиловый спирт, кетонов, таких как ацетон, метилэтилкетон, уксусная кислота или ацетонитрил. Действие растворителя заключается в улучшении контактирования ароматического субстрата с перекисью водорода.
Однако использование таких растворителей имеет различные недостатки.
Например, метанол в присутствии субстрата с низкой реакционной способностью, такого как бензол, в свою очередь окисляется катализатором с образованием формальдегида и диметилацеталь формальдегида.
Ацетон с перекисью водорода образует соединение (СН3)2С(ОН)(ООН), которое является инертным в растворе, но в твердом состоянии является взрывоопасным, и поэтому создает проблемы безопасности в процессе извлечения продукта.
Кроме того, когда ацетон используют в качестве растворителя, система имеет тенденцию к разделению, когда концентрация бензола достигает 27 мас.% при работе с раствором H2О2, составляющем 30 мас.%
Ацетонитрил образует с перекисью водорода аддукт (СН3)С(=NН)(ООН), который может непродуктивным образом распадаться, снижая селективность в отношении H2O2.
Было обнаружено, что эти недостатки известного уровня техники можно преодолеть при помощи способа по настоящему изобретению, который основан на использовании органического растворителя, выбранного из соединений общей формулы (I) или (II). Эти соединения являются стабильными в присутствии Н2О2.
Другое преимущество, которое обеспечивают использованием этих соединений, связано с их высокой температурой кипения, что дает возможность работать при атмосферном давлении и высоких температурах (до 95oС), повышая эффективность катализатора.
При использовании традиционных катализаторов окисления такие температуры могут достигаться только в условиях давления.
Кроме того, высокая химическая инерция соединений общей формулы (I) и (II) дает возможность избежать риска, связанного с использованием других растворителей, как, например, в случае использования ацетона, который может дать взрывчатые пероксиды в фазе сушки.
Использование соединений общей формулы (I) и (II) также позволяет улучшить как производительность реакции окисления бензола до фенола (выраженной как конверсия бензола), так и селективность катализатора (выраженную как селективность по перекиси водорода и как селективность по фенолу).
В соответствии с этим первый аспект изобретения относится к способу синтеза гидроксилированных ароматических соединений путем непосредственного окисления ароматического субстрата перекисью водорода в органическом растворителе в присутствии синтетических цеолитов, при этом способ отличается тем, что органический растворитель выбирают из соединений обшей формулы (I)
Figure 00000005

в которой R1, R2, R3 и R4, одинаковые или различные, являются атомами водорода или алкильными группами, имеющими от 1 до 4 атомов углерода,
или из соединений общей формулы (II)
Figure 00000006

в которой R и R', одинаковые или различные, представляют алкильный радикал с 1-4 атомами углерода.
Для целей настоящего изобретения соединения общей формулы (I) являются предпочтительными, так как они обладают высокой растворяющей способностью как по отношению к воде, так и к ароматическому субстрату. Это позволяет системе оставаться гомогенной при работе с концентрациями ароматического субстрата более чем 50% или с сильно разбавленными растворами Н2О2<5%.
Из соединений общей формулы (I) особенно предпочтительным является сульфолан.
Растворитель используют в количестве от 10 до 90 мас.% по отношению к реакционной смеси. Предпочтительно используют количества от 20 до 80 мас.%.
Катализаторы, используемые в способе по изобретению, выбирают из катализаторов общей формулы (III):
xTiО2•(1-x)SiО2 (III)
где х имеет значение от 0,0001 до 0,04, предпочтительно от 0,02 до 0,03.
Указанные выше силикаты титана можно получить способом, описанным в патенте США 4410501, где также определены их структурные характеристики.
Можно также использовать силикаты титана, в которых часть титана замещена другими металлами, такими как бор, алюминий, железо или галлий. Такие замещенные силикаты титана и способы их получения описаны в Европейских патентных заявках 226257, 226258 и 266825.
Катализатор обычно используют в количестве от 2 до 40 мас.% по отношению к ароматическому субстрату. Предпочтительно используют катализатор в количестве от 5 до 15 мас.% по отношению к ароматическому субстрату.
Перекись водорода добавляют к реакционной смеси в количестве от 5 до 50% (моль) по отношению к ароматическому субстрату, предпочтительно от 10 до 30% (моль).
Удобно использовать растворы перекиси водорода в концентрации от 1 до 60 мас.%, предпочтительно от 3 до 30 мас.%
Ароматические субстраты, которые можно использовать в способе по изобретению, можно выбирать из бензола, толуола, этилбензола, хлорбензола, анизола, фенола и нафтола.
Ароматический субстрат обычно используют в количестве от 10 до 80 мас.% по отношению к реакционной смеси.
Предпочтительно используют ароматический субстрат в количестве от 30 до 60 мас.% по отношению к реакционной смеси.
Реакцию окисления осуществляют при температуре от 50 до 95oС, предпочтительно от 70 до 85oС.
Время реакции, необходимое для полного потребления перекиси водорода, зависит от используемых условий реакции.
В конце реакции продукты реакции и непрореагировавший ароматический субстрат извлекают при помощи обычных способов, таких как фракционная перегонка и кристаллизация.
Способ по изобретению можно осуществлять периодически или с непрерывной подачей перекиси водорода со скоростью от 0,06 до 0,6, предпочтительно от 0,1 до 0,3 моль•л-1•ч-1.
Следующие далее примеры предназначены только для более подробного описания настоящего изобретения и не должны рассматриваться как ограничивающие объем изобретения.
Эксперименты проводили с использованием стеклянного реактора емкостью 30 мл с плоским дном, снабженного рубашкой, оборудованного магнитной мешалкой, входным отверстием для подачи реагентов, устройством для контроля температуры и обратным холодильником, охлажденным до 0oС, с циркуляцией силиконового масла при помощи термокриостата.
В нагревающей/охлаждающей рубашке реактора циркулировало силиконовое масло, термостатирование с помощью второго термокриостата. Раствор H2O2 дозировали при помощи подходящей градуированной капельной воронки, снабженной регулировочным клапаном.
ПРИМЕР 1
7,04 г бензола (титр 99,5%, Fluka) (90 ммоль), 2,82 г катализатора TS1 с титром Ti, равным 2,29% (1,35 ммоль Ti, EniChem) (массовое соотношение TS1/бензол= 0,4), 15 г сульфолана (титр 99%) (массовое соотношение бензол/сульфолан= 0,5) (конечный объем=20 мл) загружают в реактор, поддерживаемый в атмосфере азота.
Смесь при перемешивании доводят до 77oС. В течение двух часов затем добавляют 1,04 г (9 ммоль Н2О2) водного раствора Н2О2 при 33% мас./об. (плотность=1,11, Rudipont, Reagent Grade).
Через 15 минут кондиционирования при постоянной температуре при перемешивании реакционную смесь охлаждают до 20oС. Катализатор отделяют фильтрованием на стеклянной пористой перегородке под давлением азота и несколько раз промывают ацетнитрилом (титр 99,9%, C.ERBA Reagents, RS). Фильтрат, к которому добавляют промывные жидкости, дал 121,15 г конечного раствора.
Раствор анализируют при помощи ВЭЖХ Shimadzu SCL-6A (колонка 100 RP-18 LiChrospher®, с насадкой на конце, 5 мкм, Merck), термостатированный при 40oС, с использованием в качестве элюентов ацетонитрила и 0,01 М водного раствора Н3РО4. Анализ продукта реакции дал следующие результаты:
- фенол 576 мг (6,12 ммоль)
- катехол 29 мг (0,26 ммоль)
- гидрохинон 36 мг (0,33 ммоль)
- остаточный бензол 6,506 г (83,29 ммоль)
- прореагировавший бензол 0,524 г (6,71 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 7,5%
- селективность по фенолу - 91,2%
- выход по фенолу - 6,8%
Селективность относится к молярной селективности в отношении превращенного бензола.
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 96,2%, с селективностью по фенолу 70,3%.
Производительность в час, выраженная как моли фенола из молей титана за 1 час, составила 2,01.
ПРИМЕР 2
Реакцию осуществляют в тех же рабочих условиях, как и в примере 1, но с использованием 6 г сульфолана. Анализ продукта реакции дал следующие результаты:
- фенол 534 мг (5,67 ммоль)
- катехол 53 мг (0,48 ммоль)
- гидрохинон 46 мг (0,42 ммоль)
- остаточный бензол 6,517 г (83,43 ммоль)
- прореагировавший бензол 0,513 г (6,57 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 7,3%
- селективность по фенолу - 86,3%
- выход по фенолу - 6,3%
После йодометрического титрования остаточного H2О2 имела место конверсия H2O2, равная 96,9%, с селективностью по фенолу 65,2%.
ПРИМЕР 3
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием 0,51 г водного раствора Н2О2 при 60 мас./мас.% (массовое соотношение H2О2/TMS= 0,03). Анализ продукта реакции дал следующие результаты:
- фенол, 511 мг ( 5,43 ммоль)
- катехол 27 мг (0,25 ммоль)
- гидрохинон 37 мг (0,34 ммоль)
- остаточный бензол 6,56 г (83,98 ммоль)
- прореагировавший бензол 0,470 г (6,02 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 6,7%
- селективность по фенолу - 90,2%
- выход по фенолу - 6,0%
После йодометрического титрования остаточного Н2О2 имела место конверсия Н2О2, равная 97,5%, с селективностью по фенолу 61,7%.
ПРИМЕР 4
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием 2,04 г водного раствора Н2О2 при 15 мас./мас.% (массовое соотношение H2O2/TMS= 0,14). Анализ продукта реакции дал следующие результаты:
- фенол 572 мг (6,08 ммоль)
- катехол 30 мг ( 0,27 ммоль)
- гидрохинон 41 мг (0,37 ммоль)
- остаточный бензол 6,505 г (83,28 ммоль)
- прореагировавший бензол 0,525 г (6,72 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 7,5%
- селективность по фенолу - 90,5%
- выход по фенолу - 6,8%
После йодометрического титрования остаточного Н2О2 имела место конверсия Н2О2, равная 96,7%, с селективностью по фенолу 69,9%.
ПРИМЕР 5
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием 2,82 г (0,34 ммоль) силикалита титана (TiZ-15/55; Ti=0,58% EniRicherche S.p.A.). Анализ продукта реакции дал следующие результаты:
- фенол 383 мг (4,07 ммоль)
- катехол 16 мг (0,15 ммоль)
- гидрохинон 19 мг (0,17 ммоль)
- остаточный бензол 6,687 г (85,61 ммоль)
- прореагировавший бензол 0,343 г (4,39 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 4,9%
- селективность по фенолу - 92,7%
- выход по фенолу - 4,5%
После йодометрического титрования остаточного H2O2 имела место конверсия Н2О2, равная 62,5%, с селективностью по фенолу 72,7%.
ПРИМЕР 6
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием 0,3 г катализатора TS1 и температуры реакции 95oС. Анализ продукта реакции дал следующие результаты:
- фенол 246 мг (2,61 ммоль)
- катехол 0
- гидрохинон 12 мг (0,11 ммоль)
- остаточный бензол 6,817 г (87,28 ммоль)
- прореагировавший бензол 0,212 г (2,72 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 3,0%
- селективность по фенолу - 96,0%
- выход по фенолу - 2,9%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 48,8%, с селективностью по фенолу 59,3%.
Производительность в час составила 8,09, что указывает на более высокую эффективность каталитической системы при таких температурах.
ПРИМЕР 7
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с загрузкой за 1 час 0,52 г (5 ммоль) водного раствора H2O2 при 33% мас./об., (молярное соотношение H2O2/бензол= 0,05). Анализ продукта реакции дал следующие результаты:
- фенол 286 мг (3,04 ммоль)
- катехол 0
- гидрохинон 12 мг (0,11 ммоль)
- остаточный бензол 6,784 г (86,85 ммоль)
- прореагировавший бензол 0,246 г (3,15 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 5%
- селективность по фенолу - 6,5%
- выход по фенолу - 4%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 94,2%, с селективностью по фенолу 72,4%.
ПРИМЕР 8
Реакцию осуществляют как описано в примере 1, но с использованием 3,12 г водного раствора H2O2 при 33% мас./об. (27 ммоль H2O2). Анализ продукта реакции дал следующие результаты:
- фенол 1284 мг (13,64 ммоль)
- катехол 264 мг (2,4 ммоль)
- гидрохинон 227 мг (2,06 ммоль)
- остаточный бензол 5,616 г (71,9 ммоль)
- прореагировавший бензол 1,414 г (18,1 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 31,2%
- селективность по фенолу - 75,4%
- выход по фенолу - 15,2%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 99,2%, с селективностью по фенолу 50,9%.
ПРИМЕРЫ 9-10
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но изменяя температуру реакции. Результаты представлены в таблице 1, где С1 = конверсия бензола; S1=селективность по фенолу; С2=конверсия H2O2 и S2=селективность по фенолу.
Из данных таблицы 1 можно видеть, что при работе в условиях более высоких температур значительно повышаются как конверсия субстрата и окислителя, так и селективность, касающаяся H2O2.
ПРИМЕРЫ 11-12
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но меняя при этом время загрузки окислителя. Результаты представлены в таблице 2, где С1, S1, C2 и S2 имеют значения, определенные выше.
Из данных таблицы 2 можно видеть, что при увеличении времени загрузки H2O2 наблюдается увеличение как конверсии субстрата (С1), так и селективности окислителя (S2).
ПРИМЕР 13 (сравнительный)
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием метанола в качестве растворителя и температуры реакции 61oС (флегма).
Анализ продукта реакции дал следующие результаты:
- фенол 215 мг (2,29 ммоль)
- катехол 0
- гидрохинон 34 мг (0,31 ммоль)
- остаточный бензол 6,827 г (87,40 ммоль)
- прореагировавший бензол 0,203 г (2,60 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 2,9%
- селективность по фенолу - 88,1%
- выход по фенолу - 2,5%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 93,8%, с селективностью по фенолу 27,3%.
ПРИМЕР 14 (сравнительный)
Реакцию осуществляют в тех же рабочих условиях, что и в примере 13, но с использованием сульфолана в качестве растворителя при температуре 61oС. Анализ продукта реакции дал следующие результаты:
- фенол 510 мг (5,42 ммоль)
- катехол 24 мг (0,22 ммоль)
- гидрохинон 34 мг (0,31 ммоль)
- остаточный бензол 6,565 г (84,05 ммоль)
- прореагировавший бензол 0,465 г (5,95 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 6,6%
- селективность по фенолу - 91,1%
- выход по фенолу - 6,0%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 94,4%, с селективностью по фенолу 63,8%.
ПРИМЕР 15 (сравнительный)
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием ацетонитрила в качестве растворителя при температуре 76oС (флегма). Анализ продукта реакции дал следующие результаты:
- фенол 311 мг (3,31 ммоль)
- катехол 85 мг (0,77 ммоль)
- гидрохинон 84 мг (0,76 ммоль)
- остаточный бензол 6,652 г (85,16 ммоль)
- прореагировавший бензол 0,378 г (4,84 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 5,4%
- селективность по фенолу - 68,4%
- выход по фенолу - 3,7%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 96,6%, с селективностью по фенолу 38%.
ПРИМЕР 16
Реакцию осуществляют в тех же рабочих условиях, что и в примере 15, но с использованием сульфолана в качестве растворителя при температуре 76oС. Анализ продукта реакции дал следующие результаты:
- фенол 576 мг (6,12 ммоль)
- катехол 29 мг (0,26 ммоль)
- гидрохинон 36 мг (0,33 ммоль)
- остаточный бензол 6,506 г (83,29 ммоль)
- прореагировавший бензол 0,525 г (6,71 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 7,5%
- селективность по фенолу - 91,2%
- выход по фенолу - 6,8%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 96,2%, с селективностью по фенолу 70,3%.
ПРИМЕР 17 (сравнительный)
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием ацетона в качестве растворителя при температуре 61oС (флегма). Анализ продукта реакции дал следующие результаты:
- фенол 237 мг (2,52 ммоль)
- катехол 33 мг (0,30 ммоль)
- гидрохинон 87 мг (0,79 ммоль)
- остаточный бензол 6,748 г (86,39 ммоль)
- прореагировавший бензол 0,282 г (3,61 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 4,0%
- селективность по фенолу - 69,8%
- выход по фенолу - 2,8%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 75,9%, с селективностью по фенолу 37,1%.
ПРИМЕР 18
Реакцию осуществляют в тех же рабочих условиях, что и в примере 13, но с загрузкой в течение 6 часов 3,12 г водного раствора H2O2 при 33% маc./об. (27 ммоль). Анализ продукта реакции дал следующие результаты:
- фенол 492 мг (5,23 ммоль)
- катехол 56 мг (0,51 ммоль)
- гидрохинон 198 мг (1,80 ммоль)
- остаточный бензол 6,441 г (82,46 ммоль)
- прореагировавший бензол 0,589 г (7,54 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 8,4%
- селективность по фенолу - 69,4%
- выход по фенолу - 5,8%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 96,6%, с селективностью по фенолу 20%.
ПРИМЕР 19
Реакцию осуществляют в тех же рабочих условиях, что и в примере 15, но с загрузкой в течение 6 часов 3,12 г водного раствора H2O2 при 33% маc./об. (27 ммоль). Анализ продукта реакции дал следующие результаты:
- фенол 455 мг (4,84 ммоль)
- катехол 270 мг (2,45 ммоль)
- гидрохинон 258 мг (2,34 ммоль)
- остаточный бензол 6,278 г (80,37 ммоль)
- прореагировавший бензол 0,752 г (9,63 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 10,7%
- селективность по фенолу - 50,3%
- выход по фенолу - 5,4%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 98,8%, с селективностью по фенолу 18,1%.
ПРИМЕР 20
Реакцию осуществляют в тех же рабочих условиях, что и в примере 17, но с загрузкой в течение 6 часов 3,12 г водного раствора H2O2 при 33% маc./об. (27 ммоль). Анализ продукта реакции дал следующие результаты:
- фенол 409 мг (4,35 ммоль)
- катехол 194 мг (1,76 ммоль)
- гидрохинон 272 мг (2,47 ммоль)
- остаточный бензол 6,36 г (81,42 ммоль)
- прореагировавший бензол 0,670 г (8,58 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 9,5%
- селективность по фенолу - 50,7%
- выход по фенолу - 4,8%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 73,1%, с селективностью по фенолу 22,1%.
ПРИМЕР 21
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием 0,7 г силиката титан алюминий (TiZ-80/2; Ti=1,59% и Al=0,40%, EniRicherche) в качестве катализатора и температуры реакции 80oС. Анализ продукта реакции дал следующие результаты:
- фенол 515 мг (5,47 ммоль)
- катехол 22 мг (0,20 ммоль)
- гидрохинон 30 мг (0,27 ммоль)
- остаточный бензол 6,566 г (84,06 ммоль)
- прореагировавший бензол 0,464 г (5,94 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 6,6%
- селективность по фенолу - 92,1%
- выход по фенолу - 6,1%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 90,1%, с селективностью по фенолу 67,5%.
ПРИМЕР 22
Реакцию осуществляют в тех же рабочих условиях, что и в примере 21, но с использованием силиката титан галлий (TiZ-106 bis; Ti=1,52% и Ga=0,51%, EniRicherche S. p. A.) в качестве катализатора. Анализ продукта реакции дал следующие результаты:
- фенол 506 мг (5,38 ммоль)
- катехол 18 мг (0,16 ммоль)
- гидрохинон 36 мг (0,33 ммоль)
- остаточный бензол 6,571 г (84,13 ммоль)
- прореагировавший бензол 0,458 г (5,87 ммоль)
На основании этих результатов было подсчитано следующее:
- конверсия бензола - 6,5%
- селективность по фенолу - 91,7%
- выход по фенолу - 6,0%
После йодометрического титрования остаточного H2O2 имела место конверсия H2O2, равная 88,5%, с селективностью по фенолу 67,5%.
ПРИМЕРЫ 23-31
Реакцию осуществляют в тех же рабочих условиях, что и в примере 1, но с использованием 0,7 г TS1, 90 ммоль субстратов, указанных в таблице 3, 15 г сульфолана и температуры реакции 90oС. Результаты представлены в таблице 3.

Claims (19)

1. Способ синтеза гидроксилированных ароматических соединений путем непосредственного окисления ароматического субстрата перекисью водорода в инертном органическом растворителе в присутствии синтетических цеолитов в качестве катализаторов, отличающийся тем, что органический растворитель выбирают из соединений общей формулы (I)
Figure 00000007

в которой R1, R2, R3 и R4, одинаковые или различные, представляют атом водорода или алкильную группу с 1-4 атомами углерода,
или из соединений общей формулы (II)
Figure 00000008

в которой R и R' одинаковые или различные, представляют алкильный радикал с 1-4 атомами углерода.
2. Способ по п. 1, в котором в соединении формулы (I) R1, R2, R3 и R4, представляют атом водорода.
3. Способ по п. 1, в котором в соединении формулы (II) R и R' представляют метильный радикал.
4. Способ по п. 1, в котором катализатором является силикалит титана, имеющий общую формулу (III):
xTiО2•(1-x)SiО2, (III)
где х имеет значение 0,0001 - 0,04.
5. Способ по п. 4, в котором х имеет значение 0,02 - 0,03.
6. Способ по п. 4, в котором в соединении формулы (III) часть титана замещена другими металлами, такими, как бор, алюминий, железо и галлий.
7. Способ по п. 1, в котором ароматический субстрат выбирают из бензола, толуола, этилбензола, хлорбензола, анизола, фенола и нафтола.
8. Способ по п. 1, в котором растворитель используют в количестве 10 - 90 мас. % относительно реакционной смеси.
9. Способ по п. 8, в котором растворитель используют в количестве 20 - 80 мас. % относительно реакционной смеси.
10. Способ по п. 1, в котором катализатор используют в количестве 2 - 40 мас. % относительно ароматического субстрата.
11. Способ по п. 10, в котором катализатор используют в количестве 5 - 15 мас. % относительно ароматического субстрата.
12. Способ по п. 1, в котором ароматический субстрат используют в количестве 10 - 80 мас. % относительно реакционной смеси.
13. Способ по п. 12, в котором ароматический субстрат используют в количестве 30 - 60 мас. % относительно реакционной смеси.
14. Способ по п. 1, в котором количество перекиси водорода, присутствующей в реакционной смеси, составляет 5 - 50 % (в молях) относительно ароматического субстрата.
15. Способ по п. 14, в котором количество перекиси водорода, присутствующей в реакционной смеси, составляет 10 - 30 % (в молях) относительно ароматического субстрата.
16. Способ по п. 1, в котором перекись водорода используют в виде водного раствора, содержащего 1 - 60 мас. % перекиси водорода.
17. Способ по п. 16, в котором перекись водорода используют в виде водного раствора, содержащего 3 - 30 мас. % перекиси водорода.
18. Способ по п. 1, в котором реакцию осуществляют при температуре 50 - 95oС.
19. Способ по п. 18, в котором реакцию осуществляют при температуре 70 - 85oС.
RU98121227/04A 1997-11-27 1998-11-26 Способ окисления ароматических соединений до гидроксиароматических соединений RU2185368C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI97/A002629 1997-11-27
IT97MI002629A IT1296573B1 (it) 1997-11-27 1997-11-27 Procedimento per l'ossidazione di composti aromatici a idrossiaromatici

Publications (2)

Publication Number Publication Date
RU98121227A RU98121227A (ru) 2000-08-20
RU2185368C2 true RU2185368C2 (ru) 2002-07-20

Family

ID=11378273

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98121227/04A RU2185368C2 (ru) 1997-11-27 1998-11-26 Способ окисления ароматических соединений до гидроксиароматических соединений

Country Status (10)

Country Link
US (1) US6133487A (ru)
EP (1) EP0919531B1 (ru)
JP (1) JP4540761B2 (ru)
KR (1) KR19990045384A (ru)
DE (1) DE69817978T2 (ru)
ES (1) ES2206809T3 (ru)
IT (1) IT1296573B1 (ru)
RU (1) RU2185368C2 (ru)
SA (1) SA99191036B1 (ru)
TW (1) TW466230B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634728C2 (ru) * 2015-09-17 2017-11-03 Федеральное Государственное Бюджетное Учреждение Науки Институт Нефтехимии И Катализа Ран Способ получения 4-трет-бутил-пирокатехина и катализатор для его получения

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20012410A1 (it) * 2001-11-15 2003-05-15 Enichem Spa Processo per la preparazione di composti aromatici idrossilati
ITMI20021187A1 (it) * 2002-05-31 2003-12-01 Polimeri Europa Spa Procedimento per il recupero di fenolo e difenoli
ITMI20022185A1 (it) * 2002-10-15 2004-04-16 Enitecnologie Spa Processo per la preparazione di fenolo mediante idrodeossigenazione di benzendioli.
ITMI20022522A1 (it) * 2002-11-28 2004-05-29 Polimeri Europa Spa Processo integrato per la preparazione di fenolo da benzene con riciclo dei sottoprodotti.
US7148386B2 (en) 2004-07-30 2006-12-12 General Electric Company Processes for preparing benzoquinones and hydroquinones
ITMI20042169A1 (it) * 2004-11-12 2005-02-12 Polimeri Europa Spa Processo continuo per la preparazione di fenolo da benzene in reattore a letto fisso
ITMI20050062A1 (it) 2005-01-20 2006-07-21 Polimeri Europa Spa Processo per la preparazione di fenolo
FR3075198B1 (fr) 2017-12-15 2020-04-03 Rhodia Operations Procede d'hydroxylation d'un compose aromatique
CN111085265B (zh) * 2019-12-27 2021-04-23 中国科学院大连化学物理研究所 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用
CN113413889A (zh) * 2021-07-06 2021-09-21 辽宁师范大学 一种苯羟基化制苯酚用无定形钒催化剂的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1127311B (it) * 1979-12-21 1986-05-21 Anic Spa Materiale sintetico,cristallino,poroso costituito da ossidi di silicio e titanio,metodo per la sua preparazione e suoi usi
FR2618143B1 (fr) * 1987-07-17 1989-09-22 Rhone Poulenc Chimie Procede d'hydroxylation du phenol
FR2622574B1 (fr) * 1987-10-29 1990-02-23 Rhone Poulenc Chimie Procede d'hydroxylation de phenols et d'ethers de phenols
US5254746A (en) * 1987-10-29 1993-10-19 Rhone-Poulenc Chimie Hydroxylation of phenols/phenol ethers
FR2632632B1 (fr) * 1988-06-08 1991-01-25 Rhone Poulenc Chimie Procede d'hydroxylation de phenols et d'ethers de phenols
JP3123566B2 (ja) * 1991-12-20 2001-01-15 三菱瓦斯化学株式会社 二価フェノール類の製造方法
EP0558376B1 (fr) * 1992-02-26 1997-10-08 Rhone-Poulenc Chimie Procédé de monohydroxylation de composés phénoliques
ES2092428B1 (es) * 1993-06-15 1997-08-01 Univ Valencia Politecnica Material de estructura tipo zeolita de poros ultragrandes con un red constituida por oxidos de silicio y titanio; su sintesis y utilizacion para la oxidacion selectiva de productos organicos.
FR2730722B1 (fr) * 1995-02-17 1997-04-30 Rhone Poulenc Chimie Zeolithe ti-beta a haute teneur en silice, son procede de preparation et son utilisation comme catalyseur d'oxydation
FR2730723B1 (fr) * 1995-02-17 1997-04-30 Rhone Poulenc Chimie Zeolithe ti-beta, son procede de preparation et son utilisation comme catalyseur d'oxydation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634728C2 (ru) * 2015-09-17 2017-11-03 Федеральное Государственное Бюджетное Учреждение Науки Институт Нефтехимии И Катализа Ран Способ получения 4-трет-бутил-пирокатехина и катализатор для его получения

Also Published As

Publication number Publication date
ITMI972629A1 (it) 1999-05-27
ES2206809T3 (es) 2004-05-16
JP4540761B2 (ja) 2010-09-08
EP0919531A1 (en) 1999-06-02
US6133487A (en) 2000-10-17
DE69817978T2 (de) 2004-07-22
KR19990045384A (ko) 1999-06-25
SA99191036A (ar) 2005-12-03
DE69817978D1 (de) 2003-10-16
JPH11240847A (ja) 1999-09-07
TW466230B (en) 2001-12-01
IT1296573B1 (it) 1999-07-14
SA99191036B1 (ar) 2006-04-04
EP0919531B1 (en) 2003-09-10

Similar Documents

Publication Publication Date Title
EP2401248B1 (en) Process for producing phenol
RU2282624C2 (ru) Получение соединений оксирана
RU2185368C2 (ru) Способ окисления ароматических соединений до гидроксиароматических соединений
NL8104175A (nl) Werkwijze voor het hydroxyleren van aromatische koolwaterstoffen.
US4160113A (en) Process for the manufacture of resorcinol
US4361709A (en) Process for the production of o-alkylated phenols
US4400544A (en) Method for the preparation of cyclohexanone
JPH0157102B2 (ru)
EP1193238B1 (en) Process for producing 2,4,5-trialkylbenzaldehydes
US3978141A (en) Process for splitting alkylaromatic hydroperoxides into phenolic compounds
CN113698338B (zh) 一种苯乙烯双氧化产物的制备方法
US4065505A (en) Oxidation process
JP5782801B2 (ja) プロピレンオキシドの製造方法
EP0812816A1 (en) Process for producing quinones
WO2003042146A1 (en) Process for the preparation of hydroxylated aromatic compounds
US5210330A (en) Process for the preparation of phenylhydroquinone
WO2019182035A1 (ja) 芳香族ヒドロキシ化合物の製造方法
JP3367058B2 (ja) 芳香族一級ヒドロペルオキシド類の除去方法
KR19980702350A (ko) 방향족 퍼옥시카르복실산을 사용하는 에폭시드의 제조 방법
CA2152086A1 (en) Selective hydroxylation of phenol or phenolic ethers
JPS6357428B2 (ru)
WO2005063662A1 (en) Process for preparation of 2-phenyl ethanol
JPS6270332A (ja) 2,6−ジヒドロキシナフタレンの製造方法
Zolfigol et al. Ferric Nitrate/Molibdatophosphoric Acid as a New and Efficient System in the Oxidative Deprotection of Trimethylsilyl Ethers to Corresponding Carbonyl Compounds under Solvent‐Free Conditions
JPH0623117B2 (ja) 2,6−ジヒドロキシナフタレンの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171127