RU2144499C1 - Способ получения аморфного, микро/мезопористого алюмосиликатного геля - Google Patents

Способ получения аморфного, микро/мезопористого алюмосиликатного геля Download PDF

Info

Publication number
RU2144499C1
RU2144499C1 RU94044330A RU94044330A RU2144499C1 RU 2144499 C1 RU2144499 C1 RU 2144499C1 RU 94044330 A RU94044330 A RU 94044330A RU 94044330 A RU94044330 A RU 94044330A RU 2144499 C1 RU2144499 C1 RU 2144499C1
Authority
RU
Russia
Prior art keywords
gel
sio
hydrolysis
temperature
hours
Prior art date
Application number
RU94044330A
Other languages
English (en)
Other versions
RU94044330A (ru
Inventor
Переджо Карло
Перателло Стефано
Миллини Роберто
Original Assignee
Эниричерке С.П.А.
Аджип Петроли С.П.А.
ЭНИКЕМ С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эниричерке С.П.А., Аджип Петроли С.П.А., ЭНИКЕМ С.п.А. filed Critical Эниричерке С.П.А.
Publication of RU94044330A publication Critical patent/RU94044330A/ru
Application granted granted Critical
Publication of RU2144499C1 publication Critical patent/RU2144499C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к способу получения аморфного и микро/мезопористого алюмосиликатного геля, имеющего большую площадь поверхности и контролируемый размер пор. Аморфный, микро/мезопористый алюмосиликатный гель с контролируемым размером пор, имеющий площадь поверхности, по крайней мере, 500 м2/г, и с молярным отношением SiO2 : Al2O3 по крайней мере, 30:1 получают из тетра-(С25)-алкиламмонийгидроксида, три-(С24)-алкоксида алюминия и тетра-(С15)-алкилортосиликата, которые подвергают гидролизу и гелеобразованию путем обработки при атмосферном давлении, при температуре, равной или выше, чем температура кипения, любыми спиртами, которые образуются виде побочного продукта в реакции гидролиза, не удаляя указанные спирты из реакционной среды, полученный гель сушат и прокаливают. Полученный таким образом алюмосиликатный гель имеет состав, который соответствует составу исходных реагентов, полагая, что выход реакции является практически количественным. Молярное отношение SiO2 : Al2O3 находится в диапазоне от 30:1 до 500: 1, предпочтительно от 50:1 до 300:1, причем наиболее предпочтительные значения составляют величину порядка 100:1. Этот гель оказывается аморфным, он имеет площадь поверхности, по крайней мере, 500 м2/г и является активным катализатором превращения углеводородов, особенно в олигомеризации пропилена. 2 с. и 6 з.п. ф-лы, 5 ил., 4 табл.

Description

Изобретение относится к способу получения аморфного и микро/мезопористого алюмосиликатного геля, имеющего большую площадь поверхности и контролируемый размер пор, который является каталитически активным в реакциях превращения углеводородов.
Некоторые гели двуокиси кремния и окиси алюминия, проявляющие каталитическую активность, известны в данной области техники. Так, например, EP-A-160145 раскрывает способ алкилирования ароматических углеводородов, использующий в качестве катализатора аморфный алюмосиликатный гель с типичным диаметром пор 50-500 ангстрем и с молярным отношением диоксид кремния:оксид алюминия, находящемся в диапазоне от 1:1 до 10:1.
Кроме того, R.M.S.Malton и J.Davidtz в Journal of Catalysis,
Figure 00000002
156-166 (1979) раскрывает способ для синтеза аморфных катализаторов двуокиси кремния и окиси алюминия с контролируемым объемом пор.
Наконец, US-A-5049536 раскрывает микропористый, рентгеноаморфный алюмосиликатный гель, имеющий площадь поверхности от 500 до 1000 м2/г и объем пор, лежащий в диапазоне от 0,3 до 0,6 см3/г. Такой гель двуокиси кремния и окиси алюминия, который является каталитически активным в реакциях превращения углеводородов, обычно получают путем гидролиза тетраалкиламмоний гидроксида, гидролизуемого соединения алюминия и гидролизуемого соединения кремния, и получающуюся в результате гидролиза смесь подвергают гелеобразованию, проводя процесс в водной среде и при низких температурах, и затем полученный гель подвергают сушке и прокаливанию.
Заявителем установлено, что согласно данному изобретению, в отношении US-A-5049036, существуют специальные условия для гидролиза вышеупомянутых реагентов и последующего гелеобразования, которые дают возможность получить алюмосиликатный гель, у которого неожиданно улучшаются его поверхностные характеристики, в частности его пористая структура, а также каталитические характеристики, в частности, его активность и полезное время жизни при используемых условиях.
В соответствии с этим, настоящее изобретение относится к способу получения аморфного, микро/мезопористого алюмосиликатного геля с контролируемым размером пор, имеющего площадь поверхности, по крайней мере, 500 м2/г, с молярным соотношением SiO2: Al2O2, по крайней мере, 30:1, исходя из тетраалкилаламмоний гидроксида, соединения алюминия, способного давать Al2O3 путем гидролиза (т. е. гидролизуемого до Al2O3), и соединения кремния, способного давать SiO2 путем гидролиза (т.е., гидролизуемого до SiO2), отличающемуся тем, что:
- указанным тетраалкиламмоний гидроксидом является тетра-(C2-C5)-алкиламмоний гидроксид, указанным гидролизуемым соединением алюминия является алюминий три-(C2-C4)-алкоксид и указанным гидролизуемым соединением кремния является тетра-(C1-C5)-алкил ортосиликат, и указанные реагенты подвергают гидролизу и гелеообразованию, обрабатывая при температуре, равной или выше, чем температура кипения, при атмосферном давлении, любыми спиртами, которые образуются в качестве побочного продукта в указанной реакции гидролиза, не удаляя указанные спирты, или, в основном, удаляя из реакционной среды; и
- полученный таким образом гель сушат и прокаливают.
Пригодный тетраалкиламмоний гидроксид для целей данного изобретения выбирают из тетраэтил-, пропил-, изопропил-, бутил-, изобутил-, т-бутил и петиламмоний гидроксида, и среди них тетрапропил-, тетраизопропил- или тетрабутиламмоний, гидроксиды предпочтительны.
Алюминий триалкоксид выбирают из алюминий триэтоксида, пропоксида, изопропоксида, бутоксида, изобутоксида и т-бутоксида. Среди них алюминий трипропоксид и три-изопропоксид предпочтительны.
Тетраалкилортосиликат выбирают из тетраметил-, тетраэтил-, пропил-, изопропил, бутил-, изобутил-, т-бутил- и пентил-ортосиликата, и среди них тетраэтилортосиликат является предпочтительным.
Способ согласно настоящему изобретению проводят сначала путем приготовления водного раствора, содержащего тетраалкиламмоний гидроксид и триалкоксид алюминия, посредством обработки при температуре достаточно высокой для того, чтобы обеспечить полное растворение соединения алюминия. Затем к указанному водному раствору добавляют тетраалкилортосиликат. Полученную смесь затем нагревают до температуры, подходящей для начала реакции гидролиза. Указанная температура является функцией состава реакционной смеси (лежащая в диапазоне от 70 до 100oC). Реакция гидролиза экзотермична и поэтому, как только реакция начинается, ее протекание автоматически обеспечено. Количества реагентов, которые составляют реакционную смесь, должны подчиняться молярным соотношениям: SiO2:Al2O3, находящемся в диапазоне от 30:1 до 500:1, тетраалкиламмоний гидроксид: SiO2, находящемся в диапазоне от 0,05:1 до 0,2: 1, и H2O: SiO2, находящемся в диапазоне от 5:1 до 40:1. Предпочтительные значения этих молярных отношений составляют: SiO2:Al2O3 от 50:1 до 300:1, тетраалкиламмоний гидроксид: SiO2 от 0,05:1 до 0,2:1 и H2O:SiO2 от 10:1 до 25:1.
Как указано выше, основная отличительная особенность способа данного изобретения заключается в том, что гидролиз реагентов в их гелеобразование проводят путем обработки при температуре, равной или выше, чем температура кипения, при атмосферном давлении, любыми спиртами, которые образуются в качестве побочного продукта в указанной реакции гидролиза, не удаляя указанные спирты, или, в основном, удаляя из реакционной среды. Поэтому температура гидролиз/гелеобразование, как полагают, является существенной и должна соответственно поддерживаться в диапазоне от около > 65oC вплоть до около 110oC. Кроме того, для того, чтобы сохранить любые удерживаемые спирты вы реакционной среде, способ следует проводить в автоклаве при аутогенном давлении системы при выбранной рабочей температуре (обычно порядка 1,1-1,5 абс. бар), или способ можно проводить при атмосферном давлении внутри реактора, снабженного обратным холодильником.
Согласно конкретному варианту воплощения способа, гидролиз и гелеообразование проводят в присутствии большего количества спирта, чем образуется в качестве побочного продукта реакции. В этом случае свободный спирт, предпочтительно этанол, добавляют к реакционной смеси вплоть до максимального значения молярного отношения добавленный спирт: SiO2, равно 8:1.
Время, необходимое для того, чтобы вызвать гидролиз и гелеобразование до их полного завершения, при указанных выше условиях, обычно находится в диапазоне от 10 минут до 3 часов, и предпочтительно составляет величину порядка 1-2 часов.
Кроме того, установлено, что полезно подвергать старению образующийся гель, выдерживая подвергнутую гидролизу/гелеобразованию смесь в присутствии спирта и при комнатной температуре в течение времени порядка от 1 до 24 часов.
Наконец, спирт удаляют из геля и последний сушат под вакуумом (например, под вакуумом 30 торр), при температуре 110oC. Наконец, высушенный гель прокаливают в окисляющей атмосфере (обычно на воздухе) при температуре, находящейся в диапазоне от 500o до 700oC в течение периода времени от 4 до 20 часов, и предпочтительно при 500o-600oC в течение 6-10 часов.
Полученный таким образом алюмосиликатный гель имеет состав, который соответствует составу исходных реагентов, полагая, что выход реакции является практически количественным. Поэтому молярное отношение SiO2:Al2O3 должно находиться в диапазоне от 30:1 до 500:1 и, предпочтительно, от 50:1 до 300:1, причем наиболее предпочтительные значения составляют величину порядка 100:1.
При анализе методом порошковой рентгеновской дифрактометрии этот гель оказывается аморфным; он имеет площадь поверхности, по крайней мере, 500 м2/г и обычно находящейся в диапазоне от 600 до 850 м2/г, и объем пор 0,4-0,8 см3/г. Наконец, найдено, что с помощью способа данного изобретения можно контролировать размер пор, который находится в определенном диапазоне значений, и в частности, внутри диапазона от 10 до около 20 ангстрем (значения, относящиеся к радиусу пор), причем, в частности, указанные поры имеют узкое распределение по размеру, как это будет лучше видно из экспериментальных примеров, представленных в последующем.
Гель, полученный согласно данному способу, является активным катализатором в обычных реакциях превращения углеводородов, подобных реакциям изомеризации и олигомеризации легких олефинов.
Гель является особенно полезным в олигомеризации пропилена с получением углеводородных фракций, жидких при комнатных условиях, которые представляют собой разветвленные олефиновые олигомеры, используемые для формуляции бензина или топлива для реактивных двигателей.
Следующие примеры приводятся для того, чтобы лучше иллюстрировать изобретение.
Пример 1.
В этом примере способ согласно данному изобретению проводят при следующих молярных соотношениях компонентов исходной реакционной смеси:
SiO2:Al2O = 100
ТПА-OH:SiO2 = 0,09
H2O:SiO2 = 15
4,727 г воды и 3,922 г ТПА-OH (тетрапропиламмоний гидроксид, используемый в виде 14 вес. % раствора в воде) загружают в автоклав емкостью 20 литров.
Раствор в автоклаве нагревают и, когда температура достигнет 60oC, добавляют 120 г (Al(OiPr)3) (алюминий изопропоксид, поставляемый Fluka).
Автоклав закрывают, начинают перемешивание, и реакционную смесь выдерживают при вышеуказанной температуре в течение времени, необходимого для того, чтобы соединение алюминия полностью растворилось (около 40 минут). Теперь температуру автоклава повышают до 90oC и добавляют через специально предусмотренный вентиль 6,250 к ТЭОС (тетраэтилортосиликат). По завершении добавления вентиль закрывают, температуру устанавливают при 88oC и автоклав выдерживают при указанных условиях в течение 3 часов. Давление, регистрируемое по датчику давления, достигает максимального значения 1,5 бара.
Таким образом получают густой жидкий продукт, который после того, как его подвергнут старению в течение приблизительно 12 часов, сушат в роторном испарителе под вакуумом (около 60 торр) и затем прокаливают на воздухе при 550oC в течение около 8 часов.
Анализ порошковой рентгеновской дифрактометрии [проведенный с помощью вертикального дифрактометра Philips, снабженный пропорциональным импульсным счетчиком, и использовании Cu K- α излучения (lambo/a=1,54178
Figure 00000003
], указывает на то, что прокаленный твердый продукт аморфен.
Получено, что удельная поверхность указанного твердого продукта [определенная методом BET с помощью N2 адсорбции при температуре жидкого N2 (77 K) на приборе Carbo Erba Sorptomatic 1900] составляет 656 м2/г.
Удельный объем пор [определенный путем циклов адсорбция/десорбция N2 при 77 K, используя прибор Carlo Erba Sorptomatic 1900] составляет 0,473 см3/г, с распределением по размерам пор таким, как показано на фиг.1.
Принимая термины, предложенные IUPAC MANUAL of Symbols and Terminilogy, Appendix 2, Part 1 Coll., Surface chem. Pure Appl. Chem.,
Figure 00000004
, 578 (1972), согласно которым поры, имеющие диаметр < 20
Figure 00000005
, называют "микропорами" и поры, имеющие диаметр, находящийся в интервале от 20
Figure 00000006
до 500
Figure 00000007
, называют "мезопорами", полученный согласно данному изобретению твердый продукт может быть назван "микро-мезопористым" веществом.
В таблице 1 приводятся данные по каталитической активности в реакции олигомеризации пропилена, проводимой при объемной скорости (ОС), равной 4 ч-1, и при давлении 35 бар.
В этой таблице, так же как и в последующих таблицах (табл. 1-5 см. в конце описания), термин "В.П." означает "время протока", т.е. суммированное время пробега, выраженное в часах, и "Конверсия (%)" представляет собой рассчетную скорость конверсии в расчете на поданный пропилен.
Пример 2.
Способ осуществляют путем обработки согласно примеру 1, в 5-литровом автоклаве, в который загружают следующие количества реагентов:
H2O - 1,182 г
ТПА-OH - 980 г
Al(OiPr)3 - 30 г
ТЭОС - 1,560 г
Конечный продукт, полученный в этом испытательном пробеге, является аморфным при его анализе методом порошковой рентгеновской дифрактометрии; его площадь поверхности, определенная методом ВЕТ, составляет 710 м2/г и объем пор составляет 0,596 см3/г.
В таблице 2 представлены результаты по каталитической активности в реакции олигомеризации пропилена, проводимой при значении ОС 4 см-1 и давлении 35 бар.
Пример 3.
В этом примере процесс проводят в 1-литровом автоклаве при следующих молярных соотношениях компонентов реакционной смеси:
SiO2 : Al2O3 = 100
ТПА-OH : SiO2 = 0,09
H2O : SiO2 = 15
На нагревательной плитке при 60oC получают раствор из 158 г воды, 131 г ТПА-OH (используемом в виде 14 вес.% раствора в воде) и 4 г (Al(OiPr)3. После растворения алюминиевой соли, раствор загружают в 1-литровый автоклав, предварительно термостатированный при 60oC, через игольчатый клапан.
После того, как температура раствора поднимется до около 85oC, через этот же игольчатый клапан добавляют 208 г ТЭОС.
По завершении реакции гидролиза, реакционную смесь выдерживают при 82 - 83oC в течение 8 часов. Давление, регулируемое датчиком давления, достигает пикового значения 1,4 бара.
Таким образом получают густой жидкий продукт, который после приблизительно 12-часового старения, сушат в роторном испарителе под вакуумом (около 60 торр) и затем прокаливают на воздухе при 550oC в течение около 8 часов.
Согласно анализу методом порошковой рентгеновской дифрактометрии прокаленный твердый продукт является аморфным; согласно ВЕТ его удельная поверхность составляет 682 м2/г, и объем пор составляет 0,537 см3/г.
В таблице 3 представлены данные по каталитической активности в реакции олигомеризации пропилена, проводимой при значении ОС 4 ч-1 и при давлении 35 бар.
Пример 4
В этом примере способ согласно данному изобретению проводят со следующими молярными соотношениями компонентов реакционной смеси:
SiO2 : Al2O3 - 100
ТПА-OH : SiO2 - 0,09
H2O : SiO2 - 15
В 2-литровый сосуд, снабженный обратным холодильником, загружают 302 г воды и 274 г ТПА-OH (используемый в виде 14 вес.% раствора в воде).
После того, как температура достигнет значения 50 - 60oC, добавляют 8 г Al(OiPr)3. После растворения алюминиевой соли температуру повышают до 98oC, продолжают нагревание и добавляют 416 г ТЭОС. По завершении реакции гидролиза температура начинает спонтанно уменьшаться; снова начинают нагревание так, чтобы поддерживать температуру реакционной смеси при 82 - 83oC в течение 1 часа и 45 минут.
Подвергнув продукт 20-часовому старению, его выгружают из сосуда, сушат в роторном испарителе и в вакуумной печи и затем прокаливают на воздухе при 550oC в течение около 8 часов.
Согласно анализу методом порошковой рентгеновской дифрактометрии прокаленный твердый продукт является аморфным; согласно ВЕТ его удельная поверхность составляет 804 м2/г и удельный объем пор составляет 0,773 см3/г. Результаты порометрического анализа представлены на фиг. 2.
В таблице 4 представлены данные по каталитической активности в реакции олигомеризации пропилена, проводимой при значении ОС 4 ч-1 и при давлении 35 бар.
Пример 5.
В этом примере способ проводят со следующими молярными соотношениями компонентов реакционной смеси:
SiO2 : Al2O3 = 100
ТБА-OH : SiO2 = 0,09
H2O : SiO2 = 15
** ТБА = тетрабутиламмоний гидроксид, подаваемый в виде 18,9 вес.% раствора в воде
Способ проводят в реакторе, снабженном обратным холодильником, при тех же самых условиях, как в примере 4, со следующими количествами реагентов:
H2O = 186,5 г
ТБА-OH = 103 г
Al(OiPr)3 = 4 г
ТЭОС = 208 г
Согласно рентгеноструктурному анализу образующийся твердый продукт аморфен; согласно ВЕТ его площадь поверхности составляет 837 м2/г и объем пор составляет 0,737 см3/г.
Пример 6.
Способ проводят в реакторе, снабженном обратным холодильником, аналогично предшествующему примеру 4, с той разницей, что добавляют этиловый спирт (EtOH), который предварительно растворен в ТЭОС, при молярном соотношении:
- EtOH : ТЭОС = 4.
Согласно рентгеноструктурному анализу образующийся твердый продукт аморфен и согласно ВЕТ его площадь поверхности составляет 674 м2/г и объем пор 0,552 см3/г.
На фиг. 4 представлена микрофотография, полученная с помощью просвечивающего электронного микроскопа. Из нее следуют регулярное распределение и однородность пор в частицах образца. Такое наблюдение находится в соответствии с порометрическим анализом, представленным на прилагаемом фиг. 3.
Из графиков, представленных на фиг. 1-3, можно видеть, что образцы, полученные согласно способу настоящего изобретения, демонстрируют чрезвычайно узкое и регулярное распределение пор по размерам, причем радиус пор составляет около 20 ангстрем. Присутствие таких пор ясно видно, когда образец просматривают в просвечивающем электронном микроскопе (ПЭМ). Эти поры, как полагают, регулярны по размеру и распределены по всему объему аморфных алюмосиликатных частиц.
Пример 7. (Сравнительный пример)
Опыт проводят согласно условиям, указанным в Патенте США 5049536, загружая реагенты в химический стакан в следующих молярных соотношениях:
SiO2 : Al2O3 = 50
ТАП-OH : SiO2 = 0,09
H2O : SiO2 = 15
** ТПА - тетрапропиламмоний гидроксид, загружаемый в виде 13,35 вес.% раствора в воде
Согласно рентгеновскому анализу получают аморфный твердый продукт, который согласно ВЕТ имеет площадь поверхности 672 м2/г и объем пор 0,454 см3/г.
В таблице 5 представлены данные по каталитической активности этого продукта в реакции олигомеризации пропилена, проводимой при значении ОС 4 ч-1 и при давлении 35 бар.
Пример 8.
На фиг. 5 сравнивают тесты по определению срока службы катализаторов, которые проводят: первый тест с образцом из примера 4, другой тест - с образцом из сравнительного примера 7.
Характеристики и условия проведения экспериментов опытных пробегов были следующими:
- форма катализатора: гранулированный катализатор;
- размер катализатора: 20 - 40 меш;
- тип реактора: реактор с неподвижным слоем;
- подача: смесь пропилен/пропан (70 : 30 по весу);
- температура реактора: от 120 до 180oC;
- давление в реакторе: 38 бар;
- объемная скорость (ОС): 4 г пропилена на активную фазу грамм в час;
- общее время реакции: около 240 часов.
Испытания проводят путем ступенчатого подъема температуры реакции, на 10oC каждый раз (приблизительно каждые 24 часа), для того, чтобы компенсировать уменьшение конверсии, обусловленное дезактивацией катализатора.
Как можно видеть на фиг. 5, алюмосиликат примера 4 ("-0-0-" линия) представляет собой катализатор с улучшенной рабочей характеристикой по сравнению с алюмосиликатом из сравнительного примера 7 ("-*-*-" линия).
В частности, производительность (понимаемая как граммы олигомера, полученные на каждый грамм активной фазы) катализатора примера 4 составляет 510 г/г, в то время как для катализатора сравнительного примера 7 она составляет 400 г/г.

Claims (8)

1. Способ получения аморфного, микро/мезопористого алюмосиликатного геля с контролируемым размером пор, имеющего площадь поверхности, по меньшей мере, 500 м2/г, и с молярным отношением SiO2 : Al2O3, по меньшей мере 30 : 1, исходя из тетраалкиламмоний гидроксида, соединения алюминия, гидролизуемого до Al2O3, и соединения кремния, гидролизуемого до SiO2, отличающийся тем, что указанный тетраалкиламмоний гидроксид представляет собой тетра-(C2 - C5)-алкиламмоний гидроксид, указанное гидролизуемое соединение алюминия представляет собой три-(C2 - C4)-алкоксид алюминия и указанное гидролизуемое соединение кремния представляет собой тетра-(C1 - C5)-алкилортосиликат и указанные реагенты подвергают гидролизу и гелеобразованию путем обработки при температуре, равной или выше, чем температура кипения, при атмосферном давлении любыми спиртами, которые образуются в виде побочного продукта из указанной реакции гидролиза, не удаляя указанные спирты, или, в основном, не удаляя из реакционной среды, и полученный таким образом гель сушат и прокаливают.
2. Способ по п.1, отличающийся тем, что указанным тетраалкиламмоний гидроксидом является тетрапропил-, тетраизопропил- или тетрабутиламмонийгидроксид, указанным триалкоксидом алюминия является трипропоксид и триизопропоксид алюминия и указанным тетраалкилортосиликатом является тетраэтилортосиликат.
3. Способ по п.1 или 2, отличающийся тем, что получают водный раствор, который содержит тетраалкиламмоний гидроксид и триалкоксид алюминия, и к указанному водному раствору добавляют тетраалкилортосиликат, ведя процесс при более низкой температуре, чем температура гидролиза, и с такими количествами исходных реагентов, которые отвечают молярным отношениям SiO2 : Al2O3, находящимся в диапазоне от 30 : 1 до 500 : 1, театраалкиламмоний гидроксид : SiO2, находящимся в диапазоне от 0,05 : 1 до 0,2 : 1, и H2O : SiO2, находящимся в диапазоне от 5 : 1 до 40 : 1, и гидролиз и гелеобразование вызывают нагреванием до температуры, находящейся в диапазоне от около > 65oС до около 110oС, в автоклаве при аутогенной температуре системы или при атмосферном давлении внутри реактора, снабженного обратным холодильником.
4. Способ по любому из пп.1 - 3, отличающийся тем, что свободный спирт, предпочтительно этанол, добавляют к реакционной смеси до максимального значения молярного отношения добавленный спирт : SiO2 8 : 1.
5. Способ по любому из пп.1 - 4, отличающийся тем, что время гидролиз/гелеобразование находится в диапазоне от 10 мин до 3 ч и предпочтительно составляет величину порядка 1 - 2 часа.
6. Способ по любому из пп.1 - 5, отличающийся тем, что гель подвергают старению путем выдерживания смеси гидролиз/гелеобразование в присутствии спирта и в условиях комнатной температуры в течение времени порядка от 1 до 24 ч.
7. Способ по любому из предшествующих пунктов, отличающийся тем, что спирт удаляют из геля и последний сушат, проводя процесс в вакууме, и высушенный гель затем прокаливают в окисляющей атмосфере при 500 - 700oС, в течение 4 - 20 ч и предпочтительно при 500 - 600oС в течение 6 - 10 ч.
8. Катализатор реакции олигомеризации пропилена, отличающийся тем, что он представляет собой аморфный, микро/мезопористый алюмосиликатный гель, полученный по любому из пп.1 - 7.
RU94044330A 1993-12-22 1994-12-21 Способ получения аморфного, микро/мезопористого алюмосиликатного геля RU2144499C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT93MI002696A IT1265320B1 (it) 1993-12-22 1993-12-22 Procedimento per la preparazione di silico-allumine amorfe cataliticamente attive
ITM193A002696 1993-12-22
ITMI93A002696 1993-12-22

Publications (2)

Publication Number Publication Date
RU94044330A RU94044330A (ru) 1996-09-27
RU2144499C1 true RU2144499C1 (ru) 2000-01-20

Family

ID=11367379

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94044330A RU2144499C1 (ru) 1993-12-22 1994-12-21 Способ получения аморфного, микро/мезопористого алюмосиликатного геля

Country Status (14)

Country Link
US (2) US5625108A (ru)
EP (1) EP0659478B1 (ru)
CN (1) CN1048957C (ru)
AT (1) ATE164096T1 (ru)
CA (1) CA2137991C (ru)
DE (1) DE69409080T2 (ru)
DK (1) DK0659478T3 (ru)
ES (1) ES2114134T3 (ru)
IT (1) IT1265320B1 (ru)
MY (1) MY119897A (ru)
NO (1) NO308940B1 (ru)
RU (1) RU2144499C1 (ru)
SA (1) SA95150505B1 (ru)
SI (1) SI0659478T1 (ru)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1256084B (it) * 1992-07-31 1995-11-27 Eniricerche Spa Catalizzatore per la idroisomerizzazione di normal-paraffine a catena lunga e procedimento per la sua preparazione
IT1270069B (it) * 1994-07-06 1997-04-28 Eniricerche Spa Gel micro-mesoporoso e procedimento per la sua preparazione
IT1273514B (it) * 1995-04-07 1997-07-08 Eniricerche Spa Procedimento per la preparazione di un gel micro-mesoporoso
IT1276726B1 (it) * 1995-06-15 1997-11-03 Eniricerche Spa Gel di allumina mesoporoso e procedimento per la sua preparazione
IT1284007B1 (it) * 1996-06-13 1998-05-08 Eniricerche Spa Procedimento per la preparazione di un materiale micro-meso poroso ad alta area superficiale con distribuzione controllata della
IT1283454B1 (it) * 1996-07-19 1998-04-21 Enichem Spa Procedimento per la preparazione di ammidi da ossime
KR100195111B1 (ko) * 1996-07-19 1999-06-15 윤종용 다공성 복합 산화물의 제조방법
KR100200612B1 (ko) * 1996-07-31 1999-06-15 윤종용 다공성 복합 산화물의 제조 방법
IT1283773B1 (it) * 1996-08-07 1998-04-30 Enichem Spa Procedimento per la perparazione di ammidi da ossime
US5922299A (en) 1996-11-26 1999-07-13 Battelle Memorial Institute Mesoporous-silica films, fibers, and powders by evaporation
CN1081478C (zh) * 1997-07-21 2002-03-27 青岛海洋化工集团公司 硅铝胶凝胶粒产品
IT1295300B1 (it) * 1997-10-09 1999-05-04 Agip Petroli Procedimento per l'idroisomerizzazione di n-paraffine a catena lunga e catalizzatore adatto allo scopo
ITMI981633A1 (it) 1998-07-16 2000-01-16 Enitecnologie Spa Catalizzatore a base di molibdeno e suo impiego nell'isomerizzazione di n-paraffine
US6383466B1 (en) 1998-12-28 2002-05-07 Battelle Memorial Institute Method of dehydroxylating a hydroxylated material and method of making a mesoporous film
US6329017B1 (en) 1998-12-23 2001-12-11 Battelle Memorial Institute Mesoporous silica film from a solution containing a surfactant and methods of making same
US20040089238A1 (en) * 1999-10-04 2004-05-13 Jerome Birnbaum Vacuum/gas phase reactor for dehydroxylation and alkylation of porous silica
EP1101813B1 (en) * 1999-11-19 2014-03-19 ENI S.p.A. Process for the preparation of middle distillates starting from linear paraffins
US6398946B1 (en) 1999-12-22 2002-06-04 Chevron U.S.A., Inc. Process for making a lube base stock from a lower molecular weight feedstock
US6773578B1 (en) 2000-12-05 2004-08-10 Chevron U.S.A. Inc. Process for preparing lubes with high viscosity index values
US6528167B2 (en) 2001-01-31 2003-03-04 Waters Investments Limited Porous hybrid particles with organic groups removed from the surface
JP4170735B2 (ja) 2002-11-13 2008-10-22 信越化学工業株式会社 ゼオライトゾルとその製造方法、多孔質膜形成用組成物、多孔質膜とその製造方法、層間絶縁膜及び半導体装置
ITMI20051295A1 (it) 2005-07-08 2007-01-09 Eni Spa Processo per migliorare le qualita' come carburante di miscele idrocarburiche idrotrattate
FR2901804B1 (fr) * 2006-05-30 2012-08-31 Inst Francais Du Petrole Procede de transformation de l'ethanol en base pour carburant diesel
US8124820B2 (en) * 2006-06-14 2012-02-28 Neste Oil Oyj Process for the manufacture of polyolefins
FR2931818B1 (fr) * 2008-05-28 2012-11-30 Inst Francais Du Petrole Procede d'oligomerisation des olefines legeres utilisant un catalyseur a base d'un materiau amorphe a porosite hierarchisee et organisee
IT1392194B1 (it) 2008-12-12 2012-02-22 Eni Spa Processo per la produzione di idrocarburi, utili per autotrazione, da miscele di origine biologica
US8202815B2 (en) * 2008-12-26 2012-06-19 General Electric Company Catalyst composition for the hydro-treatment of alkanes and methods of use thereof
IT1392806B1 (it) 2009-02-02 2012-03-23 Eni Spa Processo integrato di cracking catalitico a letto fluido per ottenere miscele idrocarburiche con elevate qualita' come carburante
IT1396939B1 (it) 2009-12-09 2012-12-20 Eni Spa Composizione idrocarburica utile come carburante o combustibile
IT1402865B1 (it) 2010-11-05 2013-09-27 Univ Roma Procedimento per il trattamento di acqua contaminata
IT1403895B1 (it) 2010-12-29 2013-11-08 Eni Spa Processo e sistema catalitico per migliorare le qualita' come carburante di miscele idrocarburiche
WO2015107487A1 (en) 2014-01-20 2015-07-23 Eni S.P.A. Process for the production of hydrocarbon fractions from mixtures of a biological origin
EP4257662A3 (en) 2014-05-29 2023-12-27 ENI S.p.A. Process for producing a diesel hydrocarbon fraction starting from a renewable feedstock
WO2015181744A1 (en) 2014-05-29 2015-12-03 Eni S.P.A. Process for producing a diesel hydrocarbon fraction starting from a renewable feedstock
EP3149134B1 (en) 2014-05-29 2020-12-23 ENI S.p.A. Process for producing a diesel hydrocarbon fraction starting from a renewable feedstock
CN108499554B (zh) * 2017-02-24 2021-01-08 中国石油化工股份有限公司 一种硅铝材料、制备方法及其应用
US10882027B2 (en) * 2018-03-14 2021-01-05 Evonik Operations Gmbh Process for producing an oligomerization catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619908A (en) * 1984-12-24 1986-10-28 Stauffer Chemical Company Non-aged inorganic oxide-containing aerogels and their preparation
IT1213504B (it) * 1986-10-22 1989-12-20 Eniricerche Spa Zeoliti legate e procedimenye per la loro prosuzione.
IT1219692B (it) * 1988-05-06 1990-05-24 Eniricerche Spa Gel di silice e allumina cataliticamente attivo e procedimento per la sua preparazione
US5028352A (en) * 1989-07-11 1991-07-02 University Of New Mexico Low density/low surface area silica-alumina composition
CH678920A5 (ru) * 1989-11-14 1991-11-29 Gergely Gerhard
IT1252647B (it) * 1991-12-06 1995-06-20 Eniricerche Spa Catalizzatore estruso a base di gel di silice ed allumina e procedimento per la sua preparazione
IT1255526B (it) * 1992-09-29 1995-11-09 Eniricerche Spa Procedimento per la preparazione di un catalizzatore efficace nella idroisomerizzazione di normal-paraffine
IT1264031B (it) * 1993-04-08 1996-09-09 Eniricerche Spa Processo per la produzione di benzine e jet fuel a partire da n-butano

Also Published As

Publication number Publication date
NO944907D0 (no) 1994-12-19
DE69409080T2 (de) 1998-11-12
EP0659478B1 (en) 1998-03-18
ITMI932696A0 (it) 1993-12-22
ITMI932696A1 (it) 1995-06-22
DK0659478T3 (da) 1998-09-28
NO308940B1 (no) 2000-11-20
DE69409080D1 (de) 1998-04-23
MY119897A (en) 2005-08-30
CA2137991A1 (en) 1995-06-23
IT1265320B1 (it) 1996-10-31
EP0659478A1 (en) 1995-06-28
US5625108A (en) 1997-04-29
CA2137991C (en) 2005-06-28
ATE164096T1 (de) 1998-04-15
NO944907L (no) 1995-06-23
CN1107803A (zh) 1995-09-06
ES2114134T3 (es) 1998-05-16
CN1048957C (zh) 2000-02-02
RU94044330A (ru) 1996-09-27
SI0659478T1 (en) 1998-08-31
SA95150505B1 (ar) 2006-03-15
US5888466A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
RU2144499C1 (ru) Способ получения аморфного, микро/мезопористого алюмосиликатного геля
US4410501A (en) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
EP0340868B1 (en) Catalytically active silica and alumina gel and process for preparing it
US6930217B2 (en) Catalyst containing microporous zeolite in mesoporous support and method for making same
TWI353882B (en) In-situ zsm-5 synthesis
JP5271266B2 (ja) Uzm−22アルミノシリケートゼオライト、その調製方法およびuzm−22の使用方法
JP2002521303A (ja) 分子ふるいの製造方法
US5863515A (en) Mesoporous alumina and process for its preparation
JPH0692253B2 (ja) 新規な形態学的特徴を有する酸化第二セリウムおよびその製造方法
EP0812804B1 (en) Process for the preparation of a micro-meso porous material with a high surface area and controlled distribution of the porosity
KR20100075923A (ko) 경질 올레핀류 제조용 촉매 및 경질 올레핀류의 제조 방법
US20230348289A1 (en) Amorphous silica-alumina composition and method for making the same
WO2017205112A1 (en) HIGH CHARGE DENSITY METALLOALUMINOPHOSPHOSILICATE MOLECULAR SIEVES MeAPSO-83
JPH0859223A (ja) 微小−中間細孔ゲルおよびその製造方法
US4299686A (en) Shape selective catalyst from zeolite alpha and use thereof
US6555090B1 (en) Acid oxide with micro and mesoporous characteristics: ITQ-36
JPH0920513A (ja) ミクロ−メソ多孔質ゲルの製造方法
RU2422361C1 (ru) Способ получения мезопористых элементосиликатов
US4191663A (en) Preparation of shape selective zeolite alpha as catalyst
CN115010145B (zh) 一种zsm-5沸石纳米片的制备方法及其在催化反应中的应用
KR101554265B1 (ko) 비결정질 실리카알루미나-제올라이트 복합체 및 이의 제조방법
Prabhu et al. Ultrasonic Synthesis of Al‐SBA‐15 Nanoporous Catalyst for t-Butylation of Ethylbenzene
Prabhu et al. Research Article Ultrasonic Synthesis of Al-SBA-15 Nanoporous Catalyst for t-Butylation of Ethylbenzene
JP4446032B2 (ja) イソパラフィン−オレフィンアルキル化用ゼオライト触媒および該触媒を用いたアルキル化法
CN116395708A (zh) 通过水热处理合成介孔纳米尺寸沸石β的方法及其用途