RU2144087C1 - Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, способ отделения кислоты и сахаров от жидкостей, полученных этим способом производства, способ сбраживания сахаров, полученных этим способом производства, и способ переработки твердых веществ, полученных этим способом производства - Google Patents

Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, способ отделения кислоты и сахаров от жидкостей, полученных этим способом производства, способ сбраживания сахаров, полученных этим способом производства, и способ переработки твердых веществ, полученных этим способом производства Download PDF

Info

Publication number
RU2144087C1
RU2144087C1 RU95117998A RU95117998A RU2144087C1 RU 2144087 C1 RU2144087 C1 RU 2144087C1 RU 95117998 A RU95117998 A RU 95117998A RU 95117998 A RU95117998 A RU 95117998A RU 2144087 C1 RU2144087 C1 RU 2144087C1
Authority
RU
Russia
Prior art keywords
acid
resin
sugars
sugar
hydrolysis
Prior art date
Application number
RU95117998A
Other languages
English (en)
Other versions
RU95117998A (ru
Inventor
Уилльям Ферон
Джон КАЗЕНС
Original Assignee
Аркенол Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аркенол Инк. filed Critical Аркенол Инк.
Publication of RU95117998A publication Critical patent/RU95117998A/ru
Application granted granted Critical
Publication of RU2144087C1 publication Critical patent/RU2144087C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/14Purification of sugar juices using ion-exchange materials
    • C13B20/144Purification of sugar juices using ion-exchange materials using only cationic ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/14Purification of sugar juices using ion-exchange materials
    • C13B20/148Purification of sugar juices using ion-exchange materials for fractionating, adsorption or ion exclusion processes combined with elution or desorption of a sugar fraction
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • C13K1/04Purifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/803Physical recovery methods, e.g. chromatography, grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

Изобретение относится к гидролизной промышленности и может быть использовано при производстве сахаров, содержащих целлюлозу и гемицеллюлозу, и их дальнейшей переработке. Целлюлозу и гемицеллюлозу в биомассе сначала декристаллизуют первый раз концентрированной серной кислотой и подвергают первому гидролизу, в результате чего получают гидролизат, насыщенный сахаром и кислотой. После этого удаляют содержащиеся в биомассе окислы кремния и направляют их на переработку. Затем оставшиеся твердые остатки подвергают повторной декристаллизации и повторному гидролизу. Полученный в результате раствор сахара после этого подвергают ферментации, используя для этого микроорганизмы, преимущественно дрожжи и бактерии, обеспечивая ферментацию как гексозы, так и пентозы одновременно. Изобретение позволяет получать сахара из биомассы, содержащей целлюлозу и гемицеллюлозу, экономически эффективно и не загрязняя окружающую среду. 4 с. и 56 з.п.ф-лы, 3 ил.

Description

Изобретение относится к способу гидролиза биомассы, а точнее к способу производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, путем гидролиза в среде концентрированной серной кислоты.
Целлюлоза составляет основную часть всей растительной биомассы. Источником целлюлозы является структурная ткань растений. Целлюлоза вместе с гемицеллюлозой и лигнином составляет основную часть растительной клетчатки. Целлюлоза состоит из длинных цепей с β-гликозидной связью в положении 1,4. Эти связи придают целлюлозе высокую степень кристаллизации, что определяет низкую возможность воздействия ферментов или кислых катализаторов. Гемицеллюлоза является аморфным гетерополимером, который легко подвергается гидролизу. Лигнин - ароматический трехмерный полимер, заполняющий промежутки между целлюлозой и гемицеллюлозой внутри клетчатки растений.
Установлено, что три четверти от приблизительно 24 миллионов тонн биомассы, получаемой на культивированных землях и пастбищах, превращается в отходы. Эти отходы давно стремились использовать для создания альтернативных источников горючего, химических продуктов и других полезных веществ. Однако опыты по гидролизу целлюлозы до сих пор не привели к созданию экономически эффективного способа производства сахаров в больших количествах, что главным образом определено высокой степенью кристаллизации структуры целлюлозы и наличием в ней лигнина.
Описанные выше процессы гидролиза целлюлозы включают биологические и небиологические способы деполимеризации. В биологических способах используются ферменты целлюлозы. Среди небиологических способов традиционным и наиболее известным в производстве сахаров из целлюлозы является гидролиз в среде кислоты. Кислотой, наиболее часто используемой в этом способе, является серная кислота. Вообще же гидролиз в среде серной кислоты можно характеризовать как гидролиз в среде разбавленной либо в среде концентрированной кислоты.
При проведении гидролиза целлюлозы в среде разбавленной кислоты обычно используют серную кислоту с концентрацией от 0,5 до 15%. Кроме того, для проведения гидролиза необходима температура в диапазоне от 90 до 600oC и давление до 800 psi. При высоких температурах сахара разлагаются, образуя фурфурол и другие нежелательные побочные продукты. В результате этого выход глюкозы очень низок, обычно менее чем 50%. Соответственно, способ гидролиза в среде разбавленной кислоты не дает возможности получать сахара из материалов, содержащих целлюлозу, в высоких количествах и по низкой цене.
Способы гидролиза, осуществляемые в среде концентрированной серной кислоты, более эффективны, а выходы сахара при этом выше. В этих способах обычно используют серную кислоту с концентрацией от 60 до 90%. Несмотря на то что эти способы были успешными, обеспечивая выходы сахара выше 90%, в прошлом они не были экономически осуществимыми в связи с высокой стоимостью концентрированной серной кислоты и ее последующей регенерацией, трудностями, которые встречаются при обращении с концентрированной серной кислотой, и необходимостью в оборудовании, кислотостойком при высоких температурах. Кроме того, чем выше концентрация используемой кислоты, тем больше энергии требуется для ее концентрирования, что делает эти процессы экономически невыгодными.
В недавнем прошлом, однако, способ гидролиза в среде концентрированной кислоты стал объектом дополнительного исследования (см. доклады Фэна Л.Т., Гхарпюрея М.М. и Ли И.Х. Гидролиз целлюлозы, стр. 170-172, 1992 г. и Бродера Дж. Д. , Барриера Дж.В. и Лайтсея Дж.Р. "Превращение хлопковой макулатуры и других остатков в жидкое топливо", представленные на конференции Американской Ассоциации Сельскохозяйственных Инженеров, 14-15 декабря 1992 г.). Эти способы в основном состоят из следующих стадий: (1) предварительный гидролиз для осуществления гидролиза гемицеллюлозы, (2) основной гидролиз целлюлозы и (3) последующий гидролиз для образования глюкозы из олигосахаридов, образованных на стадии (2). Первая стадия включает добавку серной кислоты в биомассу, которая затем подогревается до температуры не ниже 100oC для разложения гемицеллюлозы. Результатом стадии предварительного гидролиза является раствор, содержащий не только фактически все сахара С5, но также сахара С6. Таким образом, выход сахаров C6 происходит только после утилизации потока сахаров С5, при этом выход сахара понижается. После удаления потока сахара, образованного на стадии предварительного гидролиза, добавляют концентрированную кислоту для разрушения кристаллической решетки целлюлозы и образования глюкозы. После этого образованные сахара подвергаются брожению для превращения в алкоголи. Однако было установлено, что с целью повышения экономичности этого способа необходимо упрощение стадий, расход энергии должен быть понижен и трудности, связанные с регенерированием использованной кислоты, должны быть исключены.
Дополнительные проблемы, возникающие при повышении экономической эффективности известного способа гидролиза в среде кислоты, связаны с необходимостью производства большого количества гипса для нейтрализации. В связи с низкой концентрацией сахара, получаемого в результате этого процесса, возникает необходимость повышения концентрации перед началом процесса брожения. Если гидролиз производят при температуре выше 150oC, в результате разложения пентозы образуются соединения типа фурфурола. Эти соединения препятствуют брожению и некоторые из них являются токсичными.
В дополнение к этим трудностям было установлено, что брожение сахаров, полученных в результате гидролиза в среде сильной кислоты, связано с дополнительными проблемами. В результате гидролиза целлюлозы и гемицеллюлозы производятся сахара С5 и C6. Известно, что сахара гексозы легко подвергаются брожению, в то время как процесс брожения сахаров пентозы является более трудным. Таким образом, полученные сахара сначала необходимо разделить, что часто связано с использованием сложной технологии сепарации, а затем подвергнуть брожению под действием различных микроорганизмов, обладающих свойствами производить брожение либо гексозы, либо пентозы.
При разработке процесса предварительного гидролиза в среде кислоты не принималось в расчет, каким образом должна перерабатываться биомасса с высоким содержанием кремнезема. Удаление кремнезема связано с выполнением обязательств по охране окружающей среды и решением экономических проблем. В проектах использования биомассы для сжигания в целях производства энергии высокое содержание кремнезема приводит к образованию больших количеств шлама и к необходимости решения проблем, связанных с переработкой огромных масс золы, образующейся в результате сжигания биомассы.
Эти соединения кремния имеют большое коммерческое значение и регенерация кремнезема из сельскохозяйственных отходов является все более важной (см. Карера А. , Нарджис С., Пател С., Пател М. "Материалы на основе соединений кремния, получаемые из рисовой шелухи", Журнал научных и промышленных исследований, т. 45, 1986 г., стр. 441-448). Хорошо известно, что обработка биомассы гидроксидом натрия приводит к растворению целлюлозы и гемицеллюлозы, что дает возможность отделить их от лигнина. Однако маленькие цепи целлюлозы часто загрязняют кремниевые соединения в процессе удаления и тем самым снижают выход сахара. Кроме того, удаление кремнезема путем фильтрации затрудняется образованием густого геля, который очень трудно фильтровать.
Таким образом, возникает необходимость в создании экономически эффективного, не загрязняющего окружающую среду способа получения сахара из биомассы, содержащей целлюлозу и гемицеллюлозу.
В соответствии с одним из аспектов изобретения предусмотрен способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу. Способ включает смешение биомассы с раствором, содержащим от 25 до 90% кислоты, причем наиболее предпочтительным является содержание кислоты от 70 до 77%, при котором происходит декристаллизация целлюлозы и гемицеллюлозы. В соответствии с изобретением раствор кислоты добавляют до достижения отношения чистой кислоты к материалу, содержащему целлюлозу и гемицеллюлозу по крайней мере 1:1. Наиболее предпочтительным является соотношение 1,25:1. В соответствии с изобретением используют серную кислоту.
В соответствии с другим аспектом изобретения предусмотрен способ гидролиза материалов, содержащих целлюлозу и гемицеллюлозу, в среде кислоты, растворенной до концентрации от 20 до 30% с подогревом смеси. Наиболее предпочтительным является подогрев смеси до температуры от 80 до 100oC продолжительностью от 40 до 480 мин, причем гидролиз проводится при атмосферном давлении. Затем гидролизат отделяют от твердого материала предпочтительно путем прессования гидролизованной биомассы. Жидкий гидролизат, содержащий сахара и кислоту, собирают для дальнейшей переработки.
По данному изобретению исходные материалы сначала промывают для удаления грязи и примесей. Затем материалы могут быть высушены предпочтительно до влажности приблизительно 10%. Далее исходные материалы могут быть измельчены до частиц размером предпочтительно от 0,075 мм до 7 мм, причем наиболее предпочтительный средний размер частиц составляет приблизительно 5 мм перед стадией декристаллизации. Измельчение может проводиться рядом устройств, включая дробилки, машины для резки соломы и тряпья и молотковые мельницы.
В соответствии с другим аспектом изобретения декристаллизацию и гидролиз исходных материалов повторяют. Твердый материал, отделенный после первой стадии гидролиза, смешивают с серной кислотой с концентрацией 25-90%, причем более предпочтительной является концентрация серной кислоты от 70 до 77%, в результате чего происходит дальнейшая декристаллизация оставшегося твердого материала. По данному изобретению раствор кислоты добавляют до достижения отношения чистой кислоты к материалу, содержащему целлюлозу и гемицеллюлозу, по крайней мере 1:1. Более предпочтительным является отношение 1,25:1.
В соответствии с другим аспектом изобретения вторую стадии гидролиза проводят в среде кислоты с концентрацией от 20 до 30% с подогревом смеси, в результате чего происходит дальнейший гидролиз целлюлозы и всей оставшейся гемицеллюлозы. Предпочтительным является подогрев смеси до температуры 80-100oC продолжительностью от 40 до 480 мин, гидролиз проводят при атмосферном давлении. После этого гидролизат отделяют путем прессования гидролизованной биомассы. Жидкий гидролизат собирают и смешивают предпочтительно с первым гидролизатом для проведения дальнейшего процесса, из оставшегося твердого материала может быть изготовлено гранулированное топливо.
В соответствии со следующим аспектом изобретения предусмотрен усовершенствованный способ отделения сахаров от кислоты в гидролизате для получения жидкости, содержащей в целом по крайней мере 15% сахаров и не более 3% кислоты. Этот способ включает использование устройства для сепарации, в котором сахара адсорбируются на сильнокислой смоле. Устройство для сепарации представляет собой предпочтительно слой катионообменной смолы - полистирола, в котором смола связана поперечными связями с дивинилбензолом и обработана серной кислотой для получения сильнокислой катионообменной смолы. Предпочтительная величина концентрации дивинилбензола составляет приблизительно от 6 до 8%. Другим способом получения этой смолы является полимеризация винилбензолхлорида с дивинилбензолом и обработка сернисто-кислым натрием для производства сильнокислой катионообменной смолы. Величина концентрации дивинилбензола предпочтительно составляет также приблизительно от 6 до 8%.
Предпочтительной формой частиц смолы, используемых на стадии сепарации, являются шарики диаметром приблизительно от 200 до 500 микрон. Предпочтительная величина скорости в слое смолы составляет приблизительно от 2 до 5 м/ч, температура нагрева 40-60oC. По данному изобретению слой смолы имеет плотность на различных участках от 0,6 до 0,9 г/мл, обменная емкость катионита по меньшей мере 2 мг-экв/г.
В соответствии с изобретением гидролизат добавляют на слой смолы, на котором сахара адсорбируются. Затем смолу очищают газом, практически не содержащим кислорода, который вытесняет кислоту из смолы перед стадией промывки. Эта стадия включает промывку смолы водой, практически не содержащей кислорода, в результате чего образуется поток сахара, в котором содержится по крайней мере 98% сахара, который имеется в гидролизате, добавляемом в устройство для сепарации.
В соответствии с другим аспектом изобретения повышается концентрация кислоты с целью повторного использования после отделения от потока сахара. Концентрацию производят предпочтительно способом испарения.
В соответствии со следующим аспектом изобретения предложен улучшенный способ брожения сахаров, полученных путем гидролиза материалов, содержащих целлюлозу и гемицеллюлозу, в среде концентрированной кислоты с целью получения спирта. Процесс брожения включает регулирование величины pH потока сахара для нейтрализации остатков кислоты и удаления ионов металлов. Регулирование величины pH предпочтительно производят путем добавления основания типа гидроксида кальция или оксида кальция для увеличения pH приблизительно до 11, после чего проводят обратное титрование кислотой до получения pH приблизительно около 4,5. Вещества типа магния, азота, фосфата калия, следов металлов и витаминов добавляют для того, чтобы обеспечить возможность роста микроорганизмов. После этого раствор сахара перемешивают с микроорганизмами для получения веществ, интенсифицирующих брожение. К веществам, интенсифицирующим брожение, относят этанол, n-бутанол, изопропиловый спирт, абиетиновую кислоту, глицерол, масляную кислоту, молочную кислоту, 2,3-бутандиол, пропионовую кислоту, итаконовую кислоту, лимонную кислоту, фумаровую кислоту и ацетон.
Процесс брожения по настоящему изобретению предусмотрен продолжительностью 3-5 дней, причем испаряющиеся вещества непрерывно выводятся из процесса брожения в результате рециркуляции двуокиси углерода через охлаждаемую колонну-конденсатор. После 3-5 дней продукты брожения собирают из колонны-конденсатора и дистиллируют. Дрожжи отделяют от продуктов брожения предпочтительно центрифугированием, после чего они могут быть использованы повторно.
В качестве микроорганизмов, используемых в процессе брожения по изобретению, могут быть использованы дрожжи типа Candida kefyr, Pichia stipitis, штаммы анаэробных дрожжей Saccharomyces cerevisiae, Hansenula anomala, Hansenula jadinii, Hansenula fabianii и Pachysolen tannophilus.
Эти дрожжи предпочтительно должны быть выращены на растворах пентозы в течение 1 - 2 недель перед использованием в процессе брожения. С другой стороны, в качестве микроорганизмов могут быть использованы бактерии ряда видов, таких как Clostridium, Acetobacter, Lactobacillus, Aspergillis, Propioni bacteria и Zymomonas mobilis.
B соответствии с другим аспектом изобретения предложен способ удаления и переработки кремнезема из биомассы типа рисовой соломы и отходов от очистки хлопка, которые содержат его в большом количестве. Этот способ включает обработку твердого материала, оставшегося после первого гидролиза, при помощи гидроксида натрия, предпочтительно с концентрацией от 5 до 10%, для производства экстракта. Величина pH экстракта затем снижается приблизительно до 10, предпочтительно путем добавления кислоты, такой как соляная или серная. В результате этого кремниевая кислота выпадает в осадок. После этого кремниевую кислоту удаляют, предпочтительно путем фильтрации. Для обесцвечивания кремниевая кислота может быть затем обработана окислителем, например NaOCl. Из кремниевой кислоты далее могут быть получены силикагель, силикат натрия и силикат калия. Оставшийся экстракт предпочтительно используют повторно, для чего добавляют NaOH до получения концентрации от 5 до 10%, а затем добавляют экстракт к вновь полученным твердым материалам перед обработкой этих материалов гидроксидом натрия.
Дальнейшие аспекты настоящего изобретения станут понятными специалистам из описания изобретения.
Краткое описание чертежей:
фиг. 1 - схематическое изображение способа по настоящему изобретению, на котором показаны стадии декристаллизации и гидролиза;
фиг. 2 - схематическое изображение способа по изобретению, на котором показаны стадии сепарации, брожения и восстановления концентрации кислоты;
фиг. 3 - схематическое изображение способа по изобретению, на котором показаны стадии обработки кремнезема.
Подробное описание изобретения.
Введение.
Изобретение относится к способу производства сахаров из биомассы, содержащей целлюлозу и гемицеллюлозу с использованием концентрированной серной кислоты. Полученные этим способом сахара могут быть использованы в качестве корма для животных или пищи для людей, а также в качестве исходных материалов для производства веществ из сахаров типа сахарных эфиров либо в качестве сырья для получения путем брожения этанола или других продуктов, таких как бутанол, пропанол, ацетон, этилацетат и многих других химических веществ, для получения которых могут быть использованы специальные микроорганизмы, определяющие характер процесса обмена веществ.
В данном изобретении предложены средства для производства сахаров из биомассы, уменьшающие количество отходов или веществ, загрязняющих окружающую среду. При разработке способа предусмотрено повторное использование всех потоков и переработка всех твердых веществ в полезные продукты или продукты, которые можно продать. Большую часть кислоты регенерируют для повторного использования. В том случае, если в биомассе содержится высокое количество кремнезема, в результате этого способа в качестве сопутствующих продуктов могут быть получены гель кремниевой кислоты, силикат натрия или силикат калия. На стадиях процесса, включающих брожение, причем брожение сахаров как С5, так и С6, могут быть использованы природные микроорганизмы. Кроме того, высокий выход сахара, полученного путем гидролиза биомассы, делает концентрацию потоков сахара перед брожением необязательной.
Другими чертами настоящего изобретения, которые повышают его эффективность и экономическую осуществимость, являются использование атмосферного давления и относительно низких температур. В результате этого способа не образуются фурфурол и другие вредные сопутствующие продукты, токсичные и замедляющие брожение. Способ по данному изобретению не требует использования редких и дорогих материалов типа танталовой стали для изготовления конструкций.
Как будет более подробно изложено ниже, в данном изобретении предусмотрены эффективные и экономичные средства производства полезных химических веществ путем гидролиза сельскохозяйственных отбросов, отходов при этом образуется очень мало, либо они полностью отсутствуют.
Ниже приведены примеры, иллюстрирующие способ по данному изобретению.
Декристаллизация.
Исходные материалы, используемые в процессе по данному изобретению, перемешивают в таком соотношении, что содержание целлюлозы и гемицеллюлозы составляет не менее 65%, причем более предпочтительная величина составляет приблизительно 75%. Первой, необязательной, стадией процесса является промывка биомассы для удаления грязи и примесей. На фиг. 1 показано, что рисовую солому 1, биомассу, используемую как пример на этих чертежах, промывают водой 2. К преимуществам способа по этому изобретению может быть отнесен широкий ряд исходных материалов, включающий рисовую солому, которую более трудно переработать, чем другие материалы, в связи с высоким содержанием кремнезема. Необходимо отметить однако, что сущность этого изобретения не ограничена каким-либо определенным типом биомассы, при этом имеется в виду широкий диапазон материалов. Рисовая солома является просто типичным примером природной биомассы.
После окончания промывки использованная вода перетекает в отстойник 4, для того чтобы грязь и другие осадки собрались на дне 6, после чего вода 5 может быть повторно использована для промывки следующей партии рисовой соломы перед переработкой.
После очистки рисовой соломы она может быть высушена 8, причем предпочтительная величина влажности составляет около 10%. После сушки материал измельчают 7 до частиц размером от 0,075 до 7 мм. Предпочтительным является размер частиц от 3 до 7 мм, причем средний размер частиц составляет 5 мм. Необходимо отметить, что для некоторых материалов последовательность этих двух стадий может быть изменена. Так, материал может быть подвергнут мокрому измельчению в устройствах типа гидропульпера, а затем высушен.
Теперь рисовая солома подготовлена для декристаллизации. По способу, заявленному в изобретении, исходные материалы, содержащие целлюлозу и/или гемицеллюлозу, сначала перемешивают с концентрированной серной кислотой 9 до концентрации от 25 до 90% для достижения эффективной декристаллизации. Предпочтительная величина концентрации используемой кислоты составляет от 70 до 77%. Кислоту необходимо добавить в таком количестве, чтобы отношение веса чистой кислоты к весу материалов, содержащих целлюлозу и гемицеллюлозу, составило по крайней мере 1:1. Предпочтительная величина отношения составляет 1,25: 1. В результате добавления кислоты к биомассе образуется густой гель 10. Смешение исходного материала с кислотой имеет те преимущества, что оно приводит к разрыву связей между цепями целлюлозы и гемицеллюлозы, что дает возможность производить гидролиз длинных цепей целлюлозы.
Декристаллизацию проводят при температуре, не превышающей 80oC, причем предпочтительная величина составляет 60-80oC. Если температура в процессе декристаллизации превысит 80oC, большая часть сахаров C6 исключается из последующего гидролиза. При условиях, предусмотренных изобретением, сохраняются сахара с наиболее высокой реакционной способностью, которые образуются в начале процесса гидролиза. Наличие стадии декристаллизации предотвращает преждевременный гидролиз и соответственно увеличивает степень разложения сахаров. Стадия декристаллизации описана ниже в примерах 1-3.
Пример 1.
Рисовая солома, содержащая 75% по весу целлюлозы и гемицеллюлозы, вес которой составлял 50,01 г, была перемешана с 66,82 г 77% H2SO4. Рисовая солома медленно добавлялась к H2SO4 таким образом, чтобы после добавки новых порций соломы оставался избыток жидкости. Температура поддерживалась ниже 80oC. После добавки последней порции рисовой соломы образовавшийся гель был тщательно перемешан.
Пример 2.
Рисовая солома весом 50,04 г была перемешана с 98,91 г 77% H2SO4. Рисовая солома медленно добавлялась в H2SO4 таким образом, чтобы после добавки новой порции соломы оставался избыток жидкости. Температура поддерживалась ниже 80oC. После добавки последней порции рисовой соломы образовавшийся гель был тщательно перемешан.
Пример 3.
Смесь древесных обрезков и газетной бумаги весом 100,00 г перемешана со 167,63 г 77% H2SO4. Древесные обрезки были измельчены до размера 3-7 мм и порция весом 40 г была перемешана с 60 г газетной бумаги, разрезанной на полосы шириной приблизительно 6 мм. Эта смесь медленно добавлялась в H2SO4 таким образом, чтобы после добавки каждой порции оставался избыток жидкости. Температура поддерживалась ниже 80oC. После добавки последней порции обрезков и газетной бумаги образовавшийся гель был тщательно перемешан.
Первый гидролиз.
После стадии декристаллизации концентрированнную кислоту разбавляют предпочтительно до концентрации от 20 до 30%, для чего используют предпочтительно возвратную воду 11. Затем смесь подогревают до температуры от 80 до 100oC для проведения гидролиза 12. Продолжительность гидролиза составляет от 40 до 480 минут в зависимости от температуры и концентрации целлюлозы и гемицеллюлозы в исходном материале. После того как прошло надлежащее время, скорость разложения гексозы и пентозы превысит скорость их образования. Таким образом, для увеличения выхода сахара важно прекратить по окончании надлежащего времени первую ступень гидролиза и удалить сахара, а затем произвести вторую стадию гидролиза для превращения оставшейся целлюлозы и гемицеллюлозы в сахара. После гидролиза раствор сахаров и кислоты отделяется от оставшегося твердого вещества предпочтительно путем прессования 15. Стадия гидролиза описана в приведенных ниже примерах 4-6.
Пример 4.
К массе геля, полученного в примере 1, добавили 54,67 г воды для проведения гидролиза с уменьшенной концентрацией кислоты во всей смеси до 30%. Пробу подогревали до 100oC в течение 60 мин. Во время подогрева часть воды испарилась. Масса геля была подвергнута прессованию, выход составил 93 г жидкости, в том числе 17,1% сахаров и 35,52% кислоты.
Пример 5.
После того как масса геля, полученного в примере 2, была тщательно перемешана, к ней добавили 104,56 г воды для уменьшения концентрации кислоты во всей смеси до 30%. Пробу подогревали до 100oC в течение 60 мин. Масса геля была подвергнута прессованию, выход жидкости составил 188,9 г, в том числе 16,5% сахаров и 34,23% кислоты.
Пример 6.
После того, как масса геля, полученного в примере 3, была тщательно перемешана, к ней добавили 162,62 г воды для уменьшения концентрации кислоты во всей смеси до 30%. Пробу подогревали до 100oC в течение 60 мин. Во время подогрева часть воды испарилась. Масса геля была подвергнута прессованию, выход жидкости составил 214,3 г, в том числе 17,6% сахаров и 36,85% кислоты.
После прессования оставшийся осадок, содержащий твердое вещество, промывали водой в количестве 170 г и вновь подвергали прессованию, после чего была получена жидкость, содержащая 16,3% кислоты и 8,92% сахаров, которая была использована для последующей промывки с целью увеличения выхода сахара.
Переработка кремнезема.
В способе по изобретению очень выгодной является переработка материалов, содержащих высокие количества кремнезема. Этот способ показан на фиг. 3. Спрессованное твердое вещество 14, оставшееся после первого гидролиза, может быть обработано 5-10% двуокисью натрия 16 для того, чтобы извлечь кремниевую кислоту 18. Эта стадия процесса не является обязательной и ее проводят в тех случаях, когда биомасса содержит высокие количества кремнезема, например при переработке рисовой соломы или хлопчатобумажной макулатуры. После обработки двуокисью натрия 16 твердое вещество сначала подогревают 16А, а затем прессуют 17 и промывают водой для удаления жидкости 18. Эту жидкость обрабатывают кислотой 19А для снижения pH, при этом образуется осадок 21, который отделяют предпочтительно фильтрованием 22. Вещество в фильтре отбеливают 19В для производства материала, который представляет собой чистый силикагель. Силикагель может быть подвергнут дальнейшей переработке для производства силиката натрия, силиката калия или других полезных материалов. Процесс извлечения кремнезема описан далее в примерах 7-9.
Пример 7.
Осадок после гидролиза рисовой соломы, полученный как показано выше в примере 1, весом 499,75 г после прессования и выхода гидролизата сахаров, был обработан 5% раствором NaOH весом 659,8 г. Смесь нагревали до 80oC в течение 90 мин. Осадок подвергали прессованию и промывке водой. Было установлено, что величина pH всей полученной жидкости превышала 12. Жидкость была обработана концентрированной HCl для уменьшения величины pH до 10. Полученный легкий осадок был отделен фильтрацией. Далее было проведено отбеливание материала в фильтре путем добавки 11% раствора NaOCl для производства отбеленного материала, который представляет собой практически чистый силикагель. Материал из фильтра представляет собой кремнезем, который должен быть высушен до заданной влажности.
Пример 8.
Осадок силикагеля из фильтра, который был получен способом, приведенным в примере 7, был обработан шариками NaOH для производства силиката натрия. Анализ раствора силиката натрия при помощи FT-IR спектрометра показал, что выход кремнезема из осадка превышает 85%.
Пример 9.
Осадок силикагеля из фильтра, полученный способом, приведенным в примере 7, был обработан шариками КОН для производства силиката калия в значительных количествах.
Вторичная декристаллизация и гидролиз.
Для увеличения производительности по выходу сахаров, произведенных способом по настоящему изобретению, другим аспектом изобретения является стадия вторичной декристаллизации и гидролиза. Твердые вещества, оставшиеся после первого гидролиза, или твердые вещества, оставшиеся после обработки гидроксидом натрия для извлечения кремнезема, высушивают 23. Сухие твердые вещества 24 смешивают с концентрированной серной кислотой 25 с концентрацией от 25 до 90%, чтобы провести вторичную декристаллизацию. Предпочтительная концентрация кислоты составляет от 70 до 77%. Обработка материала в течение того же времени, что и при первой декристаллизации, не является необходимой. Практически вторая стадия декристаллизации может проходить в течение тех нескольких минут, которые занимает смешение кислоты и твердого материала. Вторая стадия декристаллизации также заканчивается образованием густого геля 26.
Концентрированную кислоту далее разбавляют предпочтительно до концентрации от 20 до 30%, для чего предпочтительно используют возвратную воду 27. Затем смесь подогревают для производства вторичного гидролиза. Образующийся гель 28 подвергают прессованию для получения вторичного потока кислоты и сахара 30, после чего потоки от двух стадий гидролиза смешиваются. Оставшийся твердый материал собирают, и из него может быть изготовлено гранулированное топливо 29. Очень выгодно, что гранулирование богатого лигнином осадка помогает снизить количество отходов, полученных в результате реализации этого способа.
Стадии вторичной декристалллизации и гидролиза описаны ниже в примерах 10 и 11.
Пример 10.
Осадок, образованный в результате прессования после первой стадии гидролиза рисовой соломы, был собран и высушен до влажности 10%. Осадок, содержащий 41% целлюлозы и весящий 50,03 г, был перемешан с 33,28 г 77% H2SO4 для достижения отношения чистой кислоты к целлюлозе 1,25:1. Осадок медленно добавляли к кислоте и перемешивали до тех пор, пока не был получен густой гель. Концентрация чистой кислоты в смеси составляла 30,75%; для обеспечения конечной концентрации кислоты, равной 25,5%, добавили еще 17,00 г воды. Затем смесь подогревали до 100oC в течение 50 мин. После охлаждения гель был подвергнут прессованию и из него было извлечено 3145 г жидкости, содержащей 18,2% сахара и 21,1% кислоты. Осадок, содержащий твердые вещества, оставшиеся после прессования, промыли 25 г воды, в результате чего был получен раствор, содержащий 15,2% сахара и 19,7% кислоты.
Спрессованный осадок был высушен до влажности примерно 10%. Установлено, что теплотворность этого осадка составляет 8600 BTU/фунт. Этот топливный материал, который состоит в основном из лигнина с неизвлеченным сахаром, некоторых продуктов разложения сахаров и некоторого количества непрореагировавшей целлюлозы, горит исключительно хорошо, но в результате горения остается зола, которая содержит около 7% кремнезема.
Пример 11.
Осадок гидролиза рисовой соломы, оставшийся после удаления кремнезема, как показано на примере 7, вес которого составлял 500 г, был перемешан с 77% H2SO4 до достижения отношения чистой кислоты к целлюлозе 1,25:1. Осадок медленно добавляли к кислоте и перемешивали до образования густого геля. После этого добавляли воду до обеспечения концентрации чистой кислоты 25,5%. Затем смесь подогревали до 100oC в течение 50 мин. После охлаждения гель подвергали прессованию для извлечения жидкости, содержащей как сахар, так и кислоту. Осадок, содержащий твердые вещества, оставшиеся после прессования, промывали водой для производства вторичного раствора, содержащего сахар и кислоту.
После прессования осадок был высушен до влажности приблизительно 10%. Было показано, что теплотворность этого осадка составляет 8600 BTU/фунт. Этот топливный материал, который состоит в основном из лигнина с неизвлеченным сахаром, некоторых продуктов разложения сахаров и некоторого количества непрореагировавшей целлюлозы, горит исключительно хорошо и содержание золы в результате горения составляет менее 1%.
Разделение кислоты и сахаров.
В соответствии с другим аспектом изобретения предложен усовершенствованный метод разделения кислоты и сахара в гидролизате, произведенном при гидролизе в среде кислоты материалов, содержащих целлюлозу и гемицеллюлозу. Как показано на фиг. 2, поток раствора сахара и кислоты 31 перерабатывается в устройстве для сепарации, которое представляет собой слой сильнокислой смолы полистирола-дивинилбензола. Смола предпочтительно связана поперечными связями с дивинилбензолом, концентрация которого предпочтительно составляет от 6 до 8%, и обработана серной кислотой до получения величины обменной емкости по крайней мере 2 мг-экв/г. Ряд подобных смол является экономически доступным, к их числу относятся Доуэкс 40166, поставляемая фирмой "Доу Кемикл", Файнэкс GS-16, поставляемая компанией "Файнэкс", Финляндия, Пьюролайт PCR-771, поставляемая "Пьюролайт инк.", Бэйла Синвид РА и IR-118, поставляемые компанией "Роом и Хаас". Наиболее предпочтительным является использование смолы ДоуХFS 43281.01, поставляемой "Доу Кемикл". Смола выполнена в виде шариков диаметром от 200 до 500 микрон. Скорость потока в слое смолы составляет от 2 до 5 м/ч, причем плотность слоя на различных участках составляет от 0,6 до 0,9 г/мл. Слой смолы должен быть подогрет, предпочтительно до температуры от 40 до 60oC. Могут быть использованы и более высокие температуры, но в результате этого произойдет преждевременное разрушение слоя смолы. Более низкие температуры могут привести к тому, что сепарация будет менее эффективной. Сахар адсорбируется в колонне при прохождении через нее раствора кислоты 32. После того, как кислота извлечена из адсорбента, смола может быть очищена газом, который практически не содержит кислорода, то есть количество растворенного в газе кислорода не должно превышать 0,1 частей на миллион. Этот газ предназначен для удаления из смолы оставшейся кислоты, в результате чего процесс сепарации проходит более четко.
После извлечения кислоты смолу промывают водой 34, которая практически не содержит кислорода. Количество кислорода, растворенного в воде, предпочтительно должно быть менее 0,5 частей на миллион, или еще более предпочтительно 0,1 частей на миллион. В результате этой промывки образуется поток сахара 33, содержащий как минимум 98% сахаров в гидролизате, который был добавлен в установку для сепарации.
В результате процесса сепарации собираются три потока: поток кислоты, поток сахара и поток смеси сахара с кислотой, который вновь циркулирует в процессе вторичной сепарации. Поток кислоты 32 вновь концентрируется и возвращается для повторного использования, как будет более полно показано ниже. Поток сахара 33, который содержит предпочтительно по крайней мере 15% сахаров и не более, чем 3% кислоты, может потом при желании быть подвергнут брожению. Чистоту сахара можно подсчитать в процентах к массе компонентов потока сахара, не содержащих воду. Все сахара с чистотой выше 83,3% (100 х 15/18) пригодны для брожения.
Наличие кислоты с концентрацией выше чем 3% в потоке сахара не вызывает проблем для дальнейшей переработки. Однако изменение указанного соотношения сахара и кислоты при сепарации может уменьшить общие экономические показатели процесса.
Например, в идеальном процессе сепарации для извлечения из адсорбента 100 г пробы раствора, содержащего 30 г кислоты, 15 г сахара и 55 г воды из сепарационной колонны, должны быть использованы 100 г воды. В случае точной сепарации поток сахара будет содержать 15 г сахара и 85 г воды. При этом должно остаться 30 г кислоты и 70 г (100+55-85) воды для получения кислоты той же концентрации, 30%, как и в первоначальном растворе.
Однако фактически для извлечения пробы весом 100 г раствора, указанного выше, нужно добавить в колонну 200 г воды. Поток сахара по-прежнему составляет 15%, но в этом случае поток кислоты содержит 170 г (200+55-85) воды и 30 г кислоты, в результате чего концентрация кислоты составляет 15%. Таким образом, если чистота потока кислоты составляет 95% при концентрации кислоты 15%, в каждом процессе извлечения будет потеряно вместе с кислотой около 1,5 г сахара. Если чистота потока сахара составляет 95%, при концентрации 15% в каждом процессе извлечения будет потеряно 0,75 г кислоты. Эта разница определяется тем обстоятельством, что поток кислоты содержит вдвое больше материала. Таким образом, чистота потока кислоты является более важным параметром, чем чистота потока сахара.
Сепарация кислоты и сахаров объясняется в приведенных ниже примерах 12-19.
Пример 12.
Поток кислоты и сахара, произведенный путем гидролиза материалов, содержащих целлюлозу и гемицеллюлозу, разделялся, проходя через стеклянную колонну диаметром 50 см и объемом 1,2 л, заполненную РСR-771, сильнокислой катионообменной смолой, поставляемой фирмой "Пьюролайт Инк". В колонне поддерживалась температура 60oC, скорость потока, определенная по расходомеру, была равна 70 мл/мин, что составляет линейную скорость около 0,8 м/ч. Выходящие материалы собирались в три потока: поток кислоты, поток сахара и поток смеси для повторного разделения в другом слое смолы. Чистота потока кислоты составляла 96,8% (кислота плюс вода). Чистота потока сахара составляла 86,8% (сахар плюс вода). Полное извлечение кислоты составляло 97,3%, извлечение сахара 95,5%.
Пример 13.
Поток жидкого гидролизата, произведенного путем гидролиза в среде кислоты материалов, содержащих целлюлозу и гемицеллюлозу, разделялся, проходя через стеклянную колонну диаметром 50 см и объемом 1,2 л, заполненную PCR-771, сильнокислой катионообменной смолой, поставляемой "Пьюролайт инк". В колонне поддерживалась температура 40oC, скорость потока, определенная по расходомеру, составляла 70 мл/мин. Выходящие материалы собирались в три потока: поток кислоты, поток сахара и поток смеси для повторного разделения в другом слое смолы. Чистота потока кислоты составляла 95,1% (кислота плюс вода). Чистота потока сахара составляла 93,1% (сахар плюс вода). Полное извлечение кислоты составило 96,8%, извлечение сахара 90,6%.
Пример 14.
Жидкий гидролизат, содержащий 34,23% H2SO4 16,5% сахара, разделялся, проходя через стеклянную колонну диаметром 50 см и объемом 1,2 л, заполненную PCR-771, сильнокислой катионообменной смолой, поставляемой "Пьюролайт инк". В колонне поддерживалась температура 60oC, скорость потока, определенная по расходомеру, составляла 70 мл/мин. Выходящие материалы собирались в три потока: поток кислоты, поток сахара и поток смеси для повторного разделения в другом слое смолы. Чистота потока кислоты составляла 96,47% (кислота плюс вода). Чистота потока сахара составляла 92,73% (сахар плюс вода). Полное извлечение кислоты составляло 97,9%, извлечение сахара 95%.
Пример 15.
Жидкий гидролизат, полученный путем гидролиза газетной бумаги, содержащий 31,56% кислоты и 22,97 % сахара, разделялся, проходя через стеклянную колонну диаметром 50 см и объемом 1,2 л, заполненную PCR-771, сильнокислой катионообменной смолой, поставляемой "Пьюролайт инк". В колонне поддерживалась температура 40oC, скорость потока, определенная по расходомеру, составляла 70 мл/мин. Выходящие материалы собирались в три потока: поток кислоты, поток сахара и поток смеси для повторного разделения в другом слое смолы. Чистота потока кислоты составляла 96,7% (кислота плюс вода). Чистота потока сахара составляла 90,9 %(сахар плюс вода). Полное извлечение кислоты составляло 99,5%, извлечение сахара 96,7%.
Пример 16.
Жидкий гидролизат, полученный путем гидролиза газетной бумаги, содержал 31,56% кислоты и 22,97% сахара. Одна порция жидкости разделялась, проходя через стеклянную колонну диаметром 50 см и объемом 1,2 л, заполненную Файнэкс GS-16, сильнокислой катионообменной смолой, поставляемой фирмой "Файнэкс", Финляндия. В колонне поддерживалась температура 60oC, скорость потока, определенная по расходомеру, составляла 70 мл/мин. Вторая порция жидкости разделялась, также проходя через стеклянную колонну диаметром 50 см и объемом 1,2 л, заполненную Файнэкс GS-16. В колонне поддерживалась температура 40oC, скорость потока, определенная по расходомеру, составляла 70 мл/мин. В обоих случаях выходящие материалы собирались в три потока: поток кислоты, поток сахара и поток смеси для повторного разделения в другом слое смолы. Чистота потока кислоты составляла по крайней мере 90% (кислота плюс вода). Чистота потока сахара составляла 94% (сахар плюс вода).
Пример 17.
Гидролизат, содержащий 15% сахара и 30% кислоты, разделялся, проходя через стеклянную колонну диаметром 50 см, объемом 1,2 л, заполненную смолой Доу XFS 43281.01, поставляемой "Доу Кемикл". В колонне поддерживалась температура 60oC, скорость потока по расходомеру составляла 65 мл/мин. После добавки гидролизата колонна была промыта кипяченой и охлажденной дистиллированной водой. Чистота потока кислоты составляла 97,0%; чистота потока сахара 97,2%. Величина набухания между фазами кислоты и воды на смоле составляла 2,48%.
При повторной добавке того же гидролизата в колонну с последующей промывкой были извлечены практически вся кислота и весь сахар, причем извлечение сахара составило более 99,1%, чистота сахара 97,2%, чистота кислоты 92,3%. Скорость промывки в ходе сепарации составила 65 мл/мин.
Пример 18.
Устройство AST LC1000 с вращающимся слоем смолы, изготовленное фирмой "Эдвансд Сепарейшн Текнолоджиз, Инк", было использовано для разделения смесей сахара и кислоты. Устройство состояло из 20 колонн, в каждой колонне содержался слой смолы объемом 2 л. Колонны были заполнены смолой Файнекс GS-16 с температурой 60oC. При продолжительности работы, равной 8 часам, исходный материал содержал 14,89% сахара и 23,79% кислоты. Скорость промывки адсорбента составила 244 мл/мин, что соответствует линейной скорости 0,12 м/мин или 7,3 м/ч. Чистота сахара была равна 94,6% и чистота кислоты 92,4%. Извлечение сахара составило 84% при концентрации 13,9%. Извлечение кислоты составило 97,5% при концентрации 7,5%.
Пример 19.
Устройство AST LC1000 с вращающимся слоем смолы, изготовленное фирмой "Эдвансд Сепарейшн Текнолоджиз, Инк", со слоем смолы, общим объемом 15,2 л, было использовано для разделения смесей сахара и кислоты. Колонны были заполнены смолой Пьюролайт PCR-771. Исходный материал содержал 12,6% сахара и 18,9% кислоты. Скорость промывки адсорбента составила 117 мл/мин. Чистота сахара в потоке сахара составила 92,4% и чистота кислоты 92,1%, при этом температура в колонне 60oC.
Концентрация и повторное использование кислоты.
Раствор кислоты 32, извлеченный из установки для сепарации, может быть после концентрации направлен для повторного использования на более ранние стадии способа по изобретению. При использовании стандартного одноступенчатого испарителя 36 достигают повышения концентрации кислоты вплоть до 35%. Предпочтительным является использование трехступенчатого испарителя, поставляемого фирмой "Кемитрикс", Торонто, Онтарио, Канада, который дает возможность повысить концентрацию до 70 - 77%. Вода 35, полученная в концентраторе, может быть использована как вода для промывки адсорбента в установке для сепарации со слоем смолы.
Брожение.
В соответствии с другим аспектом изобретения предложен улучшенный способ брожения потока сахара, отделенного после гидролиза в среде кислоты материалов, содержащих целлюлозу и гемицеллюлозу. Поток сахара содержит сахара как гeкcoзы, так и пентозы. Эти сахара могут быть подвергнуты брожению одновременно при использовании микроорганизмов, встречающихся в природе. Преимуществом этого способа является возможность избежать разделения этих сахаров или проведения процесса в две стадии.
В растворе сахара 33, извлеченном из установки для сепарации, после гидролиза в среде кислоты, могут содержаться остатки кислоты. Кислоту необходимо сначала нейтрализовать 37, предпочтительно гашеной известью, для достижения значений pH от 10 до 12. При такой величине pH успешно удаляются все следы ионов металлов, которые могут оказать влияние на процесс последующей переработки. На этом этапе добавляются вещества 40, такие как магний, азот, фосфат калия и витамины, которые содействуют росту микроорганизмов.
В соответствии с одним из важных аспектов изобретения при желании можно подвергать брожению сахара C5 и С6 одновременно. Установлено, что некоторые дрожжи, выращенные определенным способом 43, могут производить брожение обоих этих видов сахаров. Установлено, что Candida kefyr, Pichia stipitis и штаммы анаэробных дрожжей, в том числе Saccharomyces cerevisiae, эффективно применяются при температурах 25-32oC в том случае, если они до этого были выращены на растворах пентозы в течение 1-2 недель до использования в смеси с сахарами.
При желании производить брожение гексозы отдельно с целью извлечения пентозы для использования в других целях, можно применить известные дрожжи глюкозы, такие как Saccharomyces cerevisiae. Kluveromyces shehatae (вар. shehatae, lignosa u insectosa.). Определенные виды бактерий также производят продукты, полезные для брожения, и могут быть использованы в соответствии со способом, изложенным в изобретении. К этим бактериям относятся виды Clostridium и Symomonas mobilis.
В случаях, когда брожение под действием дрожжей или бактерий замедляется под действием этанола или других испаряющихся продуктов, эти испаряющиеся продукты брожения могут непрерывно удаляться путем рециркуляции двуокиси углерода, образующейся при брожении, через охлаждаемую колонну-конденсатор и последующей повторной подачи двуокиси углерода в устройства для брожения. Испаряющиеся компоненты вместе с частью воды конденсируются в колонне и могут быть собраны для дальнейшей очистки. К преимуществам процесса также относится эффективное охлаждение устройства для брожения, которое требуется для активизации брожения.
После окончания процесса брожения, который продолжается 3-5 дней, продукты брожения и микроорганизмы разделяют, предпочтительно в центрифуге 41. Микроорганизмы 43 могут быть повторно использованы для переработки следующей партии сахаров. Раствор спирта 44 может быть направлен в колонну-дистиллятор 46 для дальнейшей переработки.
Предпочтительные методы брожения изложены далее в примерах 20, 21.
Пример 20.
Растворы сахара, полученные из сепарационных колонн, заполненных смолой, после нескольких переработок собирали и нейтрализовали с помощью Ca(ОН)2 до значений pH от 10 до 11. Раствор фильтровали до разделения CaSO4 (гипса) и прозрачной желтоватой жидкости - сахара. Величина pH сахарной жидкости была понижена до pH, равного 4,5, путем использования смеси концентрированной фосфорной кислоты и серной кислоты. Фосфорная кислота была добавлена первой со скоростью подачи 0,3 г/л H3PO4. Затем был добавлен ряд веществ перед нейтрализацией, однако при этом раствор оставался стерильным благодаря высокой величине pH. Добавляемые вещества включают: 0,07 г/л MgSO4, 0,2 г/л KNO3, 0,5 г/л мочевины, 1,0 г/л экстракта дрожжей, 0,1 мг/л FeNaEDTA, 0,01 мг/л H3ВО3, 0,04 мг/л MnSO4 • H2О, 0,02 мг/л ZnSO4 • 7H2O, 0,003 г/л KI, 1 мкг/л Na2MoO4•2H2O, 0,1 мкг/л CuSO4•5H2O и 0,1 мкг/л CoCl2•6H2O.
Раствор был затем погружен в устройство для брожения, где уже содержались Candida kefyr (АТСС 8619), Pichia stipitis (NRRL Y-7124), Hansenula anomala (ATCC 42398), Hansenula anomala (ATCC 8168), Hansenula fabianii (ATCC 16755), Hansernla jadinii (ATCC 18201) или штаммы анаэробных дрожжей вида Saccharomyces ceгеvisiae, которые были предварительно выращены в среде 5% раствора ксилозы. Дрожжевой "крем" в устройстве для брожения содержит по крайней мере 20 г дрожжей приблизительно в каждых 100 мл из общего объема устройства для брожения 2 литра. Добавляются приблизительно 200 мл раствора. Добавка повторяется каждый день в течение трех дней. Под действием дрожжей происходит брожение раствора, содержащего как сахара С5, так и сахара С6.
Пример 21.
Растворы сахара, полученные из колонн, заполненных смолой, собирали и нейтрализовали при помощи Ca(ОН)2 до значений pH от 10 до 11. Раствор фильтровали для разделения CaSO4 (гипса) и прозрачной желтоватой сахарной жидкости. Величина pH сахарной жидкости была понижена до pH, равного 4,5, путем использования смеси концентрированной фосфорной кислоты и серной кислоты. Фосфорную кислоту добавляли первой со скоростью подачи 0,35 г/л H3PO4. Затем перед нейтрализацией добавляли ряд веществ, однако раствор оставался стерильным благодаря высокой величине pH. Добавляемые вещества включают: 0,07 г/л MgSO4, 0,2 г/л KNO3 1,0 г/л (NH4)2SO4, 1,0 г/л экстракта дрожжей, 5,0 мг/л FeSO4, 1,0 мг/л H3BO3, 5,0 мг/л MnSO4 • 2Н2О, 10 мкг/л CuSO4•4Н2О, 20 мкг/л CoCl2•6H2O, 10 мкг/л биотина, 0,25 г/л пиридоксина НСl, 1,5 мг/л i-инозитола, 2,0 мг/л пантотената Ca, 5,0 мг/л тиамина HCl и 25 мг/л пептона.
Раствор затем был погружен в устройство для брожения, где уже содержались Candida kefyr (АТСС 8619) Pichia stipitis (NRRL Y-7124), Hansenula anomala (ATCC 8168), Hansenula fabianii (16755), Hansenula jadinii (ATCC 18201), или штаммы анаэробных дрожжей Saccharomyces cerevisiae, которые были предварительно выращены в среде 5% раствора ксилозы. Дрожжевой "крем" в устройстве для брожения содержит по крайней мере 20 г дрожжей приблизительно в каждых 100 мл из общего объема устройства для брожения 2 литра. Добавляются приблизительно 200 мл раствора. Добавка повторяется каждый день в течение трех дней. Под действием дрожжей происходит брожение раствора, содержащего как сахара С5, так и сахара C6.
Кислоту H3ВО3 при желании можно не добавлять к среде. Если для брожения применяют бактерии, которые являются более предпочтительными, чем дрожжи, эту кислоту добавлять нельзя, поскольку бор токсичен по отношению к бактериям.
Несмотря на то что для иллюстрации сущности и описания данного изобретения использован целый ряд примеров, подразумевается, что диапазон изобретения не ограничен приведенными здесь отдельными примерами. Соответственно, диапазон изобретения ограничивается только пунктами патентной формулы, приведенной далее.
Подписи к фиг. 1:
1 - рисовая солома, 2 - вода, 3 - промывка (необязательная), 4 - к отстойнику, 5 - вода для повторного использования, 6 - осадок, 6а - отстойник, 7 - измельчитель твердого вещества, 7а - твердое вещество, 8 - выпускное отверстие, 8а - сушилка, 8б - пар, 8в - воздух, 8г - конденсат, 9 - кислота, 9а - декристаллизатор 1, 9б - пар, 9в - конденсат, 10 - гель, 11 - вода, 11а - первая стадия гидролиза, 12 - пар, 13 - вода, 13а - ленточный пресс, 14 - лигнин, твердые вещества, 15 - раствор смеси кислоты и сахаров, 16 - NaOH, 17 - твердые вещества, 18 - каустическая сода, экстракт, 23 - выпускное отверстие, 24 - сухие твердые вещества, 25 - кислота, 25а - декристаллизатор 2, 26 - гель, 27 - вода, 27а - вторая стадия гидролиза, 28 - гидролизат, 29 - ленточный пресс, 29а - переработка кремнезема, 29б - влажное топливо, содержащее лигнин, 30 - раствор смеси кислоты и сахаров, 31 - к 1 устройству для сепарации.
Подписи к фиг. 2:
8б - пар, 8г - конденсат, 9в - конденсат, 31 - раствор смеси кислоты с сахарами, 31а - устройство для сепарации, 32 - раствор кислоты, 33 - раствор сахара, 34 - вода, 35 - к хранилищу кислоты, 36 - вода, 37 - известняк, 38 - гипс, 38а - нейтрализатор, 39 - сахара, 40 - вещества, 40а - стадия брожения 1, 42 - выпускное отверстие, 43 - выход сахара, 43а - центрифуга 1, 44 - основание, 45 - этанол, 45а - молекулярное сито, 46 - стадия дистилляции 1, 46а - осадки, 47 - смешение, 48 - вода, 49 - бензин, 50 - денатурированный спирт.
Подписи к фиг. 3:
8 - выпускное отверстие, 8б - пар, 8г - конденсат, 14 - лигнин, твердые вещества, 14а - резервуар для смешения и выдерживания, 16 - NaOH, 16A - кислота, 17 - прессование и фильтрация, 17а - осадок в сушилку для декристаллизатора, 18 - кремнезем и жидкость, 19 - обработка кислотой и кристаллизация, 19А - кислота, 19В - отбеливание, 20 - выпускное отверстие, 21 - твердый кремнезем, 22 - прессование и фильтрация, 22а - жидкость, возвращаемая в процесс, 51 - осветление, очистка, 52 - влажный кремнезем, 53 - вода, возвращаемая в процесс, 54 - фильтр, 55 - вода для промывки, 56 - силикагель, 57 - резервуар готового продукта.

Claims (60)

1. Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, отличающийся тем, что проводят частичную декристаллизацию исходных материалов путем смешивания их с раствором, содержащим 25 - 90% кислоты по весу, с образованием геля, затем гель разбавляют до концентрации кислоты 20 - 30% по весу и подвергают частичному гидролизу путем подогревания, полученный гидролизат разделяют на первые твердый материал и жидкость, далее проводят декристаллизацию первого твердого материала путем смешивания с раствором, содержащим 25 - 30% кислоты по весу, с образованием второго геля, затем второй гель разбавляют до концентрации кислоты 20 - 30% по весу и проводят гидролиз второго геля путем подогревания, полученный гидролизат разделяют на вторые твердый материал и жидкость, далее отделяют сахара от кислоты в первой и второй жидкости с получением третьей жидкости, содержащей приблизительно 15% сахара по весу и не более 3% кислоты по весу.
2. Способ по п.1, отличающийся тем, что исходные материалы промывают.
3. Способ по п.1, отличающийся тем, что исходные материалы сушат.
4. Способ по п. 3, отличающийся тем, что исходные материалы сушат до влажности приблизительно 10%.
5. Способ по п.1, отличающийся тем, что исходные материалы, содержащие целлюлозу и гемицеллюлозу, дробят на частицы.
6. Способ по п.5, отличающийся тем, что размер частиц составляет приблизительно от 0,075 до 7 мм.
7. Способ по п.5, отличающийся тем, что размер частиц составляет приблизительно 5 мм.
8. Способ по п.5, отличающийся тем, что метод измельчения выбирают из группы, включающей крошение, дробление и измельчение в молотковой камере.
9. Способ по п.1, отличающийся тем, что в качестве кислоты используют серную кислоту.
10. Способ по п.1, отличающийся тем, что подогрев производят при температуре приблизительно от 80 до 100oC.
11. Способ по п.1, отличающийся тем, что подогрев производят в течение 40 - 480 мин.
12. Способ по п.11, отличающийся тем, что подогрев производят при температуре приблизительно от 100oC в течение 40 - 110 мин.
13. Способ по п.11, отличающийся тем, что подогрев производят при температуре 90oС в течение 80 - 220 мин.
14. Способ по п.11, отличающийся тем, что подогрев производят при температуре 80oС в течение 160 - 480 мин.
15. Способ по п. 1, отличающийся тем, что гидролиз производят при атмосферном давлении.
16. Способ по п.1, отличающийся тем, что кислоту используют для декристаллизации при концентрации приблизительно от 70 до 77% по весу.
17. Способ по п.1, отличающийся тем, что раствор кислоты добавляют до достижения отношения чистой кислоты к материалу, содержащему целлюлозу и гемицеллюлозу, по крайней мере, приблизительно 1 : 1.
18. Способ по п.17, отличающийся тем, что раствор кислоты добавляют до достижения отношения чистой кислоты к материалу, содержащему целлюлозу и гемицеллюлозу, по крайней мере, приблизительно 1,25 : 1.
19. Способ по п. 1, отличающийся тем, что исходные материалы содержат приблизительно от 50 до 85% целлюлозы и гемицеллюлозы.
20. Способ по п.1, отличающийся тем, что отделение жидкости от твердого материала производят путем прессования геля.
21. Способ по п.1, отличающийся тем, что второй твердый материал гранулируют.
22. Способ по п.1, отличающийся тем, что первую и вторую жидкости смешивают перед отделением сахаров от кислоты.
23. Способ по п. 1, отличающийся тем, что разделение производят с использованием устройства для сепарации, в котором сахара адсорбируются на сильнокислой смоле.
24. Способ по п. 23, отличающийся тем, что устройство для сепарации представляет собой слой катионообменной смолы - полистирола с поперечными связями.
25. Способ по п. 23, отличающийся тем, что смола связана поперечными связями с дивинилбензолом и обработана серной кислотой для производства сильнокислой смолы.
26. Способ по п.25, отличающийся тем, что дивинилбензол применяют при концентрации приблизительно от 6 до 8%.
27. Способ по п.23, отличающийся тем, что смолу получают путем полимеризации винилбензолхлорида с дивинилбензолом и обрабатывают сульфитом натрия для производства сильнокислой смолы.
28. Способ по п.27, отличающийся тем, что дивинилбензол применяют при концентрации приблизительно от 6 до 8%.
29. Способ по п.23, отличающийся тем, что частицы смолы имеют форму шариков диаметром приблизительно от 200 до 500 мкм.
30. Способ по п.24, отличающийся тем, что поток жидкости протекает через слой смолы со средней линейной скоростью потока приблизительно от 2 до 5 м/г.
31. Способ по п.24, отличающийся тем, что слой смолы подогревают до температуры приблизительно от 40 до 60oC.
32. Способ по п.24, отличающийся тем, что плотность слоя смолы составляет на различных участках приблизительно от 0,6 до 0,9 г/мл.
33. Способ по п.23, отличающийся тем, что обменная емкость смолы составляет по крайней мере 2 мэк/г.
34. Способ по п.1, отличающийся тем, что кислоту после стадии сепарации концентрируют для повторного использования.
35. Способ по п.1, отличающийся тем, что первый твердый материал обрабатывают едким натром с получением экстракта, pH экстракта доводят до 10, экстракт фильтруют для удаления кремниевой кислоты, а твердый материал возвращают для второй декристаллизации.
36. Способ по п.1, отличающийся тем, что pH доводят HCl.
37. Способ по п.35, отличающийся тем, что к экстракту, оставшемуся после фильтрации с целью удаления кремниевой кислоты, добавляют NaOH для получения концентрации приблизительно от 5 до 10% и повторно используют полученный раствор на стадии экстракции по п.35.
38. Способ отделения кислоты и сахаров от жидкостей, полученных в результате гидролиза в среде кислоты исходных материалов, содержащих целлюлозу и гемицеллюлозу, способом по п.1, отличающийся тем, что жидкость, полученную в результате гидролиза, пропускают через устройство для сепарации, представляющее собой слой катионообменной смолы - полистирола с поперечными связями, при этом сахар адсорбируют на слое смолы, а кислоту выводят в виде потока жидкости с содержанием сахара менее 2%.
39. Способ по п.38, отличающийся тем, что смолу связывают поперечными связями с дивинилбензолом и обрабатывают серной кислотой для производства сильнокислой смолы.
40. Способ по п.39, отличающийся тем, что дивинилбензол применяют при концентрации приблизительно от 6 до 8%.
41. Способ по п.38, отличающийся тем, что смолу получают путем полимеризации винилбензолхлорида с дивинилбензолом и обрабатывают сульфитом натрия.
42. Способ по п.41, отличающийся тем, что дивинилбензол применяют при концентрации приблизительно от 6 до 8%.
43. Способ по п.38, отличающийся тем, что частицы смолы имеют форму шариков диаметром приблизительно от 200 до 500 мкм.
44. Способ по п.1, отличающийся тем, что поток жидкости пропускают через слой смолы со средней линейной скоростью потока приблизительно от 2 до 5 м/г.
45. Способ по п.38, отличающийся тем, что слой смолы подогревают до температуры приблизительно от 40 до 60oC.
46. Способ по п.38, отличающийся тем, что обменная емкость смолы составляет по крайней мере 2 мг-экв/г.
47. Способ по п.38, отличающийся тем, что плотность слоя смолы составляет на различных участках приблизительно от 0,6 до 0,9 г/мл.
48. Способ по п.38, отличающийся тем, что смолу промывают водой, в которой практически нет кислорода, при этом получают поток сахара, содержащий, по крайней мере, 98% от сахара, введенного в устройство для сепарации.
49. Способ по п.38, отличающийся тем, что смолу обрабатывают газом, в котором практически нет кислорода, в результате чего кислота удаляется из смолы перед стадией промывки.
50. Способ сбраживания сахаров, включающий ферментацию сахаров с использованием микроорганизмов, отличающийся тем, что в качестве сахаров используют сахара, отделенные от жидкостей, полученных в результате гидролиза способом по п. 1 или п.38, pH смеси сахаров пентозы и гексозы регулируют для нейтрализации оставшейся кислоты и удаления ионов металлов, добавляют питательные вещества для обеспечения роста микроорганизмов, смешивают сахара с микроорганизмами, которые производят полезные продукты брожения из гексозы, причем указанные микроорганизмы выращивают на растворах пентозы в течение от 1 до 2 недель, процесс ферментации проводят в течение от 3 до 5 дней, испаряющиеся продукты брожения непрерывно удаляют путем рециркуляции двуокиси углерода через охлаждаемую колонну-конденсатор, продукты брожения собирают после колонны-конденсатора, микроорганизмы отделяют от оставшихся продуктов брожения и дистиллируют оставшиеся продукты брожения.
51. Способ по п.50, отличающийся тем, что микроорганизмы представляют собой дрожжи, выбранные из группы, состоящей из Candida kefyr, Dichia stipitis, штаммов с респираторной недостаточностью Saccharonujces cerevisiae, Hansenula anomala, Hansenula jadinii, Hansenula fabianii u Pachysolen tannophilus.
52. Способ по п.50, отличающийся тем, что микроорганизмы представляют собой бактерии, выбранные из группы, включающей виды Clostridium, виды Acetobacter, виды Lactobacillus, виды Aspergillus, виды Propionibacteria u Zymomonas mobilis.
53. Способ по п.50, отличающийся тем, что величину pH регулируют путем добавки основания для того, чтобы поднять pH до 11, а затем понижают pH до 4,5 обратным титрованием кислотой.
54. Способ по п.53, отличающийся тем, что основание выбирают из группы, состоящей из гидроксида кальция и оксида кальция.
55. Способ по п.50, отличающийся тем, что добавляемые вещества выбирают из группы, состоящей из магния, азота, фосфата натрия, следов металлов и витаминов.
56. Способ переработки твердых веществ, полученных в результате гидролиза при производстве сахаров по п.1 для получения кремниевой кислоты, отличающийся тем, что твердые вещества обрабатывают NaOH с получением экстракта, pH экстракта доводят до 10, кремниевую кислоту удаляют фильтрованием экстракта.
57. Способ по п.56, отличающийся тем, что для снижения величины pH применяют кислоту из группы, состоящей из HCl и H2SO4.
58. Способ по п.56, отличающийся тем, что экстракт нейтрализуют.
59. Способ по п.56, отличающийся тем, что экстракт используют повторно путем добавки его к твердым веществам перед обработкой этих веществ NaOH.
60. Способ по п. 56, в котором концентрация NaOH составляет приблизительно от 5 до 10%.
RU95117998A 1993-03-26 1994-03-25 Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, способ отделения кислоты и сахаров от жидкостей, полученных этим способом производства, способ сбраживания сахаров, полученных этим способом производства, и способ переработки твердых веществ, полученных этим способом производства RU2144087C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/038,628 US5562777A (en) 1993-03-26 1993-03-26 Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials
US08/038.628 1993-03-26
US08/038,628 1993-03-26
PCT/US1994/003298 WO1994023071A1 (en) 1993-03-26 1994-03-25 Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials

Publications (2)

Publication Number Publication Date
RU95117998A RU95117998A (ru) 1997-12-27
RU2144087C1 true RU2144087C1 (ru) 2000-01-10

Family

ID=21900992

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95117998A RU2144087C1 (ru) 1993-03-26 1994-03-25 Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, способ отделения кислоты и сахаров от жидкостей, полученных этим способом производства, способ сбраживания сахаров, полученных этим способом производства, и способ переработки твердых веществ, полученных этим способом производства

Country Status (18)

Country Link
US (4) US5562777A (ru)
EP (3) EP0690931B1 (ru)
AT (1) ATE207969T1 (ru)
AU (1) AU681136B2 (ru)
BG (1) BG100071A (ru)
BR (1) BR9405906A (ru)
CA (1) CA2158430C (ru)
CZ (1) CZ292059B6 (ru)
DE (1) DE69428889D1 (ru)
ES (1) ES2166776T3 (ru)
HU (1) HUT72177A (ru)
NZ (1) NZ263730A (ru)
PL (2) PL180367B1 (ru)
RO (1) RO114806B1 (ru)
RU (1) RU2144087C1 (ru)
SK (1) SK120595A3 (ru)
UA (1) UA34477C2 (ru)
WO (1) WO1994023071A1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451087C2 (ru) * 2007-09-05 2012-05-20 Тойота Дзидося Кабусики Кайся Способ осахаривания и сепарирования для растительных волокнистых материалов
RU2518305C2 (ru) * 2010-01-06 2014-06-10 Ангел Джист Ко., Лтд Способ обработки лигноцеллюлозного материала
RU2543661C2 (ru) * 2012-07-12 2015-03-10 Открытое акционерное общество "Восточно-Сибирский комбинат биотехнологий" (ОАО "ВСКБТ") Способ производства сахаров из целлюлозосодержащего сырья
RU2545392C2 (ru) * 2009-05-15 2015-03-27 Ифп Энержи Нувелль Способ получения спиртов и/или растворителей из лигноцеллюлозной биомассы с кислотной рециркуляцией твердых остатков
RU2577901C2 (ru) * 2011-02-18 2016-03-20 Торэй Индастриз, Инк. Способ производства сахарного раствора
US10053662B2 (en) 2010-01-20 2018-08-21 Xyleco, Inc. Dispersing feedstocks and processing materials
US10342243B2 (en) 2014-09-19 2019-07-09 Xyleco, Inc. Saccharides and saccharide compositions and mixtures

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782982A (en) * 1993-03-26 1998-07-21 Arkenol, Inc. Method of removing silica or silicates from solids resulting from the strong acid hydrolysis of cellulosic and hemicellulosic materials
US5597714A (en) * 1993-03-26 1997-01-28 Arkenol, Inc. Strong acid hydrolysis of cellulosic and hemicellulosic materials
US5562777A (en) * 1993-03-26 1996-10-08 Arkenol, Inc. Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials
US5571703A (en) * 1993-12-23 1996-11-05 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial ethanol production process
ATE290097T1 (de) * 1995-06-07 2005-03-15 Arkenol Inc Verfahren zur hydrolyse mit hilfe einer starken säure
US5711817A (en) * 1996-05-01 1998-01-27 Eau-Viron Incorporated Method for the continuous conversion of cellulosic material to sugar
US5892107A (en) * 1996-11-08 1999-04-06 Arkenol, Inc. Method for the production of levulinic acid
US5849984A (en) * 1997-05-14 1998-12-15 The United States Of America As Represented By The Secretary Of The Army Method and system for treating waste nitrocellulose
US5968362A (en) * 1997-08-04 1999-10-19 Controlled Enviromental Systems Corporation Method for the separation of acid from sugars
US5868851A (en) * 1997-08-11 1999-02-09 Lightner; Gene E. Process for production of solid glucose
US5876505A (en) * 1998-01-13 1999-03-02 Thermo Fibergen, Inc. Method of producing glucose from papermaking sludge using concentrated or dilute acid hydrolysis
US7074603B2 (en) * 1999-03-11 2006-07-11 Zeachem, Inc. Process for producing ethanol from corn dry milling
NZ514253A (en) * 1999-03-11 2003-06-30 Zeachem Inc Process for producing ethanol
US6409841B1 (en) * 1999-11-02 2002-06-25 Waste Energy Integrated Systems, Llc. Process for the production of organic products from diverse biomass sources
FI20002148A (fi) * 2000-09-29 2002-03-30 Xyrofin Oy Menetelmä tuotteiden talteenottamiseksi
US6953867B2 (en) * 2000-10-21 2005-10-11 Innovene Europe Limited Process for the hydration of olefins
EP1444368A1 (en) * 2001-07-24 2004-08-11 Arkenol, Inc. Separation of xylose and glucose
US20030154975A1 (en) * 2001-09-17 2003-08-21 Lightner Gene E. Separation of sugars derived from a biomass
DE10158120A1 (de) * 2001-11-27 2003-06-18 Ties Karstens Verfahren zum Abtrennen von Xylose aus xylanreichen Lignocellulosen, insbesondere Holz
JP4332434B2 (ja) 2002-03-13 2009-09-16 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 有益化減水用組成物
US6953574B2 (en) * 2002-06-21 2005-10-11 Technology Commercialization, Inc. Method for producing a fermented hydrolyzed medium containing microorganisms
GB0218012D0 (en) 2002-08-05 2002-09-11 Ciba Spec Chem Water Treat Ltd Production of a fermentation product
US7378549B2 (en) * 2004-01-26 2008-05-27 Shell Oil Company Process for the reactive extractive extraction of levulinic acid
BRPI0506554A (pt) * 2004-01-29 2007-02-27 Zeachem Inc recuperação de ácidos orgánicos
AU2005232782B2 (en) 2004-04-13 2010-11-25 Iogen Energy Corporation Recovery of inorganic salt during processing of lignocellulosic feedstocks
JP2008506370A (ja) * 2004-07-16 2008-03-06 イオゲン エナジー コーポレーション セルロース系バイオマスから糖の製品流を得る方法
GB2416776A (en) * 2004-07-28 2006-02-08 British Sugar Plc Enhancement of the fermentability of carbohydrate substrates by chromatographic purification
EP1690828A1 (en) * 2005-02-11 2006-08-16 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO Recovery of sulphuric acid
EP1690980A1 (en) * 2005-02-11 2006-08-16 Agrotechnology and Food Innovations B.V. Process and apparatus for conversion of biomass
US7501062B2 (en) * 2005-02-22 2009-03-10 Shell Oil Company Process for permeation enhanced reactive extraction of levulinic acid
US7585387B2 (en) * 2005-03-11 2009-09-08 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Chemical oxidation for cellulose separation with a hypochlorite and peroxide mixture
JP2008542182A (ja) * 2005-06-02 2008-11-27 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット バイオマス由来粉砕助剤
EP1852493A1 (en) 2006-05-05 2007-11-07 BIOeCON International Holding N.V. Hydrothermal treatment of carbon-based energy carrier material
CA2662193A1 (en) * 2006-09-01 2008-03-27 Ra Energy Corporation Advanced biorefinery process
US7670813B2 (en) * 2006-10-25 2010-03-02 Iogen Energy Corporation Inorganic salt recovery during processing of lignocellulosic feedstocks
US7815876B2 (en) 2006-11-03 2010-10-19 Olson David A Reactor pump for catalyzed hydrolytic splitting of cellulose
US7815741B2 (en) 2006-11-03 2010-10-19 Olson David A Reactor pump for catalyzed hydrolytic splitting of cellulose
AU2007334319A1 (en) * 2006-12-18 2008-06-26 Kohn, Richard Dr. Process for rapid anaerobic digestion of biomass using microbes and the production of biofuels therefrom
US8247200B2 (en) * 2007-01-25 2012-08-21 Iogen Energy Corporation Method of obtaining inorganic salt and acetate salt from cellulosic biomass
EP2121946A4 (en) * 2007-02-09 2012-08-29 Zeachem Inc ENERGY-EFFICIENT METHOD FOR MANUFACTURING PRODUCTS
WO2008151417A1 (en) * 2007-06-13 2008-12-18 Bertrand Lesperance Silage waste recovery process, facility, system, and product
DE102007037341A1 (de) * 2007-08-01 2009-02-05 Green Sugar Gmbh Trocknungsverfahren innerhalb der sauren Hydrolyse von pflanzlichen Biomassen
CN101157445A (zh) * 2007-09-18 2008-04-09 陈培豪 植物纤维素原料浓酸水解液中硫酸的回收方法
WO2009100434A1 (en) * 2008-02-07 2009-08-13 Zeachem Inc. Indirect production of butanol and hexanol
US8268600B2 (en) * 2008-03-05 2012-09-18 Council Of Scientific & Industrial Research Strain and a novel process for ethanol production from lignocellulosic biomass at high temperature
US7931784B2 (en) * 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
EP2274435A4 (en) * 2008-05-07 2012-06-20 Zeachem Inc RECOVERING ORGANIC ACIDS
CN101285106B (zh) * 2008-06-10 2010-08-18 南京工业大学 一种高效水解木质纤维素类生物质同时制备多组分糖液及木质素的方法
US20100151547A1 (en) * 2008-06-12 2010-06-17 Daniel Platz System and Apparatus for Increasing Ethanol Production Efficiency
CN102066304A (zh) * 2008-06-17 2011-05-18 威斯康星校友研究基金会 木素纤维素生物质到燃料和化学品的化学转变方法
TWI386367B (zh) * 2008-07-03 2013-02-21 Schweitzer Biotech Company Ltd A method of preparing silicon-containing product from a plant
US20100024810A1 (en) * 2008-07-31 2010-02-04 E. I. Du Pont De Nemours And Company Decrystallization of cellulosic biomass with an acid mixture comprising phosphoric and sulfuric acids
US9193979B2 (en) 2008-11-11 2015-11-24 Richard Allen Kohn Process for producing lower alkyl alcohols from cellulosic biomass using microorganisms
IT1394398B1 (it) 2008-12-18 2012-06-15 Eni Spa Procedimento per la produzione di zuccheri da biomassa
US8192854B2 (en) * 2009-02-06 2012-06-05 Ut-Battelle, Llc Microbial fuel cell treatment of ethanol fermentation process water
HUE025623T2 (en) 2009-03-03 2016-04-28 Poet Res Inc A method of fermenting biomass for ethanol production
ES2404882T3 (es) * 2009-04-28 2013-05-29 Heli Inovatio Handelsbolag Proceso para la hidrólisis de la celulosa
IT1394721B1 (it) 2009-06-10 2012-07-13 Polimeri Europa Spa Processo per l'alchilazione di benzene con etanolo o miscele di etanolo ed etilene
AU2010259937B2 (en) 2009-06-13 2016-07-14 Archer-Daniels-Midland Company Production of adipic acid and derivatives from carbohydrate-containing materials
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8785683B2 (en) * 2009-06-13 2014-07-22 Rennovia, Inc. Production of glutaric acid and derivatives from carbohydrate-containing materials
WO2010151574A2 (en) 2009-06-25 2010-12-29 Shell Oil Company Water injection systems and methods
CN102498122B (zh) * 2009-07-01 2016-08-03 威斯康星校友研究基金会 生物质水解
BR112012003128B8 (pt) 2009-08-11 2020-02-27 Fpinnovations processos para recuperar um ácido inorgânico de licor residual aquoso, e para produzir celulose nanocristalina.
US11319558B2 (en) 2009-10-28 2022-05-03 Province Brands Pichia stipitis strain, methods of using the same, and method of isolating a pichia stipitis strain
US8383864B2 (en) * 2009-12-08 2013-02-26 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
US8686192B2 (en) 2009-12-08 2014-04-01 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
IT1397885B1 (it) 2009-12-23 2013-02-04 Polimeri Europa Spa Processo per preparare etilbenzene.
IT1397886B1 (it) 2009-12-23 2013-02-04 Eni Spa Procedimento per la produzione di componenti di carburanti per autotrazione.
AU2011213186B2 (en) * 2010-02-03 2013-10-17 Archer Daniels Midland Company Improved process for fractionation of lignocellulosic biomass
US8669393B2 (en) * 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
EP3594354A1 (en) 2010-03-19 2020-01-15 Poet Research Incorporated Method for producing a fermentation product from biomass
US9034620B2 (en) 2010-03-19 2015-05-19 Poet Research, Inc. System for the treatment of biomass to facilitate the production of ethanol
TWI409333B (zh) * 2010-05-07 2013-09-21 Univ Feng Chia 用於微生物醱酵之木質纖維素料源處理方法
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
PL3401410T3 (pl) 2010-06-26 2021-11-29 Virdia, Llc Sposoby wytwarzania mieszanek cukrów
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
IL207329A0 (en) 2010-08-01 2010-12-30 Robert Jansen A method for refining a recycle extractant and for processing a lignocellulosic material and for the production of a carbohydrate composition
US9469859B1 (en) 2010-08-12 2016-10-18 Poet Research, Inc. Method for treatment of biomass
NL1038175C2 (en) 2010-08-19 2012-02-21 Danvos B V A process for the conversion of biomass of plant origen, and a combustion process.
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
WO2012042544A1 (en) * 2010-09-29 2012-04-05 Beta Renewables S.P.A. Pre-treated biomass having enhanced enzyme accessibility
AU2011323322B2 (en) 2010-11-05 2015-03-12 Shell Internationale Research Maatschappij B.V. Treating biomass to produce materials useful for biofuels
PT106039A (pt) 2010-12-09 2012-10-26 Hcl Cleantech Ltd Processos e sistemas para o processamento de materiais lenhocelulósicos e composições relacionadas
WO2012099967A1 (en) 2011-01-18 2012-07-26 Poet, Llc Systems and methods for hydrolysis of biomass
WO2012100187A1 (en) * 2011-01-21 2012-07-26 Poet Research, Inc. Systems and methods for improving fermentation
EP2694594A4 (en) 2011-04-07 2015-11-11 Virdia Ltd METHODS AND PRODUCTS FOR LIGNOCELLULOSE CONVERSION
US8835141B2 (en) 2011-06-09 2014-09-16 The United States Of America As Represented By The Secretary Of Agriculture Methods for integrated conversion of lignocellulosic material to sugars or biofuels and nano-cellulose
EP2729585A4 (en) 2011-07-07 2015-03-18 Poet Res Inc SYSTEMS AND METHOD FOR ACID RECYCLING
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
CN102603514B (zh) * 2012-02-09 2015-07-15 李先栓 一种利用农作物秸秆制备葡萄糖酸钠的工艺
MY169376A (en) 2012-03-12 2019-03-26 Georgia Pacific Llc Method for producing levulinic acid from lignocellulosic biomass
US9090579B2 (en) 2012-03-12 2015-07-28 Archer Daniels Midland Co. Processes for making sugar and/or sugar alcohol dehydration products
US9187790B2 (en) 2012-03-25 2015-11-17 Wisconsin Alumni Research Foundation Saccharification of lignocellulosic biomass
US9493851B2 (en) 2012-05-03 2016-11-15 Virdia, Inc. Methods for treating lignocellulosic materials
CN108865292A (zh) 2012-05-03 2018-11-23 威尔迪亚有限公司 用于处理木质纤维素材料的方法
US9382593B2 (en) 2012-05-07 2016-07-05 Shell Oil Company Continuous or semi-continuous process for treating biomass to produce materials useful for biofuels
ITMI20121343A1 (it) 2012-07-31 2014-02-01 Eni Spa Composizioni utili come carburanti comprendenti derivati della glicerina
ITMI20122006A1 (it) 2012-11-26 2014-05-27 Eni Spa Composizioni utili come carburanti comprendenti composti ossigenati idrofobici
WO2014087016A1 (en) * 2012-12-07 2014-06-12 Dsm Ip Assets B.V. Process for the production of a biomass hydrolysate
US20140366870A1 (en) * 2012-12-31 2014-12-18 Api Intellectual Property Holdings, Llc Methods for recovering and recycling salt byproducts in biorefinery processes
NZ743055A (en) 2013-03-08 2020-03-27 Xyleco Inc Equipment protecting enclosures
US9255187B2 (en) * 2013-03-15 2016-02-09 Synergy Horizon Limited Method for production of dry hydrolytic lignin
TWI476203B (zh) 2013-03-18 2015-03-11 Ind Tech Res Inst 醣類的分離方法
CN103436568B (zh) * 2013-07-31 2015-01-07 中国科学院青岛生物能源与过程研究所 一种藻渣降解液及其制备方法和应用
WO2015042041A1 (en) * 2013-09-18 2015-03-26 Georgia-Pacific LLC Method for producing organic acids and organic acid degradation compounds from biomass
EP3046900B1 (en) 2013-09-18 2019-07-31 Georgia-Pacific LLC Method for producing levulinic acid from sludge and lignocellulosic biomass
US9873846B2 (en) 2013-10-10 2018-01-23 E I Du Pont De Nemours And Company Fuel compositions containing lignocellulosic biomass fermentation process syrup
US9725363B2 (en) 2013-10-10 2017-08-08 E I Du Pont De Nemours And Company Lignocellulosic biomass fermentation process co-product fuel for cement kiln
US9499451B2 (en) 2013-10-10 2016-11-22 E I Du Pont De Nemours And Company Soil conditioner compositions containing lignocellulosic biomass fermentation process syrup
ITMI20132069A1 (it) 2013-12-11 2015-06-12 Versalis Spa Procedimento per la produzione di zuccheri da biomassa
EP2931906A4 (en) 2014-02-20 2016-07-13 Archer Daniels Midland Co PROCESS FOR PRODUCING FURFURAL
WO2015139141A1 (en) * 2014-03-21 2015-09-24 Iogen Energy Corporation Method for processing a cellulosic feedstock at high consistency
GB201406366D0 (en) 2014-04-09 2014-05-21 Plaxica Ltd Biomass processing method
CN103949238B (zh) * 2014-05-13 2016-11-16 农业部环境保护科研监测所 果糖一步水热合成碳微球固体酸用于催化纤维素水解
US10253009B2 (en) 2014-08-14 2019-04-09 Shell Oil Company One-step production of furfural from biomass
CN106573852A (zh) 2014-08-14 2017-04-19 国际壳牌研究有限公司 用于制造糠醛和糠醛衍生物的方法
WO2016025678A1 (en) 2014-08-14 2016-02-18 Shell Oil Company Process for preparing furfural from biomass
CN106536496A (zh) 2014-08-14 2017-03-22 国际壳牌研究有限公司 从生物质制备糠醛的方法
BR112016030661B8 (pt) 2014-08-14 2022-03-29 Shell Int Research Processo de circuito fechado para converter biomassa em furfural
WO2016112134A1 (en) 2015-01-07 2016-07-14 Virdia, Inc. Methods for extracting and converting hemicellulose sugars
US20160262389A1 (en) 2015-03-12 2016-09-15 E I Du Pont De Nemours And Company Co-products of lignocellulosic biomass process for landscape application
BR112017022529B1 (pt) 2015-04-21 2022-08-02 Fpinnovations Método para tratar uma solução de hidrolisado de biomassa contendo um ácido e um composto orgânico não iônico
US11091815B2 (en) 2015-05-27 2021-08-17 Virdia, Llc Integrated methods for treating lignocellulosic material
MY186792A (en) 2016-02-04 2021-08-20 Ind Tech Res Inst Method for separating hydrolysis product of biomass
US10006166B2 (en) 2016-02-05 2018-06-26 The United States Of America As Represented By The Secretary Of Agriculture Integrating the production of carboxylated cellulose nanofibrils and cellulose nanocrystals using recyclable organic acids
WO2017142000A1 (ja) 2016-02-17 2017-08-24 東レ株式会社 糖アルコールの製造方法
WO2017192498A1 (en) 2016-05-03 2017-11-09 Shell Oil Company Lignin-based solvents and methods for their preparation
WO2018053058A1 (en) 2016-09-14 2018-03-22 Danisco Us Inc. Lignocellulosic biomass fermentation-based processes
CN109890802A (zh) 2016-11-01 2019-06-14 国际壳牌研究有限公司 回收糠醛的方法
CN109890801A (zh) 2016-11-01 2019-06-14 国际壳牌研究有限公司 用于回收糠醛的方法
CN109890803A (zh) 2016-11-01 2019-06-14 国际壳牌研究有限公司 用于回收糠醛的方法
CN109890800B (zh) 2016-11-01 2023-05-23 国际壳牌研究有限公司 用于回收糠醛的工艺
CN106750584B (zh) * 2016-11-24 2018-04-03 吉林大学 一种木质素二氧化硅复合改性天然橡胶母料的方法
WO2018118815A1 (en) 2016-12-21 2018-06-28 Dupont Nutrition Biosciences Aps Methods of using thermostable serine proteases
AU2018276308A1 (en) * 2017-05-31 2019-12-12 Leaf Research Pty Ltd Method for extracting silica
KR102003918B1 (ko) 2017-11-28 2019-10-17 한국과학기술연구원 에너지 저소비형 당과 산의 분리방법
WO2020016638A1 (en) * 2018-07-16 2020-01-23 Tapas Chatterjee Process of obtaining value added products from de-oiled rice bran
CN108911796B (zh) * 2018-08-29 2024-09-13 中国科学院海洋研究所 一种海水硅酸盐肥料及其制备方法
US11787773B2 (en) 2019-05-22 2023-10-17 Shell Usa, Inc. Process for the production of furfural
WO2024158616A1 (en) 2023-01-23 2024-08-02 Shell Usa, Inc. Method for treating grains to produce material useful for chemicals and biofuels

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB792284A (en) * 1955-06-02 1958-03-26 Dow Chemical Co Purification of sugar solutions
US3214293A (en) * 1961-10-20 1965-10-26 Colonial Sugar Refining Co Process and apparatus for purifying solutions containing sugars
US3203760A (en) * 1962-12-17 1965-08-31 Grace W R & Co Process for preparing silica gel
DE1567326A1 (de) * 1966-03-15 1970-04-16 Boehringer Mannheim Gmbh Verfahren zur Herstellung von reinen Invertzuckerloesungen aus Melasse
US3607777A (en) * 1968-06-18 1971-09-21 Grace W R & Co Process for preparing microspheroidal desiccant silica gel
US3794712A (en) * 1971-10-26 1974-02-26 Nat Petro Chem Preparation of silica gels
US4154675A (en) * 1972-06-02 1979-05-15 Viscose Group Limited Ion exchange processes using cellulosic materials
DE2737118A1 (de) * 1977-08-17 1979-03-01 Projektierung Chem Verfahrenst Verfahren zur gewinnung von zuckern, gegebenenfalls cellulose und gegebenenfalls lignin aus lignocellulosischen pflanzlichen rohstoffen
US4266981A (en) * 1978-03-08 1981-05-12 Purdue Research Corporation Process for recovering and utilizing cellulose using sulfuric acid
US4242455A (en) * 1979-06-25 1980-12-30 National Distillers And Chemical Corp. Process for the acid hydrolysis of carbohydrate polymers and the continuous fermentation of the sugars _obtained therefrom to provide ethanol
SU859449A1 (ru) * 1980-01-24 1981-08-30 Всесоюзный научно-исследовательский институт биосинтеза белковых веществ Способ получени растворов сахаров
CA1173380A (en) * 1980-02-19 1984-08-28 Michael I. Sherman Acid hydrolysis of biomass for ethanol production
ES8201627A1 (es) * 1980-02-23 1981-12-16 Reitter Franz Johann Procedimiento e instalacion para la hidrolisis continua de hemicelulosas que contienen pentosanas de celulosa.
US4336335A (en) * 1980-05-22 1982-06-22 National Distillers & Chemical Corp. Fermentation process
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4427584A (en) * 1981-08-24 1984-01-24 University Of Florida Conversion of cellulosic fibers to mono-sugars and lignin
US4556430A (en) * 1982-09-20 1985-12-03 Trustees Of Dartmouth College Process for hydrolysis of biomass
EP0105937B1 (en) * 1982-10-04 1987-11-19 Baron Howard Steven Strouth Method of manufacturing alcohol from ligno-cellulose material
US4668340A (en) * 1984-03-20 1987-05-26 Kamyr, Inc. Method of countercurrent acid hydrolysis of comminuted cellulosic fibrous material
CA1198703A (en) * 1984-08-02 1985-12-31 Edward A. De Long Method of producing level off d p microcrystalline cellulose and glucose from lignocellulosic material
US5188673A (en) * 1987-05-15 1993-02-23 Clausen Edgar C Concentrated sulfuric acid process for converting lignocellulosic materials to sugars
US5135861A (en) * 1987-07-28 1992-08-04 Pavilon Stanley J Method for producing ethanol from biomass
US4880473A (en) * 1988-04-01 1989-11-14 Canadian Patents & Development Ltd. Process for the production of fermentable sugars from biomass
US5084104A (en) * 1989-12-05 1992-01-28 Cultor, Ltd. Method for recovering xylose
US5176832A (en) * 1991-10-23 1993-01-05 The Dow Chemical Company Chromatographic separation of sugars using porous gel resins
US5186673A (en) * 1992-05-13 1993-02-16 Fogarty A Edward Removable clothing in combination with a doll
US5562777A (en) * 1993-03-26 1996-10-08 Arkenol, Inc. Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials
US5597714A (en) * 1993-03-26 1997-01-28 Arkenol, Inc. Strong acid hydrolysis of cellulosic and hemicellulosic materials
US5407580A (en) * 1993-09-29 1995-04-18 Tennessee Valley Authority Process for separating acid-sugar mixtures using ion exclusion chromatography
US5560827A (en) * 1995-02-02 1996-10-01 Tennessee Valley Authority Exclusion chromatographic separation of ionic from nonionic solutes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451087C2 (ru) * 2007-09-05 2012-05-20 Тойота Дзидося Кабусики Кайся Способ осахаривания и сепарирования для растительных волокнистых материалов
RU2545392C2 (ru) * 2009-05-15 2015-03-27 Ифп Энержи Нувелль Способ получения спиртов и/или растворителей из лигноцеллюлозной биомассы с кислотной рециркуляцией твердых остатков
RU2518305C2 (ru) * 2010-01-06 2014-06-10 Ангел Джист Ко., Лтд Способ обработки лигноцеллюлозного материала
US10053662B2 (en) 2010-01-20 2018-08-21 Xyleco, Inc. Dispersing feedstocks and processing materials
EA031312B1 (ru) * 2010-01-20 2018-12-28 Ксилеко, Инк. Диспергирование исходного сырья и переработка материалов
RU2577901C2 (ru) * 2011-02-18 2016-03-20 Торэй Индастриз, Инк. Способ производства сахарного раствора
RU2543661C2 (ru) * 2012-07-12 2015-03-10 Открытое акционерное общество "Восточно-Сибирский комбинат биотехнологий" (ОАО "ВСКБТ") Способ производства сахаров из целлюлозосодержащего сырья
US10342243B2 (en) 2014-09-19 2019-07-09 Xyleco, Inc. Saccharides and saccharide compositions and mixtures
US10412976B2 (en) 2014-09-19 2019-09-17 Xyleco, Inc. Saccharides and saccharide compositions and mixtures

Also Published As

Publication number Publication date
ES2166776T3 (es) 2002-05-01
PL180367B1 (pl) 2001-01-31
PL177882B1 (pl) 2000-01-31
EP0964062A2 (en) 1999-12-15
SK120595A3 (en) 1996-06-05
EP0690931A1 (en) 1996-01-10
EP0964062A3 (en) 2000-05-17
US5580389A (en) 1996-12-03
AU681136B2 (en) 1997-08-21
US5620877A (en) 1997-04-15
US5820687A (en) 1998-10-13
HU9502775D0 (en) 1995-11-28
EP0690931B1 (en) 2001-10-31
CZ249095A3 (en) 1996-02-14
BG100071A (bg) 1996-04-30
AU6493094A (en) 1994-10-24
PL310828A1 (en) 1996-01-08
UA34477C2 (ru) 2001-03-15
CA2158430C (en) 2003-12-16
US5562777A (en) 1996-10-08
DE69428889D1 (de) 2001-12-06
EP0964061A2 (en) 1999-12-15
WO1994023071A1 (en) 1994-10-13
NZ263730A (en) 1996-11-26
EP0964061A3 (en) 2000-05-17
ATE207969T1 (de) 2001-11-15
CZ292059B6 (cs) 2003-07-16
BR9405906A (pt) 1996-01-09
HUT72177A (en) 1996-03-28
RO114806B1 (ro) 1999-07-30
CA2158430A1 (en) 1994-10-13

Similar Documents

Publication Publication Date Title
RU2144087C1 (ru) Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, способ отделения кислоты и сахаров от жидкостей, полученных этим способом производства, способ сбраживания сахаров, полученных этим способом производства, и способ переработки твердых веществ, полученных этим способом производства
EP0832276B1 (en) Method of strong acid hydrolysis
US5597714A (en) Strong acid hydrolysis of cellulosic and hemicellulosic materials
US5782982A (en) Method of removing silica or silicates from solids resulting from the strong acid hydrolysis of cellulosic and hemicellulosic materials
US5221357A (en) Method of treating biomass material
US5366558A (en) Method of treating biomass material
AU2005232782B2 (en) Recovery of inorganic salt during processing of lignocellulosic feedstocks
EP2027159B1 (en) A process for the stepwise treatment of lignocellulosic material to produce reactive chemical feedstocks
RU95117998A (ru) Способ производства сахаров из материалов, содержащих целлюлозу и гемицеллюлозу, путем гидролиза в среде сильной кислоты
US20080102502A1 (en) Inorganic salt recovery during processing of lignocellulosic feedstocks
JP2008506370A (ja) セルロース系バイオマスから糖の製品流を得る方法
CN101942529A (zh) 一种秸秆稀酸水解及糠醛从水解液分离的方法
CA2565433C (en) Inorganic salt recovery during processing of lignocellulosic feedstocks
CA2806132A1 (en) Recycle of leachate during lignocellulosic conversion processes
JP2010059082A (ja) シュウ酸の製造方法
Silva et al. Downstream processing for xylitol recovery from fermented sugar cane bagasse hydrolysate using aluminium polychloride
AU2006233172A1 (en) Inorganic salt recovery during processing of lignocellulosic feedstocks