RU2141487C1 - Полипропилен с улучшенными свойствами и способ его получения - Google Patents

Полипропилен с улучшенными свойствами и способ его получения Download PDF

Info

Publication number
RU2141487C1
RU2141487C1 RU94019973/04A RU94019973A RU2141487C1 RU 2141487 C1 RU2141487 C1 RU 2141487C1 RU 94019973/04 A RU94019973/04 A RU 94019973/04A RU 94019973 A RU94019973 A RU 94019973A RU 2141487 C1 RU2141487 C1 RU 2141487C1
Authority
RU
Russia
Prior art keywords
polypropylene
elastic
tert
butyl
polypropylenes
Prior art date
Application number
RU94019973/04A
Other languages
English (en)
Other versions
RU94019973A (ru
Inventor
Гал йтнер Маркус (AT)
Галяйтнер Маркус
Бернрайтнер Клаус (AT)
Бернрайтнер Клаус
Хафнер Норберт (AT)
Хафнер Норберт
Вельфер Рудольф (AT)
Вельфер Рудольф
Найссль Вольфганг (AT)
Найссль Вольфганг
Original Assignee
ПЦД Полюмере ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3506574&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2141487(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ПЦД Полюмере ГмбХ filed Critical ПЦД Полюмере ГмбХ
Publication of RU94019973A publication Critical patent/RU94019973A/ru
Application granted granted Critical
Publication of RU2141487C1 publication Critical patent/RU2141487C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/10Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Описывается полипропилен с улучшенными свойствами, получаемый путем химической деструкции эластичного полипропилена со стереорегулярным расположением блоков в полимерной цепи или смеси полипропилена и эластичного полипропилена со стереорегулярным расположением блоков в полимерной цепи с помощью органических пероксидов, в случае необходимости при добавлении обычных добавок и/или наполнителей, при этом эластичный полипропилен содержит 10-80 вес. % эфирорастворимой фракции. Описывается также способ его получения. Технический результат - получение полипропилена с оптимальным набором свойств, и в особенности являются как мягкими, так и эластичными, а также легкотекучими. 2 с. и и 6 з.п. ф-лы. 2 табл.

Description

Изобретение относится к полипропиленам с улучшенными свойствами, которые получают путем химической деструкции с помощью пероксидов.
В патентах США NN 4 335 225, 4 522 982 и 5 118 768 описываются эластичные полипропилены, которые получают путем полимеризации с помощью специальных катализаторов. Эти продукты хотя и обладают определенной эластичностью, однако они непригодны для многих применений по причине их жесткости. Когда для специальных областей использования требуются полипропилены, которые являются как мягкими, так и эластичными, то, например, возможно к полипропиленам примешивать эластомеры, например аморфные сополимеры на основе этилена с пропиленом /EPR/ или на основе этилен-пропилендиен- мономеров /ЕРДМ/. Эти комбинации, однако, обладают тем недостатком, что они имеют очень высокие вязкости, в результате чего являются труднотекучими и могут перерабатываться с трудом, соответственно, только при добавке пластификаторов.
Соответственно этому, ставится задача избежать недостатков известных полипропиленов и получить полипропилены, которые обладают оптимальным набором свойств и в особенности являются как мягкими, так и эластичными, а также легкотекучими. Такого рода новые полипропилены можно получать согласно изобретению путем химической деструкции эластичных полипропиленов.
Предметом изобретения, соответственно этому, являются новые полипропилены с улучшенными свойствами, которые получают путем химической деструкции эластичных полипропиленов или смесей полипропиленов с эластичными полипропиленами с помощью органических пероксидов, в случае необходимости при добавке стабилизаторов.
Другим предметом изобретения является способ получения новых полипропиленов с улучшенными свойствами, при котором эластичные полипропилены или смеси полипропиленов с эластичными полипропиленами подвергают деструкции с помощью органических пероксидов, в случае необходимости при добавке стабилизаторов.
Тот факт, что при прилагаемой согласно изобретению химической деструкции эластичных полипропиленов получаются продукты с низкой молекулярной массой и меньшей вязкостью, которые являются более эластичными, а также мягче и менее жесткими по сравнению с исходными полипропиленами, в особенности является неожиданным потому, что полипропилены с более низкой молекулярной массой, соответственно, более высокой текучестью, как раз наоборот жестче и менее мягкие, а также менее эластичны, соответственно, менее растяжимы, чем сравниваемые материалы с более высокой молекулярной массой.
Используемые для деструкции эластичными полипропиленами в особенности являются такие, которые описаны в патентах США 4 335 225, 4 522 982 и 5 188 768. Под ними нужно понимать как гомополимеры, так и сополимеры. Они обладают по существу стереорегулярным расположением блоков при построении цепей и состоят, например, из блоков изотактических и атактических пропиленовых последовательностей, которые попеременно расположены в полимерной цепи. Также возможно встроение в полимерную цепь дополнительных сомономеров. Сополимеры, наряду с пропиленовыми звеньями, также могут содержать другие олефиновые звенья, например, как этиленовые, бутеновые, пентеновые или гексеновые звенья, в молекуле. Их получение осуществляют, например, согласно патенту США 4 335 225, путем полимеризации с помощью специальных катализаторов, которые получают путем взаимодействия или смешения органических соединений титана, циркония или гафния с оксидом металла, как, например, Al2O3, TiO2, SiO2 или MgO. Эластичные полипропилены предпочтительно содержат растворимую в простых эфирах долю, равную 10-80 вес.%. Они обладают предпочтительно текучестью ниже 0,1 г/10 мин /индекс расплава /MFI/, при 230oC и 2,16 кг, согласно ISO 1133 /ДИН 53735/. Далее, используемые для деструкции эластичные полипропилены можно получать, например, также аналогично патенту США 4 522 982 с помощью металлоценовых катализаторов в комбинации с алюмоксанами или аналогично патенту США 5 118 768 с помощью катализаторов на основе алкоксидов магния с TiCl4 в присутствии специальных электронодонорных соединений.
Эластичные полипропилены, согласно изобретению, можно подвергать индивидуально или в смеси с другими полипропиленами. В качестве других полипропиленов можно использовать все известные полипропиленовые гомополимеры, соответственно, сополимеры с другими олефинами. Смеси состоят предпочтительно из эластичных полипропиленов с содержанием 0 - 80 вес.% других полипропиленов.
В качестве органических пероксидов используют, например, ди-трет.-бутил-пероксид; бензилпероксид; лаурилпероксид; циклогексано-пероксид; трет. -бутил-перокси-изопропилкарбонат; 2,5-диметил-2,5-бис/трет.-бутилперокси/-гексин-3:1,1-4,4- 7,7-гексаметилцикло-4,7-дипероксинонан; 1,3- бис/трет.-бутилперокси-изопропил/-бензол; 3,3-6,6-9,9-гексаметилцикло-1,2,4,5-тетраоксанонан; 2,5-диметил-2,5-бис-/трет.-бутилперокси/-гексан; и фталидпероксиды, например 3-фенил-3-трет. -бутил-пероксифталид, которые, например, описаны в патенте ФРГ 23 31 354 для химической деструкции обычных полипропиленов. Особенно предпочтительно используют ди-трет.-бутил-пероксид и бис-/2-/1,1-диметилэтил/-пероксиизопропил/- бензол, который выпускается в продажу в виде Perkadox 14 FI фирмой AkZO. Пероксиды используют в количестве примерно 0,001-0,8 вес. %, предпочтительно 0,05-0,5 вес.%, в расчете на общее количество полипропиленов и эластичных полипропиленов.
Деструкция особенно хорошо протекает при температурах 180 - 260oC, причем особенно предпочтительны температуры 190-240oC. Продолжительность обработки с помощью пероксидов составляет по меньшей мере 10 секунд, предпочтительно 0,5 - 2 минуты. Деструкцию осуществляют особенно просто и эффективно непрерывно, например, в экструдере или в смесителе непрерывного действия.
Согласно изобретению, также можно добавлять к полипропиленам обычные добавки и/или наполнители. В качестве добавок можно добавлять, например, стабилизаторы и мягчители /смазки/. В качестве стабилизаторов принимают во внимание, например, антиоксиданты, стабилизаторы переработки, долговременные стабилизаторы или светозащитные средства. Стабилизаторы, которые оказываются особенно хорошо совместимыми с пероксидами, являются, например, согласно описанию изобретения к выложенной акцептованной заявке на патент ФРГ 23 31 354 или европейскому патенту B-0 290 336, бета-/3,5-ди-трет.-бутил-4-гидрокси-фенил/-пропионовая кислота, в особенности ее сложный эфир с пентаэритритом или октадеканолом; 1,3,5-триметил-2,4,6-трис-/3', 5'-ди.-трет.- бутил-4'-гидрокси-фенил/-бензол; 4-гидрокси-метил-2,6-ди-трет. -бутил-фенол; трис-/2'-метил-4'-гидрокси-5'-трет. -бутил-фенил/-бутан; стеариловый эфир 2,6-ди-трет. -бутил-п-крезол-3,5-диметил-4-гидрокси-бензил-тиогликолевой кислоты; и 2:1 никелевый комплекс моноэтилового эфира 3,5-ди-трет.-бутил-4-гидроксибензил-фосфоновой кислоты;
2-2/'-гидрокси-3', 5'-ди-трет. -амил-фенил/-бензотриазол и 2-/2'-гидрокси-3', 5'-ди-трет.-бутил-фенил/-5-хлор-бензотриазол, а также 2-гидрокси-4-эта-оксилокси-бензофенон. Сверх того, можно использовать еще другие стабилизаторы, например, из группы первичных или вторичных антиоксидантов или из группы светозащитных стабилизаторов и термостабилизаторов и их комбинации. Предпочтительными стабилизаторами являются 2,6-ди-трет.бутил-4-метил-фенол; пентаэритритил-тетракис-/3-/3,5-ди-трет. бутил-4-гидроксифенил/-пропионат/: трис-/2,4-ди. -трет. бутил-фенил/-фосфит и тетракис-/2,4-ди-трет.-бутил-фенил/-4,4-бифенилен-дифосфонит, соответственно, их смеси.
Наряду с этим, во многих случаях может быть необходимым добавление смазки, соответственно, вспомогательного для вынимания из формы средства с целью облегчения перерабатываемости. В качестве таковых пригодны вообще соли высших карбоновых кислот, например, стеариновой кислоты, с металлами 2-ой основной группы или 2-ой боковой группы периодической системы элементов. Предпочтительными смазками являются стеарат кальция или стеарат цинка.
В качестве наполнителей используют все известные неорганические или органические наполнители, как, например, мел, тальк, каолин, слюда или древесная мука.
Пример 1:
Получение эластичного полипропилена /ELPP/
А/ Приготовление катализатора
44,22 г окрашенного в серо-коричневый цвет тетранеофилциркония /Tetraneophylzirkon TNZ; т. пл. = 66oC, Du Pont) в атмосфере чистого азота растворяют в 620 мл н-гексана, очищенного с помощью Cu - катализатора /BASF-катализатор R 3-II, при 70oC/ для удаления кислорода и молекулярного сита 4A, соответственно, 10A, для удаления воды и полярных примесей, при 20oC, в колбе с защитным газом. Полученную суспензию, после отделения большей части нерастворимого остатка, спустя 15 минут фильтруют через стеклянный фильтр в охлажденную до -40oC, содержащую атмосферу защитного газа колбу с перемешиванием / прогретую при температуре свыше 150oC и продутую чистым азотом /менее 2 м. д. кислорода/ /. Колбу после окончания фильтрации /продолжительность примерно 140 минут/ выдерживают еще 15 минут при перемешивании и при - 40oC, чтобы по возможности количественно осадить TNZ. После осаждения TNZ надосадочный раствор фильтруют с помощью фильтровальной свечи при повышенном давлении азота в другую охлажденную колбу с атмосферой защитного газа. Оставшийся TNZ растворяют в следующих 350 мл н-гексана примерно при 5 - 10oC в течение 15 минут и после охлаждения до -34oC снова осаждают.
После отстаивания TNZ - осадка раствор снова фильтруют под повышенным давлением азота через стеклянную фильтровальную свечу в охлажденную колбу с атмосферой защитного газа, содержащую первый маточный раствор. Затем TNZ высушивают в вакууме масляного насоса /ниже 1•10-2 мбар/ при использовании промежуточно включенной ловушки, охлаждаемой жидким азотом. Очищенный TNZ имеет т.пл. 68oC и имеет окраску от белой до кремовой. Объединенные маточные растворы концентрируют примерно до объема 200 мл и путем охлаждения до -40oC осаждают еще растворенный TNZ. После новой фильтрации под давлением через фильтровальную свечу TNZ снова растворяют в 100 мл гексана, снова осаждают при - 40oC и высушивают в вакууме, как описано выше. Общий выход этого процесса очистки составляет 82,2%. Все операции осуществляют в атмосфере чистого азота.
В 4-горлую колбу с защитным газом емкостью 6 л помещают 266,7 г кондиционированного Al2O3 /Alumina C фирмы ДЕГУССА, кондиционируется примерно при 800 - 1000oC в токе азота и после выдержки при относительной влажности воздуха 50% и температуре 23oC в течение 16 часов и нового высушивания для установления оптимальной концентрации гидроксил-ионов на поверхности примерно 1 ммоль/г Alumina C, при 400oC в токе азота/ и смешивают с 5035 мл н-гексана, очищенного с помощью BASF-катализатора R3 -II и молекулярного сита 4А, соответственно, 10 А. Суспензию перемешивают примерно в течение 1 часа при 300 об. /мин. Затем вышеполученные 33,23 г TNZ /без продукта из обработанного маточного раствора/ растворяют при 20oC в 465 мл н-гексана /очищенного, как указано выше/ и этот TNZ - раствор в течение 50 минут при интенсивном перемешивании добавляют по каплям к суспензии Al2O3, причем после добавки нескольких миллилитров TNZ - раствора наступает отчетливое уменьшение вязкости суспензии. После добавки TNZ - раствора число оборотов мешалки снижают примерно до 120 в минуту и перемешивают следующие 12,5 часов при защите от света. Для ускорения фильтрации полученный твердый катализатор оставляют отстаиваться в течение 1 часа и, наконец, раствор отделяют путем фильтрации под давлением через стеклянный фильтр /продолжительность 3 часа/. После этого твердый катализатор высушивают в вакууме ниже 1•10-2 мбар/масляный насос с двумя промежуточно включенными, охлажденными жидким азотом ловушками/ при перемешивании вплоть до постоянного веса 292 г /продолжительность примерно 5 часов/. Все операции осуществляют в чистом виде. Полученный TNZ /Al2O3 - катализатор имеет окраску от бежевой до светло-коричневой и представляет собой текучий порошок, который имеет тенденцию к образованию маленьких шариков диаметром примерно 1 мм. Содержание циркония составляет 1,65 вес.%.
б) Полимеризация
Прогретый при 160oC под давлением 0,1 мбар реактор с двойной рубашкой емкостью 20 л, снабженный идущей к стенкам, с полированной поверхностью мешалкой, термостатируемой рубашкой, измерителями температуры, число оборотов и вращающего момента, после трех циклов: заполнение пропиленом/ создание вакуума - заполняют с помощью 7,3 кг пропилена при 25oC. После повышения числа оборотов мешалки до 400 об./мин подают 10,02 г приготовленного в п. п/катализатора с 300 мл жидкого пропилена /примерно при 20oC/ и число оборотов спустя 2 минуты снижают до 260 об./мин. Затем в течение примерно 10 минут температуру пропилена повышают до 60oC и эту температуру поддерживают в течение 120 минут, начиная с добавки катализатора. После этого число оборотов мешалки снижают до 200 об./мин и в течение 3-х минут в реактор вводят 1880 г подогретого примерно до 50oC ацетона с помощью повышенного давления азота. После увеличения числа оборотов мешалки до 400 об./мин примерно на 2 минуты и последующего снижения до 1000 об./мин/ в течение 20 минут при 60 - 46oC быстрым испарением удаляют непрореагировавший пропилен. Оставшуюся ацетоновую суспензию EI PP /эластомерного полипропилена/ перемешивают, и ее можно выпускать через выпускное отверстие в дне реактора размером 1 дюйм (2,54 см).
После отфильтровывания EL PP и высушивания в токе азота при 50oC получают 1,88 кг порошкообразно-рассыпчатого, не клейкого EL PP с т.пл. /Tm/ 148,1oC/ измерено с помощью дифференциального сканирующего калориметра 910/20 фирмы Du Pent) Thermal Analyst 2100//, соответственно, с балансовым содержанием циркония 89 м.д. и содержанием Al2O3 0,49 вес.%.
Пример 2
Химическая деструкция
Полученный согласно примеру 1 эластичный полипропилен размалывают на мельнице ударного действия после охлаждения до температуры ниже 0oC, вплоть до размера зерен ниже 3 мм. После этого примешивают 0,018 вес.% бис-/2-/1,1-диметилэтил/-перокси-изопропил/-бензола /Parkadox 14S FI фирмы AKZO/, в расчете на количество полипропилена, смесь расплавляют при 220oC в одношнековом экструдере Брабендера с размером отверстия 18 мм и экструдируют путем пропускания 1 кг/час через круглую фильеру с получением стренги (жгута) диаметром 3 мм. Время пребывания в экструдере составляет примерно 1 минуту. Стренгу после затвердевания в водяной бане гранулируют.
При этом эластичный полипропилен деструктируется вплоть до MFI =0,20 г/10 мин. Измерение MFI осуществляют согласно ISO 1133/ДИН 53735 при 230oC/2,16 кг. Механическую характеристику образовавшегося полипропилена получают при испытании на растяжение на растягивающем валике /Zugstab/ F4 согласно ДИН 53 457/1987. Необходимые образцы для испытаний готовят согласно ДИН 16 774/1988 при температуре массы 250oC и температуре формования 30oC. Полученные значения E-модуля, удлинения при разрыве и MFI приведены в таблице 1.
Примеры 3 - 6:
Полученный согласно примеру 1 эластичный полипропилен подвергают деструкции аналогично примеру 2, причем, однако, используют указанные в таблице 1 более высокие количества пероксида. Температура смешивания при этом должна снижаться вплоть до 190oC с возрастающим MFI, для того, чтобы получить хорошо снимаемую и гладкую стренгу /кгут/. В таблице 1 приводятся также значения E-модуля, удлинения при разрыве, MFI, а также рассчитанные согласно Cox/Mezz-соотношению (см. W.P. Cox, E.Mezz, f.Pol. Sci. 28/1958/619) величины исходной вязкости (Nullviskasitat) полученных при деструкции полипропиленов.
Примеры 7 - 9:
Полученный согласно примеру 1 изопропилен смешивают с обычным порошкообразным изотактическим полипропиленом (гомополимер, MFI при 230oC/ 2,16 кг = 0,2 г/10 мин, Daplen BE 50, PCD - полимеры) в соотношении 1:1 при добавке по 0,1 вес.% Irganox 1010 и Irgafos 168 (Циба-Гейги) в качестве стабилизаторов и затем подвергают деструкции аналогично примеру 2, однако с помощью различных количеств пероксида, как указанные в таблице 1, до различных значений MFI. Весовые % пероксида и стабилизаторов относятся к общему количеству используемых полипропиленов. В таблице 1, далее, приводятся значения E-модуля, удлинения при разрыве, MFI и исходной вязкости.
Примеры 10 и 11.
Полученный согласно примеру 1 эластичный полипропилен смешивают с обычным полипропиленовым порошком (блоксополимер с 12 мол.% этилена, MFI при 230o/2,16 кг = 0,2 г/10 мин. Daplen BHC 1012, PCD -полимеры) в соотношении 1:1 при добавке по 0,1 вес.% Irganox 1010 и Iroafos 168 (фирма Циба-Гейги) в качестве стабилизаторов и затем подвергают деструкции аналогично примеру 2, однако с различными количествами пероксида, как указано в таблице 1, до различных MFI-значений. Весовые % пероксида и стабилизаторов относятся к общему количеству используемых полипропиленов. В таблице 1, далее, приводятся значения E-модуля, удлинения при разрыве, MFI и исходной вязкости.
Как можно видеть из таблицы 1, полученные при деструкции эластичные полипропилены, а также их смеси с обычными полипропиленами с уменьшающейся вязкостью (соответственно, с повышающимся MFI) обладают увеличением удлинения при разрыве в качестве меры эластичных свойств, а также уменьшением E-модуля в качестве меры жесткости. Полученные полипропилены соответственно этому с увеличивающимся MFI в возрастающей степени становятся как эластичнее, так и мягче. Это особенно неожиданно, так как в противоположность этому в случае обычных полипропиленов - как примерно в таблице 2 - с увеличивающимся MFI увеличивается E -модуль и снижается удлинение при разрыве.

Claims (8)

1. Полипропилен с улучшенными свойствами, получаемый путем химической деструкции эластичного полипропилена со стереорегулярным расположением блоков в полимерной цепи или смеси полипропилена и эластичного полипропилена со стереорегулярным расположением блоков в полимерной цепи с помощью органических пероксидов, в случае необходимости при добавлении обычных добавок и/или наполнителей, при этом эластичный полипропилен содержит 10-80 вес.% эфирорастворимой фракции.
2. Полипропилен по п.1, отличающийся тем, что используемый для деструкции эластичный полипропилен имеет MEI (230oC/2,16 кг) ниже 0,1 г/10 мин.
3. Полипропилен по п.1 или 2, отличающийся тем, что в качестве пероксидов используют бис-(/2-/1,1-диметилэтил/-пероксиизопропил)-бензол или ди-трет.-бутилпероксид.
4. Полипропилен по любому из пп.1-3, отличающийся тем, что в качестве стабилизаторов используют 2,6-ди-трет. -бутил-4-метил-фенол; пентаэритритил-тетракис-(3-/3,5-ди-трет. -бутил-4-гидрокси-фенил/-пропионат); трис-(2,4-ди-трет. -бутил-фенил)-фосфит или тетракис-/2,4-ди-трет.-бутил-фенил/-4,4'-бифенилен-дифосфонит, соответственно их смеси.
5. Способ получения полипропилена с улучшенными свойствами путем деструкции, отличающийся тем, что эластичный полипропилен со стереорегулярным расположением блоков в полимерной цепи или смесь полипропилена и эластичного полипропилена со стереорегулярным расположением блоков в полимерной цепи подвергают деструкции с помощью органических пероксидов, в случае необходимости при добавлении обычных добавок и/или наполнителей, при этом эластичный полипропилен содержит 10-80 вес.% эфирорастворимой фракции.
6. Способ по п.5, отличающийся тем, что применяют 0,05-0,5 вес.% пероксидов, в расчете на количество полипропиленов.
7. Способ по п.5 или 6, отличающийся тем, что деструкцию осуществляют при температурах 190-240oC.
8. Способ по любому из пп.5-7, отличающийся тем, что деструкцию осуществляют непрерывно в экструдере.
RU94019973/04A 1993-06-07 1994-06-06 Полипропилен с улучшенными свойствами и способ его получения RU2141487C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0109993A AT403581B (de) 1993-06-07 1993-06-07 Verfahren zur herstellung von neuen polypropylenen durch chemische degradierung
AT1099/93 1993-06-07

Publications (2)

Publication Number Publication Date
RU94019973A RU94019973A (ru) 1996-12-27
RU2141487C1 true RU2141487C1 (ru) 1999-11-20

Family

ID=3506574

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94019973/04A RU2141487C1 (ru) 1993-06-07 1994-06-06 Полипропилен с улучшенными свойствами и способ его получения

Country Status (14)

Country Link
US (1) US5705568A (ru)
EP (1) EP0632062B1 (ru)
JP (1) JPH07138315A (ru)
KR (1) KR100331584B1 (ru)
CN (1) CN1061053C (ru)
AT (2) AT403581B (ru)
CZ (1) CZ137794A3 (ru)
DE (1) DE59404251D1 (ru)
ES (1) ES2110143T3 (ru)
FI (1) FI942653A (ru)
HU (1) HU213909B (ru)
NO (1) NO306469B1 (ru)
RU (1) RU2141487C1 (ru)
SK (1) SK279635B6 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738745A (en) * 1995-11-27 1998-04-14 Kimberly-Clark Worldwide, Inc. Method of improving the photostability of polypropylene compositions
AT406684B (de) * 1996-04-09 2000-07-25 Danubia Petrochem Polymere Verwendung von polypropylenen zur verbesserung der stabilität gegenüber ionisierender strahlung
CN1072738C (zh) * 1997-09-04 2001-10-10 中国石化扬子石油化工公司 一种制备聚丙烯纤维纺丝料的方法
AT407044B (de) 1998-04-24 2000-11-27 Borealis Ag Verwendung von modifikatoren auf basis von ethylenpolymeren oder amorphen olefinelastomeren zur reduktion der oberflächenklebrigkeit von amorphen polypropylenen
ITMI981213A1 (it) * 1998-06-01 1999-12-01 Montell North America Inc Polimeri propilenici adatti per film cast trasparenti
FR2792321B1 (fr) * 1999-04-19 2003-12-12 Atochem Elf Sa Procede de fabrication d'une resine de polypropylene a rheologie controlee
AU780051B2 (en) 1999-12-21 2005-02-24 Exxonmobil Chemical Patents Inc Adhesive alpha-olefin inter-polymers
EP1186618A1 (en) * 2000-09-08 2002-03-13 ATOFINA Research Controlled rheology polypropylene heterophasic copolymers
EP1312617A1 (en) * 2001-11-14 2003-05-21 ATOFINA Research Impact strength polypropylene
WO2004046214A2 (en) 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US6855771B2 (en) * 2002-10-31 2005-02-15 Grant Doney Process for making block polymers or copolymers from isotactic polypropylene
US6869982B2 (en) * 2002-11-27 2005-03-22 Basell Poliolefine Italia S.P.A. Irradiated, oxidized olefin polymer coupling agents
JP2005099712A (ja) * 2003-08-28 2005-04-14 Sharp Corp 表示装置の駆動回路および表示装置
CN101429308B (zh) * 2007-11-08 2011-04-20 中国石油天然气股份有限公司 一种聚丙烯降解母粒的制造方法
JP5560450B2 (ja) * 2010-09-01 2014-07-30 株式会社神戸製鋼所 混練押出機での粘度調整方法、および、混練押出機
WO2014047589A1 (en) * 2012-09-21 2014-03-27 Northwestern University Peroxy-derivative functionalization of polypropylene via solid-state shear pulverization
JP6538355B2 (ja) * 2015-01-06 2019-07-03 中村留精密工業株式会社 旋削工具及び真球加工方法
WO2020056119A1 (en) * 2018-09-14 2020-03-19 Fina Technology, Inc. Polyethylene and controlled rheology polypropylene polymer blends and methods of use
CN111533994B (zh) * 2020-05-09 2021-09-17 东华能源(张家港)新材料有限公司 一种高裂解率高熔指聚丙烯材料及其制备方法和应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144436A (en) * 1961-01-04 1964-08-11 Du Pont Process for degrading stereoregular polymers
NL298986A (ru) * 1963-01-09 1900-01-01
US3480580A (en) * 1965-10-22 1969-11-25 Eastman Kodak Co Modified polymers
AT319589B (de) * 1972-07-25 1974-12-27 Chemie Linz Ag Verfahren zur Herstellung von Polypropylen
US4105837A (en) * 1976-10-06 1978-08-08 Hercules Incorporated Conversion of stereoregular polypropylene to atactic polypropylene
DE2830160A1 (de) * 1977-07-12 1979-01-25 Du Pont Fraktionierbares elastisches polypropylen und verfahren zu seiner herstellung
US4335225A (en) * 1978-06-20 1982-06-15 E. I. Du Pont De Nemours And Company Elastomeric polypropylene
DE3105830A1 (de) * 1981-02-18 1982-09-09 Harald 8871 Ellzee Hofmann Abbau von polypropylen mittels azo-ester oder azo-aether
DE3174967D1 (en) * 1981-04-23 1986-08-28 Himont Inc Improved method of visbreaking polypropylene
US4451589A (en) * 1981-06-15 1984-05-29 Kimberly-Clark Corporation Method of improving processability of polymers and resulting polymer compositions
CA1210176A (en) * 1981-06-15 1986-08-19 Michael T. Morman Degradation of polypropylene for future improved processability
SU1070138A1 (ru) * 1982-01-07 1984-01-30 Томское отделение Охтинского научно-производственного объединения "Пластполимер" Способ получени модифицированного атактического полипропилена
NO834504L (no) * 1983-01-20 1984-07-23 El Paso Polyolefins Propylenkopolymerer med forbedret slagfasthet
ES519573A0 (es) * 1983-01-27 1984-03-16 Huerta Arevalo Gonzalo De Procedimiento para la preparacion de un caucho sintetico poliolefinico.
ZA86528B (en) * 1985-01-31 1986-09-24 Himont Inc Polypropylene with free-end long chain branching,process for making it,and use thereof
US4774293A (en) * 1985-06-26 1988-09-27 Akzo N.V. Process for cross-linking or degrading polymers and shaped articles obtained by this process
US4734448A (en) * 1985-07-10 1988-03-29 Idemitsu Petrochemical Co., Ltd. Propylene polymer composition
CA1296484C (en) * 1986-01-28 1992-02-25 Thomas William Smith Process for the direct synthesis of highly amorphous propylene homopolymers and propylene-ethylene copolymers
DE3742845C2 (de) * 1987-12-17 1996-07-11 Danubia Petrochem Deutschland Verfahren zur Herstellung von faserverstärkten Polypropylenbahnen sowie faserverstärkte Polypropylenbahnen
US5047485A (en) * 1989-02-21 1991-09-10 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
CA2049373A1 (en) * 1990-09-07 1992-03-08 Brian J. Pellon Process for the production of amorphous elastomeric propylene homopolymers
AU643315B2 (en) * 1990-09-07 1993-11-11 Huntsman Polymers Corporation Amorphous elastomeric propylene homopolymers
JP3016880B2 (ja) * 1991-02-01 2000-03-06 三菱化学株式会社 フィルム成形用高結晶性ポリプロピレン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Сирота А.Г. Модификация структуры и свойств полиолефинов. - Л: Химия, с.80. Энциклопедия полимеров. - М.: Советская энциклопедия, т.3, 1976, с.209. *

Also Published As

Publication number Publication date
KR100331584B1 (ko) 2002-08-08
ES2110143T3 (es) 1998-02-01
FI942653A (fi) 1994-12-08
ATA109993A (de) 1997-08-15
HU213909B (en) 1997-11-28
NO306469B1 (no) 1999-11-08
NO942087D0 (no) 1994-06-06
HUT69321A (en) 1995-09-28
HU9401696D0 (en) 1994-09-28
SK65594A3 (en) 1994-12-07
EP0632062B1 (de) 1997-10-08
US5705568A (en) 1998-01-06
CN1061053C (zh) 2001-01-24
ATE159034T1 (de) 1997-10-15
RU94019973A (ru) 1996-12-27
CN1107480A (zh) 1995-08-30
FI942653A0 (fi) 1994-06-06
CZ137794A3 (en) 1995-03-15
EP0632062A1 (de) 1995-01-04
DE59404251D1 (de) 1997-11-13
KR950000738A (ko) 1995-01-03
NO942087L (no) 1994-12-08
JPH07138315A (ja) 1995-05-30
AT403581B (de) 1998-03-25
SK279635B6 (sk) 1999-01-11

Similar Documents

Publication Publication Date Title
RU2141487C1 (ru) Полипропилен с улучшенными свойствами и способ его получения
RU2141492C1 (ru) Композиции из эластомерных полипропиленов и неолефиновых термопластов, способ их получения
US6894227B2 (en) Insulated electric wire
KR0154536B1 (ko) 결정성 폴리올레핀 조성물
EP0573862A2 (en) Crystalline polymers of propylene having improved processability in the molten state and process for their preparation
JP3423058B2 (ja) ラジカル性崩壊開始剤を用いるグラフト化プロピレン共重合体
US4820772A (en) Polyolefin composition
EP0316692B1 (en) Propylene polymer composition
RU2140933C1 (ru) Модифицированные эластомерные полипропилены, способ модификации эластомерных полипропиленов, композиция на основе полиолефинов и неолефиновых термопластов
KR20000068860A (ko) 폴리프로필렌/프로필렌-에틸렌 공중합체 조성물 및 이의 제조방법
KR20090031574A (ko) 인산 또는 포스폰산 염 및 촉매 불활성화제를 사용하는 중합 촉매의 불활성화 방법
US6664321B2 (en) Wear resistant resin composition
JPH0564984B2 (ru)
JP3215187B2 (ja) 改質プロピレン系重合体の製造方法
DE4321529A1 (de) Neue, durch chemische Degradierung erhältliche Polypropylene
JP3165732B2 (ja) プロピレン系共重合体の製造方法
WO2002032973A1 (en) Flexible polypropylene resin
JP3688081B2 (ja) ポリプロピレン樹脂組成物
JPS5993709A (ja) ポリプロピレン組成物の製造方法
EP0299494B1 (en) Butene-1 copolymer composition
KR101958533B1 (ko) 에틸렌 중합체 조성물 및 폴리올레핀 조성물에서 그의 용도
JP3115409B2 (ja) プロピレン系樹脂組成物
JPH0753771B2 (ja) プロピレン系共重合体の製造方法
JPH0463098B2 (ru)
JP2000109519A (ja) 結晶性ポリプロピレン及び結晶性ポリプロピレン樹脂組成物並びにそれを成形してなる成形体

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030607