RU2083582C1 - Способ получения бис-ареновых производных ванадия из оксихлорида ванадия - Google Patents

Способ получения бис-ареновых производных ванадия из оксихлорида ванадия Download PDF

Info

Publication number
RU2083582C1
RU2083582C1 SU925052317A SU5052317A RU2083582C1 RU 2083582 C1 RU2083582 C1 RU 2083582C1 SU 925052317 A SU925052317 A SU 925052317A SU 5052317 A SU5052317 A SU 5052317A RU 2083582 C1 RU2083582 C1 RU 2083582C1
Authority
RU
Russia
Prior art keywords
vanadium
aluminum
molar ratio
oxychloride
stage
Prior art date
Application number
SU925052317A
Other languages
English (en)
Inventor
Кальдераццо Фаусто
Пампалони Гвидо
Мази Франческо
Моалли Анджело
Кристина Кассани Мария
Инверницци Ренцо
Original Assignee
ЭНИКЕМ С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IT001934 external-priority patent/IT1251461B/it
Priority claimed from IT001937 external-priority patent/IT1251464B/it
Application filed by ЭНИКЕМ С.п.А. filed Critical ЭНИКЕМ С.п.А.
Application granted granted Critical
Publication of RU2083582C1 publication Critical patent/RU2083582C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System

Abstract

Изобретение относится к способу получения бис-ареновых производных ванадия [V(арен)2] исходя из оксихлорида ванадия, металлического алюминия, трихлорида алюминия и арена, согласно которому: - (а) оксихлорид ванадия (VOCl3), активный металлический алюминий и трихлорид алюминия вводят в контакт друг с другом в жидком арене, переводя оксихлорид ванадия в комплексное соединение формулы [V(арен)2]+ [AlCl4]-; - (б) к продукту реакции, полученному на стадии (а), добавляют жидкий циклический или ациклический простой эфир с целью восстановления [V(арен)2]+ до [V(арен)2]; - (в) бис-ареновый ванадий [V(арен)2] выделяют из продукта реакции, полученного на стадии (б). Полученные таким способом бис-ареновые производные ванадия используют для получения катализаторов полимеризации олефинов. 9 з.п. ф-лы.

Description

Изобретение относится к способу получения бис-ареновых производных ванадия исходя из оксихлорида ванадия.
Бис-ареновые комплексы ванадия измастны согласно имеющемуся уровню техники и используются в частности для приготовления катализаторов полимеризации олефинов (см. например, патент США 4 987 111).
Согласно имеющемуся уровню техники измастны различные способы получения бис-ареновых производных ванадия. Так, например, Е.О. Фишер и Г.П. Коглер в Chem. Ber. 90, 250, 1957, приводят способ получения бис-бензолванадия [V(C6H6)2] исходя из тетрахлорида ванадия, металлического алюминия, треххлористого алюминия и бензола. Далее, Ф. Кальдераццо в Inorg. Chem. 3, 810 (1964) описывает способ получения бис-мезитиленванадия [V(мезитилен)2] исходя из трихлорида ванадия, металлического алюминия, трихлорида алюминия и мезитилена.
Однако данные способы обеспечивают лишь очень ограниченные выходы по целевому продукту реакции и, следовательно, не могут рассматриваться в качестве удобных для промышленного применения.
В патенте США 4 980 491 описан способ получения бис-ареновых производных ванадия, включающий получение комплексного соединения [V(арен)2]+[AlCl4]- в результате реакции между трихлоридом ванадия, металлическим алюминием и трихлоридом алюминия, проводимой в присутствии арена с последующей реакцией комплексного соединения с иодидом щелочного металла с получением бис-аррениодида ванадия, и восстановление его посредством металлического или органометаллического восстановителя.
В итальянской патентной заявке 19.111 А/90, поданной 19 января 1990 авторами изобретения, описан способ получения бис-ареновых производных ванадия, согласно которому комплексное соединение формулы [V(арен)2]+[AlCl4]- вводят в контакт с циклическим или ациклическим жидким алифатическим простым эфиром с целью восстановления [V(арен)2]+ до [V(арен)2]
Как полагают заявители, неизмастны способы получения ареновых производных ванадия исходя из соединений пятивалентного ванадия, в частности исходя из оксихлорида ванадия. Оксихлорид ванадия имеет значительные преимущества по сравнению с хлоридами ванадия в отношении стоимости, доступности и удобства обращения.
В настоящее время согласно изобретению обнаружено, что можно получать бис-ареновые производные ванадия исходя из оксихлорида ванадия (VOCl3), активного металлического алюминия, трихлорида алюминия и арена с использованием способа, включающего несколько стадий с последовательным восстановлением степени окисления ванадия, который обеспечивает неожиданно высокие выходы целевого продукта. Термин "активный металлический алюминий", применяемый согласно изобретению, относится к алюминию чистотой 99 мас. или более, по крайней мере 90 мас. которого может быстро выделять водород в водной основной среде.
В соответствии со сказанным выше изобретение относится к способу получения бис-ареновых производных ванадия [V(арен)2] исходя из оксихлорида ванадия, металлического алюминия, трихлорида алюминия и арена, согласно которому:
(а) оксихлорид ванадия (VOCl3), активный металлический алюминий и трихлорид алюминия вводят в контакт друг с другом в жидком арене, переводя оксихлорид ванадия в комплексное соединение формулы [V(арен)2]+[AlCl4]-;
(b) к продукту реакции, полученному на стадии (а), добавляют жидкий циклический или ациклический простой эфир с целью восстановления [V(арен)2]+ до [V(арен)2]
(c) бис-ареновый комплекс ванадия, [V(арен)2] выделяют из продукта реакции, полученного на стадии (b).
Стадия (a).
На стадии (a) способа согласно изобретению оксихлорид ванадия, активный металлический алюминий, трихлорид алюминия и арен вводят в контакт друг с другом в определенных условиях проведения реакции.
Как уже указывалось, металлический алюминий, активный согласно изобретению, представляет собой алюминий чистотой 99 мас. или более, по крайней мере 90 мас. которого может быстро выделять водород в водной основной среде. Более конкретно активный алюминий данного типа способен давать в течение 5 мин в водной основной среде по меньшей мере 800 мл водорода (количество, измеренное при атмосферном давлении и температуре 25oC) из каждого грамма алюминия. Примеси, содержащиеся в алюминии подобного типа, состоят из окислов алюминия. Активный алюминий получают, например, при металлургической прокатке алюминия. Алюминий, используемый на стадии (a) способа согласно изобретению, предпочтительно имеет размер частиц менее 100 мкм и кажущуюся (насыпную) плотность, примерно 0,10 0,13 г/мл.
Согласно предпочтительному варианту способа согласно изобретению стадию (a) осуществляют в виде двух последовательных стадий (a') и (a''), на которых:
(a') оксихлорид ванадия вначале переводят в хлорид ванадия в стадии окисления (III) посредством контактирования его в среде жидкого арена с активным металлическим алюминием и хлоридом алюминия;
(a'') к реакционной смеси, полученной на стадии (a'), добавляют дополнительное количество металлического алюминия с целью получения комплексного соединения [V(арен)2]+ [AlCl4]-.
На стадии (a') удобно применять молярное отношение между трихлоридом алюминия и оксихлоридом ванадия в пределах 0,33 2 и молярное отношение между металлическим алюминием и оксихлоридом ванадия в пределах 0,7 10. Количество арена, взятого на стадии (a'), не является критическим фактором и обычно может меняться в пределах 2 -10 молей на каждый моль оксихлорида ванадия. Обычно предпочтительно использовать избыток арена, например 4 -10 молей на 1 моль оксихлорида ванадия, причем избыток играет роль растворителя или разбавителя. Наилучшие результаты получают при использовании молярного отношения между трихлоридом алюминия и оксихлоридом ванадия в пределах 1 2 и молярного отношения между металлическим алюминием и оксихлоридом ванадия в пределах 0,7 4. Стадию (a') осуществляют при комнатной температуре (20 25oC) или при температуре, близкой к комнатной (например в диапазоне 20 50oC), при контроле за выделением тепла при реакции с целью поддержания температуры в указанных выше пределах. При этих условиях достигается полное или практически полное восстановление ванадия до степени окисления (III) в течение промежутка времени около 1 2 ч.
На стадии (a'') способа согласно изобретению продукт реакции, полученный на стадии (a') обычно в виде суспензии, вводят в контакт с металлическим алюминием с целью получения комплексного соединения формулы [V(арен)2]+ [AlCl4]-.
В частности, стадию (a'') предпочтительно проводить при молярном соотношении между дополнительным количеством металлического алюминия и ванадия в пределах 1 2, температуре реакции в пределах от комнатной до 150oC и в течение промежутка времени 2 4 ч. В предпочтительных условиях молярное соотношение между дополнительным количеством металлического алюминия и ванадия лежит в пределах 1,3 1,6, температура реакции в пределах примерно 120 - 130oC и промежуток времени в пределах 2 3 ч. Алюминий, используемый на стадии (a''), предпочтительно представляет собой активный алюминий в соответствии с приведенным выше определением, но он может быть также и неактивным алюминием.
В соответствии с вторым вариантом способе согласно изобретению на стадии (a) оксихлорид ванадия, активный металлический алюминий и трихлорид алюминия в избытке вводят в контакт друг с другом в жидком арене при определенных условиях реакции; преимущество в этом случае заключается в устранении или практическом устранении нежелательных явлений.
Согласно указанному второму варианту на стадии (a) оксихлорид ванадия (VOCl3), активный металлический алюминий и трихлорид алюминия вводят в контакт друг с другом при молярном отношении между трихлоридом алюминия и оксихлоридом ванадия, равном или превышающим 2, и молярном отношении между металлическим алюминием и оксихлоридом ванадия, равном или превышающим 2, в среде жидкого арена, с получением комплексного соединения [V(арен)2]+[AlCl4] -.
В соответствии с указанным вторым вариантом способа более высокое молярное отношение между трихлоридом алюминия и оксихлоридом ванадия на стадии (a) не является критическим и может достигать столь значительных значений, как, например, 20. Однако из соображений экономичности это значение следует поддерживать около 2. Аналогичным образом молярное отношение между активным металлическим алюминием и оксихлоридом ванадия также не является критическим и может достигать высоких значений, например, равных 10. Однако из соображений экономичности это значение следует поддерживать в диапазоне 2 3. Реагенты можно вводить полностью в начале осуществления стадии (a). В альтернативном варианте трихлорид алюминия можно частично вводить в начале реакции вместе с остальными реагентами, а остаток в ходе реакции.
Согласно указанному второму варианту способа, стадию (a) можно осуществлять при температуре в диапазоне 25 170oC в течение 2 4 ч, предпочтительно при температуре в диапазоне 120 130oC в течение 2 3 ч.
В число примеров конкретных аренов, пригодных для использования на стадии (a), согласно изобретению входят толуол, п-ксилол и мезитилен. Среди них предпочтительным является мезитилен. Количество арена на стадии (a) не является критическим фактором и обычно лежит в пределах 2 10 молей на каждый моль оксихлорида ванадия. Обычно предпочтительно использовать избыток арена, причем указанный избыток исполняет функцию растворителя или разбавителя.
При описанных выше условиях на стадии (a) данного способа обычно получают в качестве продукта красновато-коричневую суспензию комплексного соединения [V(арен)2]+ [AlC4]- в жидком арене.
Стадия (b).
На стадии (b) данного способа к суспензии, полученной на стадии (a), добавляют циклический или ациклический жидкий простой эфир, осуществляя восстановление [V(арен) 2]+ до [V(арен)2]
Пригодными для этой цели простыми эфирами являются тетрагидрофуран, этиловый эфир, диметоксиэтан, диметиловый эфир диэтиленгликоля и их смеси. Из числа приведенных выше эфиров предпочтительными являются тетрагидрофуран и смеси тетрагидрофурана и диметоксиэтана. Количество вводимого эфира не является критическим фактором, однако обычно для этой цели используют 100 - 200 мас. час. эфира на каждые 100 мас. час. реакционной смеси. На данной стадии к реакционной смеси можно добавлять разбавитель, предпочтительно углеводородный разбавитель, жидкий при условиях проведения реакции, и предпочтительно являющийся насыщенным алифатическим углеводородом, например, таким как гептан. Обработку простым эфиром можно проводить при температуре 0 - 50oC, однако предпочтительно вести процесс при комнатной температуре (20 - 25oC) или температуре, близкой к комнатной. Времена контактирования обычно лежат в пределах 2 48 ч и предпочтительно составляют 2 5 ч.
При проведении реакции в описанных выше условиях получают ареновое производное ванадия в виде раствора в смеси растворителей.
Стадия (c).
На стадии (c) способа согласно изобретению ареновое производное ванадия, полученное на стадии (b), можно отделить от реакционной смеси с применением известных способов выделения. Так, например, выделение можно осуществлять в результате отгонки (испарения) из реакционной смеси эфира и возможно углеводородного растворителя. Остаток, получаемый при разгонке, можно вновь перевести в раствор в растворителе, способном к растворению ареновых производных ванадия, таким как углеводородный растворитель, в частности в алифатическом углеводородном растворителе, например гептане или циклогексане. Получаемый таким способом раствор можно отделить от твердых побочных продуктов реакции фильтрованием или центрифугированием. Ареновое производное ванадия можно извлечь из раствора в результате отгонки (испарения) растворителя или после кристаллизации при охлаждении раствора до низкой температуры.
Получаемые таким способом бис-ареновые производные ванадия представляют собой твердые продукты с определенной точкой плавления в инертной атмосфере. Эти бис-ареновые производные ванадия могут вводиться в реакцию с тетрахлоридом титана с получением твердых катализаторов, которые вместе с триалкилами алюминия являются высоко активными при полимеризации этилена или сополимеризации этилена с C3-C10-альфа-олефинами; полимеризацию проводят в суспензии при низком давлении и низкой температуре; при проведении полимеризации при высоком давлении и высокой температуре используют трубчатый реактор, а при проведении полимеризации при высоких температурах ее ведут в растворе.
Пример 1. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 0,62 г (23 ммоля) металлического алюминия (пластинки с содержанием активного по отношению к выделению водорода алюминия, равным 93 мас. насыпная плотность 0,13 г/мл, со следующим распределением частиц по размерам: остаток при 74 мкм: 4,9% остаток при 44 мкм: 19,3 мкм, и остаток при 100 мкм: отсутствует); 5,5 г (41 ммоль) трихлорида алюминия и 25,9 г (216 ммолей) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 0,66 1,2. После перемешивания в течение 1 ч при 25oC к смеси добавляют 1,3 г (48 ммолей) пластинок металлического алюминия, имеющего приведенные выше характеристики, при общем молярном соотношении алюминия к ванадию 2,1. При нагревании до 130oC в течение 3 ч получают темную красно-коричневую суспензию. После охлаждения до 25oC добавляют 100 мл смеси, состоящей из 15 мл тетрагидрофурана и 85 мл диметоксиэтана, и выдерживают реакционную смесь при интенсивном перемешивании в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток добавляют к 100 мл безводного циклогексана и получают при этом красновато-коричневый раствор, содержащий 9,7 г (33 ммоля) бисмезитиленванадия [V(мезитилен)2] с выходом 94% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 2. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 0,62 г (23 ммоля) металлического алюминия, имеющего те же характеристики, что и алюминий, описанный в примере 1, 2,75 г (21 ммоль) трихлорида алюминия и 16,8 г (140 ммолей) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 0,66 0,6. После перемешивания в течение 1 ч при 25oC к смеси добавляют 1,9 г (70 ммолей) пластинок металлического алюминия при общем молярном соотношении алюминия к ванадию 2,66. При нагревании до 130oC в течение 3 ч получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 100 мл смеси, состоящей из 15 мл тетрагидрофурана и 85 мл диметоксиэтана, и выдерживают реакционную смесь при интенсивном перемешивании в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток добавляют к 100 мл безводного циклогексана и получают при этом красновато-коричневый раствор, содержащий 9,57 г (33 ммоля) бис-мезитиленванадия [V(мезитилен)2] с выходом 94% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 3. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 0,94 г (35 ммоля) металлического алюминия, имеющего характеристики, описанные в примере 1, 5,5г (41 ммоль) трихлорида алюминия и 16,8 г (140 ммолей) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 1 1,2. После перемешивания в течение 1 ч при 25oC к смеси добавляют 1,3 г (48 ммолей) пластинок металлического алюминия, имеющего приведенные выше характеристики, при общем молярном соотношении алюминия к ванадию 2,4. При нагревании до 130oC в течение 3 ч получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 200 мл смеси, состоящей из 30 мл тетрагидрофурана и 170 мл диметоксиэтана. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток смешивают с 100 мл безводного гептана. После дополнительного фильтрования раствор концентрируют до 20 мл и охлаждают до -78oC, получая в результате 9,2 г (32 ммоля) бис-мезитиленванадия, [V(мезитилен)2] в виде кристаллического продукта с выходом 90% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 4. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 0,62 г (23 ммоля) металлического алюминия, имеющего характеристики, описанные в примере 1, 5,5 г (41 ммоль) трихлорида алюминия и 21,8 г (236 ммолей) толуола. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 0,66 1,2. После перемешивания в течение 2 ч при 120oC к смеси добавляют 1,3 г (48 ммолей) пластинок металлического алюминия при общем молярном соотношении алюминия к ванадию 2,1. При нагревании с обратным холодильником в течение 13 ч получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 100 мл смеси, состоящей из 15 мл тетрагидрофурана и 85 мл диметоксиэтана. Смесь выдерживают при интенсивном перемешивании в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток смешивают с 100 мл безводного циклогексана, получая красновато-коричневый раствор, содержащий 5,6 г (24 ммоля) бис-толуолванадия, [V(толуол)2] с выходом 68% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 5. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 1,888 г (70 ммолей) металлического алюминия, имеющего характеристики, описанные в примере 1; 14 г (105 ммолей) трихлорида алюминия и 43,2 г (359,4 ммолей) мезитилен. После перемешивания полученной суспензии в течение 30 минут при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 2 3. После нагревания в течение 3 ч при 130oC получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 50 мл тетрагидрофурана и выдерживают реакционную смесь при интенсивном перемешивании при комнатной температуре в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток извлекают 100 мл безводного циклогексана, получая красновато-коричневый раствор, содержащий 6,12 г (21 ммоль) бис-мезитиленванадия, [V(мезитилен)2] с выходом 60% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 6. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 1,888 г (70 ммолей) металлического алюминия, имеющего характеристики, описанные в примере 1, 5,6 г (42 ммоля) трихлорида алюминия и 43,2 г (360 ммолей) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 2 1,2. Реакция протекает с выделением тепла и после перемешивания в течение 1 ч к смеси добавляют 3,73 г (28 ммолей) трихлорида алюминия, после чего молярное соотношение V Al AlCl3 становится равным 1 2 2. После нагревания в течение 3 ч при 130oC получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 50 мл тетрагидрофурана и выдерживают реакционную смесь при интенсивном перемешивании при комнатной температуре в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток извлекают 100 мл безводного циклогексана, получая красновато-коричневый раствор, содержащий 7,43 г (25,5 ммоля) бис-мезитиленванадия, [V (мезитилен()2] с выходом 73,4% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 7. В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 72,4 г (603 ммолей) мезитилена, 18,4 г (106 ммолей) оксихлорида ванадия (VOC13) и 5,70 г (211 ммолей) активного металлического алюминия, имеющего характеристики, описанные в примере 1. Затем при перемешивании при 25oC к смеси добавляют 258 г (210 ммолей) трихлорида алюминия при молярном соотношении V Al AlCl3, равном 1 2 2. Реакция протекает с интенсивным выделением тепла; после выдерживания в течение 2 ч при 140oC получают темную красновато-коричневую суспензию. После охлаждения до комнатной температуры к суспензии добавляют 135 мл тетрагидрофурана и выдерживают реакционную смесь при интенсивном перемешивании при комнатной температуре в течение 3 ч. Затем из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток извлекают 150 мл безводного циклогексана. Раствор фильтруют и после промывки твердого остатка тетрагидрофураном получают красновато-коричневый раствор, содержащий 16 г (55 ммолей) бис-мезитиленванадия, [V(мезитилен)2] с выходом 52% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 8. В 500-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 72,4 г (603 ммолей) мезитилена, 18,4 г (106 ммолей) оксихлорида ванадия (VOCl3) и 5,70 г (211 ммолей) активного металлического алюминия, имеющего характеристики, описанные в примере 1. Затем при перемешивании при 25oC к смеси добавляют 28 г (210 ммолей) трихлорида алюминия при молярном соотношении V Al AlCl3, равном 1 2 5. Реакция протекает с интенсивным выделением тепла; после выдерживания реакционной смеси в течение 2 ч при140oC получают темную красновато-коричневую суспензию. После охлаждения к ней добавляют 1,70 г (63 ммоля) металлического алюминия, имеющего характеристики, описанные в примере 1, и 135 мл безводного тетрагидрофурана. Реакционную смесь выдерживают при интенсивном перемешивании при комнатной температуре в течение 3 ч. Затем из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток извлекают безводным циклогексаном. Раствор фильтруют и после промывки твердого остатка тетрагидрофураном получают 200 мл красновато-коричневого раствора, содержащего 21,1 г (72 ммоля) бис-мезитиленванадия, [V (мезитилен)2] с выходом 68% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 9 (сравнительный). В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 1,52 г (56 ммолей) металлического алюминия, имеющего характеристики, описанные в примере 1, 2,5 г (19 ммолей) трихлорида алюминия и 42,3 г (352 ммолей) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 4,85 г (28 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 2 0,68. После перемешивания в течение 3 ч при 130oC получают коричневую суспензию. После охлаждения до 25oC добавляют 100 мл смеси, состоящей из 15 мл тетрагидрофурана и 85 мл диметоксиэтана. Смесь выдерживают при интенсивном перемешивании в течение 15 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток смешивают с 100 мл безводного циклогексана; солюбилизации при этом не наблюдается. Результаты анализа твердого остатка свидетельствуют о том, что 95% ванадия содержится в виде соединений, нерастворимых в органических растворителях.
Пример 10 (сравнительный). В 500-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 4,72 г (175 ммолей) металлического алюминия, имеющего характеристики, описанные в примере 1, 5,5 г (41 ммоль) трихлорида алюминия и 42,3 г (352 ммоля) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 5 1,2. После перемешивания в течение 1 ч при 25oC смесь нагревают при 130oC в течение 3 ч, получая суспензию со слабой оранжевой окраской. После охлаждения до 25oC к ней добавляют 50 мл смеси, состоящей из 10 мл тетрагидрофурана и 40 мл диметоксиэтана, и выдерживают смесь при интенсивном перемешивании в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток смешивают с 100 мл безводного циклогексана. При этом получают раствор со слабой красной окраской, содержащей 0,51 г (1,75 ммолей) бис-мезитиленванадия, [V(мезитилен)2] с выходом 5% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 11 (сравнительный). В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 0,62 г (23 ммоля) металлического алюминия, полученного методом распыления, содержащего 78 мас. активного в отношении выделения водорода алюминия и имеющего насыпную плотность 0,27 г0мл, 5,5 г (41 ммоль) трихлорида алюминия и 25,9 г (216 ммолей) мезитилена. После перемешивания полученной суспензии в течение 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOСl3) при молярном соотношении V Al AlCl3, равном 1: 0,66 1,2. После перемешивания в течение 1 ч при 25oC к смеси добавляют 3 г (48 ммолей) алюминия, имеющего приведенные выше характеристики, при общем молярном соотношении алюминия к ванадию 21,1. При перемешивании при 130oC в течение 3 ч получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 110 мл смеси, состоящей из 15 мл тетрагидрофурана и 85 мл диметоксиэтана, и выдерживают реакционную смесь при интенсивном перемешивании в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток смешивают с 100 мл безводного циклогексана. При этом получают красновато-коричневый раствор, содержащий 5,1 г (17,5 ммолей) бис-мезитиленванадия, [V(мезитилен)2] с выходом 50% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 12 (сравнительный). В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 0,62 г (23 ммоля) металлического алюминия, полученного из листового алюминия толщиной 0,1 мм, разрезанного на полоски; степень чистоты алюминия равна 99,5 мас. 5,5 г (41 ммоль) трихлорида алюминия и 25,9 г (216 ммолей) мезитилена. После перемешивания полученной суспензии в течение примерно 30 мин при 25oC к ней добавляют 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 0,66 1,2. После перемешивания в течение 1 ч при 25oC к смеси добавляют 1,3 г (48 ммолей) алюминия, имеющего приведенные выше характеристики, при общем молярном соотношении алюминия к ванадию 2,1. При перемешивании при 130oC в течение 3 ч получают темную красновато-коричневую суспензию. После охлаждения до 25oC добавляют 100 мл смеси, состоящей из 15 мл тетрагидрофурана и 85 мл диметоксиэтана, и выдерживают реакционную смесь при интенсивном перемешивании в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток смешивают с 100 мл безводного циклогексана. При этом получают красновато-коричневый раствор, содержащий 0,51 г (1,75 ммолей) бис-мезитиленванадия, [V(мезитилен)2] с выходом 5% по отношению к исходному оксихлориду ванадия (VOCl3).
Пример 13 (сравнительный). В 250-мл стеклянную колбу, оборудованную термометром, магнитной мешалкой и обратным холодильником, загружают по очереди: 1,888 г (70 ммолей) активного металлического алюминия, имеющего характеристики, описанные в примере 1, 5,6 г (42 ммоля) трихлорида алюминия (AlCl3), 43 г (360 ммолей) мезитилена и 6,1 г (35 ммолей) оксихлорида ванадия (VOCl3) при молярном соотношении V Al AlCl3, равном 1 2 1,2. Реакция протекает с бурным выделением тепла. После перемешивания в течение 1 ч при 25oC смесь нагревают при 160 170oC в течение 3 ч, получая темную красновато-коричневую суспензию. После охлаждения до комнатной температуры к ней добавляют 50 мл смеси тетрагидрофурана и диметоксиэтана 18 85 по объему (V/V) и выдерживают смесь при интенсивном перемешивании при комнатной температуре в течение 3 ч. После фильтрования из полученного раствора отгоняют досуха растворитель (давление 0,1 Торр, 50oC); остаток обрабатывают гептаном (50 мл). Полученный раствор фильтруют, концентрируют и охлаждают до -80oС В результате получают 3,6 г бис-мезитиленванадия с выходом 35%

Claims (10)

1. Способ получения бис-ареновых производных ванадия (V(арен)2), где арен выбран из группы мезитилен, толуол, ксилол, а) взаимодействием галогенида ванадия, металлического алюминия, хлористого алюминия в среде жидкого арена с получением комплексного соединения (V(арен)2)+ (AlCl4)-, б) восстановлением (V(арен)2)+ в нейтральный бис-аренванадий (V(арен)2) с последующим выделением целевого продукта, отличающийся тем, что в качестве галогенида ванадия используют оксихлорид, в качестве металлического алюминия активный алюминий с размером частиц менее 100 мкм и насыпной плотностью 0,10 0,13 г/мл и соединения используют при молярном отношении V Al < 0,5, а восстановление ведут жидким циклическим или ациклическим простым эфиром.
2. Способ по п.1, отличающийся тем, что количество арена составляет 2 - 10 моль на 1 моль оксихлорида ванадия.
3. Способ по п.1, отличающийся тем, что стадию а) ведут с добавлением металлического алюминия в два приема, при этом а') оксихлорид ванадия вначале переводят в хлорид ванадия в степени окисления (III) посредством контактирования его в среде жидкого арена с активным металлическим алюминием и хлоридом алюминия при молярном отношении трихлорида алюминия к оксихлориду ванадия 0,33 2,0 и при молярном отношении металлического алюминия к оксихлориду ванадия 0,7 2,0 при 20 25oС или температурных значениях, близких к комнатной температуре, в течение примерно 1 2 ч; а'') к реакционной смеси, полученной на стадии а' добавляют дополнительное количество металлического алюминия с целью получения комплексного соединения (V (арен)2)+ (AlCl4)-.
4. Способ по п.3, отличающийся тем, что на стадии а' количество арена составляет 4 6 моль на каждый 1 моль оксихлорида ванадия при молярном отношении трихлорида алюминия к оксихлориду ванадия 1 2, при молярном отношении металлического алюминия к оксихлориду ванадия 0,7 4,0.
5. Способ по п.3, отличающийся тем, что стадию а'' осуществляют при молярном отношении дополнительного металлического алюминия к ванадию 1 2 при температуре реакции от комнатной до 150oС в течение 2 4 ч.
6. Способ по п.5, отличающийся тем, что стадию а'' осуществляют при молярном отношении дополнительного металлического алюминия к ванадию 1,3 1,6 при 120 130oС в течение 2 3 ч.
7. Способ по п.1 или 2, отличающийся тем, что на стадии а) оксихлорид ванадия VOCl3, активный металлический алюминий и трихлорид алюминия вводят в контакт в жидком арене при молярном отношении трихлорида алюминия к оксихлориду ванадия, равном или больше 2, и молярном отношении металлического алюминия к оксихлориду ванадия, равном или больше 2.
8. Способ по п.7, отличающийся тем, что стадию а) осуществляют при молярном отношении трихлорида алюминия к оксихлориду ванадия, равном примерно 2, при молярном отношении активного металлического алюминия к оксихлориду ванадия 2 3 при 25 170oС, предпочтительно 120 130oС, в течение 2 3 ч.
9. Способ по п.1, отличающийся тем, что на стадии б) добавляют простой эфир, выбранный из группы, состоящей из тетрагидрофурана, простого этилового эфира, диметоксиэтана, диметилового эфира диэтиленгликоля или одной из их смесей, в количестве 100 200 мас. ч. на каждые 200 мас. ч. реакционной смеси, а также возможно углеводородный разбавитель при времени контактирования 2 5 ч.
10. Способ по п.1, отличающийся тем, что полученные после стадии б) бис-ареновые производные ванадия (V (арен)2), где арен имеет указанное значение, выделяют в чистом виде или в виде раствора в органическом растворителе.
SU925052317A 1991-07-12 1992-07-10 Способ получения бис-ареновых производных ванадия из оксихлорида ванадия RU2083582C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IT001934 IT1251461B (it) 1991-07-12 1991-07-12 Procedimento per la produzione di vanadio bis-areni da ossicloruro di vanadio
IT001937 IT1251464B (it) 1991-07-12 1991-07-12 Produzione di vanadio bis-areni da ossicloruro di vanadio
ITM191A001934 1991-07-12
ITM191A001937 1991-07-12

Publications (1)

Publication Number Publication Date
RU2083582C1 true RU2083582C1 (ru) 1997-07-10

Family

ID=26330741

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925052317A RU2083582C1 (ru) 1991-07-12 1992-07-10 Способ получения бис-ареновых производных ванадия из оксихлорида ванадия

Country Status (21)

Country Link
US (1) US5210244A (ru)
EP (1) EP0525857B1 (ru)
JP (1) JPH05194556A (ru)
KR (1) KR950006545B1 (ru)
CN (1) CN1031712C (ru)
AR (1) AR247745A1 (ru)
AT (1) ATE142633T1 (ru)
AU (1) AU647296B2 (ru)
BR (1) BR9202662A (ru)
CA (1) CA2073634C (ru)
DE (1) DE69213605T2 (ru)
DK (1) DK0525857T3 (ru)
DZ (1) DZ1598A1 (ru)
EG (1) EG21012A (ru)
ES (1) ES2092012T3 (ru)
FI (1) FI104900B (ru)
GR (1) GR3021323T3 (ru)
MX (1) MX9204064A (ru)
NO (1) NO303286B1 (ru)
RU (1) RU2083582C1 (ru)
TN (1) TNSN92061A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1269805B (it) * 1994-05-20 1997-04-15 Enichem Spa Catalizzatore per la (co)polimerizzazione dell'etilene e procedimento per il suo ottenimento
IT1403290B1 (it) 2010-12-27 2013-10-17 Polimeri Europa Spa Componente solido di catalizzatore, catalizzatore comprendente detto componente solido, e procedimento di (co)polimerizzazione delle alfa-olefine
ITMI20121724A1 (it) 2012-10-12 2014-04-13 Versalis Spa Catalizzatore a base di rutenio e suo impiego nell'idrogenazione selettiva di composti aromatici o poliinsaturi
KR102290058B1 (ko) * 2019-07-05 2021-08-18 주식회사 태라솔루션 원심력을 이용한 촉매 충진 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE551488A (ru) * 1955-10-05
US3068258A (en) * 1958-09-22 1962-12-11 Union Carbide Corp Process for producing arene hydrocarbon-transition metal compounds
US4526724A (en) * 1983-09-30 1985-07-02 Standard Oil Company (Indiana) Process for the preparation of zero valent bis-arene transition metal compounds
IT1227053B (it) * 1988-09-09 1991-03-14 Enichem Anic Spa Componente di catalizzatore e gatalizzatore per la polimerizzazione di etilene e per la copolimerizzazione di etilene con alfa olefine.
IT1229737B (it) * 1989-05-16 1991-09-07 Enichem Anic Spa Procedimento per la produzione di vanadio areni.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US, 4980491, кл. C 08 F 9/00, 1990. *

Also Published As

Publication number Publication date
EG21012A (en) 2000-09-30
NO922709L (no) 1993-01-13
TNSN92061A1 (fr) 1993-06-08
AR247745A1 (es) 1995-03-31
KR950006545B1 (ko) 1995-06-16
AU647296B2 (en) 1994-03-17
CN1031712C (zh) 1996-05-01
NO922709D0 (no) 1992-07-09
AU1948392A (en) 1993-01-14
FI923151A (fi) 1993-01-13
DE69213605D1 (de) 1996-10-17
MX9204064A (es) 1993-07-01
BR9202662A (pt) 1993-03-16
KR930002241A (ko) 1993-02-22
JPH05194556A (ja) 1993-08-03
ATE142633T1 (de) 1996-09-15
US5210244A (en) 1993-05-11
EP0525857A1 (en) 1993-02-03
CA2073634C (en) 2002-10-22
DE69213605T2 (de) 1997-03-06
DZ1598A1 (fr) 2002-02-17
NO303286B1 (no) 1998-06-22
FI923151A0 (fi) 1992-07-08
GR3021323T3 (en) 1997-01-31
CN1068572A (zh) 1993-02-03
DK0525857T3 (ru) 1997-02-10
ES2092012T3 (es) 1996-11-16
EP0525857B1 (en) 1996-09-11
FI104900B (fi) 2000-04-28
CA2073634A1 (en) 1993-01-13

Similar Documents

Publication Publication Date Title
EP0574597B2 (en) Process for the preparation of bridged, chiral metallocene catalysts of the bisindenyl type
AU2004240910A1 (en) Phosphorus/vanadium catalyst preparation
RU2083582C1 (ru) Способ получения бис-ареновых производных ванадия из оксихлорида ванадия
CA1330566C (en) Organic derivatives of rhenium oxides and their preparation and use for the metathesis of olefins
US4792640A (en) Hydrocarbyloxy magnesium halides
US4778908A (en) Process for preparing disilylmethanes
EP0398402B1 (en) Process for producing vanadium-arenes
US6476271B2 (en) Process for the preparation of ether-free salts of tetrakis(pentafluorophenyl) borate
EP0437897B1 (en) Improved process for producing vanadium-arenes
US3122577A (en) Preparation of iron cyclopentadienides
EP0242801B1 (en) Hydrocarbyloxy magnesium halides
US2763700A (en) Preparation of sodium derivatives of weakly acidic hydrocarbons
JPS584790A (ja) マグネシウムジシロキシドの製造方法
KR20010042688A (ko) 티타노센의 방향족 유도체를 제조하기 위한 방법
JP3156301B2 (ja) 2‐ヘキセン‐1,6‐ジアールの製造方法
US3971816A (en) Esters of carboxylic acids formally substituted by sodium or potassium in the alpha-position and the method for their preparation
US6930177B2 (en) High-purity lanthanum isoproxide and a process for producing the same
JPS63196593A (ja) アルキルジハロゲノホスフアンの製造法
JPH06271492A (ja) 第3級アルコールナトリウム塩の製造方法
SA92130177B1 (ar) طريقة لانتاج ارينات فانيديوم مزدوجة من أكسي كلوريد فانيديوم
JPH1121287A (ja) トリス(フッ化アリール)ホウ素の単離方法
JPH024775A (ja) 2−メトキシ−6−メチルアミノピリジンの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090711

REG Reference to a code of a succession state

Ref country code: RU

Ref legal event code: MM4A

Effective date: 20090711