RU2076083C1 - СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ - Google Patents

СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ Download PDF

Info

Publication number
RU2076083C1
RU2076083C1 SU925011807A SU5011807A RU2076083C1 RU 2076083 C1 RU2076083 C1 RU 2076083C1 SU 925011807 A SU925011807 A SU 925011807A SU 5011807 A SU5011807 A SU 5011807A RU 2076083 C1 RU2076083 C1 RU 2076083C1
Authority
RU
Russia
Prior art keywords
suspension
alumina
grinding
aluminum
modification
Prior art date
Application number
SU925011807A
Other languages
English (en)
Inventor
фан Диэн Францискус
Original Assignee
Х.Ц. Штарк ГмбХ унд Ко., КГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4219935&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2076083(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Х.Ц. Штарк ГмбХ унд Ко., КГ filed Critical Х.Ц. Штарк ГмбХ унд Ко., КГ
Application granted granted Critical
Publication of RU2076083C1 publication Critical patent/RU2076083C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Crushing And Grinding (AREA)

Abstract

Сущность изобретения: для получения материала используют тригидрат оксида алюминия или низкообожженный оксид алюминия. Измельчают исходные компоненты в помольном оборудовании с мелющими телами из a-модификации оксида алюминия до получения взвеси, затем в нее вводят 1-5 мас.% тонкодисперсных зародышей кристаллов a-Al2O3, сушат и обжигают при температуре 1100-1500oС. Во взвесь могут быть введены дополнительно модификаторы и осуществлено вакуумирование взвеси, причем pH взвеси < 5. В качестве исходного компонента можно использовать гидроксид алюминия, образующийся при производстве алюминия по способу Байера. 4 з.п. ф-лы.

Description

Изобретение относится к способу получения спеченного материала, в частности абразива, на основе оксида алюминия, исходя из гидроксида алюминия (гиббсита, или гидраргиллита) или отожженного при низкой температуре оксида алюминия.
Благодаря высокой твердости α Al2O3 (корунд) уже в течение многих десятилетий используется в качестве абразива. Традиционный способ получения пригодного в качестве абразива корунда заключается в плавлении оксида алюминия (глинозема) или содержащего оксид алюминия сырья (боксита) в дуговой печи и измельчении затвердевшего расплава с последующим просевом его до желаемого размера абразивного зерна. Однако из-за высоких точки плавления и твердости материала и плавление и измельчение расплава весьма энергоемкие процессы, требующие оборудования, приобретение и содержание которого стоят очень дорого. Кроме того, свойства получаемых таким образом абразивов, в частности их вязкость, не для всех назначений оптимальны.
Поэтому уже давно пытаются получить абразивы на основе корунда путем нагрева содержащих алюминий соединений ниже точки плавления корунда (около 2050oC). При этом оказалось, что важно не только то, чтобы спеченный материал был плотным и непористым, но и то, чтобы он имел определенную микроструктуру. В частности, материал должен иметь тонкое строение с размером кристаллита ≅1 мкм при отсутствии отдельных крупных кристаллов.
Согласно уровню техники вышеназванная проблема решается способом перевода золя в гель, исходя из сверхчистого бемита (оксигидроксида алюминия (AlOOH))(Европейский патент 24 099) при необходимости с добавлением зародышей кристаллов, предотвращающих образование крупных кристаллитов путем обеспечения быстро протекающего процесса полной кристаллизации желаемой модификации, так что отдельные кристаллиты вследствие ограничения времени и пространства остаются малыми (Европейская патентная заявка 152 768). Полученные таким образом продукты отличаются весьма высоким качеством, но они относительно дорогостоящие, так как исходный материал получают гидролизом алкоголятов алюминия, которые в свою очередь довольно дорогостоящие. Однако, необходимого низкого содержания щелочных металлов, в частности натрия, трудно достичь иным путем. Дело в том, что низкое содержание натрия особенно важно для предотвращения образования b -Al2O3 при нагреве материала. Этот оксид оказывает особенно отрицательное влияние на абразивные свойства материала, поскольку он образуется в виде крупных кристаллов. Попытались также получить абразивы сравнимого качества, исходя из менее высокоценного бемита. Однако, это удалось осуществить только путем добавления значительных количеств добавок, способствующих спеканию (атомное соотношение с алюминием 1:35 1:2), и соблюдения определенной скорости нагрева (патент ФРГ 32 19 607). Однако, при применении этих добавок образуются добавочные фазы, например, описанные в цитированной Европейской патентной заявке шпинели, присутствие которых из-за "умягчающего" абразив эффекта нежелательны.
Цель изобретения разработка способа получения спеченных абразивов на основе оксида алюминия, исходящего из дешевого сырья и простым путем без особых добавок дающего высокоэффективный абразивный материал. Эта задача решена с помощью способа, описанного в п.1 формулы изобретения.
Неожиданно было обнаружено, что за счет подходящей комбинации стадий способа обеспечивается возможность получения из обычного технического гидроксида алюминия (Al(OH)3, гиббсита или гидраргиллита), образующегося при способе Байера, спеченного a -Al2O3 высокой плотности и твердости с размером кристаллита меньше 1 мкм, иногда даже меньше 0,5 мкм.
Хотя процесс получения a -Al2O3 из технического гидроксида алюминия широко известен он является одной из стадий крупнопромышленного производства алюминия получаемый таким путем оксид алюминия обладает высокой пористостью и низкой спекаемостью, в результате чего он абсолютно непригоден для обычных методов шлифования. Спекание подобного рода оксида алюминия начинается только при таких высоких температурах, при которых происходит сильный рост кристаллов, вследствие чего оно дает хотя и плотный, но крупнокристаллический продукт с неудовлетворительными механическими свойствами, не имеющий никаких особых преимуществ по сравнению с обычным корундом. Аналогичным образом получают, например, так называемый таблитчатый глинозем, характеризующийся крупными пластинчатыми кристаллами (размером несколько сот мкм).
Подобного рода оксиды алюминия пригодны только для определенных видов поверхностной обработки, например, полирования, в которых снятие материала играет относительно небольшую роль (патент DD 76 485). Для упомянутого способа перевода золя в гель обычный гидроксид алюминия не годится, поскольку он плохо диспергируется и не поддается переводу в гелеобразное состояние (о свойствах гидроксида алюминия см. например, Ullmann's Encyclopedia of Industrial Chemistry, т. A1, с. 557-594, изд-во VCH Verlagsgesellschaft mbH, Weinheim, 1985).
Согласно предлагаемому способу исходное вещество сначала дезагломерируют, т.е. размалывают в мокром состоянии, чтобы разделить полученные в результате процесса производства глинозема агломераты на отдельные кристаллиты.
Процесс дезагломерации предпочтительно осуществлять в аттриторе, вибрационной мельнице или шаровой мельнице с мешалкой, причем используют размалывающие органы, состоящие полностью или почти полностью из оксида алюминия. Необходимое для процесса размалывания количество жидкости выбирают так, чтобы образовалась взвесь с содержанием твердого вещества от 10 до 40 мас.
В качестве жидкости используют предпочтительно воду, но последнюю частично или полностью можно заменить смешивающимися с водой и легко испаряющимися растворителями, напpимеp, низшими спиртами или ацетоном.
Полученную таким образом взвесь целесообразно довести добавлением кислоты до pH ниже 5, предпочтительно до около 2-4, в результате чего удаляется растворенный или поглощенный диоксид углерода.
В качестве кислоты целесообразно использовать кислоту из группы, включающей азотную, соляную, лимонную, муравьиную, уксусную и щавелевую кислоты, но предпочтительно соляную. Необходимое количество кислоты зависит от свойств гидроксида алюминия, прежде всего от ее удельной поверхности. Но от добавления кислоты можно частично или полностью отказаться, заменяя его эвакуированием взвеси в целях ее дегазации.
К взвеси гидроксида алюминия целесообразно добавить зародыши кристаллов, в частности a-модификации оксида алюминия. Зародыши получают, например, простым образом путем размола a-модификации, например, в виде обожженного глинозема, до размера зерна <1 мкм.
Зародыши целесообразно добавить, хорошо смешивая их с получаемой взвесью, в количестве от 1 до 5 мас. считая на общее количество (в пересчете на Al2O3). Предпочтительно зародыши добавляют в начале или во время процесса дезагломерации гидроксида алюминия. Кроме зародышей можно еще добавить вспомогательные вещества или добавки, например, пеногасители, добавки, способствующие спеканию, ингибиторы роста кристаллов и т.д. Для предлагаемого способа добавление этих веществ не обязательно.
Полученную таким образом взвесь высушивают. Процесс высушивания целесообразно осуществить при температуре ниже точки кипения взвеси для того, чтобы предотвратить образование пузырьков паза. Под нормальным давлением, например, целесообразно высушить взвесь при температуре около 70oС. Когда, например, толщина слоя взвеси составляет около 10 см, то высушивание может осуществляться при этой температуре в течение около 2-3 сут. При применении избыточных давлений температуру высушивания можно повысить по мере повышения точки кипения, сокращая этим время высушивания взвеси. Во время высушивания по мере убывающего содержания жидкости уменьшается объем (толщина слоя) взвеси без возникновения значительной пористости. Таким образом нетрудно получить материал с открытой пористостью ≅ 0,05 мл/г и средним диаметром пор ≅ 10 нм (по данным ртутной порозиметрии).
Полученный осадок, если необходимо, измельчают до желаемого для шлифования размера зерна (с учетом усадки от спекания) и спекают. Температуру спекания выгодно выбрать в пределах 1100-1500oС. Время спекания зависит от температуры и составляет, например, около 2 ч при 1400oС.
Несмотря на сильное сжатие объема в результате превращения гидроксида алюминия в a-Al2O3 (линейная усадка около 30%) получается плотный спеченный продукт, который не нуждается в отжиге.
Вместо гидроксида алюминия можно использовать и обожженные при низких температурах оксиды алюминия или их смеси с гидроксидом алюминия.
Обожженные при низких температурах оксиды алюминия содержат еще незначительное количество воды, например, около 8 мас. При обработке согласно изобретению вследствие поглощения воды они вновь превращаются в гидроксид алюминия, что можно доказать термогравиметрическим анализом высушенной взвеси. Ввиду того, что обожженные при низких температурах оксиды алюминия со своей стороны получают из гидроксида алюминия и их применение не дает особых преимуществ, в качестве исходного вещества для предлагаемого способа следует предпочесть гидроксид алюминия.
Получаемый согласно изобретению спеченный материал отличается тонкими кристаллитами, а также высокой плотностью и твердостью. Его вязкость достигает 2,5 МПа•м-2 и более. Он оказывается пригодным для применения не только в качестве абразива, но и в качестве других материалов, у которых названные свойства играют большую роль.
Пример 1.
В аттриторе емкостью 0,6 л в деминерализованной воде с добавлением 1,5 мас. (считая на гидроксид алюминия) зародышей a-модификации оксида алюминия в течение 2 ч с помощью шаpов из оксида алюминия диаметром 1 мм размалывают и дезагломерируют 100 г чистого гидроксида алюминия (типа Martinal ROL-104, фирмы Martinswerk GmbH, D-W-5010 Bergheim). Размер частиц агломерата до его размола на 100% составляет меньше 10 мкм, а после размола - на 100% меньше 1 мкм. Зародыши альфа-модификации оксида алюминия получали путем размола в аттриторе обожженного при высокой температуре оксида алюминия до достижения размера частиц меньше 0,5 мкм. Значение pH доводили до 2, добавляя перед размолом около 20 мл 37%-ного раствора соляной кислоты. Взвесь высушивали при 70oС в течение 2 сут (начальная толщина слоя 5 см). Средний диаметр пор после высушивания составлял 9,5 нм (по данным ртутной порозиметрии), а открытая пористость была ниже 0,05 мл/г. Данные термогравиметрического (дифференциального термического) анализа показывали, что связанная вода улетучивается при температуре ниже 250oС и что при 1010oС начинается кристаллизация до альфа-Al2O3.
После спекания в течение 2 ч при 1400oС получали материал с размером кристаллитов < 0,5 мкм, плотностью >3,8 г/мл (>95 теоретической плотности) и твердостью по Викерсу (нагрузка 500 г) > 19 ГПа.
Пример 2.
Поступали аналогично примеру 1 за тем исключением, что вместо гидроксида алюминия использовали 70 г обожженного при низкой температуре оксида алюминия (типа HLS, фирмы Martinswerk) (потеря при прокаливании около 5 мас. содержание Na2O около 0,2 мас. других металлов около 0,05 мас. крупность 99% частиц < 1 мкм, удельная поверхность 200 м2/г). Термогравиметрический анализ высушенного материала показывал потерю веса в 35% при 400oС в соответствии с составом Al(OH)3.
После 2-часового спекания получали продукт, обладающий теми же свойствами, что и продукт по примеру 1.
Пример 3.
Поступали аналогично примеру 2 за тем исключением, что в качестве исходного материала использовали обожженный при низкой температуре оксид алюминия типа АХ (фирмы Martinswerk) (потеря при прокаливании около 5 мас. содержание Na2O около 0,2 мас. других металлов около 0,06 мас. гранулометрический состав: < 106 нм около 25% < 45 мкм около 10% удельная поверхность около 175 м2/г). Содержание натрия после спекания (1400oС, 1 ч) составляло 0,11 мас. С помощью рентгеновского структурного анализа в спеченном материале не обнаруживали b-Al2O3 (предел чувствительности около 1 мас.).
Пример 4
(Сравнительный пример)
Поступали аналогично примеру 2 за тем исключением, что процесс измельчения осуществляли не в аттриторе, а в коллоидной мельнице (типа Ultra Turrax R фирмы Janke und Kunkel) со смешением в течение всего лишь 30 мин. Полученный в результате 3-суточного высушивания при 70oС осадок имел поры со средним диаметром 400 нм и открытую пористость 0,06 мл/г. После отжига при 1200oС (5 ч) получали материал с открытой пористостью 0,11 мл/г.
По сравнению с этим материалом материал, полученный по примеру 2, после 5-часового отжига при 1200oС имел открытую пористость всего лишь в 0,03 мл/г.

Claims (5)

1. Способ получения спеченного материала на основе α-модификации оксида алюминия путем приготовления взвеси любым измельчением исходного компонента, сушки и термообработки, отличающийся тем, что в качестве исходного компонента используют тригидрат оксида алюминия или низкообожженный оксид алюминия, измельчение ведут в помольном оборудовании с мелющими телами из a-модификации оксида алюминия, во взвесь вводят 1 5 мас. тонкодисперсных зародышей кристаллов a-Al2O3, а термообработку ведут при 1100 1500oС.
2. Способ по п.1, отличающийся тем, что при получении взвеси вводят модифицирующие добавки.
3. Способ по п.1, отличающийся тем, что регулируют рН взвеси, доводя ее значение до < 5 добавлением кислоты из группы: азотная, соляная, уксусная, лимонная, муравьиная, щавелевая.
4. Способ по пп.1 и 2, отличающийся тем, что взвесь вакуумируют.
5. Способ по пп.1 4, отличающийся тем, что используют гидроксид алюминия, образующийся при производстве алюминия по способу Байера.
SU925011807A 1991-06-21 1992-06-11 СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ RU2076083C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1844/91 1991-06-21
CH184491 1991-06-21

Publications (1)

Publication Number Publication Date
RU2076083C1 true RU2076083C1 (ru) 1997-03-27

Family

ID=4219935

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925011807A RU2076083C1 (ru) 1991-06-21 1992-06-11 СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ

Country Status (17)

Country Link
US (1) US5236471A (ru)
EP (1) EP0524436B1 (ru)
JP (1) JPH05194026A (ru)
CN (1) CN1068092A (ru)
AT (1) ATE110353T1 (ru)
BR (1) BR9202236A (ru)
CA (1) CA2071593A1 (ru)
CZ (1) CZ188492A3 (ru)
DE (1) DE59200406D1 (ru)
ES (1) ES2060438T3 (ru)
HU (1) HUT61949A (ru)
MX (1) MX9202929A (ru)
NO (1) NO922439L (ru)
PL (1) PL294867A1 (ru)
RU (1) RU2076083C1 (ru)
TR (1) TR25916A (ru)
ZA (1) ZA924471B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625104C1 (ru) * 2016-06-09 2017-07-11 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения субмикронного порошка альфа-оксида алюминия
RU2818557C1 (ru) * 2023-12-26 2024-05-02 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ получения порошка альфа-оксида алюминия с размером частиц в диапазоне 1-4 мкм

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543347A1 (de) * 1991-11-22 1993-05-26 H.C. Starck GmbH & Co. KG Verfahren zur Herstellung von alpha-Aluminiumoxid-Pulver
US6051534A (en) * 1993-04-21 2000-04-18 The United States Of America As Represented By The Secretary Of The Navy Process for making superconducting PBSCCO and PBSCCO parts
CA2175680C (en) * 1993-11-12 2008-01-08 Larry D. Monroe Abrasive grain and method for making the same
US5593467A (en) * 1993-11-12 1997-01-14 Minnesota Mining And Manufacturing Company Abrasive grain
US5372620A (en) * 1993-12-13 1994-12-13 Saint Gobain/Norton Industrial Ceramics Corporation Modified sol-gel alumina abrasive filaments
WO1995018192A1 (en) * 1993-12-28 1995-07-06 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
US5489204A (en) * 1993-12-28 1996-02-06 Minnesota Mining And Manufacturing Company Apparatus for sintering abrasive grain
KR970700745A (ko) * 1993-12-28 1997-02-12 테릴 켄트 퀄리 알파 알루미나계 연마 입자(alpha alumina-based abrasive grain)
DE4414570A1 (de) * 1994-04-27 1995-11-02 Starck H C Gmbh Co Kg Verfahren zur Herstellung gesinterter mikrokristalliner alpha-Al¶2¶0¶3¶-Körper sowie deren Verwendung
US6342191B1 (en) 1994-12-07 2002-01-29 Apyron Technologies, Inc. Anchored catalyst system and method of making and using thereof
US5948726A (en) 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
US5985790A (en) * 1994-12-07 1999-11-16 Project Earth Industries, Inc. Method of making acid contacted enhanced aluminum oxide adsorbent particle
DE19503854C2 (de) * 1995-02-06 1997-02-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung gesinterter alpha-Al¶2¶O¶3¶-Körper sowie deren Verwendung
US5955393A (en) * 1995-04-21 1999-09-21 Project Earth Industries, Inc. Enhanced adsorbent and room temperature catalyst particle and method of making therefor
AU702753B2 (en) * 1996-04-02 1999-03-04 Norton Company Radiation curable formulations
US5810587A (en) * 1996-05-13 1998-09-22 Danville Engineering Friable abrasive media
DE19629690C2 (de) * 1996-07-23 1999-08-05 Korund Laufenburg Gmbh Verfahren zur Herstellung gesinterter alpha-AL¶2¶0¶3¶-Körper sowie deren Verwendung
US5954907A (en) * 1997-10-07 1999-09-21 Avery Dennison Corporation Process using electrostatic spraying for coating substrates with release coating compositions, pressure sensitive adhesives, and combinations thereof
US6383273B1 (en) 1999-08-12 2002-05-07 Apyron Technologies, Incorporated Compositions containing a biocidal compound or an adsorbent and/or catalyst compound and methods of making and using therefor
US6499680B2 (en) * 2001-06-01 2002-12-31 Saint-Gobain Ceramics And Plastics, Inc. Grinding media
TWI254699B (en) * 2002-01-16 2006-05-11 Sumitomo Chemical Co Calcined alumina, its production method and fine alpha\-alumina powder obtained by using the calcined alumina
US7241324B2 (en) * 2004-04-13 2007-07-10 Universal Photonics Llc Method of producing abrasive tools
US20050225012A1 (en) * 2004-04-13 2005-10-13 Alex Cooper Method of producing abrasive tools
WO2007020064A1 (de) * 2005-08-18 2007-02-22 Clariant International Ltd Oberflächenmodifizierte nanopartikel aus aluminiumoxid und oxiden von elementen der i. und ii. hauptgruppe des periodensystems sowie deren herstellung
CN102643628A (zh) * 2012-03-13 2012-08-22 杭州智华杰科技有限公司 水晶玻璃用抛光粉的生产方法
WO2014123153A1 (ja) * 2013-02-08 2014-08-14 昭和電工株式会社 アルミナ焼結体、砥粒、砥石、研磨布、及びアルミナ焼結体の製造方法
KR101504118B1 (ko) 2013-06-11 2015-03-19 (주)티피에스 고온 진공소결로를 이용한 고순도 고밀도 알루미나의 제조방법
US10562783B2 (en) 2015-10-20 2020-02-18 Fujimi Incorporated Processing of alumina
DE102018132842A1 (de) 2018-12-19 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abscheiden einer Aluminiumoxid-Schicht sowie ein Kunststoff- oder Glassubstrat mit einer darauf abgeschiedenen Aluminiumoxid-Schicht
CN110304906A (zh) * 2019-06-10 2019-10-08 青海万加环保新材料有限公司 一种氧化铝研磨球的制备方法
CN114988886B (zh) * 2022-06-01 2023-05-12 洛阳中超新材料股份有限公司 可低温烧结的高纯α-氧化铝粉的制备方法

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015658A (en) * 1933-01-04 1935-10-01 Stratmore Company Method of forming abrasive articles
US2278442A (en) * 1937-04-07 1942-04-07 Heany Ind Ceramic Corp Process of making ceramics, abrasives, and the like from alumina, and products thereof
CH513112A (de) * 1968-11-13 1971-09-30 Reichhold Albert Chemie Ag Verfahren zur Herstellung von substituierten Phenolen
US3817976A (en) * 1970-09-08 1974-06-18 V Bakul Binder for cutting particles of abrasive tool
US3781172A (en) * 1970-12-14 1973-12-25 G Kinney Process for the manufacture of microcrystalline fused abrasives
US3887450A (en) * 1971-02-04 1975-06-03 Dynachem Corp Photopolymerizable compositions containing polymeric binding agents
US3893826A (en) * 1971-11-08 1975-07-08 Norton Co Coated abrasive material comprising alumina-zirconia abrasive compositions
US3775113A (en) * 1972-02-09 1973-11-27 Minnesota Mining & Mfg Positive image transfer
JPS5034966B2 (ru) * 1972-07-24 1975-11-12
US3891408A (en) * 1972-09-08 1975-06-24 Norton Co Zirconia-alumina abrasive grain and grinding tools
US4047903A (en) * 1972-09-26 1977-09-13 Hoechst Aktiengesellschaft Process for the production of abrasives
US3933936A (en) * 1973-02-20 1976-01-20 The Dow Chemical Company Rapid setting adhesive compounds
US3862060A (en) * 1973-10-29 1975-01-21 Monsanto Co Phenolic resin emulsions comprising a resole resin and a soluble protein
JPS51102044A (ru) * 1975-02-03 1976-09-09 Minnesota Mining & Mfg
US4318766A (en) * 1975-09-02 1982-03-09 Minnesota Mining And Manufacturing Company Process of using photocopolymerizable compositions based on epoxy and hydroxyl-containing organic materials
US4199651A (en) * 1975-11-03 1980-04-22 General Electric Company Novel polyetheramide-imide phenolic resin blends
US4154724A (en) * 1976-06-28 1979-05-15 Texaco Development Corp. Polyether polyureides and resinous compositions therefrom
US4102866A (en) * 1976-10-29 1978-07-25 Texaco Development Corporation Method of making glycidyl ethers of novolak resins
US4108840A (en) * 1977-04-15 1978-08-22 Ppg Industries, Inc. Urea-urethane-acrylate radiation curable coating compositions and methods of making same
US4165520A (en) * 1977-10-17 1979-08-21 Xerox Corporation Video hard copy controller
US4226971A (en) * 1977-12-27 1980-10-07 Texaco Development Corp. Phenol-aldehyde condensation product with aminoalkylene derivative of a polyoxyalkylenepolyamine
DE2816194A1 (de) * 1978-04-14 1979-10-25 Giulini Chemie Sinteraktive und alkaliarme tonerde
US4518397A (en) * 1979-06-29 1985-05-21 Minnesota Mining And Manufacturing Company Articles containing non-fused aluminum oxide-based abrasive mineral
US4314827A (en) * 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
US4311631A (en) * 1979-09-20 1982-01-19 Delta Oil Products Corporation Low emission foundry binder system
US4284758A (en) * 1979-11-08 1981-08-18 Sun Chemical Corp. Glyoxal/cyclic urea condensates
US4345063A (en) * 1979-11-08 1982-08-17 Sun Chemical Corporation Glyoxal/cyclic urea condensates
US4285690A (en) * 1979-11-08 1981-08-25 Sun Chemical Corporation Novel reactants for crosslinking textile fabrics
US4332586A (en) * 1980-11-17 1982-06-01 Sun Chemical Corporation Novel reactants for crosslinking textile fabrics
DE3219607A1 (de) * 1981-05-27 1982-12-23 Kennecott Corp., 06904 Stamford, Conn. Gesintertes schleifmittel und verfahren zu seiner herstellung
HU185474B (en) * 1981-11-10 1985-02-28 Almasfuezitoei Timfoeldgyar Process for preparing alpha-aluminium oxyde poor in alkali for ceramic purposes
US4515835A (en) * 1982-12-23 1985-05-07 Rohm And Haas Company High solids thermosetting coating compositions, cured coatings, coated articles, and processes
US4588418A (en) * 1983-02-07 1986-05-13 E. I. Du Pont De Nemours And Company Recycle of reclaimed water in partial oxidation process
US4505720A (en) * 1983-06-29 1985-03-19 Minnesota Mining And Manufacturing Company Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith
US4505712A (en) * 1983-07-14 1985-03-19 Sun Chemical Corporation Cyclic urea/glyoxal/polyol condensates and their use in treating textile fabrics and paper
GB8322059D0 (en) * 1983-08-16 1983-09-21 Polymer Tectronics Ltd Moulding composition
GB8404210D0 (en) * 1984-02-17 1984-03-21 British Petroleum Co Plc Phenolic resin composition
US4574003A (en) * 1984-05-03 1986-03-04 Minnesota Mining And Manufacturing Co. Process for improved densification of sol-gel produced alumina-based ceramics
JPS61203185A (ja) * 1985-03-05 1986-09-09 Sunstar Giken Kk 接着付与剤
CA1254238A (en) * 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US5039759A (en) * 1985-08-01 1991-08-13 Technology Corporation United Carbide Chemicals And Plastics Water borne high solids coating compositions
US4652274A (en) * 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Coated abrasive product having radiation curable binder
US4770671A (en) * 1985-12-30 1988-09-13 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith
US4650838A (en) * 1986-01-23 1987-03-17 Allied Corporation Thermosettable modified phenolic resins
AT389882B (de) * 1986-06-03 1990-02-12 Treibacher Chemische Werke Ag Verfahren zur herstellung eines mikrokristallinen schleifmaterials
US4748043A (en) * 1986-08-29 1988-05-31 Minnesota Mining And Manufacturing Company Electrospray coating process
AT389884B (de) * 1986-10-03 1990-02-12 Treibacher Chemische Werke Ag Verfahren zur herstellung eines gesinterten schleifmaterials auf der basis von alpha-al2o3
US4997717A (en) * 1987-03-27 1991-03-05 Ciba-Geigy Corporation Photocurable abrasives
US4735632A (en) * 1987-04-02 1988-04-05 Minnesota Mining And Manufacturing Company Coated abrasive binder containing ternary photoinitiator system
US4786683A (en) * 1987-05-26 1988-11-22 The Firestone Tire & Rubber Company Phenolic resin and polyether treated guayule resin
US4881951A (en) * 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
US4906774A (en) * 1987-07-27 1990-03-06 Texaco Inc. Process for preparing diamines
US4802896A (en) * 1987-12-08 1989-02-07 Minnesota Mining And Manufacturing Company Modified resins and abrasive articles made with the same as a bond system
US4904516A (en) * 1988-01-12 1990-02-27 Certain Teed Corp Phenol-formaldehyde resin solution containing water soluble alkaline earth metal salt
US4927431A (en) * 1988-09-08 1990-05-22 Minnesota Mining And Manufacturing Company Binder for coated abrasives
US4903440A (en) * 1988-11-23 1990-02-27 Minnesota Mining And Manufacturing Company Abrasive product having binder comprising an aminoplast resin
US4964883A (en) * 1988-12-12 1990-10-23 Minnesota Mining And Manufacturing Company Ceramic alumina abrasive grains seeded with iron oxide
US5076815A (en) * 1989-07-07 1991-12-31 Lonza Ltd. Process for producing sintered material based on aluminum oxide and titanium oxide
US5026405A (en) * 1990-01-22 1991-06-25 American Cyanamid Company Bond for abrasive tools
US5008336A (en) * 1990-01-30 1991-04-16 Union Carbide Chemicals And Plastics Technology Corporation High solids coating compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка ЕПВ N 0024099, кл. C 09K 3/14, 1981. Заявка ЕПВ N 0152768, кл. C 04B 35/10, 1985. Заявка ФРГ N 3219607, кл. C 07B 14/32, 1985. Патент ГДР N 76485, кл. 45K 5/04, 1970. Ullman's Encyclopedia of Industrial Chemistry. - т.А1, с.557-594, из-во VCH Verlagsgesellschaft, 1985. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625104C1 (ru) * 2016-06-09 2017-07-11 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения субмикронного порошка альфа-оксида алюминия
RU2818557C1 (ru) * 2023-12-26 2024-05-02 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ получения порошка альфа-оксида алюминия с размером частиц в диапазоне 1-4 мкм

Also Published As

Publication number Publication date
JPH05194026A (ja) 1993-08-03
NO922439D0 (no) 1992-06-19
HU9202063D0 (en) 1992-10-28
HUT61949A (en) 1993-03-29
NO922439L (no) 1992-12-22
BR9202236A (pt) 1993-02-02
ATE110353T1 (de) 1994-09-15
US5236471A (en) 1993-08-17
EP0524436A1 (de) 1993-01-27
DE59200406D1 (de) 1994-09-29
EP0524436B1 (de) 1994-08-24
CN1068092A (zh) 1993-01-20
CZ188492A3 (en) 1993-01-13
MX9202929A (es) 1992-12-01
ZA924471B (en) 1993-03-31
CA2071593A1 (en) 1992-12-22
TR25916A (tr) 1993-11-01
ES2060438T3 (es) 1994-11-16
PL294867A1 (en) 1993-03-22

Similar Documents

Publication Publication Date Title
RU2076083C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ
RU2142976C1 (ru) Абразивный материал и способ его получения
US5383945A (en) Abrasive material and method
US4744802A (en) Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US5395407A (en) Abrasive material and method
US4623364A (en) Abrasive material and method for preparing the same
EP0152768B1 (en) Abrasive grits or ceramic bodies and preparation thereof
US4847064A (en) Economical process for alpha alumina production
CA1302681C (en) Ceramic bodies produced from boehmite gels by a hydrothermal process
US4799938A (en) α-Al2 O3 abrasive material and method of preparing the same
RU2021225C1 (ru) СПЕЧЕННЫЙ МАТЕРИАЛ НА ОСНОВЕ α - ОКСИДА АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА
JP2944839B2 (ja) ナノサイズのαアルミナ粒子とその製造方法
JPH07100608B2 (ja) アルミナの粉末及び焼結体の製法
US5284809A (en) Method for the preparation of α-aluminum oxide powder
JPH013008A (ja) 易解砕性アルミナの製造方法
US5149520A (en) Small sized alpha alumina particles and platelets
US5302564A (en) Sintered microcrystalline ceramic material
JPH05117636A (ja) α−三酸化アルミニウムを基礎とする多結晶性の焼結研磨粒子、この研磨粒子からなる研磨剤、研磨粒子の製造法および耐火性セラミツク製品の製造法
JPH06321534A (ja) 微結晶アルミナ研磨材粒子の製造方法
US3623837A (en) Process for producing fine particle size alumina hydrates
JPH06316413A (ja) 板状アルミナ粒子の製造方法
CA1326688C (en) Abrasive material and method
CA2003669A1 (en) Process for the production of dispersible boehmite
JPS62230615A (ja) アルミナ粉末の製造法