RU2015106767A - Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны - Google Patents

Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны Download PDF

Info

Publication number
RU2015106767A
RU2015106767A RU2015106767A RU2015106767A RU2015106767A RU 2015106767 A RU2015106767 A RU 2015106767A RU 2015106767 A RU2015106767 A RU 2015106767A RU 2015106767 A RU2015106767 A RU 2015106767A RU 2015106767 A RU2015106767 A RU 2015106767A
Authority
RU
Russia
Prior art keywords
redox active
flow
active materials
battery according
active material
Prior art date
Application number
RU2015106767A
Other languages
English (en)
Inventor
Дезире АМАДЕО
Артур Дж. ЭССВАЙН
Джон ГОЛЦ
Томас Д. ДЖАРВИ
Иван Р. КИНГ
Стивен И. РИС
Нитин ТИЯДЖИ
Original Assignee
Локхид Мартин Эдванст Энерджи Сторидж, Ллс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/795,878 external-priority patent/US8753761B2/en
Priority claimed from US13/948,497 external-priority patent/US9768463B2/en
Application filed by Локхид Мартин Эдванст Энерджи Сторидж, Ллс filed Critical Локхид Мартин Эдванст Энерджи Сторидж, Ллс
Publication of RU2015106767A publication Critical patent/RU2015106767A/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

1. Проточный аккумулятор, содержащий:первый водный электролит, содержащий первый редокс-активный материал;второй водный электролит, содержащий второй редокс-активный материал;первый электрод в контакте с упомянутым первым водным электролитом;второй электрод в контакте с упомянутым вторым водным электролитом; исепаратор, содержащий иономерную мембрану, расположенный между упомянутыми первым и вторым водными электролитами;при этом знак результирующего ионного заряда первого, второго или обоих редокс-активных материалов соответствует таковому у иономерной мембраны; и при этом проточный аккумулятор работает или способен работать:(а) когда первый или второй редокс-активные материалы составляют 3% или менее мольного потока ионов, проходящих через иономерную мембрану; или(b) с кпд по току в режиме полный разряд - полный заряд, который составляет по меньшей мере примерно 95%; или(с) при плотности тока по меньшей мере 100 мА/смпри кпд по напряжению в режиме полный разряд - полный заряд по меньшей мере примерно 90%; или(d) с электролитами, имеющими плотность энергии по меньшей мере примерно 30 Вт·ч/л; или(е) с комбинацией любых двух или более из (а), (b), (с) и (d).2. Проточный аккумулятор по п. 1, при этом знак результирующего ионного заряда первого, второго или обоих редокс-активных материалов является одинаковым в окисленной и восстановленной формах редокс-активных материалов и соответствует таковому у иономерной мембраны.3. Проточный аккумулятор по п. 1, при этом иономерная мембрана имеет толщину менее 100 мкм.4. Проточный аккумулятор по п. 1, при этом первыйредокс-активный материал, второй редокс-активный материал или как первый, так и второй редокс-активные материалы содержат

Claims (23)

1. Проточный аккумулятор, содержащий:
первый водный электролит, содержащий первый редокс-активный материал;
второй водный электролит, содержащий второй редокс-активный материал;
первый электрод в контакте с упомянутым первым водным электролитом;
второй электрод в контакте с упомянутым вторым водным электролитом; и
сепаратор, содержащий иономерную мембрану, расположенный между упомянутыми первым и вторым водными электролитами;
при этом знак результирующего ионного заряда первого, второго или обоих редокс-активных материалов соответствует таковому у иономерной мембраны; и при этом проточный аккумулятор работает или способен работать:
(а) когда первый или второй редокс-активные материалы составляют 3% или менее мольного потока ионов, проходящих через иономерную мембрану; или
(b) с кпд по току в режиме полный разряд - полный заряд, который составляет по меньшей мере примерно 95%; или
(с) при плотности тока по меньшей мере 100 мА/см2 при кпд по напряжению в режиме полный разряд - полный заряд по меньшей мере примерно 90%; или
(d) с электролитами, имеющими плотность энергии по меньшей мере примерно 30 Вт·ч/л; или
(е) с комбинацией любых двух или более из (а), (b), (с) и (d).
2. Проточный аккумулятор по п. 1, при этом знак результирующего ионного заряда первого, второго или обоих редокс-активных материалов является одинаковым в окисленной и восстановленной формах редокс-активных материалов и соответствует таковому у иономерной мембраны.
3. Проточный аккумулятор по п. 1, при этом иономерная мембрана имеет толщину менее 100 мкм.
4. Проточный аккумулятор по п. 1, при этом первый
редокс-активный материал, второй редокс-активный материал или как первый, так и второй редокс-активные материалы содержат металло-лигандное координационное соединение.
5. Проточный аккумулятор по п. 1, при этом первый и второй редокс-активные материалы содержат первое и второе металло-лигандные координационные соединения соответственно, причем первое металло-лигандное координационное соединение отличается от второго металло-лигандного координационного соединения.
6. Проточный аккумулятор по п. 1, при этом ион-селективная мембрана содержит фторполимер.
7. Проточный аккумулятор по п. 1, причем ион-селективная мембрана содержит иономер, имеющий ковалентно присоединенные или внедренные сульфонатные, карбоксилатные, четвертичные аммониевые, сульфониевые, фосфазениевые и гуанидиновые остатки или их соли.
8. Проточный аккумулятор по п. 1, при этом по меньшей мере один из первого и второго редокс-активных материалов проявляет практически обратимую электрохимическую кинетику.
9. Проточный аккумулятор по п. 1, при этом по меньшей мере один из электродов обращает поверхность из аллотропной модификации углерода к соответствующему электролиту.
10. Проточный аккумулятор по п. 1, при этом оба электрода обращают поверхность из аллотропной модификации углерода к соответствующему электролиту.
11. Проточный аккумулятор по п. 1, при этом каждый из первого или второго водных электролитов или первый и второй водные электролиты каждый проявляет рН в интервале от примерно 7 до примерно 13, от примерно 8 до примерно 13, от примерно 9 до примерно 13, от примерно 10 до примерно 13, от примерно 10 до примерно 12 или примерно 11.
12. Проточный аккумулятор по п. 1, при этом и первый, и второй ионно-заряженные редокс-активные материалы и их соответствующие окисленные или восстановленные формы являются отрицательно заряженными, и при этом ион-селективная мембрана имеет неподвижную фазу, которая также имеет результирующий
отрицательный заряд, чтобы быть избирательно проницаемой для катионов для практического исключения отрицательно заряженных редокс-активных материалов.
13. Проточный аккумулятор по п. 12, при этом первый и второй редокс-активные материалы и их соответствующие окисленные или восстановленные формы независимо проявляют заряды в интервале от -2 до -5.
14. Проточный аккумулятор по п. 1, при этом и первый, и второй ионно-заряженные редокс-активные материалы и их соответствующие окисленные или восстановленные формы являются положительно заряженными, и при этом ион-селективная мембрана имеет неподвижную фазу, которая также имеет результирующий положительный заряд с тем, чтобы быть избирательно проницаемой для анионов для практического исключения положительно заряженных редокс-активных материалов.
15. Проточный аккумулятор по п. 14, при этом первый и второй редокс-активные материалы и их соответствующие окисленные или восстановленные формы независимо проявляют заряды в интервале от +2 до +5 при соответствующих интервалах потенциала.
16. Проточный аккумулятор по п. 1, который при работе демонстрирует кпд по току в режиме полный разряд - полный заряд по меньшей мере 98% при степени заряда в интервале от примерно 35 до примерно 65%.
17. Проточный аккумулятор по п. 1, дополнительно содержащий внешнюю электрическую цепь в электрической связи с первым и вторым электродами, причем упомянутая цепь способна заряжать или разряжать проточный аккумулятор.
18. Проточный аккумулятор по п. 1, причем электрохимическая ячейка способна обеспечивать плотность энергии по меньшей мере 10 Вт·ч/л, по меньшей мере 20 Вт·ч/л или по меньшей мере 30 Вт·ч/л.
19. Способ работы проточного аккумулятора по п. 1, включающий в себя зарядку упомянутого аккумулятора путем подвода электрической энергии или разрядку упомянутого аккумулятора путем отвода электрической энергии.
20. Способ работы проточного аккумулятора по п. 1,
включающий в себя приложение разности потенциалов между первым и вторым электродами с соответствующим течением электронов так, чтобы:
(а) восстанавливать первый редокс-активный материал при окислении второго редокс-активного материала; или
(b) окислять первый редокс-активный материал при восстановлении второго редокс-активного материала.
21. Система, содержащая:
проточный аккумулятор по п. 1 и дополнительно содержащая:
(а) первую камеру, содержащую первый водный электролит, и вторую камеру, содержащую второй водный электролит;
(b) по меньшей мере один контур циркуляции электролита в проточном сообщении с каждой камерой электролита, причем упомянутый по меньшей мере один контур циркуляции электролита содержит резервуар для хранения и трубы для содержания и транспортировки электролитов;
(с) управляющее оборудование и программное обеспечение; и
(d) возможный блок регулирования мощности.
22. Система по п. 21, причем данная система приспособлена для подключения к электрической сети, выполненной так, чтобы обеспечивать встраивание возобновляемых источников, смещение пиковой нагрузки, обеспечение устойчивости сети, генерацию/потребление базовой нагрузки, энергетический арбитраж, отсрочку передачи и распределения оплаченных активов, поддержку слабой сети, регулирование частоты и или их сочетание.
23. Система по п. 21, причем данная система выполнена с возможностью обеспечивать стабильное питание для удаленных поселков, передовых оперативных баз, внесетевых телекоммуникационных систем или дистанционных датчиков.
RU2015106767A 2012-07-27 2013-07-24 Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны RU2015106767A (ru)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US201261676473P 2012-07-27 2012-07-27
US61/676,473 2012-07-27
US201261683260P 2012-08-15 2012-08-15
US61/683,260 2012-08-15
US201261738546P 2012-12-18 2012-12-18
US61/738,546 2012-12-18
US201261739145P 2012-12-19 2012-12-19
US201261739140P 2012-12-19 2012-12-19
US61/739,140 2012-12-19
US61/739,145 2012-12-19
US13/795,878 2013-03-12
US13/795,878 US8753761B2 (en) 2012-07-27 2013-03-12 Aqueous redox flow batteries comprising metal ligand coordination compounds
US13/948,497 2013-07-23
US13/948,497 US9768463B2 (en) 2012-07-27 2013-07-23 Aqueous redox flow batteries comprising metal ligand coordination compounds
PCT/US2013/051767 WO2014018589A1 (en) 2012-07-27 2013-07-24 Redox flow batteries comprising matched ionomer membranes

Publications (1)

Publication Number Publication Date
RU2015106767A true RU2015106767A (ru) 2016-09-20

Family

ID=49997795

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106767A RU2015106767A (ru) 2012-07-27 2013-07-24 Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны

Country Status (14)

Country Link
EP (1) EP2878022B1 (ru)
JP (2) JP6345661B2 (ru)
KR (1) KR102156522B1 (ru)
CN (2) CN107732272B (ru)
AU (1) AU2013293109A1 (ru)
BR (1) BR112015001738A2 (ru)
CA (1) CA2880193C (ru)
IL (1) IL236905A0 (ru)
IN (1) IN2015DN00674A (ru)
MX (1) MX2015001278A (ru)
PH (1) PH12015500183A1 (ru)
RU (1) RU2015106767A (ru)
SG (1) SG11201500624UA (ru)
WO (1) WO2014018589A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
RU2015106767A (ru) * 2012-07-27 2016-09-20 Локхид Мартин Эдванст Энерджи Сторидж, Ллс Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
CN105190971B (zh) * 2012-07-27 2019-03-29 洛克希德马丁能量有限公司 最优的膜电化学储能系统
US10147970B2 (en) * 2014-04-28 2018-12-04 Toyota Motor Engineering & Manufacturing North America, Inc. Chloride-free electrolyte for a magnesium battery and a method to convert a magnesium electrolyte to a chloride-free electrolyte
CA2981777C (en) * 2015-04-14 2023-03-07 Lockheed Martin Advanced Energy Storage, Llc Flow battery balancing cells having a bipolar membrane for simultaneous modification of negative and positive electrolyte solutions
WO2017075577A1 (en) * 2015-10-30 2017-05-04 Massachusetts Institute Of Technology Air-breathing aqueous sulfur rechargeable batteries
CN108232246B (zh) * 2016-12-15 2020-03-10 中国科学院大连化学物理研究所 一种铝空气电池系统及其工作方法
US11228052B2 (en) * 2017-04-28 2022-01-18 Ess Tech, Inc. Integrated hydrogen recycle system using pressurized multichamber tank
KR102365086B1 (ko) * 2018-12-03 2022-02-18 주식회사 엘지에너지솔루션 비파괴적 활물질의 활성 면적 측정 방법
CN117317331A (zh) * 2023-11-28 2023-12-29 华中科技大学 一种铬螯合物的正极电解液及液流电池

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133941A (en) * 1977-03-10 1979-01-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Formulated plastic separators for soluble electrode cells
US4180623A (en) * 1977-12-19 1979-12-25 Lockheed Missiles & Space Company, Inc. Electrically rechargeable battery
EP0013113A1 (en) * 1978-12-21 1980-07-09 Allied Corporation A process and apparatus for the production of electrical energy from the neutralization of acid and base in a bipolar membrane cell
JPH0638340B2 (ja) * 1986-08-22 1994-05-18 徳山曹達株式会社 レドツクスフロ−電池用隔膜
JP3082884B2 (ja) * 1992-10-21 2000-08-28 日本電信電話株式会社 蓄電型温度差電池
JP3259751B2 (ja) * 1994-12-28 2002-02-25 日本電信電話株式会社 温度差電池
JP3496385B2 (ja) * 1995-02-16 2004-02-09 住友電気工業株式会社 レドックス電池
US6986966B2 (en) * 2001-08-10 2006-01-17 Plurion Systems, Inc. Battery with bifunctional electrolyte
US20060063065A1 (en) * 2001-08-10 2006-03-23 Clarke Robert L Battery with bifunctional electrolyte
EP1612874A1 (en) * 2004-07-02 2006-01-04 SOLVAY (Société Anonyme) Solid alkaline fuel cell comprising ion exchange membrane
JP2006313691A (ja) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd レドックスフロー電池システム
AT503315B1 (de) * 2006-03-06 2008-02-15 Funktionswerkstoffe Forschungs Redox-durchfluss-batterie, sowie elektrolyt-lösung für eine redox-durchfluss-batterie
US7740977B2 (en) * 2007-03-26 2010-06-22 Jd Holding Inc. Vanadium redox battery incorporating multiple electrolyte reservoirs
JP5205818B2 (ja) * 2007-06-05 2013-06-05 ソニー株式会社 燃料電池および電子機器
CN101383403B (zh) * 2007-09-05 2011-03-23 中国科学院大连化学物理研究所 一种复合离子交换膜及其制备
US9786944B2 (en) * 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
EP2355223B1 (en) * 2010-01-29 2019-04-17 Samsung Electronics Co., Ltd. Redox flow battery including an organic electrolyte soution
WO2011111717A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池
US8808888B2 (en) * 2010-08-25 2014-08-19 Applied Materials, Inc. Flow battery systems
KR20120063163A (ko) * 2010-12-07 2012-06-15 삼성전자주식회사 리튬 공기 전지
KR101793205B1 (ko) * 2010-12-31 2017-11-03 삼성전자 주식회사 레독스 플로우 전지
KR101882861B1 (ko) * 2011-06-28 2018-07-27 삼성전자주식회사 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
WO2013006427A1 (en) * 2011-07-01 2013-01-10 Sun Catalytix Corporation Methods and systems useful for solar energy storage
RU2015106767A (ru) * 2012-07-27 2016-09-20 Локхид Мартин Эдванст Энерджи Сторидж, Ллс Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны
US8753761B2 (en) * 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds

Also Published As

Publication number Publication date
PH12015500183A1 (en) 2015-04-20
EP2878022A4 (en) 2016-05-11
JP2018142548A (ja) 2018-09-13
CA2880193C (en) 2021-07-06
CN107732272B (zh) 2020-12-04
JP6668414B2 (ja) 2020-03-18
MX2015001278A (es) 2015-09-08
JP6345661B2 (ja) 2018-06-20
AU2013293109A1 (en) 2015-02-19
CN104854730B (zh) 2017-09-01
EP2878022B1 (en) 2019-04-17
IL236905A0 (en) 2015-03-31
CA2880193A1 (en) 2014-01-30
CN104854730A (zh) 2015-08-19
WO2014018589A1 (en) 2014-01-30
SG11201500624UA (en) 2015-04-29
IN2015DN00674A (ru) 2015-06-26
JP2015523697A (ja) 2015-08-13
BR112015001738A2 (pt) 2017-07-04
KR20150045451A (ko) 2015-04-28
KR102156522B1 (ko) 2020-09-16
CN107732272A (zh) 2018-02-23
EP2878022A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
RU2015106767A (ru) Окислительно-восстановительные проточные аккумуляторы, содержащие подходящие иономерные мембраны
Dinesh et al. Iron-based flow batteries to store renewable energies
Park et al. Performance of the all-vanadium redox flow battery stack
AU2014307611B2 (en) Novel flow battery and usage thereof
RU2015106738A (ru) Электрохимические системы, отличающиеся высоким напряжением разомкнутой цепи
RU2015106740A (ru) Водные окислительно-восстановительные проточные аккумуляторы, включающие металло-лигандные координационные соединения
WO2012167057A2 (en) Iron based flow batteries
Dewage et al. A novel regenerative hydrogen cerium fuel cell for energy storage applications
Hsieh et al. Measurement of local current density of all-vanadium redox flow batteries
Li et al. Three electrolyte high voltage acid–alkaline hybrid rechargeable battery
Zhang et al. Using Li+ as the electrochemical messenger to fabricate an aqueous rechargeable Zn–Cu battery
CN105742656A (zh) 一种锌碘液流电池
KR20140071603A (ko) 전 유기계 활물질을 포함하는 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
CN104882624A (zh) 蒽醌液流电池
KR20170126436A (ko) 구리계 플로우 배터리
CN104795567A (zh) 基于碘离子溶液正极和有机物负极的水系锂离子/钠离子电池
CN103401045A (zh) 一种具有光电效应的液流电池储能体系
US20230013770A1 (en) Ion Removal Devices Based on Electrochemistry and Photo-electrochemistry, and Preparation Method and Application
RU2015106675A (ru) Электрохимические системы и способы аккумулирования энергии, характеризующиеся большими отрицательными потенциалами полуячейки
CN105280943A (zh) 一种全锰液流电池
JP5979551B2 (ja) バナジウムレドックス電池
Sindhuja et al. Electrochemical performance of Cu2+/Cu+-[Fe (CN) 6] 3-/[Fe (CN) 6] 4-redox flow batteries under steady state conditions
KR20110092860A (ko) Sn 또는 Ce 이온이 첨가된 용해 납 레독스 흐름 배터리용 전해액 및 이를 포함하는 전지
KR101514881B1 (ko) 이차전지용 전해액 제조방법
CN104716385A (zh) 一种钒锰混合液流电池

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20160725