RU2014975C1 - Способ обработки деталей в атмосфере пара и устройство для его осуществления - Google Patents

Способ обработки деталей в атмосфере пара и устройство для его осуществления Download PDF

Info

Publication number
RU2014975C1
RU2014975C1 SU894614624A SU4614624A RU2014975C1 RU 2014975 C1 RU2014975 C1 RU 2014975C1 SU 894614624 A SU894614624 A SU 894614624A SU 4614624 A SU4614624 A SU 4614624A RU 2014975 C1 RU2014975 C1 RU 2014975C1
Authority
RU
Russia
Prior art keywords
chamber
steam
processing
atmosphere
pressure
Prior art date
Application number
SU894614624A
Other languages
English (en)
Inventor
Ран Армин
Original Assignee
Ран Армин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ран Армин filed Critical Ран Армин
Application granted granted Critical
Publication of RU2014975C1 publication Critical patent/RU2014975C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • B23K1/015Vapour-condensation soldering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/04Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Использование: обработка деталей в паровой фазе: сушка толстослойных материалов, эпоксидных смол, пайка печатных плат. Сущность изобретения: детали обрабатываются в атмосфере ненасыщенного пара при давлении ниже атмосферного. В ненасыщенный пар может добавиться инертный газ. В процессе обработки осуществляют предварительный нагрев детали. Устройство для обработки содержит герметичную камеру обработки, механизм для транспортировки обрабатываемых изделий через камеру и средство для образования ненасыщенного пара. Нагреватель выполняют в виде плиты из теплопроводного материала и располагают наклонно относительно дна камеры с выемкой в конце наклона. Устройство может быть выполнено двух-или трехкамерным. При трехкамерном выполнении оно содержит входную и выходную камеры для предварительного нагрева и охлаждения. Устройство содержит также конденсатор обрабатывающего пара, установленный над камерой обработки. 2 с. и 9 з.п.ф-лы, 2 ил.

Description

Изобретение относится к обработке деталей в паровой фазе и направлено на реализацию способа и устройства для обработки обрабатываемых деталей с помощью обрабатывающей среды в ненасыщенной паровой фазе.
Известен способ обработки деталей (пайка, наплавка) в паровой фазе, включающий перемещение деталей через камеру обработки и нагрев до температуры обработки насыщенным паром [1].
Известно устройство для обработки деталей, содержащее герметичную камеру обработки, расположенный в ней нагреватель и механизм для транспортировки обрабатываемых изделий через камеру [2].
Цель изобретения состоит в повышении качества обработки.
Способ осуществляется следующим образом: процесс обработки протекает в закрытой камере обработки, давление в камере обработки снижается до уровня ниже атмосферного давления. Тем самым в любое время, когда входное и выходное отверстия открываются для возможности передвижения печатных плат в камеру или из камеры, атмосферный поток поступает в камеру, а не из камеры из-за перепада давления. Это предотвращает утечку пара и/или аэрозоля. В любые остальные периоды времени камера герметично закрыта. Атмосфера в камере по крайней мере частично рециркулирует, чтобы управлять в ней давлением и количеством обрабатывающего пара в камере.
Устройство конструируется с раздельными входной и выходной камерами, смежными с камерой обработки. Входная и выходная камеры действуют как воздушные замки в отношении камеры обработки, и каждая снабжена закрытыми впускным и выпускным отверстиями для возможности сообщения с атмосферой и камерой обработки. Давление в каждой из входной и выходной камер также управляется, чтобы иметь величину меньше атмосферного давления и больше, чем давление в камере обработки. Таким образом, атмосферный поток всегда направлен в камеру обработки, а не из нее. Атмосфера в обеих входной и выходной камерах также по крайней мере частично рециркулирует для управления их давлением и удалением пара, который может войти в эти камеры.
При давлении в выходной камере, сниженном по сравнению с атмосферным давлением, вынос жидкости на обрабаты- ваемых деталях и транспортирующем средстве снижается. Обрабатываемая деталь, которая поступает в выходную камеру, нормально все еще находится при повышенной температуре, такой как температура плавления/отверждения припоя, и несет часть конденсированного пара. Нагревание обрабатываемой детали для испарения переносимой жидкости при атмосферном давлении будет, например, задерживать отверждение припоя и приведет к дальнейшему росту межметаллического слоя. Однако в результате снижения давления в выходной камере температура кипения жидкости снижается и жидкость на обрабатываемой детали будет более легко испаряться теплом последней. Пар удаляется для восстановления жидкости во время рециркуляции атмосферы.
Пониженное давление, поддерживаемое в камере обработки, также ведет к понижению точки кипения жидкости. Так как жидкости, нормально используемые для образования пара, имеют атмосферную точку кипения, например, непосредственно выше температуры плавления припоя, любое понижение их точки кипения, связанное с пониженным давлением, может удлинить время спаивания, приводя тем самым к дальнейшему нежелательному межметаллическому росту (утолщению места спайки).
Эта проблема может быть преодолена в изобретении путем использования ненасыщенного пара, который может быть нагрет выше точки кипения своей жидкости, и путем использования нового нагревающего средства, обеспечивающего специальное управление температурой ненасыщенного пара.
Использование ненасыщенного пара обеспечивает его температуру в диапазоне от точки кипения своей жидкости при пониженном давлении в камере обработки до температуры, непосредственно примыкающей к температуре разложения пара. Также путем управления давлением в камере обработки точка кипения жидкости может точно управляться. Если давление в камере понижено, также понижается точка кипения жидкости и температура пара. В случае более низких температур пара, чем нормальная, могут безопасно использоваться, например, припои с более низкими температурами плавления, чем нормально используемый эвтектический припой олова/свинца.
Использование ненасыщенного пара дает возможность использовать более высокие температуры пара в операции обработки, тем самым сокращая время обработки и образуя, например, улучшенные паянные соединения. Преимущество сокращения времени обработки может перевешивать недостаток проведения работ в камере при атмосферном давлении и потери части пара в результате утечки из камеры.
При обработке может использоваться инертный газ для замедления скорости нагревания обрабатываемой детали. Инертный газ также снижает разложение пара, делая тем самым способ более безопасным.
На фиг. 1 показана трехкамерная конструкция; на фиг. 2 - двухкамерная конструкция.
Устройство для припаивания в паровой фазе компонентов к печатной плате и более конкретно для расплавления слоя припоя, который предварительно нанесен на компоненты и/или печатную плату, содержит камеру 1 обработки, входную камеру 2, в которой выполнены окна 3 и 4 для доступа атмосферы в камеры. Окно 4 соединяет входную камеру 2 с камерой обработки, подвижные дверцы 5 и 6 для открытия или закрытия окон 3 и 4. Дверцы 5 и 6 являются воздухонепроницаемыми, перемещение их обеспечивается средствами 7 и 8.
Устройство содержит выходную камеру 9, окон 10 соединяет эту камеру с камерой обработки, окно 11 служит для выхода обработанного изделия. Указанные окна также открываются и закрываются с помощью дверц 12 и 13. С помощью средств 14 и 15 осуществляется перемещение дверц.
Перемещение обрабатываемого изделия 16 осуществляется транспортирующим средством 17, которое в камере обработки имеет вертикальные наклонные поверхности 18 для того, чтобы жидкость стекала с транспортера 17 и обрабатываемого изделия 16.
Средство для образования ненасыщенного пара в камере обработки содержит нагревающий элемент 19, расположенный на ее дне и выполненный в виде тяжелой толстой пластины или плиты 20. Верхняя поверхность 21 плиты 20 выполнена наклонной, в конце наклона имеется выемка 22 для сбора избыточной жидкости, подаваемой на поверхность 21. Под плитой смонтированы нагревательные элементы 23 с зазором относительно дна камеры обработки. Внутри плиты установлены датчики 24 температуры, управляющие нагревательными элементами 23 через контроллер 25, над плитой 20 - защитный экран 26 для защиты плиты от случайных капель или брызг флюса с обрабатываемого изделия, в частности печатной платы.
Парообразующие средства содержат инжектор 27 жидкости, расположенный в камере обработки над плитой 20 и ниже экрана 26. Инжектор 27 подает жидкость на горячую поверхность 21 плиты 20 для образования ненасыщенного пара.
Жидкость подается в инжектор 27 из питающего источника 28 по линии 29 под соответствующим давлением, которое создается насосом 30. Избыточная жидкость из выемки 22 возвращается в источник 28 по линии 31.
Для управления давлением атмосферы в камере обработки 1 в ней выполняется отверстие 32, ведущее через трубопровод 33 к вакуумному насосу 34. Для поддержания требуемого количества пара в атмосфере камеры обработки 1 в трубопроводе 33 установлен конденсатор 35. Восстановленная жидкость из конденсатора 35 фильтруется в фильтрующем средстве 36 и затем в источник жидкости 28 по линии 37. Часть остающейся атмосферы может быть возвращена в камеру обработки по линии 38 через отверстие 39. Остающаяся часть атмосферы, в основном воздух, выбрасывается в атмосферу по выпускной линии 40. Управляет работой вакуумного насоса 34 детектирующее средство 41 в камере обработки 1 через управляющее средство 42.
Предусмотрено управление атмосферой во входной и выходной камерах. Контроллер атмосферы для входной камеры 2 имеет выпускное отверстие 43, соединенное с трубопроводом 44 и с вакуумным насосом 45. Конденсатор 46 может быть установлен в трубопроводе 44 для конденсации обрабатывающего пара из атмосферы и сбора его и возврата через линию 47 и фильтрующее средство 48 в питающий источник 28.
Часть остающейся атмосферы возвращается из вакуумного насоса 45 в камеру 2 и через возвратный трубопровод 49 и отверстие 50. Остающаяся атмосфера, в основном воздух, выбрасывается в воздух через выпускную линию 51. Датчик 52 в камере 2 через контроллер 53 управляет работой вакуумного насоса 45.
Аналогичные средства для управления атмосферой предусмотрены в выходной камере.
Для нагревания атмосферы в трубопроводе 49 имеется нагреватель 54, содержащий змеевик 55, намотанный на трубопровод 33. Датчик 56 температуры во входной камере 2 управляет нагревателем 54 через контроллер 57.
Нагретая атмосфера используется для предварительного нагревания транспортера 17 и печатных плат 16 перед их входом в камеру обработки 1. Аналогичного нагревающего средства нормально не требуется для атмосферы в выходной камере 9, но при необходимости оно может быть легко установлено.
Устройство работает следующим образом.
Печатные платы 16 устанавливаются на ленточном транспортере 17 снаружи устройства. Транспортер 17 перемещает платы 16 во входную камеру 2 через отверстие 3, когда дверца 5 открыта, дверца 6 закрыта, закрывая отверстие 4 в камере обработки 1. При работе устройства пониженное давление меньше атмосферного, поддерживается во входной камере 2 вакуумным насосом 45. В результате, когда дверца 5 открыта, атмосферный поток направляется в камеру 2, а не из нее. После того, как по крайней мере, одна плата 16 была перемещена в камеру 2 транспортером 17, дверца 5 закрывается. При обеих теперь закрытых дверцах 5 и 6 возвращаемая атмосфера из трубопровода 49 может нагреваться при необходимости для предварительного нагревания транспортной секции и одной или больше печатных плат в камере 2.
После достаточного предварительного нагревания дверца 6 открывается, тогда как дверца 5 остается закрытой, и предварительно нагретые печатные платы 16 перемещаются в камеру обработки 1 через окно 4. Давление в камере 1 поддерживается вакуумным насосом 34 меньше, чем давление во входной камере 2. Тем самым атмосфера движется из входной камеры 2 в камеру обработки 1, когда дверца 6 открывается.
До перемещения предварительно нагретых печатных плат 16 в камеру обработки 1 в ней образуется ненасыщенный обрабатывающий пар. Пар образуется путем впрыскивания жидкости на базе фтора, как пример, в форме струи, из инжектора (форсунки) 27 на горячую поверхность 21 нагретой плиты 20. Жидкость испаряется мгновенно при контакте с поверхностью 21, образуя ненасыщенный пар.
Ненасыщенный пар, действующий как газ, может быть нагрет до температуры более высокой, чем точка кипения жидкости. Температура ненасыщенного пара может управляться с помощью температуры на поверхности плиты. При давлении в камере 1, пониженном для предотвращения утечки пара из камеры, температура кипения жидкости также понижается. Это будет отрицательно действовать на расплавление припоя на печатных платах. Однако, поскольку пар может быть нагрет до температуры более высокой, чем точка кипения жидкости, камера может использоваться при давлении ниже атмосферного, что обеспечивает незначительное количество пара или совсем ничего не будет улетучиваться из камеры обработки 1.
Ненасыщенный пар конденсируется на печатных платах, поступающих в камеру, отдавая скрытое тепло конденсации, которое (тепло) используется для расплава или "растекания" слоя припоя, припаивая тем самым компоненты к печатной плате. Для ускорения стадии припаивания печатные платы могут предварительно нагреваться во входной камере 2. Конденсированная жидкость, капающая с печатных плат и транспортера, особенно когда печатные платы оказываются на почти вертикально наклонной секции транспортера, может собираться на экране 26, который защищает поверхность 21 плиты. Экран 26 направляет жидкость в выемку 22, а затем - в питающий источник 28 по линии 31. На поверхность 21 инжектируется столько жидкости, сколько ее требуется для образования необходимого количества ненасыщенного пара, чтобы расплавить припой. По крайней мере, один датчик пара 58 может быть установлен в камере 1 для детектирования в ней количества пара. Контроллер 59, приводимый в действие датчиком 58, управляет работой насоса 30.
После того, как операция по расплавлению припоя завершилась, печатные платы перемещаются из камеры обработки 1 в выходную камеру 9 через отверстие 10. Когда дверца 12 открывается, атмосферный поток потечет из выходной камеры 9 в камеру обработки 1, по причине перепада давления между камерами. Это также снижает потери пара. После того, как печатная плата или печатные платы оказались в выходной камере 9, дверца 12 закрывается. При необходимости давление в камере 9 может быть понижено путем увеличения выхода вакуумного насоса 45, связанного с этой камерой через контроллер 53. Пониженное давление в камере 9 помогает выкипанию остаточной жидкости на еще горячих печатных платах и транспортере без ущерба для спаянных соединений. Пар, образованный в камере 9, может собираться конденсатором 46 и возвращаться в питающий источник 28. При определенных условиях атмосфера в камере 9 может даже нагреваться при пониженном давлении, чтобы содействовать восстановлению пара без ущерба для паяных соединений.
После того как остаточная жидкость восстановлена, давление в камере 9 может быть повышено до уровня, выше уровня в камере 1 и ниже атмосферного давления, и дверца 13 открывается, в то время как дверца 12 остается закрытой. Спаянные печатные платы тогда извлекаются из камеры 9 через отверстие 11 транспортером 17. По причине перепада давления атмосферный поток будет идти в камеру 9, а не из нее.
Когда необходимо остановить работу устройства, весь пар в трех атмосферах трех камер может быть конденсирован с помощью средств конденсации 35, 46 и/или путем общего охлаждения нагревающих средств, и возвращен в источник питания 28 для хранения. Когда устройство должно быть пущено в работу, начальное количество жидкости инжектируется на плиту из инжектора 27 для образования пара в требуемом количестве.
При необходимости такой инертный газ, как азот или углекислый газ, может использоваться в камере обработки для образования вместе с ненасыщенным паром атмосферы в камере. Инертный газ может использоваться для управления концентрацией пара в камере, что, в свою очередь, может управлять скоростью, с какой будут нагреваться печатные платы. Хотя нормально предпочитается нагревать печатные платы до температуры расплавления припоя как можно быстрее, имеют место ситуации, при которых необходимо более медленное нагревание. Например, быстрое нагревание ведет к более высокому проценту дефектов пайки, типа сосулек. Быстрое нагревание может также содействовать "тепловому удару", который может повредить чувствительные компоненты.
Таким образом, более медленное нагревание печатных плат может снизить эффект "образования надгробия" и тепловой удар. Использование инертного газа также делает процесс более безопасным, так как происходит меньшее разложение пара в присутствии инертного газа, чем в присутствии воздуха.
В устройстве могут использоваться двойные дверцы, работающие независимо. Далее, хотя предпочитаемое устройство описано со входной и выходной камерами, совершенно очевидно, что устройство может быть сконструировано и работать без входной и выходной камер и также обеспечивать повышенные эксплуатационные характеристики по сравнению с известными устройствами припаивания в паровой фазе.
В другом варианте реализации изобретения устройство может быть образовано с камерой обработки и одной проходной камерой, которая служит одновременно в качестве входной и выходной камеры (см. фиг. 2).
При работе устройства печатные платы 16 отстоят друг от друга на транспортере 17 с таким расчетом, чтобы иметь только одну печатную плату 16 в камере 2 каждый раз. Печатная плата в камере 2 чередуется между одной от входной секции 60 транспортера 17 и одной от выходной секции 61 транспортера 17. Таким образом камера 2 может использоваться для предварительного нагревания печатных плат на входной секции 60 и для более тщательного удаления конденсированного пара с печатных плат на выходной секции 61. Камера 2 нагревается или подвергается пониженному давлению. Средства управления давлением и нагреванием в отношении камеры 2 аналогичны средствам, используемым в отношении входной и выходной камер в устройстве, показанном на фиг. 1.
Хотя устройство имеет входную и выходную транспортерные секции 60,61, используя одни и те же дверцы 5 и 6, могут быть предусмотрены отдельные дверцы для каждой секции.
В обоих вариантах реализации устройства используются ленточные транспортеры, проходящие через устройство. Однако совершенно очевидно, что внутренний ленточный транспортер может использоваться в устройстве с передающим средством, взаимодействующим с входной и выходной камерами 2,9.
Устройство, используемое в другом варианте реализации, может использовать камеру обработки, которая функционирует при атмосферном давлении. В этом варианте реализации предполагается, что часть пара улетучивается из камеры обработки во время ее функционирования, в частности когда печатные платы перемещаются в или из камеры. Однако преимущества использования ненасыщенного пара и тем самым возможность нагревать печатные платы более быстро, благодаря более высоким температурам, до которых может нагреваться ненасыщенный пар, перевешивают недостатки потери части пара.

Claims (11)

1. Способ обработки деталей в атмосфере пара преимущественно пайки, включающий создание в камере атмосферы горячего пара, нагрев детали до температуры обработки, отличающийся тем, что, с целью повышения качестве обработки и уменьшения потерь пара, его осуществляют ненасыщенным паром при давлении ниже атмосферного.
2. Способ по п.1, отличающийся тем, что детали помещают в камеру обработки после образования в ней ненасыщенного пара.
3. Способ по пп.1 и 2, отличающийся тем, что нагрев осуществляют смесью ненасыщенного пара и инертного газа.
4. Способ по пп.1 - 3, отличающийся тем, что осуществляют предварительный нагрев детали.
5. Способ по пп.1 - 4, отличающийся тем, что после обработки давление снижают для удаления конденсата.
6. Способ по пп.1 - 5, отличающийся тем, что осуществляют рециркуляцию обрабатываемой атмосферы.
7. Устройство для обработки деталей в атмосфере пара, содержащее герметичную камеру обработки, расположенный в ней нагреватель, механизм для транспортировки обрабатываемых изделий через камеру, отличающееся тем, что оно снабжено средством для образования ненасыщенного пара.
8. Устройство по п.7, отличающееся тем, что нагреватель выполнен в виде плиты из теплопроводного материала, расположенной наклонно относительно дна камеры, с выемкой в конце наклона и нагревательных элементов, расположенных под плитой вне камеры.
9. Устройство по пп.7 - 8, отличающееся тем, что оно снабжено входной и выходной камерами, по отдельности или в сочетании, соединенными с камерой обработки, и средством регулирования давления в них.
10. Устройство по п. 9, отличающееся тем, что входная и/или выходная камеры снабжены нагревателями.
11. Устройство по пп.7 - 10, отличающееся тем, что оно снабжено конденсатором обрабатывающего пара, соединенным с камерой обработки.
SU894614624A 1987-11-12 1989-07-10 Способ обработки деталей в атмосфере пара и устройство для его осуществления RU2014975C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/119,567 US4838476A (en) 1987-11-12 1987-11-12 Vapour phase treatment process and apparatus
US119567 1987-11-12
PCT/EP1988/001023 WO1989004234A1 (en) 1987-11-12 1988-11-11 Vapour phase process and apparatus

Publications (1)

Publication Number Publication Date
RU2014975C1 true RU2014975C1 (ru) 1994-06-30

Family

ID=22385103

Family Applications (1)

Application Number Title Priority Date Filing Date
SU894614624A RU2014975C1 (ru) 1987-11-12 1989-07-10 Способ обработки деталей в атмосфере пара и устройство для его осуществления

Country Status (8)

Country Link
US (1) US4838476A (ru)
EP (1) EP0340275B1 (ru)
JP (1) JPH02502200A (ru)
KR (1) KR890701272A (ru)
AU (1) AU2786289A (ru)
DE (1) DE3873321T2 (ru)
RU (1) RU2014975C1 (ru)
WO (1) WO1989004234A1 (ru)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU625442B2 (en) * 1988-11-28 1992-07-09 Furukawa Aluminum Co., Ltd. Gaseous phase brazing method of al or al alloy
US5288333A (en) * 1989-05-06 1994-02-22 Dainippon Screen Mfg. Co., Ltd. Wafer cleaning method and apparatus therefore
US5158100A (en) * 1989-05-06 1992-10-27 Dainippon Screen Mfg. Co., Ltd. Wafer cleaning method and apparatus therefor
NL8901598A (nl) * 1989-06-23 1991-01-16 Soltec Bv Met een beschermgas werkende soldeermachine, voorzien van automatisch werkende sluisdeuren.
DE8913226U1 (de) * 1989-11-08 1989-12-21 Leicht, Helmut Walter, 8900 Augsburg Dampfphasenlötanlage mit einem direkt beheizbaren Behälter
US5054210A (en) * 1990-02-23 1991-10-08 S&K Products International, Inc. Isopropyl alcohol vapor dryer system
US5593507A (en) * 1990-08-22 1997-01-14 Kabushiki Kaisha Toshiba Cleaning method and cleaning apparatus
US5188282A (en) * 1991-01-28 1993-02-23 Hughes Aircraft Company Vapor phase flash fusing of printed wiring boards
US5118357A (en) * 1991-03-20 1992-06-02 Finishing Equipment, Inc. Treatment fluid application and recovery apparatus and method
GB9121003D0 (en) * 1991-10-03 1991-11-13 Boc Group Plc Soldering
JP2709365B2 (ja) * 1992-03-16 1998-02-04 日立テクノエンジニアリング株式会社 ベーパーリフローはんだ付け装置
US5313965A (en) * 1992-06-01 1994-05-24 Hughes Aircraft Company Continuous operation supercritical fluid treatment process and system
US5415193A (en) * 1992-11-13 1995-05-16 Taricco; Todd Pressure controlled cleaning system
JP3074366B2 (ja) * 1993-02-22 2000-08-07 東京エレクトロン株式会社 処理装置
DE4329178B4 (de) * 1993-08-30 2006-11-09 EMO Oberflächentechnik GmbH Dampfphasenreinigung
US5539995A (en) * 1994-03-16 1996-07-30 Verteq, Inc. Continuous flow vapor dryer system
EP0672743B2 (de) * 1994-03-18 2001-05-16 Dieter Uschkoreit Verfahren und Vorrichtung zum thermischen Behandeln von Materialien mit Anteilen an verdampfbaren Stoffen
US5542596A (en) * 1994-12-20 1996-08-06 United Technologies Corp. Vapor phase soldering machine having a tertiary cooling vapor
US6051421A (en) * 1996-09-09 2000-04-18 Air Liquide America Corporation Continuous processing apparatus and method for cleaning articles with liquified compressed gaseous solvents
DE29704629U1 (de) * 1997-03-14 1998-07-09 Asscon Systemtechnik-Elektronik GmbH, 86343 Königsbrunn Vorrichtung zur Wärmebehandlung von Werkstücken mit heißem Dampf
US6306564B1 (en) 1997-05-27 2001-10-23 Tokyo Electron Limited Removal of resist or residue from semiconductors using supercritical carbon dioxide
US6500605B1 (en) 1997-05-27 2002-12-31 Tokyo Electron Limited Removal of photoresist and residue from substrate using supercritical carbon dioxide process
TW539918B (en) 1997-05-27 2003-07-01 Tokyo Electron Ltd Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
JP3737604B2 (ja) * 1997-06-03 2006-01-18 大日本スクリーン製造株式会社 基板処理装置
FR2774013B1 (fr) * 1998-01-23 2000-04-07 Jean Paul Garidel Procede de traitement thermique d'une piece a l'aide d'au moins un liquide de transfert thermique et four a condensation pour sa mise en oeuvre
US6277753B1 (en) 1998-09-28 2001-08-21 Supercritical Systems Inc. Removal of CMP residue from semiconductors using supercritical carbon dioxide process
US7064070B2 (en) * 1998-09-28 2006-06-20 Tokyo Electron Limited Removal of CMP and post-CMP residue from semiconductors using supercritical carbon dioxide process
US6315189B1 (en) * 1998-10-13 2001-11-13 Texas Instruments Incorporated Semiconductor package lead plating method and apparatus
DE19911887C1 (de) * 1999-03-17 2000-12-21 Asscon Systech Elektronik Gmbh Verfahren zum Reflow-Löten in einer Dampfphasenvakuumlötanlage
US6193135B1 (en) * 1999-09-13 2001-02-27 Lucent Technologies Inc. System for providing back-lighting of components during fluxless soldering
KR100742473B1 (ko) * 1999-11-02 2007-07-25 동경 엘렉트론 주식회사 제 1 및 제 2 소재를 초임계 처리하는 장치 및 방법
US6748960B1 (en) 1999-11-02 2004-06-15 Tokyo Electron Limited Apparatus for supercritical processing of multiple workpieces
KR100693691B1 (ko) * 2000-04-25 2007-03-09 동경 엘렉트론 주식회사 금속 필름의 침착방법 및 초임계 건조/세척 모듈을포함하는 금속침착 복합공정장치
DE10025472C2 (de) * 2000-05-23 2003-04-24 Rehm Anlagenbau Gmbh Dampfphasenlötanlage mit überhitztem Dampf
AU2001290171A1 (en) * 2000-07-26 2002-02-05 Tokyo Electron Limited High pressure processing chamber for semiconductor substrate
US20020189543A1 (en) * 2001-04-10 2002-12-19 Biberger Maximilian A. High pressure processing chamber for semiconductor substrate including flow enhancing features
US20040040660A1 (en) * 2001-10-03 2004-03-04 Biberger Maximilian Albert High pressure processing chamber for multiple semiconductor substrates
US20040016450A1 (en) * 2002-01-25 2004-01-29 Bertram Ronald Thomas Method for reducing the formation of contaminants during supercritical carbon dioxide processes
WO2003071173A1 (en) * 2002-02-15 2003-08-28 Supercritical Systems Inc. Pressure enchanced diaphragm valve
US7001468B1 (en) 2002-02-15 2006-02-21 Tokyo Electron Limited Pressure energized pressure vessel opening and closing device and method of providing therefor
US6928746B2 (en) * 2002-02-15 2005-08-16 Tokyo Electron Limited Drying resist with a solvent bath and supercritical CO2
US6924086B1 (en) * 2002-02-15 2005-08-02 Tokyo Electron Limited Developing photoresist with supercritical fluid and developer
WO2003077032A1 (en) * 2002-03-04 2003-09-18 Supercritical Systems Inc. Method of passivating of low dielectric materials in wafer processing
US20050227187A1 (en) * 2002-03-04 2005-10-13 Supercritical Systems Inc. Ionic fluid in supercritical fluid for semiconductor processing
US7387868B2 (en) * 2002-03-04 2008-06-17 Tokyo Electron Limited Treatment of a dielectric layer using supercritical CO2
WO2003082486A1 (en) * 2002-03-22 2003-10-09 Supercritical Systems Inc. Removal of contaminants using supercritical processing
US7169540B2 (en) * 2002-04-12 2007-01-30 Tokyo Electron Limited Method of treatment of porous dielectric films to reduce damage during cleaning
US7380699B2 (en) * 2002-06-14 2008-06-03 Vapour Phase Technology Aps Method and apparatus for vapour phase soldering
US20040177867A1 (en) * 2002-12-16 2004-09-16 Supercritical Systems, Inc. Tetra-organic ammonium fluoride and HF in supercritical fluid for photoresist and residue removal
US20040112409A1 (en) * 2002-12-16 2004-06-17 Supercritical Sysems, Inc. Fluoride in supercritical fluid for photoresist and residue removal
US7021635B2 (en) * 2003-02-06 2006-04-04 Tokyo Electron Limited Vacuum chuck utilizing sintered material and method of providing thereof
US20040154647A1 (en) * 2003-02-07 2004-08-12 Supercritical Systems, Inc. Method and apparatus of utilizing a coating for enhanced holding of a semiconductor substrate during high pressure processing
US7225820B2 (en) * 2003-02-10 2007-06-05 Tokyo Electron Limited High-pressure processing chamber for a semiconductor wafer
US7077917B2 (en) * 2003-02-10 2006-07-18 Tokyo Electric Limited High-pressure processing chamber for a semiconductor wafer
US7270137B2 (en) 2003-04-28 2007-09-18 Tokyo Electron Limited Apparatus and method of securing a workpiece during high-pressure processing
US20040231707A1 (en) * 2003-05-20 2004-11-25 Paul Schilling Decontamination of supercritical wafer processing equipment
US7163380B2 (en) * 2003-07-29 2007-01-16 Tokyo Electron Limited Control of fluid flow in the processing of an object with a fluid
US20050035514A1 (en) * 2003-08-11 2005-02-17 Supercritical Systems, Inc. Vacuum chuck apparatus and method for holding a wafer during high pressure processing
US20050034660A1 (en) * 2003-08-11 2005-02-17 Supercritical Systems, Inc. Alignment means for chamber closure to reduce wear on surfaces
US20050067002A1 (en) * 2003-09-25 2005-03-31 Supercritical Systems, Inc. Processing chamber including a circulation loop integrally formed in a chamber housing
US7186093B2 (en) * 2004-10-05 2007-03-06 Tokyo Electron Limited Method and apparatus for cooling motor bearings of a high pressure pump
ATE407763T1 (de) * 2004-03-11 2008-09-15 Ibl Loettechnik Gmbh Verfahren und vorrichtung für das löten mit unterdruck in der dampfphase
US7250374B2 (en) 2004-06-30 2007-07-31 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing
US7307019B2 (en) 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US20060065189A1 (en) * 2004-09-30 2006-03-30 Darko Babic Method and system for homogenization of supercritical fluid in a high pressure processing system
US20060065288A1 (en) * 2004-09-30 2006-03-30 Darko Babic Supercritical fluid processing system having a coating on internal members and a method of using
US7491036B2 (en) 2004-11-12 2009-02-17 Tokyo Electron Limited Method and system for cooling a pump
US20060135047A1 (en) * 2004-12-22 2006-06-22 Alexei Sheydayi Method and apparatus for clamping a substrate in a high pressure processing system
US7434590B2 (en) * 2004-12-22 2008-10-14 Tokyo Electron Limited Method and apparatus for clamping a substrate in a high pressure processing system
US7140393B2 (en) * 2004-12-22 2006-11-28 Tokyo Electron Limited Non-contact shuttle valve for flow diversion in high pressure systems
US20060134332A1 (en) * 2004-12-22 2006-06-22 Darko Babic Precompressed coating of internal members in a supercritical fluid processing system
US7435447B2 (en) * 2005-02-15 2008-10-14 Tokyo Electron Limited Method and system for determining flow conditions in a high pressure processing system
US7291565B2 (en) 2005-02-15 2007-11-06 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid
US20060186088A1 (en) * 2005-02-23 2006-08-24 Gunilla Jacobson Etching and cleaning BPSG material using supercritical processing
US20060185694A1 (en) * 2005-02-23 2006-08-24 Richard Brown Rinsing step in supercritical processing
US20060185693A1 (en) * 2005-02-23 2006-08-24 Richard Brown Cleaning step in supercritical processing
US7562853B2 (en) * 2005-03-11 2009-07-21 Christopher Mazzola Container support and mounting bracket
US7550075B2 (en) 2005-03-23 2009-06-23 Tokyo Electron Ltd. Removal of contaminants from a fluid
US7380984B2 (en) * 2005-03-28 2008-06-03 Tokyo Electron Limited Process flow thermocouple
US7767145B2 (en) * 2005-03-28 2010-08-03 Toyko Electron Limited High pressure fourier transform infrared cell
US20060225772A1 (en) * 2005-03-29 2006-10-12 Jones William D Controlled pressure differential in a high-pressure processing chamber
US20060223899A1 (en) * 2005-03-30 2006-10-05 Hillman Joseph T Removal of porogens and porogen residues using supercritical CO2
US7442636B2 (en) * 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US7494107B2 (en) * 2005-03-30 2009-02-24 Supercritical Systems, Inc. Gate valve for plus-atmospheric pressure semiconductor process vessels
US7399708B2 (en) * 2005-03-30 2008-07-15 Tokyo Electron Limited Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
US20060219268A1 (en) * 2005-03-30 2006-10-05 Gunilla Jacobson Neutralization of systemic poisoning in wafer processing
US7789971B2 (en) 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
US7524383B2 (en) * 2005-05-25 2009-04-28 Tokyo Electron Limited Method and system for passivating a processing chamber
US20070000519A1 (en) * 2005-06-30 2007-01-04 Gunilla Jacobson Removal of residues for low-k dielectric materials in wafer processing
DE102006025184B4 (de) * 2006-05-30 2008-02-21 IBL-Löttechnik GmbH Vorrichtung zum Löten in der Dampfphase
US20080145038A1 (en) * 2006-12-15 2008-06-19 Applied Materials, Inc. Method and apparatus for heating a substrate
DE102007005345B4 (de) * 2007-02-02 2014-06-18 Seho Systemtechnik Gmbh Verfahren zum Reflow-Löten sowie Vorrichtung zur Durchführung des Verfahrens
US9166139B2 (en) * 2009-05-14 2015-10-20 The Neothermal Energy Company Method for thermally cycling an object including a polarizable material
US20100308103A1 (en) * 2009-06-08 2010-12-09 Tyco Electronics Corporation System and method for vapor phase reflow of a conductive coating
DE202009014590U1 (de) 2009-10-29 2010-02-04 Asscon Systemtechnik-Elektronik Gmbh Dampfphasen-Lötanlage
JP6188671B2 (ja) * 2014-12-12 2017-08-30 株式会社Ssテクノ 水蒸気リフロー装置及び水蒸気リフロー方法
JP6909999B2 (ja) 2018-11-07 2021-07-28 パナソニックIpマネジメント株式会社 気相式加熱方法及び気相式加熱装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025533A (en) * 1959-06-01 1962-03-20 Kenneth E Hair Steam bath apparatus
US4077467A (en) * 1976-01-28 1978-03-07 Spigarelli Donald J Method and apparatus for soldering, fusing or brazing
GB2058335B (en) * 1979-05-18 1983-09-01 Atomic Energy Authority Uk Soldering apparatus
US4321031A (en) * 1979-07-09 1982-03-23 Woodgate Ralph W Method and apparatus for condensation heating
US4264299A (en) * 1980-03-12 1981-04-28 Bell Telephone Laboratories, Incorporated Process and apparatus for controlling losses in volatile working fluid systems
FR2481431A1 (fr) * 1980-04-23 1981-10-30 Inst Ochistke T Four de chauffage de produits
FR2499228B1 (fr) * 1981-01-30 1985-10-25 Carreras Michelle Procede de chauffage d'objets a haute temperature par vapeur sous pression et appareil de mise en oeuvre
JPS60108162A (ja) * 1983-11-16 1985-06-13 Hitachi Ltd 蒸気槽
FR2579737B1 (fr) * 1985-04-02 1987-11-20 Inf Milit Spatiale Aeronaut Limitation de la corrosion en machine de refusion en phase-vapeur
JPS61238464A (ja) * 1985-04-13 1986-10-23 Eiichi Miyake 物品加熱装置
US4698915A (en) * 1986-08-04 1987-10-13 American Telephone And Telegraph Company Method and apparatus for condensation heating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 3866307, кл. 29-498. опубл. 1975. *
2. Заявка Японии N 62-21463, кл. B 23K 3/04, 1987. *

Also Published As

Publication number Publication date
DE3873321T2 (de) 1992-12-03
KR890701272A (ko) 1989-12-19
DE3873321D1 (de) 1992-09-03
JPH02502200A (ja) 1990-07-19
AU2786289A (en) 1989-06-01
EP0340275A1 (en) 1989-11-08
US4838476A (en) 1989-06-13
WO1989004234A1 (en) 1989-05-18
EP0340275B1 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
RU2014975C1 (ru) Способ обработки деталей в атмосфере пара и устройство для его осуществления
CA1132021A (en) Method and apparatus for condensation heating
US7380699B2 (en) Method and apparatus for vapour phase soldering
US8110015B2 (en) Method and apparatus for removing contaminants from a reflow apparatus
JPS59195025A (ja) ビチユ−メンの燃焼方法
US4726506A (en) Soldering apparatus
US5577658A (en) Gas knife cooling system
EP0713743B1 (en) Application of soldering fluxes
EP0047307A1 (en) Apparatus for treating objects with a volatile fluid.
US4766677A (en) Method and apparatus for vapor phase soldering
US5193739A (en) Process and device for soldering electronic boards, in particular, printed circuit boards with devices installed on them
US6443356B1 (en) Method for controlling heat transfer to a work piece during condensation soldering
JP2723402B2 (ja) ベーパーリフローはんだ付け装置
JP2723449B2 (ja) ベーパーリフローはんだ付け装置
JP2902298B2 (ja) ベーパーリフローはんだ付け装置およびその制御方法
JPS62148084A (ja) ベ−パ−リフロ−式はんだ付装置
JPH0347674A (ja) 気相式はんだ付け装置
JPS62148085A (ja) ペ−パ−リフロ−式はんだ付け装置
JPS6390362A (ja) ベ−パ−リフロ−式はんだ付け装置
JPH02307668A (ja) はんだ付け方法
JPH0211263A (ja) ベーパリフローはんだ付け装置
JPH02112872A (ja) ベーパーリフロー式はんだ付け装置
JPS57155059A (en) Gas discharge method for solar heat collecting cylinder
JP6381990B2 (ja) フラックスレス半田付け装置
KR0143729B1 (ko) 탄탈콘덴서의 열처리 장치