RU2014129026A - Модифицированные микроорганизмы и способы получения бутадиена с их применением - Google Patents

Модифицированные микроорганизмы и способы получения бутадиена с их применением Download PDF

Info

Publication number
RU2014129026A
RU2014129026A RU2014129026A RU2014129026A RU2014129026A RU 2014129026 A RU2014129026 A RU 2014129026A RU 2014129026 A RU2014129026 A RU 2014129026A RU 2014129026 A RU2014129026 A RU 2014129026A RU 2014129026 A RU2014129026 A RU 2014129026A
Authority
RU
Russia
Prior art keywords
conversion
metabolic pathway
coa
catalyze
polynucleotides encoding
Prior art date
Application number
RU2014129026A
Other languages
English (en)
Other versions
RU2639564C2 (ru
Inventor
ЛОПЕС Матеус Шрайнер ГАРСЕС
Аврам Майкл СЛОВИЦ
Эри Эстрада ГОУВЕА
Жоана Ринконес ПЕРЕС
Лукас Педерсен ПАРИЦЦИ
Original Assignee
Браскеm С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Браскеm С.А. filed Critical Браскеm С.А.
Publication of RU2014129026A publication Critical patent/RU2014129026A/ru
Application granted granted Critical
Publication of RU2639564C2 publication Critical patent/RU2639564C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01127Linalool dehydratase (4.2.1.127)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

1. Способ получения бутадиена из ферментируемого источника углерода, включающий:a.) обеспечение ферментируемого источника углерода;b.) приведение ферментируемого источника углерода в контакт с микроорганизмом, содержащим один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, в ферментационных средах; иc.) экспрессию в микроорганизме одного или нескольких полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и одного или нескольких полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, с получением бутадиена,где одно или несколько промежуточных соединений в метаболическом пути получения бутадиена включают по меньшей мере одно из пропионил-КоА и муравьиной кислоты.2. Способ по п. 1, где ферменты, которые катализируют превращение ферментируемого источника углерода в одно илинесколько промежуточных соединений в метаболическом пути получения бутадиена, приведены в любой из таблиц 1-3.3. Способ по п. 1, где ферменты, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен,

Claims (25)

1. Способ получения бутадиена из ферментируемого источника углерода, включающий:
a.) обеспечение ферментируемого источника углерода;
b.) приведение ферментируемого источника углерода в контакт с микроорганизмом, содержащим один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, в ферментационных средах; и
c.) экспрессию в микроорганизме одного или нескольких полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и одного или нескольких полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, с получением бутадиена,
где одно или несколько промежуточных соединений в метаболическом пути получения бутадиена включают по меньшей мере одно из пропионил-КоА и муравьиной кислоты.
2. Способ по п. 1, где ферменты, которые катализируют превращение ферментируемого источника углерода в одно или
несколько промежуточных соединений в метаболическом пути получения бутадиена, приведены в любой из таблиц 1-3.
3. Способ по п. 1, где ферменты, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, приведены в любой из таблиц 1-3.
4. Способ по п. 1, где микроорганизм содержит один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение ацетил-КоА и пропионил-КоА в кетовалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кетовалерил-КоА в (R) или (S) 3-гидроксиалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R) или (S) гидроксиалерил-КоА в 2-пентеноил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеноил-КоА в 2-пентеновую кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеновой кислоты в бутадиен; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеновой кислоты в 4-пентеновую кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 4-пентеновой кислоты в бутадиен; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеноил-КоА в пент-2,4-диеноил-КоА; один или несколько полинуклеотидов, кодирующих
ферменты в метаболическом пути, которые катализируют превращение пент-2,4-диеноил-КоА в пент-2,4-диеновую кислоту; и/или один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2,4-пентеновой кислоты в бутадиен.
5. Способ по п. 1, где микроорганизм содержит один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонил-КоА в кротониловый спирт; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонил-КоА в кротоновый альдегид; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонового альдегида в кротониловый спирт; и/или один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонилового спирта в бутадиен.
6. Способ по п. 1, где микроорганизм содержит один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение CO2 в муравьиную кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение пирувата и КоА в ацетил-КоА и муравьиную кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение муравьиной кислоты в формил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-ацетил-КоА в ацетоацетил-КоА; один или несколько полинуклеотидов,
кодирующих ферменты в метаболическом пути, которые катализируют превращение ацетоацетил-КоА и формил-КоА в 3,5-кетовалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 3,5-кетовалерил-КоА в (R)- или (S)-5-гидрокси-3-кетовалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R)- или (S)-5-гидрокси-3-кетовалерил-КоА в (R)- или (S)-3,5-дигидроксиалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R)- или (S)-3,5-дигидроксиалерил-КоА в (R) или (S) 3-гидрокси-4-пентеноил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R)- или (S)-3-гидрокси-4-пентеноил-КоА в 3-гидрокси-4-пентеновую кислоту; и/или один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 3-гидрокси-4-пентеновой кислоты в бутадиен.
7. Способ по п. 1, где микроорганизм представляет собой бактерию, выбранную из родов, состоящих из: Burkholderia, Propionibacterium, Propionispira, Clostridium, Bacillus, Escherichia, Pelobacter или Lactobacillus.
8. Способ по п. 1, где микроорганизм представляет собой эукариотический организм, представляет собой дрожжи, нитевидные грибы, простейших или водоросли.
9. Способ по п. 8, где дрожжи представляют собой Saccharomyces cerevisiae, Zymomonas mobilis или Pichia pastoris.
10. Способ по п. 1, где источник углерода представляет собой сок сахарного тростника, патоку сахарного тростника, гидролизованный крахмал, гидролизованные лигноцеллюлозные вещества, глюкозу, сахарозу, фруктозу, лактат, лактозу, ксилозу, пируват или глицерин в любой их форме или смеси.
11. Способ по п. 1, где источник углерода представляет собой моносахарид, олигосахарид или полисахарид.
12. Способ по п. 1, где микроорганизм секретирует бутадиен в ферментационные среды.
13. Способ по п. 12, дополнительно включающий извлечение бутадиена из ферментационных сред.
14. Способ по п. 1, где микроорганизм генетически модифицирован, чтобы экспрессировать один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен.
15. Способ по любому из пп. 1-14, где способ является анаэробным.
16. Микроорганизм, содержащий один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и один или несколько
полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, где одно или несколько промежуточных соединений в метаболическом пути получения бутадиена включают по меньшей мере одно из пропионил-КоА и муравьиной кислоты.
17. Микроорганизм по п. 16, где ферменты, которые катализируют превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, приведены в любой из таблиц 1-3.
18. Микроорганизм по п. 16, где ферменты, которые катализируют превращение одного или нескольких промежуточных соединений в бутадиен, приведены в любой из таблиц 1-3.
19. Микроорганизм по п. 16, где микроорганизм содержит один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение ацетил-КоА и пропионил-КоА в кетовалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кетовалерил-КоА в (R) или (S) 3-гидроксиалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R) или (S) гидроксиалерил-КоА в 2-пентеноил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеноил-КоА в 2-пентеновую кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеновой кислоты в
бутадиен; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеновой кислоты в 4-пентеновую кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 4-пентеновой кислоты в бутадиен; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-пентеноил-КоА в пент-2,4-диеноил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение пент-2,4-диеноил-КоА в пент-2,4-диеновую кислоту; и/или один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2,4-пентеновой кислоты в бутадиен.
20. Микроорганизм по п. 16, где микроорганизм содержит один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонил-КоА в кротониловый спирт; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонил-КоА в кротоновый альдегид; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонового альдегида в кротониловый спирт; и/или один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение кротонилового спирта в бутадиен.
21. Микроорганизм по п. 16, где микроорганизм содержит один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение CO2 в
муравьиную кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение пирувата и КоА в ацетил-КоА и муравьиную кислоту; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение муравьиной кислоты в формил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 2-ацетил-КоА в ацетоацетил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение ацетоацетил-КоА и формил-КоА в 3,5-кетовалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 3,5-кетовалерил-КоА в (R)- или (S)-5-гидрокси-3-кетовалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R)- или (S)-5-гидрокси-3-кетовалерил-КоА в (R)- или (S)-3,5-дигидроксиалерил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R)- или (S)-3,5-дигидроксиалерил-КоА в (R) или (S) 3-гидрокси-4-пентеноил-КоА; один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение (R)- или (S)-3-гидрокси-4-пентеноил-КоА в 3-гидрокси-4-пентеновую кислоту; и/или один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют превращение 3-гидрокси-4-пентеновой кислоты в бутадиен.
22. Микроорганизм по п. 16, где микроорганизм представляет
собой бактерию, выбранную из родов, состоящих из: Burkholderia, Propionibacterium, Propionispira, Clostridium, Bacillus, Escherichia, Pelobacter или Lactobacillus.
23. Микроорганизм по п. 16, где микроорганизм представляет собой эукариотический организм, представляет собой дрожжи, нитевидные грибы, простейших или водоросли.
24. Микроорганизм по п. 23, где дрожжи представляют собой Saccharomyces cerevisiae, Zymomonas mobilis или Pichia pastoris.
25. Микроорганизм по п. 16, где микроорганизм генетически модифицирован, чтобы экспрессировать один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, который катализирует превращение ферментируемого источника углерода в одно или несколько промежуточных соединений в метаболическом пути получения бутадиена, и один или несколько полинуклеотидов, кодирующих ферменты в метаболическом пути, которые катализируют одного или нескольких промежуточных соединений в бутадиен.
RU2014129026A 2011-12-16 2012-12-17 Модифицированные микроорганизмы и способы получения бутадиена с их применением RU2639564C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161576788P 2011-12-16 2011-12-16
US61/576,788 2011-12-16
US201261606035P 2012-03-02 2012-03-02
US61/606,035 2012-03-02
PCT/US2012/070161 WO2013090915A1 (en) 2011-12-16 2012-12-17 Modified microorganisms and methods of making butadiene using same

Publications (2)

Publication Number Publication Date
RU2014129026A true RU2014129026A (ru) 2016-02-10
RU2639564C2 RU2639564C2 (ru) 2017-12-21

Family

ID=48613275

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014129026A RU2639564C2 (ru) 2011-12-16 2012-12-17 Модифицированные микроорганизмы и способы получения бутадиена с их применением

Country Status (14)

Country Link
US (3) US9518273B2 (ru)
EP (1) EP2791342B1 (ru)
JP (2) JP6415326B2 (ru)
KR (1) KR20150068925A (ru)
CN (2) CN104471068A (ru)
AU (1) AU2012353654B2 (ru)
BR (1) BR112014014652B1 (ru)
CA (1) CA2859556C (ru)
EC (1) ECSP14007092A (ru)
MX (1) MX349910B (ru)
PH (1) PH12014501364A1 (ru)
RU (1) RU2639564C2 (ru)
SG (1) SG11201403276TA (ru)
WO (1) WO2013090915A1 (ru)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422578B2 (en) 2011-06-17 2016-08-23 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
WO2012174439A2 (en) 2011-06-17 2012-12-20 Invista Technologies S.A R.L. Methods of producing four carbon molecules
JP5997939B2 (ja) * 2012-05-31 2016-09-28 株式会社ブリヂストン 共役ジエン系重合体の製造方法
JP5997938B2 (ja) * 2012-05-31 2016-09-28 株式会社ブリヂストン ブタジエン重合体の製造方法及びタイヤの製造方法
CN104520431A (zh) * 2012-06-18 2015-04-15 布拉斯科南美公司 共同制造丁二烯与1-丙醇和/或1,2-丙二醇的经修饰微生物和方法
EP2925871A1 (en) 2012-11-28 2015-10-07 Invista Technologies S.A R.L. Methods for biosynthesis of isobutene
US20140206066A1 (en) * 2013-01-18 2014-07-24 Coskata, Inc. Syntrophic co-culture of anaerobic microorganism for production of n-butanol from syngas
BR112015020904A2 (pt) * 2013-03-15 2017-10-10 Genomatica Inc microrganismos e métodos para produção de butadieno e compostos relacionados por assimilação de formiato
US20150050708A1 (en) * 2013-03-15 2015-02-19 Genomatica, Inc. Microorganisms and methods for producing butadiene and related compounds by formate assimilation
US10294496B2 (en) 2013-07-19 2019-05-21 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
US9862973B2 (en) 2013-08-05 2018-01-09 Invista North America S.A.R.L. Methods for biosynthesis of isoprene
WO2015021059A1 (en) 2013-08-05 2015-02-12 INVISTA North America S.á r.l. Methods for biosynthesis of isobutene
WO2015035244A1 (en) * 2013-09-05 2015-03-12 Braskem S/A Modified microorganism and methods of using same for producing butadiene and 1-propanol and/or 1,2-propanediol
EP3536799A3 (en) * 2013-09-23 2020-12-09 Braskem S.A. Engineered enzyme having acetoacetyl-coa hydrolase activity, microorganisms comprising same, and methods of using same
EP3155112A1 (en) 2014-06-16 2017-04-19 Invista Technologies S.à.r.l. Process for producing glutarate and glutaric acid methyl ester
EP3167066A4 (en) * 2014-07-11 2018-03-07 Genomatica, Inc. Microorganisms and methods for the production of butadiene using acetyl-coa
WO2016097293A1 (en) * 2014-12-19 2016-06-23 Global Bioenergies Process for the enzymatic production of 1-butene from 2-pentenoyl-coa
BR112017018257A2 (pt) 2015-02-27 2018-04-10 White Dog Labs Inc método de fermentação mixotrópica para produzir acetona, isopropanol, ácido butírico e outros bioprodutos, e misturas dos mesmos
BR112017021667A2 (pt) * 2015-04-09 2018-07-24 Genomatica Inc microorganismos modificados & métodos para produção aperfeiçoada de álcool de crotila
BR112017025554B1 (pt) 2015-05-30 2024-03-12 Genomatica, Inc. Composição, e, método para produzir um polímero, resina ou artigo de fabricação
CN107922937B (zh) * 2015-08-03 2022-03-15 国立研究开发法人理化学研究所 二磷酸甲羟戊酸脱羧酶变异体、和利用了该变异体的烯烃化合物的制造方法
WO2017035141A2 (en) * 2015-08-24 2017-03-02 White Dog Labs, Inc. Microbial organisms for converting acetyl-coa into crotyl alcohol and methods for producing crotyl alcohol
BR112019000633A2 (pt) 2016-07-12 2019-07-09 Braskem Sa formação de alquenos através de desidratação enzimática de alcanóis
KR101929631B1 (ko) 2016-12-20 2018-12-14 서강대학교산학협력단 미생물 발효를 이용한 1,3-부타디엔의 제조 방법
US11162115B2 (en) 2017-06-30 2021-11-02 Inv Nylon Chemicals Americas, Llc Methods, synthetic hosts and reagents for the biosynthesis of hydrocarbons
US11634733B2 (en) 2017-06-30 2023-04-25 Inv Nylon Chemicals Americas, Llc Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof
US11505809B2 (en) 2017-09-28 2022-11-22 Inv Nylon Chemicals Americas Llc Organisms and biosynthetic processes for hydrocarbon synthesis
CN108690851B (zh) * 2018-05-30 2020-11-06 青岛农业大学 一种丁二烯生产菌及其生产丁二烯的方法
CN108949788B (zh) * 2018-07-10 2020-07-14 广东省微生物研究所(广东省微生物分析检测中心) 番茄红素合成相关基因及其应用
CN109666683B (zh) * 2019-02-27 2021-10-29 昆明理工大学 乙酰辅酶A乙酰转移酶基因RKAcaT2及其应用
CN110433619B (zh) * 2019-09-05 2021-11-16 北京工商大学 杀鲑气单胞菌亚种在挥发性有机污染物降解方面的应用

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30985A (en) 1860-12-18 Thomas l
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
DD266710A3 (de) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Verfahren zur biotechnischen Herstellung van alkalischer Phosphatase
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
IL87737A (en) 1987-09-11 1993-08-18 Genentech Inc Method for culturing polypeptide factor dependent vertebrate recombinant cells
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
SE464472B (sv) 1989-08-31 1991-04-29 Aga Ab Saett och anordning foer tillverkning av ihaaliga foeremaal av glas
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
DE102004054766A1 (de) * 2004-11-12 2006-05-18 Basf Ag Verfahren zur Herstellung von Butadien aus n-Butan
EP2102327A4 (en) 2006-12-01 2010-01-06 Gevo Inc MANIPULATED MICROORGANISMS FOR THE MANUFACTURE OF N-BUTANOL AND CORRESPONDING METHODS
US7981647B2 (en) 2008-03-03 2011-07-19 Joule Unlimited, Inc. Engineered CO2 fixing microorganisms producing carbon-based products of interest
US9909146B2 (en) * 2008-07-04 2018-03-06 Scientist Of Fortune S.A. Production of alkenes by enzymatic decarboxylation of 3-hydroxyalkanoic acids
CN107586753A (zh) * 2009-09-09 2018-01-16 基因组股份公司 协同产生异丙醇与伯醇,二元醇和酸的微生物和方法
US8410326B2 (en) * 2010-01-14 2013-04-02 Wisconsin Alumni Research Foundation Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols
EP2566969B1 (en) * 2010-05-05 2019-09-04 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
EP3312284A3 (en) 2010-07-26 2018-05-30 Genomatica, Inc. Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene
US9422578B2 (en) * 2011-06-17 2016-08-23 Invista North America S.A.R.L. Methods for biosynthesizing 1,3 butadiene
US10808262B2 (en) * 2013-12-03 2020-10-20 Genomatica, Inc. Microorganisms and methods for improving product yields on methanol using acetyl-CoA synthesis
EP3167066A4 (en) * 2014-07-11 2018-03-07 Genomatica, Inc. Microorganisms and methods for the production of butadiene using acetyl-coa

Also Published As

Publication number Publication date
CA2859556A1 (en) 2013-06-20
US9518273B2 (en) 2016-12-13
SG11201403276TA (en) 2014-10-30
PH12014501364A1 (en) 2014-09-22
JP6415326B2 (ja) 2018-10-31
KR20150068925A (ko) 2015-06-22
AU2012353654A1 (en) 2014-07-10
EP2791342A1 (en) 2014-10-22
JP2015501659A (ja) 2015-01-19
CA2859556C (en) 2022-01-11
BR112014014652B1 (pt) 2021-07-13
BR112014014652A8 (pt) 2017-06-13
MX349910B (es) 2017-08-17
CN112877370A (zh) 2021-06-01
US10059963B2 (en) 2018-08-28
MX2014007235A (es) 2015-04-13
ECSP14007092A (es) 2015-06-30
RU2639564C2 (ru) 2017-12-21
CN104471068A (zh) 2015-03-25
EP2791342A4 (en) 2016-04-13
AU2012353654A8 (en) 2014-07-17
AU2012353654B2 (en) 2016-09-29
US20160032325A1 (en) 2016-02-04
BR112014014652A2 (pt) 2017-06-13
WO2013090915A1 (en) 2013-06-20
US20180346936A1 (en) 2018-12-06
US20140370564A1 (en) 2014-12-18
US10273505B2 (en) 2019-04-30
EP2791342B1 (en) 2020-04-29
JP2018134113A (ja) 2018-08-30
US20150152439A2 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
RU2014129026A (ru) Модифицированные микроорганизмы и способы получения бутадиена с их применением
Avci et al. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification
Narisetty et al. High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates
Parawira et al. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production
Cao et al. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16
Huang et al. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process
Huesemann et al. Acetone-butanol fermentation of marine macroalgae
Ra et al. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii
Zhao et al. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass
Li et al. Acetone–butanol–ethanol fermentation of corn stover by Clostridium species: present status and future perspectives
Xu et al. Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction
CN103409470B (zh) 一种利用含有戊糖和己糖的混合糖分段、混菌发酵生产乙醇、丁醇和丙酮的方法
Okamoto et al. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus
Okonkwo et al. Production of 2, 3-Butanediol from non-detoxified wheat straw hydrolysate: Impact of microbial inhibitors on Paenibacillus polymyxa DSM 365
Fu et al. High-selectivity butyric acid production from Saccharina japonica hydrolysate by Clostridium tyrobutyricum
CA2719280A1 (en) Novel ethanol-producing yeast
Zhang et al. Lipid accumulation by xylose metabolism engineered Mucor circinelloides strains on corn straw hydrolysate
Wagner et al. One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04
TWI540208B (zh) 用於培養酵母菌細胞的種菌培養基及其用途
Rahayu et al. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica
Giraldeli et al. Mixtures of 5-hydroxymethylfurfural, levulinic acid, and formic acid have different impact on H2-producing Clostridium strains
Stoklosa et al. Butyric acid generation by Clostridium tyrobutyricum from low-moisture anhydrous ammonia (LMAA) pretreated sweet sorghum bagasse
Wang et al. Effect of lignocellulose-derived weak acids on butanol production by Clostridium acetobutylicum under different pH adjustment conditions
Zhao et al. Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources
Chatterjee et al. A critical review of the advances in valorizing agro-industrial wastes through mixed culture fermentation