RU2008135325A - Способ прогнозирования разрушения - Google Patents
Способ прогнозирования разрушения Download PDFInfo
- Publication number
- RU2008135325A RU2008135325A RU2008135325/28A RU2008135325A RU2008135325A RU 2008135325 A RU2008135325 A RU 2008135325A RU 2008135325/28 A RU2008135325/28 A RU 2008135325/28A RU 2008135325 A RU2008135325 A RU 2008135325A RU 2008135325 A RU2008135325 A RU 2008135325A
- Authority
- RU
- Russia
- Prior art keywords
- fracture
- strain
- space
- stress
- curve
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/12—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Mathematical Optimization (AREA)
- Automation & Control Theory (AREA)
- Pure & Applied Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
1. Способ прогнозирования разрушения с оценкой предела разрушения тонкой пластины, выполненной из металлического материала, включающий в себя при прогнозировании возникновения разрушения в тонкой пластине в процессе пластического деформирования в соответствии с одной или более вариациями траектории деформирования: ! процедуру преобразования предельной кривой разрушения в пространстве деформаций в предельную кривую разрушения в пространстве напряжений и ! процедуру прогнозирования наличия возникновения разрушения с использованием полученной предельной кривой разрушения в пространстве напряжений. ! 2. Способ прогнозирования разрушения по п.1, в котором при процедуре прогнозирования наличия возникновения разрушения условия деформирования тонкой пластины оценивают численным анализом, полученную деформацию преобразуют в напряжение и наличие возникновения разрушения оценивают количественно с использованием предельной кривой разрушения в пространстве напряжений. ! 3. Способ прогнозирования разрушения по п.2, в котором при прогнозировании возникновения разрушения в тонкой пластине, соответствующего каждому из множества процессов пластического деформирования, оцененные численным анализом условия деформирования тонкой пластины в процессе пластического деформирования на предшествующей стадии вводят в качестве начальных условий численного анализа в процессе пластического деформирования на последующей стадии. ! 4. Способ прогнозирования разрушения по п.3, в котором условиями деформирования тонкой пластины являются толщина тонкой пластины и эквивалентная пластическая деформация или же толщина, э�
Claims (22)
1. Способ прогнозирования разрушения с оценкой предела разрушения тонкой пластины, выполненной из металлического материала, включающий в себя при прогнозировании возникновения разрушения в тонкой пластине в процессе пластического деформирования в соответствии с одной или более вариациями траектории деформирования:
процедуру преобразования предельной кривой разрушения в пространстве деформаций в предельную кривую разрушения в пространстве напряжений и
процедуру прогнозирования наличия возникновения разрушения с использованием полученной предельной кривой разрушения в пространстве напряжений.
2. Способ прогнозирования разрушения по п.1, в котором при процедуре прогнозирования наличия возникновения разрушения условия деформирования тонкой пластины оценивают численным анализом, полученную деформацию преобразуют в напряжение и наличие возникновения разрушения оценивают количественно с использованием предельной кривой разрушения в пространстве напряжений.
3. Способ прогнозирования разрушения по п.2, в котором при прогнозировании возникновения разрушения в тонкой пластине, соответствующего каждому из множества процессов пластического деформирования, оцененные численным анализом условия деформирования тонкой пластины в процессе пластического деформирования на предшествующей стадии вводят в качестве начальных условий численного анализа в процессе пластического деформирования на последующей стадии.
4. Способ прогнозирования разрушения по п.3, в котором условиями деформирования тонкой пластины являются толщина тонкой пластины и эквивалентная пластическая деформация или же толщина, эквивалентная пластическая деформация, тензор напряжения и тензор деформации.
5. Способ прогнозирования разрушения по п.3 или 4, в котором процесс пластического деформирования на предшествующей стадии является процессом формовки тонкой пластины, а процесс пластического деформирования на последующей стадии является процессом повреждения тонкой пластины.
6. Способ прогнозирования разрушения по п.1, в котором при процедуре преобразования в предельную кривую разрушения в пространстве напряжений предельную кривую разрушения в пространстве деформаций получают из эксперимента.
7. Способ прогнозирования разрушения по п.1, в котором при процедуре преобразования в предельную кривую разрушения в пространстве напряжений предельную кривую разрушения в пространстве деформаций оценивают теоретически по значениям механических свойств.
8. Способ прогнозирования разрушения по п.7, в котором для получения предельной кривой разрушения в пространстве напряжений преобразуют линию начала утонения в пространстве деформаций в пространство напряжений.
9. Способ прогнозирования разрушения по п.1, в котором при процедуре прогнозирования возникновения разрушения деформацию, полученную из условий деформирования тонкой пластины, оцененных с помощью эксперимента, преобразуют в напряжение и наличие возникновения разрушения оценивают количественно с использованием предельной кривой разрушения в пространстве напряжений.
10. Способ прогнозирования разрушения по п.2, в котором в качестве метода численного анализа используют метод конечных элементов.
11. Способ прогнозирования разрушения по п.10, в котором, когда в качестве метода численного анализа используют явный динамический метод как один из методов конечных элементов, пластическую деформацию, полученную этим явным динамическим методом, преобразуют в напряжение и сравнивают с предельной кривой разрушения в пространстве напряжений.
12. Способ прогнозирования разрушения по п.1, в котором при процедуре прогнозирования возникновения разрушения численный анализ выполняют с учетом зависимости скорости деформационного напряжения тонкой пластины, преобразуют пластическую деформацию, полученную в результате численного анализа, для расчета напряжения при эталонной скорости деформации и это напряжение сравнивают с предельной кривой разрушения в пространстве напряжений, соответствующем эталонной скорости деформации.
13. Способ прогнозирования разрушения по п.1, в котором прогнозирование разрушения материала определяют, используя критерий, полученный преобразованием коэффициента раздачи отверстия, полученного в результате испытания на раздачу отверстия, в пространство напряжений.
14. Способ прогнозирования разрушения по п.1, в котором при преобразовании предельной кривой разрушения в пространстве деформаций в предельную кривую разрушения в пространстве напряжений используют принцип нормальности приращения пластической деформации, по которому направление приращения пластической деформации определяется в направлении, перпендикулярном изогнутой поверхности текучести.
16. Способ прогнозирования разрушения по любому из пп.1, 14 и 15, в котором при получении предельной кривой разрушения в пространстве деформаций на траектории пропорционального нагружения, после того как множество коэффициентов плоской деформации относительно тонкой пластины получены посредством эксперимента с пропорциональным нагружением, используют измеренные значения главной деформации ε1 предела разрушения и второстепенной деформации ε2 предела разрушения в каждом из коэффициентов деформации.
17. Способ прогнозирования разрушения по любому из пп.1, 14 и 15, в котором при получении предельной кривой разрушения в пространстве деформаций на траектории пропорционального нагружения используют
[Уравнение 2]
приближенное уравнение
кривой напряжение-деформация, полученной в результате испытания на одноосное растяжение,
модель локализованного утонения
и
модель размытого утонения
в комбинации для получения предела возникновения утонения в пространстве деформаций.
18. Способ прогнозирования разрушения по любому из пп.1, 14 и 15, в котором при получении предельной кривой разрушения в пространстве деформаций на траектории пропорционального нагружения используют
[Уравнение 3]
приближенное уравнение
кривой напряжение-деформация, полученной в результате испытания на одноосное растяжение,
уравнение состояния, в котором направление тензора приращения пластической деформации зависит от тензора приращения напряжения по закону приращения пластической деформации,
параметр Kc материала, определяющий направление тензора приращения пластической деформации, и
модель локализованного утонения Сторен-Райса
для получения предела возникновения утонения в пространстве деформаций.
19. Способ прогнозирования разрушения по п.18, в котором параметр Kc материала устанавливают, исходя из одного или более измеренных значений главной деформации ε1 предела разрушения и второстепенной деформации ε2 предела разрушения.
20. Способ прогнозирования разрушения по п.17, в котором, с пределом возникновения утонения в качестве опорного, используют
толщину t0 (мм) тонкой пластины,
кривую напряжение-деформация, полученную в результате испытания на одноосное растяжение, и
[Уравнение 4]
уравнение коррекции на толщину
для получения предельной деформации разрушения в пространстве деформаций.
21. Способ прогнозирования разрушения по п.14 или 15, в котором деформацию растяжения, полученную в результате испытания на раздачу отверстия, преобразуют в пространство напряжений и разрушение определяют в пространстве напряжений.
22. Способ прогнозирования разрушения по п.1, в котором тонкая пластина выполнена из высокопрочного материала с прочностью на растяжение 440 МПа или выше.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024975 | 2006-02-01 | ||
JP2006-024975 | 2006-02-01 | ||
JP2006024976 | 2006-02-01 | ||
JP2006-024976 | 2006-02-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010110951/28A Division RU2434217C1 (ru) | 2006-02-01 | 2010-03-22 | Способ прогнозирования разрушения |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2008135325A true RU2008135325A (ru) | 2010-03-10 |
RU2402010C2 RU2402010C2 (ru) | 2010-10-20 |
Family
ID=38327505
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008135325/28A RU2402010C2 (ru) | 2006-02-01 | 2007-02-01 | Способ прогнозирования разрушения |
RU2010110951/28A RU2434217C1 (ru) | 2006-02-01 | 2010-03-22 | Способ прогнозирования разрушения |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010110951/28A RU2434217C1 (ru) | 2006-02-01 | 2010-03-22 | Способ прогнозирования разрушения |
Country Status (9)
Country | Link |
---|---|
US (1) | US8990028B2 (ru) |
EP (1) | EP1985989B1 (ru) |
KR (1) | KR101065502B1 (ru) |
CN (1) | CN101379381B (ru) |
BR (1) | BRPI0707682B1 (ru) |
CA (1) | CA2641174C (ru) |
MX (1) | MX2008009816A (ru) |
RU (2) | RU2402010C2 (ru) |
WO (1) | WO2007088935A1 (ru) |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103995927B (zh) * | 2006-08-31 | 2017-01-04 | 新日铁住金株式会社 | 回弹对策位置特定方法以及回弹对策位置特定装置 |
CA2676940C (en) | 2007-02-27 | 2015-06-23 | Exxonmobil Upstream Research Company | Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains |
JP4858370B2 (ja) * | 2007-09-11 | 2012-01-18 | 住友金属工業株式会社 | 材料パラメータ導出装置及び材料パラメータ導出方法 |
JP4935713B2 (ja) * | 2008-02-27 | 2012-05-23 | Jfeスチール株式会社 | プレス品のせん断縁における成形可否判別方法 |
US8494827B2 (en) * | 2009-09-25 | 2013-07-23 | Exxonmobil Upstream Research Company | Method of predicting natural fractures and damage in a subsurface region |
WO2011126058A1 (ja) * | 2010-04-07 | 2011-10-13 | 新日本製鐵株式会社 | 破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体 |
US20110295570A1 (en) * | 2010-05-27 | 2011-12-01 | Livermore Software Technology Corporation | Sheet Metal Forming Failure Prediction Using Numerical Simulations |
CN102004819B (zh) * | 2010-11-04 | 2012-10-10 | 西北工业大学 | 一种确定双向应力状态下直缝焊管焊缝本构参数的方法 |
CN102466588B (zh) * | 2010-11-07 | 2013-06-12 | 山西太钢不锈钢股份有限公司 | 一种比较金属材料间隙原子含量的方法 |
JP5630311B2 (ja) * | 2011-02-16 | 2014-11-26 | Jfeスチール株式会社 | プレス成形における割れ予測方法およびプレス部品の製造方法 |
JP5375941B2 (ja) * | 2011-12-21 | 2013-12-25 | Jfeスチール株式会社 | プレス成形用金型設計方法、プレス成形用金型 |
DE102012007062B4 (de) * | 2012-04-03 | 2015-07-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur zerstörungsfreien quantitativen Bestimmung der Mikroeigenspannung II. und/oder III. Art |
EP2839896B1 (en) * | 2012-04-16 | 2017-11-22 | JFE Steel Corporation | Method for preparing forming limit diagram in press forming, method for predicting crack and method of producing press parts |
US20140019099A1 (en) * | 2012-07-16 | 2014-01-16 | Livermore Software Technology Corp | Determination Of Failure In Sheet Metal Forming Simulation Using Isotropic Metal Failure Criteria |
JP5472518B1 (ja) * | 2012-11-19 | 2014-04-16 | Jfeスチール株式会社 | 伸びフランジの限界ひずみ特定方法およびプレス成形可否判定方法 |
RU2516592C1 (ru) * | 2012-12-17 | 2014-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Способ определения максимальных истинных напряжений и деформаций |
US10331809B2 (en) * | 2013-05-10 | 2019-06-25 | Nippon Steel & Sumitomo Metal Corporation | Deformation analysis device, deformation analysis method, and program |
US9874504B2 (en) * | 2013-06-26 | 2018-01-23 | Nippon Steel & Sumitomo Metal Corporation | Metal sheet bending fracture determination method and recording medium |
RU2571183C2 (ru) * | 2013-07-30 | 2015-12-20 | Открытое акционерное общество "АВТОВАЗ" | Способ построения диаграммы предельных деформаций листового материала |
WO2015170742A1 (ja) | 2014-05-08 | 2015-11-12 | 新日鐵住金株式会社 | 可塑性材料の評価方法及び可塑性材料の塑性加工の評価方法 |
US11886778B2 (en) * | 2014-06-11 | 2024-01-30 | Magna International Inc. | Shifting a forming limit curve based on zero friction analysis |
DE112015002733T5 (de) * | 2014-06-11 | 2017-05-11 | Magna International Inc. | Verschieben einer Grenzformänderungskurve basierend auf Nullreibungsanalyse |
WO2015191678A1 (en) * | 2014-06-11 | 2015-12-17 | Magna International Inc. | Performing and communicating sheet metal simulations employing a combination of factors |
US9939359B2 (en) * | 2014-09-25 | 2018-04-10 | East China University Of Science And Technology | Method of measurement and determination on fracture toughness of structural materials at high temperature |
JP5910710B1 (ja) * | 2014-12-02 | 2016-04-27 | Jfeスチール株式会社 | 熱間プレス成形品の評価方法及び製造方法 |
RU2591294C1 (ru) * | 2015-03-10 | 2016-07-20 | Открытое акционерное общество "АВТОВАЗ" | Способ построения диаграммы предельных деформаций листового материала |
US10732085B2 (en) | 2015-03-24 | 2020-08-04 | Bell Helicopter Textron Inc. | Notch treatment methods for flaw simulation |
US10989640B2 (en) * | 2015-03-24 | 2021-04-27 | Bell Helicopter Textron Inc. | Method for defining threshold stress curves utilized in fatigue and damage tolerance analysis |
US20160328503A1 (en) * | 2015-05-06 | 2016-11-10 | Livermore Software Technology Corporation | Methods And Systems For Conducting A Time-Marching Numerical Simulation Of A Structure Expected To Experience Metal Necking Failure |
JP6098664B2 (ja) * | 2015-05-08 | 2017-03-22 | Jfeスチール株式会社 | せん断縁の成形可否評価方法 |
US11016011B2 (en) * | 2015-05-18 | 2021-05-25 | Nippon Steel Corporation | Breaking prediction method, program, recording medium, and arithmetic processing device |
CN105606448A (zh) * | 2015-09-06 | 2016-05-25 | 上海理工大学 | 一种实际含裂纹结构断裂韧性的确定方法 |
FR3042592B1 (fr) * | 2015-10-16 | 2017-12-01 | Electricite De France | Procede de controle de fissuration d'un materiau et dispositif de mise en oeuvre associe |
CN106202647B (zh) * | 2016-06-29 | 2020-02-21 | 北京科技大学 | 电主轴的多轴疲劳寿命预测方法及疲劳寿命可靠性评估方法 |
CN109791098B (zh) * | 2016-10-05 | 2021-09-17 | 日本制铁株式会社 | 断裂判定装置、断裂判定程序及其方法 |
US20190212236A1 (en) * | 2016-10-05 | 2019-07-11 | Nippon Steel & Sumitomo Metal Corporation | Fracture determination device, fracture determination program, and method thereof |
CN110431397B (zh) | 2017-03-16 | 2023-02-17 | 日本制铁株式会社 | 冷加工部件的硬度推断方法及钢材的硬度-等效塑性应变曲线获取方法 |
CN108733862B (zh) * | 2017-04-24 | 2020-05-08 | 天津大学 | 稳态蠕变条件下考虑拘束效应的蠕变孕育期预测方法 |
CN108732032B (zh) * | 2017-04-24 | 2020-03-27 | 天津大学 | 稳态蠕变条件下含残余应力的蠕变孕育期预测方法 |
CN108733861B (zh) * | 2017-04-24 | 2020-03-27 | 天津大学 | 塑性条件下含残余应力的蠕变孕育期预测方法 |
CN108732034B (zh) * | 2017-04-24 | 2020-03-27 | 天津大学 | 弹性瞬态蠕变条件下含残余应力的蠕变孕育期预测方法 |
CN108732029B (zh) * | 2017-04-24 | 2020-02-07 | 天津大学 | 弹性条件下含残余应力的蠕变孕育期预测方法 |
CN108732030B (zh) * | 2017-04-24 | 2020-05-08 | 天津大学 | 塑性条件下考虑拘束效应的蠕变孕育期预测方法 |
CN108733860B (zh) * | 2017-04-24 | 2020-06-02 | 天津大学 | 塑性瞬态蠕变条件下考虑拘束效应的蠕变孕育期预测方法 |
CN108732031B (zh) * | 2017-04-24 | 2020-06-02 | 天津大学 | 弹性条件下考虑拘束效应的蠕变孕育期预测方法 |
CN108732033B (zh) * | 2017-04-24 | 2020-05-08 | 天津大学 | 弹性瞬态蠕变条件下考虑拘束效应的蠕变孕育期预测方法 |
CN108731989B (zh) * | 2017-04-24 | 2020-06-02 | 天津大学 | 塑性瞬态蠕变条件下含残余应力的蠕变孕育期预测方法 |
CN107144461B (zh) * | 2017-07-05 | 2023-07-14 | 四川大学 | 模拟断层处隧道应力特征的实验装置 |
CN110997172B (zh) * | 2017-08-23 | 2021-09-07 | 杰富意钢铁株式会社 | 金属板的剪切加工面上的变形极限的评价方法、裂纹预测方法以及压制模具的设计方法 |
CN107907409B (zh) * | 2017-11-10 | 2023-01-03 | 中国地质大学(武汉) | 一种确定岩石起裂应力的方法、设备及存储设备 |
CN109855958B (zh) * | 2017-11-30 | 2021-07-06 | 中国科学院金属研究所 | 一种金属材料拉伸性能的预测方法 |
CN108051549B (zh) * | 2017-12-15 | 2024-03-15 | 中国科学院南京地理与湖泊研究所 | 一种测定水生植物能承受的水流临界流速的装置与方法 |
EP3726196A4 (en) * | 2017-12-15 | 2021-09-08 | Furukawa Electric Co., Ltd. | DEVICE AND METHOD FOR SHIELDING FIBER-OPTIC CORE WIRE, AND PROCESS FOR PRODUCING FIBER-OPTIC CORE WIRE |
CN108228992A (zh) * | 2017-12-27 | 2018-06-29 | 国网河北省电力公司经济技术研究院 | 避雷针法兰设计方法及终端设备 |
KR102125142B1 (ko) * | 2018-09-27 | 2020-07-07 | 한양대학교 에리카산학협력단 | 홀 확장성 시험장치 및 시험방법 및 작동 프로그램 |
CN109870362B (zh) * | 2019-03-04 | 2020-04-03 | 燕山大学 | 一种高强铝合金板材的断裂成形极限图建立方法及系统 |
CN109948215B (zh) * | 2019-03-12 | 2023-02-03 | 本钢板材股份有限公司 | 一种热冲压工艺制定方法 |
EP3939713B1 (en) * | 2019-03-14 | 2023-11-08 | JFE Steel Corporation | Stretch flange crack evaluation method, metal sheet selection method, press die design method, component shape design method, and pressed component manufacturing method |
JP2020159834A (ja) * | 2019-03-26 | 2020-10-01 | 日本製鉄株式会社 | 破断クライテリア解析方法、破断クライテリア解析プログラム、及び破断クライテリア解析システム |
CN110134992B (zh) * | 2019-04-08 | 2022-11-18 | 北方工业大学 | 一种判断复杂加载路径下板料成形是否绝对安全的方法 |
CN112560162B (zh) * | 2019-09-24 | 2024-05-10 | 上海汽车集团股份有限公司 | 一种动力总成悬置路谱载荷的缩减方法及装置 |
CN110837675B (zh) * | 2019-10-31 | 2023-06-06 | 武汉工程大学 | 一种优化的断裂准则预测差厚板断裂的方法、装置和系统 |
CN112926173B (zh) * | 2019-12-06 | 2024-03-01 | 上海梅山钢铁股份有限公司 | 一种热轧高强钢板成形极限图的计算方法 |
CN110987621B (zh) * | 2019-12-18 | 2023-04-25 | 中国汽车工程研究院股份有限公司 | 金属材料在复杂应力状态下的三维断裂模型建立方法 |
CN111125960B (zh) * | 2019-12-26 | 2022-02-22 | 中国汽车工程研究院股份有限公司 | 一种gissmo材料失效模型参数优化方法 |
CN115379908A (zh) * | 2020-03-31 | 2022-11-22 | 杰富意钢铁株式会社 | 压制部件的制造方法、坯料的制造方法及钢板 |
JP6919742B1 (ja) * | 2020-04-07 | 2021-08-18 | Jfeスチール株式会社 | 金属板のくびれ限界ひずみ特定方法 |
CN111366461B (zh) * | 2020-04-13 | 2023-02-03 | 鲁东大学 | 一种岩石抗拉强度的测试方法 |
CN111680438A (zh) * | 2020-05-15 | 2020-09-18 | 中国第一汽车股份有限公司 | 一种金属板材拉伸实验数据转换处理方法 |
CN111896373B (zh) * | 2020-06-30 | 2023-03-24 | 武汉上善仿真科技有限责任公司 | 一种测定等效塑性应变成形极限图的试验与计算方法 |
CN114112736B (zh) * | 2020-08-28 | 2023-11-14 | 宝山钢铁股份有限公司 | 确定低碳钢冷轧薄板断裂延伸率的在线测量装置及方法 |
CN112446132B (zh) * | 2020-10-19 | 2024-05-28 | 中国石油天然气集团有限公司 | 一种材料全象限断裂成形极限图的绘制方法及其使用方法 |
CN113420388B (zh) * | 2021-06-17 | 2022-04-29 | 中铁大桥勘测设计院集团有限公司 | 基于拟合Mises屈服准则的全焊整体节点撕破路径计算方法 |
CN113673030B (zh) * | 2021-08-05 | 2023-07-25 | 河钢股份有限公司 | 一种金属材料韧性断裂耦合失效仿真分析方法 |
CN114371078B (zh) * | 2022-01-13 | 2024-02-09 | 马鞍山钢铁股份有限公司 | 一种基于成形安全裕度的冲压模具验收方法 |
CN114444230A (zh) * | 2022-03-04 | 2022-05-06 | 太原理工大学 | 一种超临界co2作用下准脆性材料变形-碎裂的模拟方法 |
CN115265323B (zh) * | 2022-07-08 | 2024-09-20 | 武汉钢铁有限公司 | 一种极限翻边高度测试方法 |
CN115326504B (zh) * | 2022-07-26 | 2024-06-04 | 燕山大学 | 用于薄钢板边缘拉伸开裂极限的评价方法及其评价装置 |
CN115142160B (zh) * | 2022-08-22 | 2023-12-19 | 无锡物联网创新中心有限公司 | 一种纱线强力弱环的辨识方法及相关装置 |
CN115937294B (zh) * | 2022-12-30 | 2023-10-27 | 重庆大学 | 一种煤矿地面压裂后采空区垮裂带高度的预测方法 |
CN116305644A (zh) * | 2023-03-17 | 2023-06-23 | 中国汽车技术研究中心有限公司 | 基于成型极限曲线的热冲压零部件破裂性能的评价方法 |
CN116933391B (zh) * | 2023-07-26 | 2024-01-26 | 广州知元科技有限责任公司 | 一种用于整车精细碰撞仿真的冲压信息修正方法和系统 |
CN117371272B (zh) * | 2023-09-22 | 2024-04-19 | 天津大学 | 适用于不同各向异性材料及尺寸的夹持式单边缺口拉伸试样裂纹长度及断裂性能计算方法 |
CN117074182B (zh) * | 2023-10-17 | 2024-02-02 | 深圳中宝新材科技有限公司 | 一种智能键合铜丝导料拉伸装置防铜丝断裂自检的方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852397A (en) * | 1988-01-15 | 1989-08-01 | Haggag Fahmy M | Field indentation microprobe for structural integrity evaluation |
US5020585A (en) * | 1989-03-20 | 1991-06-04 | Inland Steel Company | Break-out detection in continuous casting |
JP2546551B2 (ja) * | 1991-01-31 | 1996-10-23 | 新日本製鐵株式会社 | γ及びβ二相TiAl基金属間化合物合金及びその製造方法 |
CN1072065C (zh) * | 1995-04-03 | 2001-10-03 | 西门子公司 | 连续铸造时早期识别断裂的装置 |
JPH08339396A (ja) | 1995-04-12 | 1996-12-24 | Nippon Steel Corp | 金属板の変形過程の数値シミュレート結果の処理装置 |
JP3383148B2 (ja) * | 1996-04-10 | 2003-03-04 | 新日本製鐵株式会社 | 靱性に優れた高張力鋼の製造方法 |
US6555182B1 (en) * | 1998-07-03 | 2003-04-29 | Sony Corporation | Surface hardened resins for disk substrates, methods of manufacture thereof and production devices for the manufacture thereof |
US20020077795A1 (en) * | 2000-09-21 | 2002-06-20 | Woods Joseph Thomas | System, method and storage medium for predicting impact performance of thermoplastic |
AU2003220672A1 (en) * | 2002-04-10 | 2003-10-27 | Mts Systems Corporation | Method and apparatus for determining properties of a test material by scratch testing |
US7505885B2 (en) * | 2003-01-24 | 2009-03-17 | The Boeing Company | Method and interface elements for finite-element fracture analysis |
FR2858410B1 (fr) * | 2003-07-28 | 2005-09-23 | Electricite De France | Procede de determination des contraintes, deformations, endommagement de pieces constituees d'un materiau solide. |
JP4421346B2 (ja) * | 2004-03-26 | 2010-02-24 | 川崎重工業株式会社 | 延性破壊限界の推定方法とそのプログラムと記録媒体 |
US20080004850A1 (en) * | 2006-06-05 | 2008-01-03 | Phida, Inc. | Method of Universal Formability Analysis in Sheet Metal Forming by Utilizing Finite Element Analysis and Circle Grid Analysis |
-
2007
- 2007-02-01 US US12/278,117 patent/US8990028B2/en active Active
- 2007-02-01 EP EP07707897.0A patent/EP1985989B1/en active Active
- 2007-02-01 CA CA2641174A patent/CA2641174C/en active Active
- 2007-02-01 RU RU2008135325/28A patent/RU2402010C2/ru not_active IP Right Cessation
- 2007-02-01 BR BRPI0707682-7A patent/BRPI0707682B1/pt active IP Right Grant
- 2007-02-01 WO PCT/JP2007/051711 patent/WO2007088935A1/ja active Application Filing
- 2007-02-01 KR KR1020087021077A patent/KR101065502B1/ko active IP Right Grant
- 2007-02-01 MX MX2008009816A patent/MX2008009816A/es active IP Right Grant
- 2007-02-01 CN CN2007800041527A patent/CN101379381B/zh active Active
-
2010
- 2010-03-22 RU RU2010110951/28A patent/RU2434217C1/ru not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
MX2008009816A (es) | 2008-09-11 |
US20090177417A1 (en) | 2009-07-09 |
BRPI0707682A2 (pt) | 2011-05-10 |
EP1985989A1 (en) | 2008-10-29 |
RU2010110951A (ru) | 2011-09-27 |
US8990028B2 (en) | 2015-03-24 |
CA2641174C (en) | 2014-03-04 |
RU2402010C2 (ru) | 2010-10-20 |
CN101379381A (zh) | 2009-03-04 |
EP1985989A4 (en) | 2015-07-08 |
RU2434217C1 (ru) | 2011-11-20 |
BRPI0707682B1 (pt) | 2023-01-10 |
CA2641174A1 (en) | 2007-08-09 |
KR20080090551A (ko) | 2008-10-08 |
CN101379381B (zh) | 2012-08-22 |
WO2007088935A1 (ja) | 2007-08-09 |
KR101065502B1 (ko) | 2011-09-19 |
EP1985989B1 (en) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2008135325A (ru) | Способ прогнозирования разрушения | |
JP4621216B2 (ja) | 破断限界取得方法及び装置、並びにプログラム及び記録媒体 | |
CN106248502A (zh) | 悬臂梁弯曲获取材料弹塑性力学性能的方法 | |
JP5434622B2 (ja) | 薄板のプレス成形シミュレーションにおける破断判定方法および破断判定装置 | |
Abbasi et al. | New attempt to wrinkling behavior analysis of tailor welded blanks during the deep drawing process | |
US20140283619A1 (en) | Method for evaluating corrosion-fatigue life of steel material | |
Lina et al. | FEM analysis of spring-backs in age forming of aluminum alloy plates | |
MX2020001988A (es) | Metodo de evaluacion de limite de deformacion para superficie cizallada de lamina de metal, metodo de prediccion de grietas, y metodo de dise?o de matriz de prensa. | |
Mu et al. | Anisotropic hardening and evolution of r-values for sheet metal based on evolving non-associated Hill48 model | |
JP5710997B2 (ja) | 疲労限度特定システムおよび疲労限度特定方法 | |
JPWO2019017136A1 (ja) | 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法 | |
Choi et al. | Evaluation of nonequibiaxial residual stress using Knoop indenter | |
CN117711538A (zh) | 腐蚀条件下合金钢冲击动态断裂韧性及损伤机理分析方法 | |
JP5760244B2 (ja) | 低サイクル疲労き裂進展評価方法 | |
Korkolis et al. | Modeling of hole-expansion of AA6022-T4 aluminum sheets with anisotropic non-quadratic yield functions | |
CN110749510A (zh) | 基于有限元仿真检测金属材料弯曲性能的方法 | |
JP2015163840A (ja) | 鋼材の腐食疲労寿命の評価方法 | |
Moćko et al. | Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy | |
CN108732032B (zh) | 稳态蠕变条件下含残余应力的蠕变孕育期预测方法 | |
Nguyen et al. | Fully plastic J-integral and C* equations for small punch test specimen with a surface crack | |
Benachour et al. | Notch fatigue crack initiation and propagation life under constant amplitude loading through residual stress field | |
Jia et al. | Fracture of films caused by uniaxial tensions: a numerical model | |
JP2006337343A (ja) | 結晶性高分子から成る構造体の真応力−対数ひずみ曲線の推定システム | |
CN115586083B (zh) | 拉挤型纤维增强复合材料ii型断裂韧性的测试方法 | |
Huang et al. | Measurement of r-values of high strength steels using digital image correlation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210202 |