NO309858B1 - FremgangsmÕter for regenerering eller bedring av produktiviteten til katalysatorløsninger for karbonylering ved fjerning av metalliske korrosjonsprodukter - Google Patents
FremgangsmÕter for regenerering eller bedring av produktiviteten til katalysatorløsninger for karbonylering ved fjerning av metalliske korrosjonsprodukter Download PDFInfo
- Publication number
- NO309858B1 NO309858B1 NO981887A NO981887A NO309858B1 NO 309858 B1 NO309858 B1 NO 309858B1 NO 981887 A NO981887 A NO 981887A NO 981887 A NO981887 A NO 981887A NO 309858 B1 NO309858 B1 NO 309858B1
- Authority
- NO
- Norway
- Prior art keywords
- catalyst solution
- water
- carbonylation
- catalyst
- contacting
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims description 115
- 238000000034 method Methods 0.000 title claims description 85
- 238000005810 carbonylation reaction Methods 0.000 title claims description 64
- 230000006315 carbonylation Effects 0.000 title claims description 53
- 238000005260 corrosion Methods 0.000 title claims description 47
- 230000007797 corrosion Effects 0.000 title claims description 47
- 230000001172 regenerating effect Effects 0.000 title description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 131
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 87
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 60
- 239000011347 resin Substances 0.000 claims description 40
- 229920005989 resin Polymers 0.000 claims description 40
- 229910052703 rhodium Inorganic materials 0.000 claims description 36
- 239000010948 rhodium Substances 0.000 claims description 36
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 36
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 35
- 239000003456 ion exchange resin Substances 0.000 claims description 28
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 28
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 23
- 239000000356 contaminant Substances 0.000 claims description 21
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 20
- 239000012429 reaction media Substances 0.000 claims description 19
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 16
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 16
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 15
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000003729 cation exchange resin Substances 0.000 claims description 10
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 150000001340 alkali metals Chemical class 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- -1 alkali metal salt Chemical class 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052744 lithium Inorganic materials 0.000 claims description 6
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical group [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims description 5
- 159000000002 lithium salts Chemical class 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 238000011109 contamination Methods 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 description 42
- 238000006243 chemical reaction Methods 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 19
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 15
- 238000011069 regeneration method Methods 0.000 description 14
- 230000008929 regeneration Effects 0.000 description 13
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 229910052736 halogen Inorganic materials 0.000 description 9
- 150000002367 halogens Chemical class 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 150000001298 alcohols Chemical class 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 229910001413 alkali metal ion Inorganic materials 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 150000004694 iodide salts Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 229940023913 cation exchange resins Drugs 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229940006461 iodide ion Drugs 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003283 rhodium Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229940006487 lithium cation Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003284 rhodium compounds Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/47—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0231—Halogen-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/20—Carbonyls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/40—Regeneration or reactivation
- B01J31/4015—Regeneration or reactivation of catalysts containing metals
- B01J31/4023—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
- B01J31/4038—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
- B01J31/4046—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals containing rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/74—Regeneration or reactivation of catalysts, in general utilising ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/12—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/34—Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/08—Ion-exchange resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Description
OPPFINNELSENS OMRÅDE
Oppfinnelsen angår generelt en forbedring ved prosessen for karbonylering av metanol til eddiksyre i nærvær av en rhodiumholdig katalysator. Nærmere bestemt angår opprinnelsen en forbedret fremgangsmåte for regenerering eller bedring av produktiviteten til en katalysatorløsning benyttet i en karbonyler-ingsreaksjonsprosess med lavt vanninnhold.
OPPFINNELSENS BAKGRUNN
Blant de for tiden benyttede prosesser for syntetisering av eddiksyre er en av de mest anvendbare kommersielt den katalyserte karbonylering av metanol med karbonmonoksid, som beskrevet i US 3 769 329, innvilget til Paulik et al den 30. oktober 1973. Karbonyleringskatalysatoren omfatter rhodium, enten oppløst eller på annen måte dispergert i et flytende reaksjonsmedium eller båret på et inert fast materi-ale, sammen med en halogenholdig katalysatorfremmer som f.eks. metyljodid. Rhodiumet kan føres inn i reaksjonssystemet på en eller flere måter, og det er ikke relevant, dersom det overhodet er mulig, å identifisere den eksakte natur til rhodium-andelen i det aktive katalysatorkompleks. På samme måte er naturen til halidfremmeren ikke kritisk. I US 3 769 329 beskrives et antall egnede fremmere, hvorav de fleste er organiske jodider. Mest vanlig og hensiktsmessig gjennomføres reaksjonen med katalysatoren oppløst i et flytende reaksjonsmedium gjennom hvilket karbon-monoksidgass kontinuerlig bobles.
En forbedring av den kjente prosess for karbonylering av en alkohol for å produsere karboksylsyren med et karbonatom flere enn alkoholen i nærvær av en rhodiumkatalysator, er beskrevet i US 5 001 259 og i Europeisk patentskrift 161 874 B2. Slik det der er beskrevet produseres eddiksyre (HAc) fra metanol (MeOH) i et reaksjonsmedium som omfatter metylacetat (MeOAc), metallhalid, metyljodid, (Mel), og rhodium til stede i en katalytisk virksom konsentrasjon. De nevnte oppfinnelser består i erkjennelsen av at katalysatorstabiliteten og produktiviteten til karbonyleringsreaktoren kan opprettholdes ved overraskende høye nivåer, selv ved meget lave vannkonsentrasjoner, dvs. 4 vekt % eller lavere, i reaksjonsmediet (til tross for den generelle industrielle praksis å opprettholde ca. 14 vekt % eller 15 vekt % vann). Som beskrevet i US 5 001 259 foregår karbonyleringsreaksjonen ved at det i reaksjonsmediet opprettholdes en katalytisk virksom mengde av rhodium, i det minste en begrenset konsentrasjon av vann, metylacetat og metyljodid, og en spesifisert konsentrasjon av jodidioner som er over og høyere enn jodidinnholdet som er til stede som metyljodid eller annet organisk jodid. Jodidionet er til stede som et salt, med litiumjodid som foretrukket. I de ovennevnte US- og EP-patentskrifter beskrives at konsentrasjonen av metylacetat og jodidsalter er signifikante parametere til å påvirke hastigheten for karbonylering av metanol for å produsere eddiksyre, særlig ved lave vannkonsentrasjoner i reaktoren. Ved bruk av relativt høye konsentrasjoner av metylacetat og jodidsalt, oppnås en overraskende grad av katalysatorstabilitet og reaktorproduktivitet, selv når det flytende reaksjonsmedium inneholder vann i konsentrasjoner så lave som ca. 0,1 vekt %, så lave at det grovt kan defineres enkelt som "en begrenset konsentrasjon" av vann. Videre gir reaksjonsmediet som benyttes forbedring av stabiliteten av rhodiumkatalysatoren. Denne katalysatorstabilitet forbedres ved å ha en bestandighet mot katalysatorpresipitering, særlig under produktutvinningstrinnene i prosessen hvor destillasjon i den hensikt å utvinne eddiksyreproduktet gir tendens til å fjerne karbonmonoksidet fra katalysatoren, hvilket er en ligand i miljøet opprettholdt i reaksjonsbeholderen, med en stabiliserende effekt på rhodiumet. US 5 001 259 innbefattes herved ved referanse.
Ved drift av prosessen for karbonylering av metanol til eddiksyre på kontinuerlig basis, blir en løsning som inneholder det løselige katalysatorkompleks separert fra reaktoravløpet og resirkulert til reaktoren. Ved drift over lange tidsperioder oppløses imidlertid korrosjonsprodukter fra beholderen i en metallstrøm, f.eks. jern, nikkel, molybden, krom og lignende, og bygges opp i katalysatorresirkulasjons-strømrnen. Dersom slike fremmede metaller er til stede i tilstrekkelig mengde er de kjent for å påvirke karbonyleringsreaksjonen eller å akselerere konkurrerende reaksjoner som vann-gasskitfereaksjonen (karbondioksid og hydrogendannelse) og metandannelse. Derfor har nærvær av disse metallkorrosjonsfonirensninger en ugunstig virkning på prosessen, særlig ved et tap i utbytte basert på karbonmonoksid. Videre kan fremmede metaller reagere med ionisk jodid slik at denne bestanddel i det katalytiske system blir tilgjengelig for reaksjon med rhodium, og det oppstår ustabilitet i katalysatorsystemet. I lys av den høye kostnad for den rhodiumholdige katalysator kan erstatning av forbrukt katalysator kun foretas til en uforholdsmessig kostnad. Derfor er en fremgangsmåte for regenerering av katalysatoren ikke bare ønskelig, men nødvendig.
I henhold til US 4 007 130 blir en katalysatorløsning for karbonylering omfattende det komplekse reaksjonsprodukt av en rhodiumkomponent eller en iridiumkomponent, en halogenkomponent, og karbonmonoksid som inneholder metalliske korrosjonsprodukter, brakt i nær kontakt med en ionebytterharpiks i dens hydrogenform, og katalysatorløsningen blir gjenvunnet slik at den blir uten metalliske korrosjonsprodukter. Som beskrevet i patentskriftet US 4 007 130 utføres kontakteringen ved å føre katalysatorløsningen som inneholder de uønskede metallkorrosjonsforurensninger gjennom et sjikt av ionebytterharpiksen, og utvinning derpå som avløpet fra sjiktet, idet katalysatorløsningen inneholder den komplekse rhodium- eller iridiumkomponent, men i hovedsak er uten de korrosjonsproduktene som blir absorbert på og fjernet av harpikssjiktet. Ved utbrukthet, som indikert ved gjennom-brudd av metallkorrosjonsprodukter i avløpet, regenereres harpikssjiktet ved behandling med en mineralsyre som saltsyre, svovelsyre, fosforsyre eller jodvannstoffsyre, og benyttes på ny.
Imidlertid blir det i US 4 007 130 ikke vurdert å bruke katalysatorløsninger som den fremsatt i det forannevnte US 5 001 259.1 de forbedrede katalysatorløsninger er det derfor som tidligere beskrevet til stede en spesifikk konsentrasjon av jodidioner over og høyere enn jodidinnholdet som er til stede som metyljodid eller annet organisk jodid. Dette ytterligere jodidioninnhold er til stede som et salt, og mest foretrukket som litiumjodid. Hva som er blitt erkjent er at ved regenerering av katalysatorløsningen for å fjerne metallforurensninger ved hjelp av å føre katalysatorløsningen gjennom et sjikt av en kationbytterharpiks i hydrogen-formen, som beskrevet i US 4 007 130, blir alkalimetallionet i katalysatorløsningen fortrinnsvis fjernet. Fjerningen av alkalimetallionet fra katalysatorløsningen reduserer i stor grad reaktiviteten og stabiliteten i reaksjonsmediet.
Følgelig er det nødvendig å tilveiebringe en forbedret fremgangsmåte for regenerering av karbonyleringskatalysatorløsninger som inneholder alkalimetallioner, særlig litium, for å muliggjøre fjerning av metallkorrosjonsforurensninger fra kataly-satorløsningene og for å unngå fjerning av de ønskede komponenter fra slike løs-ninger. Det er derfor et mål med den foreliggende oppfinnelse å tilveiebringe en fremgangsmåte for behandling av katalysatorløsninger for karbonylering inneholdende litium, for å fjerne metalliske korrosjonsprodukter og for å gjenvinne katalysator-løsningen i en form som er egnet for retur til prosessen som en aktiv katalysator uten behov for omfattende erstatning av komponentene.
I US 4 894 477, herved innbefattet ved referanse, beskrives bruken av den sterkt sure ionebytterharpiks i litiumform for å fjerne korrosjonsmetaller (f.eks. jern, nikkel, molybden, krom og lignende) fra karbonyleringsreaksjonssystemet. Prosessen som er beskrevet er særlig anvendbar for de prosesser som er hensiktsmessige for karbonylering av metanol til eddiksyre under forhold med lite vann, som beskrevet i US 5 001 259. Forhold med lite vann forbedrer rense/produksjonsprosessen for eddiksyre. Ettersom litiumkonsentrasjonene ved forhold med lite vann imidlertid økes i karbonyleringsreaktoren, slik at rhodiumstabiliteten økes og ettersom vanninnholdet i reaktorsystemet senkes, nedbrytes kapasiteten for fjerning av korrosjonsmetaller ved ionebytterprosessen for hver syklus. Alternativt uttrykt er det en større tendens for korrosjonsmetaller å bygge seg opp i karbonyleringskatalysatorløsningen i en prosess med lite vann. Forholdene med lite vann gjør det vanskelig å fjerne korrosjonsmetaller fra karbonyleringsreaksjonen. Dette problem var ennå ikke erkjent ved tidspunktet for innlevering av søknaden som ledet til US 4 894 477. Derfor er det ønskelig å tilveiebringe en fremgangsmåte for behandling av karbonyleringskatalysatorløsninger for å fjerne metalliske korrosjonsprodukter fra en karbonyleirngsprosess under forhold med lite vann.
OPPSUMMERING AV OPPFINNELSEN
Den foreliggende oppfinnelse vedrører en fremgangsmåte for regenerering eller forbedring av produktiviteten for en katalysatorløsning for karbonylering under forhold med lite vann.
Oppfinnelsen er særpreget ved trekkene som fremgår av den karakteriserende del av de selvstendige krav nr. 1, 8, 13 og 14.
Katalysatorløsningen inneholder løselige rhodium-komplekser og metalliske korrosjonsproduktforurensninger. Den forbedrede fremgangsmåte omfatter å bringe katalysatorløsningen i nær kontakt med en ionebytterharpiks (IER) i alkalimetallformen, fortrinnsvis i litiumform, og en tilstrekkelig mengde vann, for å optimere fjerning av metalliske korrosjonsprodukter fra katalysatorløsningen, og å gjenvinne en katalysatorløsning med redusert innhold av metalliske forurensninger. De metalliske korrosjonsproduktforurensninger innbefatter jern, nikkel, krom, molybden og lignende.
Katalysatorløsningen har generelt en konsentrasjon av vann fra 5 til 50 vekt %, fortrinnsvis 5 til 30 vekt %, og mest foretrukket 5 til 15 vekt %, for forbedret fjerning av metalliske korrosjonsprodukter.
I henhold til den foreliggende oppfinnelse bringes den katalysatorløsning som omfatter rhodium og i det minste en begrenset konsentrasjon av alkalimetallioner, fortrinnsvis litiumioner, og som er forurenset med metalliske korrosjonsprodukter og har en fast vannkonsentrasjon, i nær kontakt med en ionebytterharpiks hvor en ytterligere mengde vann er tilført harpiksen i en mengde tilstrekkelig til å øke konsentrasjonen av vann (eller senke konsentrasjonen av alkalimetallioner) i katalysator-løsningen, og en katalysatorløsning gjenvinnes hvilken er uten eller med vesentlig redusert innhold av metalliske forurensninger.
Kontakteringen utføres generelt ved å føre katalysatorløsningen med de uønskede metallforurensninger gjennom et sjikt av ionebytterharpiks i alkalimetallformen, fortrinnsvis i litiumformen, og å gjenvinne som avløpet fra sjiktet katalysator-løsningen med rhodiumkomponenten og litiumkomponenten, men i hovedsak befridd fra korrosjonsproduktene som fjernes med harpikssjiktet. Ved utbrukthet av ionebytterharpiksen kan denne regenereres ved behandling med et litiumsalt som litiumacetat, og benyttes på ny. Vannkilder for ionebytterharpikssjiktet innbefatter, men er ikke begrenset til, ferskvann tilført til harpikssjiktet, eller vann fra prosess-trømmer gjennom hele reaksjonssystemet, hvor vannet kan være hele eller den primære komponent fra karbonyleringsreaksjonssystemet.
Fremgangsmåten ifølge oppfinnelsen løser et problem forbundet med karbonyleringsreksjonsystemer med lavt vanninnhold. Den beskrives her med referanse til en karbonyleringsprosess som gjør bruk av en ionebytterharpiks i sin litiumform. Imidlertid kan ionet forbundet med harpiksen være ethvert kjent alkali-metallkation, f.eks. litium, natrium, kalium og lignende, gitt at det korresponderende ion benyttes som jodidfremmeren i reaksjonssystemet.
KORT BESKRIVELSE AV TEGNINGEN
Figur 1 er et skjematisk diagram som illustrerer flyten av prosesstrømmer benyttet ved den katalytiske karbonylering av metanol til eddiksyre, og fjerning av metalliske korrosjonsprodukter fra prosesstrømmene.
DETALJERT BESKRIVELSE AV OPPFINNELSEN
En utførelsesform av den foreliggende oppfinnelse vedrører en forbedring ved prosessen for karbonylering av metanol til eddiksyre i en karbonyleringsreaktor ved å føre karbonmonoksid og metanol til et reaksjonsmedium som finnes i en reaktor og omfatter en eddiksyreløsning med lavt vanninnhold inneholdende rhodium, en metyljodidfremmer, metylacetat, og litiumjodid. Produktet, eddiksyre, utvinnes fra avløpet av reaktoren ved å redusere trykket i løsningen for å separere produktet som en damp fra katalysatorløsningen, hvorved katalysatorløsningen deretter resirkuleres til reaktoren. Under reaksjonen og under de ulike prosesseringstrinn oppløses metaller i form av korrosjon fra beholderne og kolonnene og vil fremkomme i ulike proses-seringsstrømmer. Således kan disse strømmene inneholde metallkorrosjonsforurensninger, og er de strømmene som skal kontakteres med en ionebytterharpiks for å fjerne metalliske korrosjonsproduktforurensninger. Forbedringen med denne oppfinnelse omfatter å øke vanninnholdet, fortrinnsvis i prosesstrømmene som passerer gjennom ionebytterharpiksen, i en mengde tilstrekkelig til å optimere fjerning av metalliske korrosjonsproduktforurensninger, og å gjenvinne prosesstrøm med vesentlig redusert innhold av metallforurensning.
En annen utførelsesform av den foreliggende oppfinnelse vedrører en fremgangsmåte for å forbedre produktiviten til en katalysatorløsning omfattende en bestemt vannkonsentrasjon, en bestemt konsentrasjon av alkalimetallioner, og forurensninger av metalliske korrosjonsprodukter valgt blant jern, nikkel, krom, molybden og blandinger derav, hvilken fremgangsmåte omfatter å bringe kataly-satorløsningen i nær kontakt med en ionebytterharpiks i alkalimetallformen, fortrinnsvis litiumformen, og et vandig medium, fortrinnsvis vann, i en mengde tilstrekkelig til å senke konsentrasjonen av metallioner i katalysatorløsningen, og å gjenvinne en katalysatorløsning med redusert innhold av metalliske korrosjonsproduktforurensninger.
Fremgangsmåten ifølge den foreliggende oppfinnelse er anvendbar for regenerering av eller forbedring av produktiviteten til katalysatorløsninger med lavt vanninnhold, inneholdende metallsalter, løselige rhodiumkomplekser, og metalliske forurensninger. Katalysatorløsningene som regenereringsteknikken ifølge oppfinnelsen er særlig anvendbare for er de som er anvendbare for karbonylering av metanol til eddiksyre under forhold med lavt vanninnhold, slik som fremsatt i US 5 001 259. Således vil katalysatorløsninger som skal forbedres med fremgangsmåten ifølge den foreliggende oppfinnelse fortrinnsvis inneholde rhodiumkatalysatoren og litiumion som er til stede som et litiumjodidsalt.
Selv om den foreliggende oppfinnelse er rettet mot og eksemplifisert med hensyn på fremstilling av eddiksyre, er oppfinnelsen like anvendbar for prosesser for fremstilling av andre karbonyleringsprodukter. F.eks. kan den foreliggende oppfinner-iske teknologi anvendes ved fremstilling av eddikanhydrid eller koproduksjon av eddiksyre og eddikanhydrid. Det benyttes generelt vannfrie betingelser for karbonyleringsprosessen for fremstilling av eddikanhydrid eller kofremstilling av eddikanhydrid og eddiksyre. I henhold til den foreliggende oppfinnelse, for fremstilling av eddikanhydrid eller kofremstilling av eddikanhydrid og eddiksyre, kan et vandig medium, fortrinnsvis vann, tilføres til ionebytterharpikssjiktet for å bedre prosessen for fjerning av metalliske korrosjonsprodukter og således bedre produktiviteten til katalysator-løsningen. Andre prosesser hvor den foreliggende oppfinnelse kan anvendes innbefatter karbonylering av alkoholer, estere, eller etere til deres korresponderende syrer, anhydrider, eller blandinger av disse. Generelt inneholder disse alkoholer, estere eller etere fra 1 til 20 karbonatomer.
Ved karbonylering under forhold med lite vann av metanol til eddiksyre, som eksemplifisert i US 5 001 259, innbefatter katalysatoren som benyttes en rhodiumkomponent og en halogenhemmer i hvilken halogenet er enten brom eller jod, eller forbindelser av brom eller jod. Rhodiumkomponenten i katalysatorsystemet antas generelt å være til stede i form av en koordinasjonsforbindelse av rhodium med en halogenkomponent som tilveiebringer minst en av ligandene til en slik koordinasjonsforbindelse. I tillegg til koordinasjon av rhodium og halogen antas det også at karbon-monoksidligander danner koordinasjonsforbindelser eller komplekser med rhodium. Rhodiumkomponenten i katalysatorsystemet kan være tilveiebragt ved innføring i reaksjonssonen av rhodium i form av rhodiummetall, rhodiumsalter eller -oksider, organiske rhodiumforbindelser, koordinasjonsforbindelser av rhodium, og lignende.
Den halogenfremmende komponent i katalysatorsystemet består av en halogenforbindelse omfattende et organisk halid. Derfor kan alkyl-, aryl-, og sub-stituerte alkyl- eller arylhalider benyttes. Halidfremmeren er fortrinnsvis til stede i form av et alkylhalid hvor alkylradikalet korresponderer til alkylradikalet i tilførsels-alkoholen som karbonyleres. Ved f.eks. karbonylering av metanol til eddiksyre vil halidfremmeren omfatte metallhalid, og mer foretrukket metyljodid.
Det flytende reaksjonsmedium som benyttes kan innbefatte ethvert løs-ningsmiddel kompatibelt med katalysatorsystemet, og kan inkludere rene alkoholer eller blandinger av alkoholråstoffer og/eller den ønskede karboksylsyre og/eller estere av de to forbindelser. Det foretrukne løsningsmiddel og flytende reaksjonsmedium for karbonyleringsprosessen ved lavt vanninnhold omfatter karboksylsyreproduktet. Ved karbonylering av metanol til eddiksyre er derfor det foretrukne løsningsmiddel eddiksyre.
Vann tilføres også til reaksjonsmediumet, men i konsentrasjoner godt under det som hittil er blitt ansett praktisk for å oppnå tilstrekkelige reaksjonshastigheter. Det er kjent at ved karbonyleringsreaksjoner katalysert med rhodium gir tilsatsen av vann en gunstig effekt på reaksjonshastigheten (US 3 769 329). Derfor opereres det kommersielt ved vannkonsentrasjoner på minst 14 vekt %. I henhold til US 5 001 259 er det helt uventet at reaksjonshastigheter som i hovedsak er like med eller større enn reaksjonshastighetene oppnådd med slike høye nivåer for vannkonsentrasjon kan oppnås ved vannkonsentrasjoner under 14 vekt % og så lave som 0,1 vekt %.
I henhold til karbonyleringsprosessen beskrevet i US 4 894 477 oppnås de ønskede reaksjonshastigheter selv ved lave vannkonsentrasjoner ved innbefattelse i reaksjonsmediet av en ester som korresponderer med alkoholen som karbonyleres og syreproduktet for karbonyleringsreaksjonen og et ytterligere jodichoninnhold som er over og større erm jodidinnholdet som er til stede som en katalysatorfremmer, slik som metyljodid eller annet organisk jodid. Ved karbonylering av metanol til eddiksyre er derfor esteren metylacetat og den ytterligere jodidfremmer er et jodidsalt, f.eks. litiumjodid. Det er blitt funnet at under forhold med lave vannkonsentrasjoner virker metylacetat og litiumjodid som hastighetsfremmere kun når relativt høye konsentrasjoner av hver av disse bestanddeler er til stede og at virkningen er høyere når begge disse bestanddeler er til stede samtidig. Dette er ikke tidligere blitt erkjent. Konsentrasjonen av litiumjodid benyttet i reaksjonsmediumet beskrevet i US 4 894 477 antas å være ganske høy sammenlignet med de lave verdier i den begrensede kjente teknikk som vedrører bruken av halidsalter i reaksjonssystemer av denne type.
Som nevnt ovenfor er katalysatorløsningene for karbonylering med lavt vanninnhold anvendbare ved karbonylering av alkoholer. Anvendbare råstoffer som kan karbonyleres inkluderer alkoholer med 1 - 20 karbonatomer. Foretrukne råstoff er alkoholer med 1-10 karbonatomer, og mer foretrukket er alkoholer med 1 - 6 karbonatomer. Metanol er det særlig foretrukne råstoff, og omdannes til eddiksyre.
Karbonyleringsreaksjonen kan utføres ved å bringe den definerte tilførselsalkohol, som er i flytende fase, i nær kontakt med gassformig karbonmonoksid boblet gjennom et flytende reaksjonsmedium inneholdende rhodiumkatalysatoren, halogenholdig fremmerkomponent, alkylester, og ytterligere løselig jodidsaltfremmer, under forhold med temperatur og trykk egnet for å danne karbonyleringsproduktet. Dersom føden er metanol vil således den halogenholdige fremmerkomponent omfatte metyljodid og alkylesteret vil omfatte metylacetat. Det vil generelt erkjennes at det er konsentrasjonen av jodidion i katalysatorsystemet som er viktig og ikke kationet forbundet med jodidet, og at ved en gitt molkonsentrasjon av jodid vil kationets natur ikke være så betydelig som virkningen av jodidkonsen-trasjonen. Ethvert metalljodidsalt, eller ethvert jodidsalt av ethvert organisk kation, kan benyttes, gitt at saltet er tilstrekkelig løselig i reaksjonsmediumet til å tilveiebringe det ønskede innhold av jodidet. Jodidsaltet kan være et fireverdig salt av et organisk kation eller jodidsaltet av et uorganisk kation, fortrinnsvis er det et jodidsalt av gruppen bestående av metaller fra gruppe 1 og 2 i det periodiske system (som fremsatt i "Handbook of Chemistry and Physics, CRC Press, Cleveland, Ohio, 1995-96 (76. utgave)). Alkalimetalljodider er særlig anvendbare, med litiumjodid som foretrukket. Det er imidlertid bruken av litiumjodid og det utilsiktede tap derav under fjerning av metallforurensninger fra katalysatorløsninger ved ionebytting, hvilket er problemet som direkte løses ved fremgangsmåten for katalysatorregenerering i henhold til denne oppfinnelse.
Typiske reaksjonstemperaturer for karbonylering vil være 150-250 °C,
med temperaturområdet 180-220 °C som foretrukket. Partialtrykket av karbonmonoksid i reaktoren kan variere vidt, men er vanligvis 2-30 atmosfærer, og fortrinnsvis 4-15 atmosfærer. På grunn av partialtrykket av biprodukter og damptrykket av væskene, vil det totale reaktortrykk variere fra ca. 15 til 40 atmosfærer.
Figur 1 illustrerer et reaktorsystem som kan benyttes ved fremgangsmåten for katalysatorregenerering ifølge den foreliggende oppfinnelse. Reaktorsystemet omfatter en karbonyleirngsreaktor for flytende fase, en flasher, en kolonne for splitting av metyljodid og eddiksyre (heretter betegnet splittekolonne), en dekanter-ingstank, en tørkekolonne og en ionebytterharpiks (IER). Bare en IER er illustrert på figur 1. Det innses imidlertid at for karbonyleringsrfemgangsmåten kan flere enn ett IER-sjikt benyttes. Karbonyleringsreaktoren er vanligvis en omrørt autoklav i hvilken reaksjonsvæskeinnholdet opprettholdes automatisk på et konstant nivå. Inn i denne reaktor føres kontinuerlig karbonmonoksid, frisk metanol, tilstrekkelig vann til å opprettholde minst en begrenset konsentrasjon av vann i reaksjonsmediet, resirkulert katalysatorløsning fra flasheravløpet og resirkulert metyljodid og metylacetat fra toppstrømmen fra splittekolonnen. Alternative destillasjonssystemer kan benyttes så lenge de tilveiebringer anordninger for gjenvinning av rå-eddiksyre og resirkulering til reaktoren av katalysatorløsning, metyljodid og metylacetat. Ved den foretrukne fremgangsmåte innføres kontinuerlig karbonmonoksid i karbonyleringsreaktoren like nedenfor agitatoren. Den gassformige tilførsel fordeles grundig i den reagerende væske ved blanding. En gassformig spylestrøm ventileres fra reaktoren for å hindre oppbygging av gassformige biprodukter og for å opprettholde et bestemt partialtrykk av karbonmonoksid ved et gitt totalt reaktortrykk. Temperaturen i reaktoren styres automatisk, og tilførselen av karbonmonoksid innføres i en mengde tilstrekkelig til å opprettholde det ønskede totale reaktortrykk.
Flytende produkt tas ut fra karbonyleringsreaktoren i en mengde tilstrekkelig til å opprettholde et konstant nivå i reaktoren, og føres til flasheren ved et punkt mellom dennes topp og bunn. Fra flasheren tas katalysatorløsningen ut som en bunnstrøm, (fortrinnsvis eddiksyre inneholdende rhodium og jodidsalt sammen med mindre mengder metylacetat, metyljodid og vann), mens toppstrømmen fra flasheren i stor grad omfatter eddiksyreprodukt sammen med metyljodid, metylacetat og vann. En del av karbonmonoksidet, sammen med gassformige biprodukter som metan, hydrogen og karbondioksid, strømmer ut fra toppen av flasheren.
Eddiksyreproduktet tatt ut fra bunnen av splittekolonnen (det kan også tas ut som en sidestrøm) tas deretter ut for sluttelig rensing som ønskelig ved fremgangs-måter som er innlysende for fagpersoner innen denne teknikk, og hvilke ligger utenfor området for den foreliggende oppfinnelse. Bruk av en tørkekolonne er en av metodene for rensing av eddiksyreproduktet. Toppstrømmen fra splittekolonnen, hovedsakelig omfattende metyljodid og metylacetat, resirkuleres til karbonyleringsreaktoren sammen med friskt metyljodid; hvor det friske metyljodid føres inn i en mengde tilstrekkelig til å opprettholde den ønskede konsentrasjon av metyljodid i det flytende reaksjonsmedium i karbonyleringsreaktoren. Det friske metyljodid behøves for å kompensere for de små tap av metyljodid i flasherens og karbonyleringsreaktorens avtrekkstrømmer. En del av toppstrømmen fra splittekolonnen føres inn i en dekanter-ingstank som skiller strømmene av metyljodid og metylacetat til en tung fase av vandig metyljodid og metylacetat og en lett fase omfattende vandig eddiksyre. Eventuelt vann fra rensetrinnet som vil inneholde små mengder eddiksyre, kan kombineres med den lette vandige eddiksyrefase fra dekanteringstanken for retur til reaktoren.
Det er blitt funnet at metallforurensninger, særlig jern, nikkel, krom og molybden, kan være til sted i enhver av prosesstrømmene som tidligere er beskrevet. Akkumuleringen av disse metallforurensninger har en ugunstig effekt på hastigheten hvorved eddiksyre produseres og på stabiliteten av prosessen generelt. Følgelig er en ionebytterharpiks plassert i prosesseringssystemet for å fjerne disse metalliske forurensninger fra prosesstrømmene. På figur 1 er en ionebytterharpiks tatt i bruk for å fjerne metalliske korrosjonsforurensninger fra katalysatorløsningen resirkulert fra bunnen av flasheren til reaktoren. Det bør innses at enhver av prosesstrømmene kan behandles med ionebytterharpiksen for fjerning av metalliske forurensninger. Det eneste nødvendige kriterium er at prosesseringsstrømmen er ved en temperatur slik at harpiksen ikke deaktiveres. Generelt vil prosesseringsstrømmene som behandles ha en bestemt konsentrasjon av rhodiumkatalysatoren og/eller litiumkation fra det ytterligere litiumjodidsalt som er tilført som en katalysatorfremmer. På fig. 1 behandles strømmen fra bunnen av splittekolonnen for fjerning av metalliske korrosjonsprodukter, og vann ledes fra den fortynnede eddiksyrestrøm til ionebytterharpiksen.
Kilder for vannet for tilførsel til harpiksen innbefatter ferskvann fra utenfor reaksjonssystemet, eller vann fra innenfor reaksjonssystemet, hvilket til slutt returneres til reaktoren. Det foretrekkes at vannet fra reaksjonssystemet ledes til harpiksen for bruk i den forbedrede fremgangsmåte for fjerning av metalliske korrosjonsprodukter. En vannbalanse opprettholdes deretter i reaksjonssystemet for karbonylering. Eksempler på vannkilder innbefatter, (men er ikke begrenset til) vann som forefinnes i de resirkulerte fortynnede eddiksyrestrømmer, vann fra den lette fase, eller vann fra kombinerte strømmer (f.eks. fra de kombinerte strømmer av tung og lett fase, eller fra strøm kombinert fra lett fase og fortynnet eddiksyrestrøm) hvilke sammen har en høy konsentrasjon av vann til stede. Vannet kan tas i bruk fra ethvert punkt i reaksjonssystemet.
Tilsatsen av vann til ionebytterharpiksen kan varieres for å optimere fjerningen av metalliske korrosjonsprodukter. Ved reaktorbetingelser for karbonylering, hvorved det benyttes 14 vekt % eller 15 vekt % vann, vil bare små forbedringer av mengden av metalliske korrosjonsprodukter som fjernes per syklus ved uttømming av ionebytterharpiks kunne forventes. Under forhold i karbonyleringsreaktoren med lite vann til stede er imidlertid behovet for hensiktsmessig vannkonsentrasjon i prosessen for fjerning av korrosjonsprodukter med IER'en vesentlig. Vanninnholdet i katalysa-torløsningen er generelt fra 5 til 50 vekt %. Imidlertid er et foretrukket område fra 5 til 30 vekt %, og et mer foretrukket område er fra 5 til 15 vekt %.
Harpiksene som er anvendbare for regenerering av katalysatorløsninger ifølge den foreliggende oppfinnelse er kationbytterharpikser av enten den sterke syretypen eller den svake syretypen. Som tidligere nevnt er ethvert kation akseptabelt gitt at det korresponderende kation gjøres bruk av i jodidfremmeren. For illustrasjon av den foreliggende oppfinnelse gjøres det bruk av en kationbytterharpiks i sin litiumform. Både sterke og svake syretypeharpikser er lett tilgjengelige som kommersielle produkter. De svake syre-kationbytterharpiksene er for det meste kopolymerer av akryl- eller metakrylsyrer eller estere eller de korresponderende nitriler, men noen få av dem som markedsføres er fenolharpikser. Sterke syre-kationbytterharpikser, som er de harpikser som foretrekkes for bruk ved den foreliggende oppfinnelse, består i hovedsak av sulfonerte styren-divinylbenzenkopolymerer, selv om noen av de tilgjengelige harpikser av denne type er fenol-formaldehydkondensasjonspolymerer. Egnede harpikser er enten av geltypen eller den makroretikulære type, men sistnevnte foretrekkes ettersom organiske bestanddeler er til stede i katalysatorløsningene som behandles.
Makroretikulære harpikser er vanlige å benytte innen katalyse. De krever minimalt med vann for å opprettholde sine svellende egenskaper. Den foreliggende oppfinnelse er særlig overraskende ettersom det antas av dem som er kyndige innen teknikken at ved bruk av makroretikulær type harpiks vil veldig lite vann være nød-vendig for deres anvendelse. Således er det ikke forventet problemer med harpiksen når karbonyleringsprosessen ble endret fra en prosess med mye vann til en prosess med lite vann. Imidlertid ble det her funnet at ettersom vannkonsentrasjonen avtok i reaksjonsprosessen, så avtok evnen til å fjerne metalliske korrosjonsprodukter i nærvær av en høy litiumionkonsentrasjon ved bruk av en makroretikulær harpiks.
Kontaktering av de metallforurensede katalysatorløsninger og harpiksen kan utføres i en omrørt beholder hvor harpiksen oppslemmes med katalysatorløsningen ved god omrøring, og katalysatorløsningen utvinnes deretter ved dekantering, filtrer-ing, sentrifugering etc. Imidlertid utføres behandling av katalysatorløsninger vanligvis ved å lede den metallforurensede løsning gjennom en permanentsjiktkolonne av harpiksen. Katalysatorregenereringen kan utføres satsvis, halvkontinuerlig eller kontinuerlig, med enten manuell eller automatisk styring ved bruk av metoder og teknik-ker som er velkjente innen ionebyttertekmkken.
Ionebyttingen kan utføres ved temperaturer i området fra 0 til 120 °C, selv om lavere eller høyere temperaturer kun begrenses av stabiliteten til harpiksen som benyttes. Foretrukne temperaturer er dem i området 20 til 90 °C; idet kromfjern-ing er mer effektivt ved høyere temperaturer. Ved de høyere temperaturer er en spyling med nitrogen eller CO ønskelig. Dersom temperaturer over kokepunktet for katalysa-torløsningene benyttes, vil det derved være nødvendig med operasjon under trykk for å holde løsningen i væskefasen. Imidlertid er ikke trykket en kritisk variabel. Vanligvis benyttes atmosfærisk trykk eller et trykk noe høyere enn atmosfæretrykket, men over-atmosfæriske eller underatmosfæriske trykk kan benyttes om ønskelig.
Strømningsmengden for katalysatoren gjennom harpiksen under fremgangsmåten for fjerning av metalliske korrosjonsprodukter vil vanligvis være som anbefalt av harpiksprodusenten, og vil vanligvis være fra 1 til 20 sjiktvolumer per time. Strømningsmengden vil fortrinnsvis være fra 1 til 12 sjiktvolumer per time. Etter kontaktering av sjiktet med de rhodiumholdige kontaktstrømmer, er vasking eller rensing av harpikssjiktet med vann eller karbonyleringsproduktet fra fremgangsmåten hvor fra katalysatoren kommer, slik som eddiksyre, vesentlig for fjerning av alt rhodium fra harpikssjiktet. Rensingen eller vaskingen utføres ved tilsvarende strøm-ningsmengder som i fjerningstrinnet.
Etter at harpiksen er blitt utbrukt, dvs. når metallforurensninger bryter gjennom inn i avløpet, kan harpiksen regenereres ved føring av denne gjennom en løsning av organiske salter; og for illustrasjon, fortrinnsvis litiumsalter. Litiumsaltet som benyttes i regenereringssyklusen har generelt en konsentrasjon i området 1 til 20 vekt %. Mengdene og prosedyrene som benyttes er velkjente innen teknikken og er anbefalt av harpiksprodusentene. Vandig litiumacetat foretrekkes som et regenerer-ingsmiddel fordi acetatanionet benyttes i reaksjonssystemet og er lett tilgjengelig. En ytterligere fordel er at dets bruk eliminerer rensetrinnet som normalt er nødvendig etter regenereringsrfemgangsmåten når andre regeneranter benyttes.
For å maksimere regenereringskapasiteten for fjerning av metalliske korrosjonsprodukter og for å maksimere harpikssjiktkolonneytelsen ved relativt høye konsentrasjoner av litiumacetat, bør regenereringsløsningen av litiumacetat inneholde noe eddiksyre, eller av produktet som produseres, for å unngå dannelse av eventuelle uløselige metalliske korrosjonsforbindelser under regenereringssyklusen. Presipitering av disse forbindelser under regenereringssyklusen kunne redusere regenereringsytelsen i kolonnen og også medføre plugging av harpikssjiktet. Vanligvis kan det benyttes eddiksyrekonsentrasjoner fra 0,1 til 95 vekt %, med eddiksyrekonsentrasjoner fra 0,1 til 20 vekt % som foretrukket.
Behandlingen av katalysatorløsningen kan utøves som en satsvis eller en kontinuerlig operasjon. Den foretrukne utøvelse er kontinuerlig. Ved en kontinuerlig fremgangsmåte resirkuleres en slippstrøm fra en katalysatorløsning til reaktoren for fremstilling av syrene, tas ut, føres gjennom ionebytterharpikssjiktet sammen med en vandig resirkulasjonsstrøm for å tilveiebringe tilstrekkelig vannkonsentrasjon til å øke mengden av korrosjonsprodukter som absorberes på sjiktet, og avløpet, uten korrosjonsprodukter, sammen med det kombinerte vandige resirkulasjonsmateriale, returneres til resiruklasjonsstrømmen av katalysator, og deretter til reaktoren. Ionebytteroperasjonen kan være syklisk (hvor flere enn en harpiks er tilgjengelig for bruk). Ettersom harpiksen blir utbrukt i et harpikssjikt, kan slippstrømmen av katalysatorløsning ledes til et friskt sjikt samtidig som det utbrukte sjikt underkastes regenerering.
Oppfinnelsen illustreres nærmere ved de følgende ikke-begrensende eksempler.
EKSEMPLER
Claims (20)
1. Fremgangsmåte for bedring av produktiviteten til en katalysatorløsning for karbonylering benyttet under forhold med lite vann, hvor katalysatorløsningen for karbonylering inneholder rhodium, alkalimetall, og videre inneholder forurensninger i form av metalliske korrosjonsprodukter,
karakterisert ved at fremgangsmåten omfatter å bringe katalysatorløsningen for karbonylering i kontakt med en ionebytterharpiks og vann i en mengde tilstrekkelig til å bringe vannkonsentrasjonen i katalysatorløsningen, ettersom den føres gjennom kontakteringssyklusen, innenfor et område på 0,25 - 50 vekt %, og å utvinne en katalysatorløsning med redusert innhold av forurensning i form av metalliske korrosjonsprodukter.
2. Fremgangsmåte ifølge krav 1,
karakterisert ved at harpiksen er en sterkt sur kationbytterharpiks.
3. Fremgangsmåte ifølge krav 1,
karakterisert ved at kontakteringen utføres ved å føre katalysatorløsningen gjennom en permanent sjikt-kolonne av harpiksen.
4. Fremgangsmåte ifølge krav 1,
karakterisert ved at harpiksen regenereres etter utbruking ved vasking med et alkalimetallsalt.
5. Fremgangsmåte ifølge krav 4,
karakterisert ved at alkalimetallsaltet er litiumacetat.
6. Fremgangsmåte ifølge krav 4,
karakterisert ved at alkalimetallet er kalium.
7. Fremgangsmåte ifølge krav 4,
karakterisert ved at alkalimetallet er natrium.
8. Ved en fremgangsmåte for karbonylering av metanol til eddiksyre i en karbonyleirngsreaktor ved å føre karbonmonoksid gjennom et reaksjonsmedium som finnes i reaktoren og omfatter metanol og en katalysatorløsning med lavt vaiininnhold omfattende rhodium, en metyljodidfremmer, metylacetat og litiumjodid, for å fremstille eddiksyre, og eddiksyren gjenvinnes fra avløpet fra reaktoren ved
konsentrering av avløpet inn i mange prosesstrømmer omfattende en eller flere av komponentene i katalysatorløsningen og eddiksyreproduktet, hvor strømmene inneholder litium og forurensninger i form av metalliske korrosjonsprodukter, og strømmene bringes i kontakt med en kationbytterharpiks for å fjerne forurensninger i form av metalliske korrosjonsprodukter,
karakterisert ved at fremgangsmåten omfatter: å øke vanninnholdet som føres gjennom kationbytterharpiksen således at vannkonsentrasjonen i katalysatorløsningen som føres gjennom kontakteringssyklusen bringes inn i området 0,25 - 50 vekt %, således at fjerningen av forurensninger i form av metalliske korrosjonsprodukter optimeres, og å utvinne en prosesstrøm med vesentlig redusert innhold av metalliske forurensninger.
9. Fremgangsmåte ifølge krav 8,
karakterisert ved at harpiksen er en sterkt sur kationbytterharpiks.
10. Fremgangsmåte ifølge krav 8,
karakterisert ved at kontakteringen utføres ved å føre katalysatorløsningen gjennom en permanentsjiktkolonne av harpiksen.
11. Fremgangsmåte ifølge krav 8,
karakterisert ved at harpiksen regenereres etter utbrukthet ved vasking med et litiumsalt.
12. Fremgangsmåte ifølge krav 11,
karakterisert ved at litiumsaltet er litiumacetat.
13. Fremgangsmåte for bedring av produktiviteten til en katalysatorløsning for karbonylering under forhold med lite vann, hvor løsningen omfatter en bestemt konsentrasjon av vann og alkalimetall og metalliske korrosjonsforurensninger valgt blant jern, nikkel, krom, molybden og blandinger derav,
karakterisert ved at fremgangsmåten omfatter å bringe katalysatorløsningen, under en kontakteringssyklus, i kontakt med en kationbytterharpiks og vann i tilstrekkelig mengde til å bringe vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen innen området 0,25 - 50 vekt %.
14. Fremgangsmåte for bedring av produktiviteten til en katalysatorløsning for karbonylering benyttet under forhold med lite vann, hvor løsningen inneholder rhodium og alkalimetall og videre inneholder metalliske korrosjonsforurensninger, karakterisert ved at fremgangsmåten omfatter å bring katalysatorløsningen i kontakt med en ionebytterharpiks og vann i en mengde tilstrekkelig til å bringe vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen innen området 0,25 - 50 vekt %, og å gjenvinne en katalysatorløsning med redusert innhold av metallisk korrosjonsforurensning.
15. Fremgangsmåte ifølge krav 1,
karakterisert ved at vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen er i området 5 - 30 vekt %.
16. Fremgangsmåte ifølge krav 15,
karakterisert ved at vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen er i området 5-15 vekt %.
17. Fremgangsmåte ifølge krav 13,
karakterisert ved at vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen er i området 5-30 vekt %.
18. Fremgangsmåte ifølge krav 17,
karakterisert ved at vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen er i området 5-15 vekt %.
19. Fremgangsmåte ifølge krav 14,
karakterisert ved at vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen er i området 5-30 vekt %.
20. Fremgangsmåte ifølge krav 19,
karakterisert ved at vannkonsentrasjonen i katalysatorløsningen slik den føres gjennom kontakteringssyklusen er i området 5-15 vekt %.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54960995A | 1995-10-27 | 1995-10-27 | |
PCT/US1996/016516 WO1997015544A1 (en) | 1995-10-27 | 1996-10-16 | Process for improving productivity of a carbonylation catalyst solution by removing corrosion metals |
Publications (3)
Publication Number | Publication Date |
---|---|
NO981887D0 NO981887D0 (no) | 1998-04-27 |
NO981887L NO981887L (no) | 1998-04-27 |
NO309858B1 true NO309858B1 (no) | 2001-04-09 |
Family
ID=24193714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO981887A NO309858B1 (no) | 1995-10-27 | 1998-04-27 | FremgangsmÕter for regenerering eller bedring av produktiviteten til katalysatorløsninger for karbonylering ved fjerning av metalliske korrosjonsprodukter |
Country Status (27)
Country | Link |
---|---|
US (1) | US5731252A (no) |
EP (1) | EP0920407B1 (no) |
JP (1) | JP3955326B2 (no) |
KR (1) | KR100462697B1 (no) |
CN (1) | CN1092179C (no) |
AR (1) | AR004107A1 (no) |
AT (1) | ATE229493T1 (no) |
AU (1) | AU702225B2 (no) |
BR (1) | BR9611164A (no) |
CA (1) | CA2234853C (no) |
CZ (1) | CZ297265B6 (no) |
DE (1) | DE69625385T2 (no) |
ES (1) | ES2185809T3 (no) |
HU (1) | HUP9901881A3 (no) |
IN (1) | IN189249B (no) |
MY (1) | MY112995A (no) |
NO (1) | NO309858B1 (no) |
NZ (1) | NZ321758A (no) |
PL (1) | PL185073B1 (no) |
RU (1) | RU2156656C2 (no) |
SA (1) | SA96170479B1 (no) |
TR (1) | TR199800738T2 (no) |
TW (1) | TW419393B (no) |
UA (1) | UA48988C2 (no) |
WO (1) | WO1997015544A1 (no) |
YU (1) | YU49355B (no) |
ZA (1) | ZA968942B (no) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0410289D0 (en) * | 2004-05-07 | 2004-06-09 | Bp Chem Int Ltd | Process |
US7820855B2 (en) * | 2008-04-29 | 2010-10-26 | Celanese International Corporation | Method and apparatus for carbonylating methanol with acetic acid enriched flash stream |
US7790920B2 (en) * | 2008-09-11 | 2010-09-07 | Lyondell Chemical Technology, L.P. | Preparation of acetic acid |
US8575403B2 (en) | 2010-05-07 | 2013-11-05 | Celanese International Corporation | Hydrolysis of ethyl acetate in ethanol separation process |
US9272970B2 (en) | 2010-07-09 | 2016-03-01 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
WO2012148509A1 (en) | 2011-04-26 | 2012-11-01 | Celanese International Corporation | Process for producing ethanol using a stacked bed reactor |
US9024083B2 (en) | 2010-07-09 | 2015-05-05 | Celanese International Corporation | Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed |
US8710279B2 (en) | 2010-07-09 | 2014-04-29 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
US8664454B2 (en) | 2010-07-09 | 2014-03-04 | Celanese International Corporation | Process for production of ethanol using a mixed feed using copper containing catalyst |
US8378141B2 (en) | 2010-08-16 | 2013-02-19 | Celanese International Corporation | Process and system for supplying vapor from drying column to light ends column |
US8530696B2 (en) | 2010-09-24 | 2013-09-10 | Celanese International Corporation | Pump around reactor for production of acetic acid |
US8877963B2 (en) | 2010-09-28 | 2014-11-04 | Celanese International Corporation | Production of acetic acid with high conversion rate |
US8394988B2 (en) | 2010-09-28 | 2013-03-12 | Celanese International Corporation | Production of acetic acid with high conversion rate |
US8461379B2 (en) | 2010-10-12 | 2013-06-11 | Celanese International Corporation | Production of acetic acid comprising feeding at least one reactant to a recycle stream |
US8637698B2 (en) | 2010-11-19 | 2014-01-28 | Celanese International Corporation | Production of acetic acid with an increased production rate |
US8563773B2 (en) | 2010-12-16 | 2013-10-22 | Celanese International Corporation | Eductor-based reactor and pump around loops for production of acetic acid |
MX2013007647A (es) | 2010-12-30 | 2013-08-01 | Celanese Int Corp | Purificacion de torrentes de productos de acido acetico. |
US8884081B2 (en) | 2011-04-26 | 2014-11-11 | Celanese International Corporation | Integrated process for producing acetic acid and alcohol |
US8754268B2 (en) | 2011-04-26 | 2014-06-17 | Celanese International Corporation | Process for removing water from alcohol mixtures |
US9073816B2 (en) | 2011-04-26 | 2015-07-07 | Celanese International Corporation | Reducing ethyl acetate concentration in recycle streams for ethanol production processes |
US8686199B2 (en) | 2011-04-26 | 2014-04-01 | Celanese International Corporation | Process for reducing the concentration of acetic acid in a crude alcohol product |
US8592635B2 (en) | 2011-04-26 | 2013-11-26 | Celanese International Corporation | Integrated ethanol production by extracting halides from acetic acid |
US8697908B2 (en) | 2011-05-05 | 2014-04-15 | Celanese International Corporation | Removal of amine compounds from carbonylation process stream containing corrosion metal contaminants |
US8952196B2 (en) | 2011-05-05 | 2015-02-10 | Celanese International Corporation | Removal of aromatics from carbonylation process |
EP3838403A1 (en) | 2011-05-13 | 2021-06-23 | Novomer, Inc. | Carbonylation catalysts and method |
US8895786B2 (en) | 2011-08-03 | 2014-11-25 | Celanese International Corporation | Processes for increasing alcohol production |
US9663437B2 (en) | 2011-09-13 | 2017-05-30 | Celanese International Corporation | Production of acetic acid with high conversion rate |
US8614359B2 (en) | 2011-11-09 | 2013-12-24 | Celanese International Corporation | Integrated acid and alcohol production process |
US8686201B2 (en) | 2011-11-09 | 2014-04-01 | Celanese International Corporation | Integrated acid and alcohol production process having flashing to recover acid production catalyst |
JP5995995B2 (ja) | 2012-02-08 | 2016-09-21 | セラニーズ・インターナショナル・コーポレーション | 高転化率での酢酸の製造 |
WO2015171372A1 (en) | 2014-05-05 | 2015-11-12 | Novomer, Inc. | Catalyst recycle methods |
SG11201610058QA (en) | 2014-05-30 | 2016-12-29 | Novomer Inc | Integrated methods for chemical synthesis |
EP3171976B1 (en) | 2014-07-25 | 2023-09-06 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
CN106715379B (zh) | 2014-10-02 | 2020-05-19 | 国际人造丝公司 | 用于生产乙酸的方法 |
US9302975B1 (en) | 2015-07-01 | 2016-04-05 | Celanese International Corporation | Process for flashing a reaction medium |
MY181654A (en) | 2014-11-14 | 2020-12-31 | Celanese Int Corp | Processes for improving acetic acid yield by removing iron |
US9260369B1 (en) | 2014-11-14 | 2016-02-16 | Celanese International Corporation | Processes for producing acetic acid product having low butyl acetate content |
US9540302B2 (en) | 2015-04-01 | 2017-01-10 | Celanese International Corporation | Processes for producing acetic acid |
US9487464B2 (en) | 2015-01-30 | 2016-11-08 | Celanese International Corporation | Processes for producing acetic acid |
CN107207391B (zh) | 2015-01-30 | 2020-11-06 | 国际人造丝公司 | 生产乙酸的方法 |
MY181742A (en) | 2015-01-30 | 2021-01-06 | Celanese Int Corp | Processes for producing acetic acid |
US9561994B2 (en) | 2015-01-30 | 2017-02-07 | Celanese International Corporation | Processes for producing acetic acid |
US9512056B2 (en) | 2015-02-04 | 2016-12-06 | Celanese International Corporation | Process to control HI concentration in residuum stream |
US9505696B2 (en) | 2015-02-04 | 2016-11-29 | Celanese International Corporation | Process to control HI concentration in residuum stream |
US10413840B2 (en) | 2015-02-04 | 2019-09-17 | Celanese International Coporation | Process to control HI concentration in residuum stream |
EP3696161A1 (en) | 2015-02-13 | 2020-08-19 | Novomer, Inc. | Continuous carbonylation processes |
MA41513A (fr) | 2015-02-13 | 2017-12-19 | Novomer Inc | Procédé de distillation pour la production d'acide acrylique |
MA41514A (fr) | 2015-02-13 | 2017-12-19 | Novomer Inc | Procédés intégrés de synthèse chimique |
MA41510A (fr) | 2015-02-13 | 2017-12-19 | Novomer Inc | Procédé de production d'acide acrylique |
US9540303B2 (en) | 2015-04-01 | 2017-01-10 | Celanese International Corporation | Processes for producing acetic acid |
US9382183B1 (en) | 2015-07-01 | 2016-07-05 | Celanese International Corporation | Process for flashing a reaction medium |
US9302974B1 (en) | 2015-07-01 | 2016-04-05 | Celanese International Corporation | Process for producing acetic acid |
MY181882A (en) | 2015-10-02 | 2021-01-12 | Celanese Int Corp | Process to produce acetic acid with recycle of water |
US9908835B2 (en) | 2015-11-13 | 2018-03-06 | Celanese International Corporation | Processes for purifying acetic and hydrating anhydride |
US9957216B2 (en) * | 2015-11-13 | 2018-05-01 | Celanese International Corporation | Processes for producing acetic acid |
US10807935B2 (en) | 2018-11-02 | 2020-10-20 | Celanese International Corporation | Process for continuous acetic acid production |
CN110078612B (zh) * | 2019-06-06 | 2021-09-07 | 上海华谊(集团)公司 | 催化剂循环液的纯化方法 |
US20230127564A1 (en) | 2020-04-01 | 2023-04-27 | Celanese International Corporation | Processes for removing and/or reducing permanganate reducing compounds and alkyl iodides |
MX2022015384A (es) | 2020-06-03 | 2023-01-16 | Celanese Int Corp | Proceso para la produccion de acido acetico mediante la eliminacion de compuestos reductores de permanganato. |
WO2021247854A1 (en) | 2020-06-03 | 2021-12-09 | Celanese International Corporation | Production and purification of acetic acid |
US20230202955A1 (en) | 2020-06-03 | 2023-06-29 | Celanese International Corporation | Removal of acetals from process streams |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3769329A (en) * | 1970-03-12 | 1973-10-30 | Monsanto Co | Production of carboxylic acids and esters |
US4007130A (en) * | 1975-12-29 | 1977-02-08 | Monsanto Company | Catalyst regeneration method |
US4792620A (en) * | 1983-10-14 | 1988-12-20 | Bp Chemicals Limited | Carbonylation catalysts |
US5001259A (en) * | 1984-05-03 | 1991-03-19 | Hoechst Celanese Corporation | Methanol carbonylation process |
CA1228867A (en) * | 1984-05-03 | 1987-11-03 | G. Paull Torrence | Methanol carbonylation process |
US4894477A (en) * | 1986-10-14 | 1990-01-16 | Hoechst Celanese Corporation | Process for regenerating a carbonylation catalyst solution to remove corrosion metals and carbonylation of methanol to acetic acid |
DE4034501A1 (de) * | 1990-10-30 | 1992-05-07 | Hoechst Ag | Verfahren zur entfernung metallischer korrosionsprodukte aus wasserfrei betriebenen carbonylierungsreaktionen |
GB9305902D0 (en) * | 1993-03-22 | 1993-05-12 | Bp Chem Int Ltd | Process |
-
1996
- 1996-10-16 AU AU75169/96A patent/AU702225B2/en not_active Ceased
- 1996-10-16 CZ CZ0127998A patent/CZ297265B6/cs not_active IP Right Cessation
- 1996-10-16 NZ NZ321758A patent/NZ321758A/xx not_active IP Right Cessation
- 1996-10-16 EP EP96937688A patent/EP0920407B1/en not_active Expired - Lifetime
- 1996-10-16 ES ES96937688T patent/ES2185809T3/es not_active Expired - Lifetime
- 1996-10-16 RU RU98110138/04A patent/RU2156656C2/ru not_active IP Right Cessation
- 1996-10-16 WO PCT/US1996/016516 patent/WO1997015544A1/en active IP Right Grant
- 1996-10-16 BR BR9611164A patent/BR9611164A/pt not_active IP Right Cessation
- 1996-10-16 PL PL96326360A patent/PL185073B1/pl not_active IP Right Cessation
- 1996-10-16 TR TR1998/00738T patent/TR199800738T2/xx unknown
- 1996-10-16 UA UA98042072A patent/UA48988C2/uk unknown
- 1996-10-16 AT AT96937688T patent/ATE229493T1/de active
- 1996-10-16 KR KR10-1998-0703005A patent/KR100462697B1/ko not_active IP Right Cessation
- 1996-10-16 HU HU9901881A patent/HUP9901881A3/hu unknown
- 1996-10-16 CA CA002234853A patent/CA2234853C/en not_active Expired - Fee Related
- 1996-10-16 JP JP51665097A patent/JP3955326B2/ja not_active Expired - Lifetime
- 1996-10-16 CN CN96197834A patent/CN1092179C/zh not_active Expired - Fee Related
- 1996-10-16 IN IN1828CA1996 patent/IN189249B/en unknown
- 1996-10-16 DE DE69625385T patent/DE69625385T2/de not_active Expired - Lifetime
- 1996-10-24 ZA ZA9608942A patent/ZA968942B/xx unknown
- 1996-10-25 MY MYPI96004456A patent/MY112995A/en unknown
- 1996-10-25 YU YU56496A patent/YU49355B/sh unknown
- 1996-10-25 AR ARP960104911A patent/AR004107A1/es unknown
- 1996-10-29 TW TW085113196A patent/TW419393B/zh not_active IP Right Cessation
- 1996-12-08 SA SA96170479A patent/SA96170479B1/ar unknown
-
1997
- 1997-01-21 US US08/786,016 patent/US5731252A/en not_active Expired - Lifetime
-
1998
- 1998-04-27 NO NO981887A patent/NO309858B1/no not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO309858B1 (no) | FremgangsmÕter for regenerering eller bedring av produktiviteten til katalysatorløsninger for karbonylering ved fjerning av metalliske korrosjonsprodukter | |
EP0265140B1 (en) | Process for regenerating a carbonylation catalyst solution to remove corrosion metals | |
RU2358966C2 (ru) | Способ получения уксусной кислоты | |
KR100495554B1 (ko) | 카보닐화 공정 스트림으로부터 과망간산염 환원 화합물 및 알킬요오다이드를 제거하는 방법 | |
EP0250189B1 (en) | Process for carbonylating alcohol to carboxylic acid, especially methanol to acetic acid | |
NO177745B (no) | Fremgangsmåte ved fremstilling av eddiksyre ved karbonylering av metanol, dimetyleter eller metylacetat | |
EP0487284B1 (en) | Removal of carbonyl impurities from a carbonylation process stream | |
US20090209786A1 (en) | Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation | |
CA2381420C (en) | Rhodium/inorganic iodide catalyst system for methanol carbonylation process with improved impurity profile | |
JP4856629B2 (ja) | カルボニル化触媒溶液からの腐蝕金属の除去方法 | |
RU2235087C2 (ru) | Способ получения уксусной кислоты и/или метилацетата и способ улучшения стабильности и/или предотвращения дезактивации катализатора при получении уксусной кислоты и/или метилацетата | |
JP5096916B2 (ja) | カルボニル化プロセス流からの触媒金属および促進剤金属の除去方法 | |
US20090187043A1 (en) | Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation | |
US20090156859A1 (en) | Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation | |
MXPA98003321A (en) | Procedure to improve the productivity of a catalyzing solution of carbonilation by removing corrosive metals | |
EP1360165B1 (en) | Method for reducing eda in acetic anhydride production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |