KR910001879B1 - 스퍼터 성막방법 및 그 장치 - Google Patents

스퍼터 성막방법 및 그 장치 Download PDF

Info

Publication number
KR910001879B1
KR910001879B1 KR1019870015286A KR870015286A KR910001879B1 KR 910001879 B1 KR910001879 B1 KR 910001879B1 KR 1019870015286 A KR1019870015286 A KR 1019870015286A KR 870015286 A KR870015286 A KR 870015286A KR 910001879 B1 KR910001879 B1 KR 910001879B1
Authority
KR
South Korea
Prior art keywords
substrate
target
electrode
sputter
magnetic field
Prior art date
Application number
KR1019870015286A
Other languages
English (en)
Other versions
KR880009454A (ko
Inventor
히데기 다테이시
히로시 사이도우
신지 사사기
미즈아끼 호리우지
Original Assignee
가부시기가이샤 히다찌세이사꾸쇼
미다 가쓰시게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62000363A external-priority patent/JPH0791639B2/ja
Priority claimed from JP62054005A external-priority patent/JP2674995B2/ja
Priority claimed from JP62077419A external-priority patent/JP2594935B2/ja
Application filed by 가부시기가이샤 히다찌세이사꾸쇼, 미다 가쓰시게 filed Critical 가부시기가이샤 히다찌세이사꾸쇼
Publication of KR880009454A publication Critical patent/KR880009454A/ko
Application granted granted Critical
Publication of KR910001879B1 publication Critical patent/KR910001879B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32688Multi-cusp fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields

Abstract

내용 없음.

Description

스퍼터 성막방법 및 그 장치
제1도는 본 발명의 1실시예의 세로단면도.
제2도는 제1도의 부분확대도.
제3도는 본 발명의 실시예에서의 기판 유입전류데이타를 도시하는 도면.
제4도는 본 발명의 실시예에서의 바이어스 전압과 유입전류데이타를 도시하는 도면.
제5도는 본 발명의 1실시예에 의한 성막 특성을 도시하는 특성도.
제6도는 기판 상승온도의 특성을 도시하는 특성도.
제7도는 본 발명의 다른 실시예를 도시하는 세로단면도.
제8도는 본 발명의 제7도에 도시하는 실시예에서 타게트 기판간의 자계 분포를 도시하는 도면.
제9도는 본 발명의 제7도에 도시하는 실시예에서의 기판 유입 이온 전류 밀도와 유입 전자 에너지 밀도의 데이타를 도시하는 도면.
제10도는 본 발명의 다른 실시예를 도시하는 세로단면도.
제11또는 본 발명의 다른 실시예를 도시하는 세로단면도이다.
본 발명은 박막와 스퍼터 성막기술에 관한 것으로, 특히 고집적화에 따라 배선의 미세화 및 다층화가 진척되어 반도체장치등의 기판 표면의 미세한 단차, 홈 또는 구멍에 성막 재료가 골고루 잘붙게 부착시키는스퍼터 성막방법 및 그 장치에 관한 것이다.
스퍼터링 성막기술에 일어서, 플라즈마에 인가하는 자계를 강하게 해서 성막대상으로 유입하는 전류를 증가시키는 시도는 예를 들면 일본특허공개공보 소 60-221563호에 기재되어 있다. 즉, 마그네트론형 스퍼터전극과 기판을 대향시켜 기관 표면에 부의 바이어스 전압을 인가하는 것에 의해, 마그네트론형 스퍼터 전극상에 발생하는 플라즈마중의 이온 일부를 기판 표면에 유입시키는 일종의 바이어스 스퍼터장치로 되어 있다.
한편, 미국특허 3, 325, 394호에 카스프(cusp)자계를 사용한 스퍼터링 성막기술이 기재되어 있다. 즉, 스퍼터 전극과 성막 대상 기판을 대향 배치하여 2개조의 전자석에 의해, 그 사이에 카스프 자계를 형성해서 플라즈마 밀도를 향상시켜 성막 속도의 향상을 도모하는 것이다. 성막 속도 향상을 위해서는 상기 카스프자계의 보조에 의한 스퍼터링 성막법 보다는 그후에 널리 알려진 마그네트론 스퍼터 성막법이 장치구성이간단하고 효과가 크므로, 카스프 자계를 사용하는 것은 고려.피지 않았다.
바이어스 스퍼터법이라는 것은 기판에 성막 재료를 퇴적하면서 동시에 기판 표면에 부의 바이어스 전압을 인가하여 플라즈마중의 이온을 입사시켜, 이온의 에너지를 성막 입자에 주어 성막 입자의 표면 이동도를 높이는 것에 의해, 홈, 구멍으로의 붙임성을 향상시키는 것이다. 따라서 기판에 입사하는 이온량을 향상시키는 것이 중요하고, 이 수단으로서는 기관상의 플라즈마 필도를 향상시키는 기판에 유입하는 이온전류를 향상시키는 일, 또는 바이어스 전압을 향상시키는 일을 생각할 수 있다
종래의 마그네트론 스퍼터 전극은 플라즈마를 기판에 향하여진 스퍼터 전극 표면에 넣게하는 것이므로, 단지 기판 표면에 바이어스 전압을 인가한 것만으로는 기판상의 플라즈마 밀도는 충분하게는 향상하지 않는다. 우리들의 예비 시험에서는 바이어스 전압 -lOOV일때, 기판상의 플라즈마 밀도는 2×1010cm-3정도이며 이때 기판에 유입하는 이온전류는 0.5A/ø125정도이고, 또, 1.0㎛가의 깊이 1.0㎛의 구멍으로의 성막 재료(Al)의 붙임은 충분하지는 않았다.
한펀, 바이어스 전압을 높게하면 스퍼터막에 흡수되는 Ar 개스량이 증가되는 것이 알려져 있다. 우리들의 예비 실험에서, 스퍼터후 어닐하는 것에 의해 높은 바이어스 전압으로 성막한 스퍼터막에 보이드(Void), 부풀음이 발생하는 일, 이 발생한 한치는 140V정도인 것을 알았다.
본 발명의 목적은 보이드, 부풀음 등의 막의 불량이 생기지 않는 저바이어스 전압으로 미세한 단차, 홈 또는 구멍에 성막 재료가 골고루 잘붙게 부착시킴과 동시에 고품질의 박막을 형성할 수 있는 스퍼터 성막방법 및 그 장치를 제공하는 것에 있다
즉 본 발명은 상기 목적을 달성하기 위해서 카스프 자계를 사용한 플라즈마의 고밀도화와 기판측 전극에 바이어스를 인가하는 바이어스 스퍼터를 병용하는 것에 특징을 갖는 것이다 즉 스퍼터 전극과 기판전극을 대향해서 배치하여 그 사이에 카스프 전계를 형성하는 것에 의해, 고밀도 플라즈마가 스퍼터 전극표면에서 기판 표면근처까지 발생한다. 또 기판 표면에 부의 바이어스 전압을 인가하는 것에 의해 기판 표면 근처의 플라즈마중의 고밀도 이온이 막불량이 생기지 않는 저 바이어스 전압에서 기판에 끌어들여 기판 유입이온전류가 향상한다. 이 결과 기판 표면에 부착한 스퍼터 입자의 기판 표면에서의 이동도가 향상하고, 또는 기관표면의 단차상부 각, 홈, 구멍 입구의 각에 부착한 막재료가 스퍼터되어 단차하부, 홈, 구멍 밑면에 재부착한다. 이 때문에 막불량이 생기는 일없이 단차, 홈, 구멍에의 스퍼터 재료의 부착을 향상시킬 수가 있다.
또 고밀도 플라즈마의 발생은 독립으로 바이어스 전압을 설정할 수 있는 것으로, 기판에 유입하는 이온전류를 대략 일정하게 유지한채로, 기판에 입사하는 이온 에너지를 제어할 수 있다. 또 본 발명은 상기와 마찬가지로, 진공용기내의 시료 기판과 타게트사이에 카스프 자계를 형성함과 동시에, 스퍼터 전극측에 전압인가해서 고인도의 플라즈라를 타게트 표면에서 상기 시료 기판 표면 근방까지 발생시켜 그리고 또 시료 기판의 표면에 직류 바이어스를 인가하든가, 또는 고주파전력을 인가해서 기판 표면을 부의 바이어스 전위로 하고, 또한 상기 시료 기판을 온도 제어 수단에 의해 소정의 온도에 개스 냉각하여 그 발열을 방지하도록한 스퍼터 성막방법과 장치에 의해 해결된다.
카스프 자계의 형성에 의해 고밀도 플라즈마를 스퍼터 전극에서 시료 기판 표면 근방까지 발생시킨다. 또 카스프 전계와는 독립으로 시료 표면에 막불량을 생기게 하지 않는 부의 저 바이어스 전압등을 인가하여 플라즈마중의 고밀도 이온을 시료 기판측에 끌어들인다. 이것에 의해 기판 유입이온전류가 향상함과 동시에 시료 기판 표면에 부착한 스퍼터 입자의 기판 표면상에서의 이동도를 향상할 수가 있다. 이 결과 단차, 홈, 구멍등에의 스퍼터 재료의 부착을 향상시킬 수가 있다. 또 시료 기판을 일정온도로 제어하는 것에 의해 막품질을 일정하게 유지할 수가 있다.
또, 본 발명은 고에너지 전자의 기판중앙부로의 집중 입사에 의한 기판중앙부에서의 이상 상승온도를 방지하고, 또한 바이어스 스퍼터에 있어서도 기판으로의 이온 입사의 균일화를 도모하여 막질이 균일하고 또한 충분한 마이그레이션 성능을 기판 전면에 걸처 균일하게 하기 위해서, 대향하게 배치한 타게트 전극과 기판전극사이에 플라즈마를 넣도록 타게트측, 기판측에 배치된 자기장치에 의해 형성되는 카스프 자계에 있어서, 플라즈마를 넣고 있는 자력선중 기판측의 자기장치에 의해 만들어진 자력선이 기판중앙부를 횡단하지않도록 기판의 주변에 인도하는 것을 특징으로 하는 것이다.
즉, 타게트 전극과 기판전극을 대향 배치하여 타게트측과 기판측의 자기장치에 의해 상기 전극간에 카스프 자계를 형성하고, 이 자기장치에 있어서 상기 전극간에 플라즈마를 넣게하는 구성에 있어서 상기 기판측의 자기장치의 자력선이 기판중앙부를 횡단하는 일없이 기판의 주변에 인도되는 것과 같은 자기장치를 구성하는 것에 의해, 타게트측 자기장치의 자력선은 기판측 자기장치의 자력선에 의해 타게트상에 눌러넣어져서 타게트상의 자력선은 타게트 표면에 따르도록 형성되어, 타게트상에 고밀도의 플라즈마를 넓은 범위에 걸처넣고, 이 타게트측 자기장치의 자력선을 타게트에 눌러넣은 기판측의 자기장치의 자력선은 기판중앙부를 횡단하는 일없이 기판주변으로 인도되기 때문에 타게트상에 넣어진 플라즈마중의 전자는 기판에는 집중입사하지 않는다. 이 플라즈마에 의해 타게트가 스퍼터에 의해 침식되는 영역도 넓은 범위로 되어 타게트의 이용효율의 향상과 고속성막, 양호한 막두께 분포가 얻어진다.
이하, 도면을 참조해서 본 발명의 실시예에 대하여 설명한다.
제1도에 도시하는 바와 같이, 진공용기(1)의 위쪽의 열린구멍(2)에는 절연물(3)을 거쳐 스퍼터 전극(4)가 부착되어, 스퍼터 전극(4)의 진공용기(1)측에는 스퍼터 성막 재료로 되는 타게트(5)가 부착됨과 동시에 그 대기측에는 타게트 코일(6) 및 이것을 덮는 요크(7)이 마련되어 있다. 타게트 코일(6)에는 타게트 코일전원(23)이 연결된다. 더우기 요크(7)은 타게트 코일(6)에 의해 발생하는 누설자속밀도를 강하게 하기 위한 것이다. 또 스퍼터 전극(4)에는 스퍼터 전원(20)이 연결된다. 타게트(5)의 바깥둘레에는 타게트(5)에서 방전이 생기지 않는 간격을 두고 애노드(28)이 마련되어, 애노드(28)은 절연체(8)을 거쳐 진공용기(1)에 고정된다. 또한 애노드(28)의 전위는 필요에 따라 플로팅, 접지 또는 임의의 정 또는 부의 전압에 설정된다.
진공용기(1)의 아래쪽의 열린구멍(9)에는 적당한 간격을 두고 타게트(5)와 대의해서 배치되는 시료 기판(25)(이하, 기판(25)라함)를 얹어놓는 기판전극(10)이 마련된다. 기판전극(10)은 기판(5)을 얹어놓는 기판지지부(10A)와 여기에서 도면의 아래쪽으로 연장하는 연장부(10B)로 형성된다. 기판전극(10)의 주위에는 진공실 기능을 갖는 절연체(11)을 거쳐 기판 누름(12)가 기판전극(10)을 둘러 쌓는 것과 동시에 기판(25)의 둘레 가장자리를 유지해서 배설된다. 또한 기판누름(12)는 기판(25)의 표면과 수직방향(도면의 상하방향)으로 이동가능하게 형성된다. (이동수단은 도시하지 않음). 기판누름(12)의 주위에는 마찬가지로 진공실 기능을 갖는 절연체(13)을 거쳐 실드(14)가 기판누름(12)를 둘러 쌓아서 마련되어 실드(14)는 진공용기(1)의 열린구멍(9)에 고정된다. 기판코일(17)은 진공용기(1)의 아래쪽의 열린구멍(15)에 고정하는 코일용기(16)내에 마련되어 진공용기(1)과 진공실된다. 또 기판코일(17)에는 기판코일 전원(24)가 연결된다. 기판전극(10) 및 기판누름(12)에는 고주파 전원(21) 및 직류전원(22)가 연결된다. 또한 기판(25)의 표면에 직류 바이어스 전압만을 인가할 경우에는 고주파 전원(21)의 불필요하고, 고주파 바이어스 전압만을 인가할 경우에는 직류전원(22)가 각각 불필요하게 된다. 또 고주파 바이어스 전압을 인가할 경우에는 기판누름(12)는 절연물로 만들어져 고주파 플라즈마를 실드한다.
진공용기(1)에는 개스도입수단(19)를 거쳐서 Ar 개스등의 불활성 개스가 도입되어 배기수단(18)에 의해 진공배기 된다. 또한 그 압력은 약 10-3Torr의 압력으로 유지된다
상기 온도제어수단은 기판(25)를 냉각하는 것으로, 본 실시예에서는 기판전극(10)의 기관지지부(10A) 및 연장부(lOB)의 중심에 뚫어 설치되어, 기판(25)측 및 반대측에 개방하는 관통 구멍내에 끼워넣게 되는 개스도입관(29) 및 개스도입관(29)내에 진공용기(1)내에 충진되는 개스(Ar 개스등)와 동일성형의 냉각개스를 도입하는 도시하지 않는 도입장치 및 개스온도를 제어하는 도시하지 않는 온도조정장치등으로 형성된다.
제2도는 기판(25)를 지지하는 기판전극(10)의 기준지지부(10A)의 상세한 구도를 도시하는 것이다.
기준지지부(10A)의 기판(25)와 접하는 부분은 도시하는 것과 같이 기판(25)측에 부풀어 오른 완만한 볼록면형(정확하게는 구면형)으로 형성된다. 이것은 다음의 이유에 의한다.
기판(25)는 상기와 같이 기판누름(12)에 의해 둘레가장자리를 유지됨과 동시에, 개스도입관(29)에서의 냉각개스가 아래면에 닿도록 배설된다. 기판(25)의 위쪽(진공용기(1)측)은 10-3Torr정도의 진공으로 되어 있으므로, 냉각 개스의 도입에 의해 기판(25)의 중앙부 100㎛정도 휜다. 한편, 기판(25)와 기판전극(10)사이의 열전달율을 일정하게 유지하는 데는, 기판(25)와 기판전극(10)의 극간을 10㎛이하로 하여 밀착하게 걸어 맞추는 것이 필요하다. 따라서 사전에 기판(25)가 개스압에 의해 휘는 부분만큼 기준지지부(10A)를 볼록형으로 형성하는 것에 의해 기판(25)와 기판전극의 밀착성을 유지할 수가 있다.
다음에 본 실시예의 작용을 더욱 상세히 설명한다
스퍼터 성막처리를 받는 기판(25)는 진공용기(1)의 도시하지 않는 입구에서 삽입되어 기판전극(10)의 기판지지부(10A)상에 얹어 놓여진다. 이 경우, 기판누름(12)는 기판전극(10)에서 격리한 타게트(5)측에 위치결정된다. 기판(25)가 놓여지면 기판누름(12)가 도시하지 않는 반송기구에 의해 기판(25)측에 이동해서 이둘레가장자리에 걸어 맞추어 기판(25)을 유지한다. 배기수단(18)에 의해 진공용기(1)내의 높은 진공을 배기한 후, 개스도입수단(19) 및 개스도입관(29)에서 Ar 개스를 도입하여 소정의 스퍼터압(10-3Torr대의 압력)으로 유지한다. 타게트 코일 전원(23) 및 기판코일전원(24)에 의해 타게트 코일(6) 및 기판코일(17)에 양자의 자계가 반대로 향하게 되도록 코일전류를 인가한다. 이것에 의해 제1도에 도시하는 자력선(26)과 같은 형상의 카스프 자계가 발생한다. 다음에 스퍼터 전원(20)에 의해 스퍼터 전극(4)에 스퍼터 전압을 인가하면, 자력선(26)과 같은 형상의 고밀도의 플라즈마(27)이 타게트(5)의 표면에서 기판(25)의 표면근방까지 발생한다 이어서, 직류전원(22;에 의해 기판누름(12)글 거쳐서 기판(25)의 표면에 직류 바이어스를 인가하던가, 또는 고주파 전원(21)에 의해 기판전곡(10)에 고주파 전극을 인가하여 기판(25)상에 다시 고주파 플라즈마를 발생시켜, 기판(25)의 포면에 바이어스 전압을 일으켜서 기판(25)의 표면을 부의 바이어스 전위로 유지하여 플라즈마(27)중의 이온을 기판(25)에 유입시킨다. 이때 개스도입관(29)에서 도입된 Ar 개스에 의해 기판(25)는 소정의 은도고 제어 유지된다.
이상과 같이 본 실시예에서는 카스프 자계에 의해 고밀도 플라즈마를 기판(25)의 근방까지 발생시킬 수가 있으므로, 막불량이 생기지 않는 저 바이어스 전압에 있어서도 단차, 홈, 구멍에 스퍼터 재료가 골고루 잘붙게 성막할 만큼의 충분한 이온전류를 얻을 수가 있다.
본 실시예에서의 유입전류의 측정예를 제3도에 도시한다. 제3도는 기판 바이어스 전압 : -lOOV, 기판과 타게트의 간격 : 50mm에서의 데이타이다. 기판코일전류/타게트 코일전류의 비율이 작을때는 플라스마링의 중심지름은 기판의 지름보다 큰 이비율을 크게하면 플라즈마링의 중심지름을 기판의 지름과 같게 할 수 있다. 그리고 종래기술에 비하여 약 5배의 1×1011cm-3의 플라즈마 밀도와, 약 2배의 1.1A의 기판유입전류(ø125mm내) 가 얻어졌다.
기판 유입이온전류를 바꾸어서, 바이어스 스퍼터빔으로 미세한 구멍에 Al을 성막했을때의 Al의 부착성을SEM 사진에서 판정한 결과를 제1표에 표시한다(구멍깊이는 약 l㎛, 성막속도는 1200mm/min). 0표는구멍측면에의 Al 부착이 평탄부의 막두께의 대략 40%이상인 것을 표시한다. 이와 같이 이온전류가 1A/ø125에서 1.0평방㎛의 구멍에의 Al 부착이 충분한 것을 확인할 수 있었다.
[표 1]
부착특성
Figure kpo00001
또 제4도에 본 실시예에서의 바이어스 전압과 유입전류의 관계를 도시한다(세로축은 상대단위이다). 제2도와 마찬가지로 기판과 타게트의 간격은 50mm이다. 바이어스 전압을 -lOOV에서 -4OV까지변화시켜도 유입이온전류는 대략 일정하다. 즉 기판에 유입하는 이온전류를 대략 일정하게 유지한해로 기판에 유입하는 이온에너지 총량을 폭넓게 제어할 수가 있다.
이상 설명한 바와 같이, 저바이어스 전압으로 높은 기판 유입이온전류를 얻을 수가 있으므로 보이드, 부풀음등의 막불량이 생기는 일없이 단차, 홈, 구멍에 골고루 잘 붙게 스퍼터막을 부착 할 수가 있다. 또 고밀도 플라즈마의 발생은 독립으로 기판 바이어스 전압을 설정할 수 있으므로, 기판에 유입하는 이온량을 대략일정하게 유지한해로, 이온에너지를 제어할 수가 있어 막질제어의 여유도가 향상한다.
또 본 실시예의 장치에 의해 Al 재료로 성막한 결과를 제5도 및 제6도에 의해 설명한다.
제5도는 가로축에 기판 코일 전류와 타게트 코일전류의 비율을 취하고 세로측은 성막속도(mm/min) 및 막두께 분포(%)를 표시한 것이다(선도면상 실선은 성막속도, 점선은 막두께 분포를 표시한다) 코일 전류비율을 높이면, 카스프 자계의 자력선(26)이 타게트(5)측에 밀어붙이게 되어, 플라즈마의 타게트상의 영역은 기판(25)의 바깥지름보다 큰 범위에서 차차 중심측으로 이동하며, 성막 속도는 상승함과 동시에 막두께분포는 기판(25)의 둘레가장자리가 두꺼운 오목 분포형에서 기판중심의 두꺼운 볼록 분포형의 것으로 변화한다. 지금, 목표의 성막 속도를 1000mm/min이상으로 하고 막두께 분포를 ±5%이하로 하면 이 조건에서 코일의 최대 전류비는 0.95이상이다
제6도는 성막속도 1180mm/min(1000mm/min이상)에서 코일전류비를 0. 95로 했을 때의 기판상승 온도특성을 도시하는 것이다. 가로축에는 성막 개시후의 시간(S), 세로축에는 기판(25)의 온도(℃)를 표시한다. 성막 개시후 20초를 경과하면 기판(25)는 350℃로 되어 온도제어수단에 의한 기판(25)의 냉각이 행하여지지 않으면 점선과 같이 계속 상승하여 막두께 1.2㎛를 얻는데 필요한 시간 60초후에는 약 650℃로 된다 한편, Al의 융점"1 약 650℃이므로, 이 온도에서는 성막된 Al 재료의 일부가 녹아버리는 불합리하는점이 생긴다. 그래서 성막후 20초 정도 경과한 후 기판온도 제어수단에 의해 개스 냉각을 개시하면, 성막개시 후 60초에 달하여도 기근(25)는 약 350℃로 유지된다. 이상과 같이, 기판을 개스 냉각하면서 기판(25)의 표면근방까지 고밀도 플라즈마를 발생시키게 하는 것에 의해 막불량을 생기게 하지 않는 저 바이어스 전압에서 스퍼터 재료를 기판 표면의 단차, 흠, 구멍등에 골고루 잘붙게 성막할 수 있음과 동시에 기판의 발열과 이온에 의한 파손등이 방지되어 고품질의 박막을 형성할 수가 있다.
본 실시예에 있어서, 타게트 코일(6), 기판코일(17)을 전자석으로 했지만, 이것에 한정하는 것은 아니고 이것들과 등가한 자계를 발생하는 영구자석으로도 좋다. 또 본 실시예에서는 기판온도 제어수단은 기판(25)를 냉각하는 것으로 했지만 이것에 한정하는 것은 아니고, 성막속도가 늦고 기판(25)로의 열입력이 적을 경우에는 반대로 기판전극(10)을 고온으로 유지해야할 개스 매체에 의해 성막중의 기판을 가열하는 일도 행하여진다.
이와 같이 기판을 일정온도상에서 제어할 수 있으므로 막의 고품질 화를 더욱 도모할 수 있다.
또 제7도 내지 제11도에 따라서 본 발명의 다른 실시예를 설명한다. 동일도면에 있어서 같은 부품번호의 것은 상기에서 설명한 것과 마찬가지이다. 타게트전극(4)의 대기측에는 자계발생용의 타게트 로일(6') 및 요크(7')가 부착되어 있다. 요크(7')는 타게트 코일(6')에 의해 발생하는 누설자속 밀도를 강하게 하기 위해 사용된다. 또 기판전극(10)의 내부에는 기판내 코일(30)이 수납되어 있다. 이 기판내 코일(30)에는 기판내코일 전원(31)이 접속되어 있다.
타게트전극(5)와 대향하는 측에는 피처리기판에 상당하는 기판(25)를 얹어놓는 제2의 전극에 상당하는 기판전극(lOB)가 있으며 기판전극(lOB)는 전극실린더(10)에 의해 제7도에 실선으로 표시하는 반송위치와 일점쇄선으로 표시하는 처리위치로 이동가능하다. 이 기판전극(10)은 기판(25)를 상하로 움직이게 하는 엘리베이터(39)를 가지며, 또 엘리베이터(39)를 관통해서 기판전극(10)과 기판(25)사이에 기판(25)의 냉각용의 유체를 인도하는 냉각수단으로서의 냉각개스도입관(29)가 마련되어 있다.
또, 기판전극(10)은 제2의 전극측 자기장치에 상당하는 기판내측 코일(30)을 내장하여 기판전극(10)이 처리위치에 있을때, 기판전극(10)의 주위에 위치하는 기판외측코일(17) 및 상기 타게트 코일(61)과 협조하여 카스프 자계를 형성한다.
또, 제7도에서 처리위치에 있는 기판전극(10)의 바른쪽에는 처리위치에 있는 기판(25)의 표면에 DC 바이어스 전압을 인가하는 바이어스 기구(38)이 부착되어 있다. 바이어스 기구(38)은 기판(25)에 접촉하는 접촉자(40), 접촉자(40)을 부착하고 있는 바이어스 보디(41), 바이어스 보디(41)에 부착된 롤러(42), 롤러(42)가 주행하는 홈(43)을 갖는 가이드 판(44), 바이어스 보디(41)을 언제나 바른쪽으로 잡아 당기는 스프링(45), 및 바이어스 보디(41)을 비스듬히 왼쪽아래로 미는 바이어스 실린더(46)으로 된다.
기판(25)는 진공용기(1)의 측벽에 마련된 게이트 밸브(47),(48)에서 반입, 반출되지만, 진공실내에서의 이동은 반송수단(49), (50)에 의해 행한다.
기판 표면에 직류 바이어스 전압을 인가하는 경우는 고주파 전원(21)이, 고주파 바이어스를 인가하는 경우에는 직류전원(22)가 각각 불필요하다. 또 고주파 바이어스 전압을 인가할 경우에는 기판누름(12)는 고주파 플라즈마의 실드를 위해 절연물로 만들어 진다.
타게트 코일(6)과 타게트 코일 전원(23)은 전자석에 한정하지 않고 이것과 같은 값의 자계를 발생하는 영구자석을 사용하여도 좋다.
이상의 구성의 본 실시예는 아래와 같이 동작한다.
진공용기(1)의 게이트 밸브(47)에서 도입된 기판(25)는 상기 반송수단(49)에 의해 기관전극(10)의 중심위까지 반송된다. 다음에 엘리베이터(39)가 상승하여 기판(25)를 반송수단(49)에서 엘리베이터(39)로 바꾸어놓은 후, 반송수단(49)를 퇴피시켜서 엘리베이터(39)를 하강시켜 기판(25)를 기판전극(10)상에 얹어 놓아기 판누름(12)로 유지한다.
다음에 전극실린더(도시하지 않음)를 동작시켜 기판전극(10B)를 처리위치로 상승시킨다. 이어서 게이트밸브(47)를 닫은 후, 진공배기수단(18)에 의한 배기 속도와 개스도입관에서 도입하는 개스량을 조절하여 진공용기내를 소정의 압력, 전형적으로는
Figure kpo00002
로 유지한다. 다음에 타게트 코일(61)과 기판내측코일(30)은 같은방향, 기판외측코일(17)은 상기 2개의 코일과는 반대방향의 자계를 발생시키도록 여자하여 제7도에 도시하는 바와 같은 3개의 자력선(26)을 발생시킨다.
다음에 타게트전극(71)에 스퍼터 전력을 인가하여 타게트 전극(71)과 기판전극(10)사이에 플라즈마(27)을 발생시켜, 예를 들면 도체금속으로 구성된 타게트(5)의 표면을 스퍼터하여 타게트 재료를 기판(25)상에 도달시킨다. 기판(25)상에 소정의 두께의 박막을 형성한 후, 바이어스 실린더(46)을 동작시켜 가이드판(44)의 홈(43)에 따르게 하여 롤러(42)를 이동시켜서 롤러(42)를 부착한 바이어스 보디(41)을 제7도의 비스듬히 왼쪽 아래로 이동시켜 접촉자(40)을 기판(25)에 접촉시켜서 도시하지 않는 바이어스 전원에서 바이어스 보디(41), 접촉자(40)을 경유하여 기판(25)의 표면에 DC의 바이어스 전압을 인가하는 것에 의해 바이어스 스퍼터 를 행한다.
또한 기판(25)의 표면에 고주파의 자기 바이어스 전압을 유지시킬 경우에는 기판전극(10)의 기판(25)의 얹어 놓는 면에 고주파 전력을 인가하면 좋고, 바이어스 기구(38)은 불필요하다.
타게트 코일 전원(23), 기판의 코일 전원(24), 기판내 코일 전원(31)에서 각각 타게트 코일(6), 기판내코일(30)이 같은 방향으로 자계를 발생하여 이것들과는 반대방향으로 기판의 코일(14)가 자계를 발생하도록 전류를 인가하는 것에 의해, 자력선(26)이 형성된다. 자력선(26)의 시뮬레이션 계산결과를 제8도에 도시한다. 주요한 계산조건은, 타게트 코일(6)의 중심자속밀도는 338G, 기판내 코일(30)에서는 280G, 기판의 코일(17)에서는 250G이다. 기판측의 내,외코일사이에서 발생하는 자속 c의 영향에 의해 타게트 코일(6)의 요크(7)의 중앙선단에서 발생한 자속 a 및 b중, 자속 a는 타게트(5)표면에 따르도록 형성되고, 자속 b는 기판내 코일(30)의 내측으로 입사하도록 형성된다. 다음에 타게트 전극(4)에 타게트 전원(20)에서 스퍼터 전력을 인가하는 것에 의해, 타게트(5)에서 기판전극(10)의 표면에 걸쳐서 천계와 직교하는 자속 a 및 자속c에 넣게 되는 것과 같이이 고밀도 플라즈마가 발생한다. 이때 타게트(5)상에서는 자속 b의 영역보다 자속 a의 영역쪽이 플라즈마 밀도가 높은 것이 관측할 수 있었다. 주로 자속 a의 영역의 플라즈마에서의 이온입사에 의해 타게트에서 대량의 2차 전자가 발생하고, 이 2차 전자는 타게트와 플라즈마간의 전위차(수백 V)에 의해 고속으로 가속되어 플라즈마중에 방출되는 이 높은 에너지 전자는 플라즈마중을 통하는 자력선 a및 c에 띠-라서 나선 운동을 하면서 이동하지만, 자속 a에서는 타게트상에서 원호형을 하고 있으므로 충돌에 의한 손실외에는 전자는 이 자속중에 들어가게 된다. 자속 c중의 전자는 자속 c에 따라서 기판(25)측으로 흐르지만, 자속 c가 기판(25)상을 통하는 일없이 기판(25)의 바깥둘레를 횡단하므로 기판(25)중에 고에너지 전자가 입사하는 일은 없다. 한쪽 자석 b중의 전자는 자속 a상의 고에너지 전자가 이온이나 중성입자와의 충돌에 의해 확산한 것이 주가되어 전자는 대단히 저속으로 되어 있다. 이 전자는 자속 b에 따라서 기판(25)상에 이동하지만, 자속 b는 타게트(5)중앙부의 대단히 작은 면적에서 기판(25)상에 대략 균일한 자속밀도로 넓어지므로, 전자의 기판(25)로의 입사는 평균화된다. 또 기판(25)상에 균일한 밀도로 자속 b가 입사하기 때문에, 바이어스 전위가 인가되어 있는 기판(25)표면에 플라즈마(27)에서 자속 b에 따라 입사하는 이온량도 평균화된다. 또 타게트상에서의 자계는 자속 a가 자속 c에 의해 압착된 형으로 되어 고밀도 플라즈마를 넓은 범위로 형성할 수 있다.
다음에 제9도에 기판낸 코일(30)의 중심자속밀도에 대한 기판(25)상에 유입하는 이온전류 및 전자에너지밀도를 도시한다. 기관에는 -lOOV의 바이어스 전압을 인가하여 타게트 코일의 중심자속밀도는 338G, 기판의 코일의 중심자속밀도는 248G이다. 기판내 코일의 자속밀도가 0의 경우는 종래의 카스프 자계와 마찬가지의 자계분포이고, 기관내 코일의 중심자속밀도를 높이는데 따라 중심으로의 치우침은 해소 되어가며, 260G를 넘은 곳에서 입사량은 균일하게 되어 고에너지 전자의 입사는 없어진다. 또 일정 온도로 유지되어있는 기판전극(10)과 기판(25)사이에 온도 제어용 개스를 도입하는 것에 의해 기판(25)의 온도를 제어하여 막의 질을 유지할 수 있다
이상 기술한 구성에 의해, 종래의 카스프 자계형 바이어스 스퍼터법에서 생긴 기판 중앙의 이상 상승온도, 입사이온량 핀재에 의한 미세한 단차, 구멍에의 재료 부착성의 불균일한 것을 해소하여 성막속도가 높고 막의 질이 균일하여 또한 충분한 마이그레이션 성능을 기판 전면에 균일하게 갖는 바이어스 스퍼터벌 및 장치를 실현할 수가 있었다.
제10도에 본 발명의 다른 실시예를 도시한다. 상기 제1의 실시예에 대하여 기판내 코일(30), 기판외 로일(17)이외는 같은 구성이다. 본 실시예에서는 기판측 자기장치로서 기판(25)의 배면에서 기판(25)를 둘러쌓는 것과 같은 환상형으로 형성된 기판측 영구자석(33)을 사용한다. 영구자석(33)은 환상형의 바깥쪽에 발생하는 잔력선에 의해 타게트 코일(6)과 협조해서 카스프 자계를 형성함과 동시에 환상형의 안쪽에 발생하는 자력선에 의해 제1도와 마찬가지의 자력선 분포가 얻어져 제1의 실시예와 마찬가지의 효과를 얻을 수가 있다
다음에 본 발명의 장치를 스퍼터 에칭장치에 적용한 경우의 다른 실시예를 마찬가지로 제7도에 의해 설명한다.
상기 실시예와 상이하여, 스퍼터 에칭장치의 경우는(6)이 제1의 전극에 상당하는 대향전극을 표시한다. 대향전극(6)은 스퍼터에치 처리중은 통상 접지 또는 플로팅 전위로 유지된다. 플라즈마를 발생시키는 고주파 전력은 제2의 전극에 상당하는 기판전극(9)에 인가되어 상기 실시예와 마한가지의 플라즈마(28)을 발생시킨다. 스퍼터 에칭의 경우에는 바이어스 기구(15)는 사용하지 않는다. 그외의 구성은 상기 실시예와 동일하다.
스퍼터 에칭 처리는 바라는 피처리기판(8)을 얹어놓은 기판전극(9)를 처리위치로 이동시킨 후, 기판전극(9)에 고주파 전력(도시하지 않음)을 인가하여 고밀도의 플라즈마(28)을 발생시킨다. 이때 기판전극(9)의표면에는 자기 바이어스 전압이 유기되어, 고밀도의 플라즈마(28)중의 이온이 균일 및 고밀도로 기판에 입사하여 고속 및 균일하게 스퍼터 에칭 처리를 행한다. 이때에도 필요에 따라서 냉각 개스도입관(12)에서 기판(8)과 기판전극(9)사이에 냉각용 개스를 도입하는 것에 의해 기판냉각을 행할 수가 있다.
다음에 제11도에 본 발명의 다른 실시예를 도시한다. 이 실시예는 제7도에 도시하늘 실시예와 마찬가지로 박막을 형성하는 스퍼터장치에 관한 것이지만, 플라즈마 처리시의 피처리기판의 자세가 제7도에 도시하는 실시예의 90°기울어져 있는 점이 크게 다르고, 제7도에 도시하는 실시예를 수평형이라고 칭하면 본실시예는 수직형(또는 세로형)이라고 칭하는 것이다
제2의 전극에 상당하는 기판전극(10)은 암(51)을 거쳐서 회전축(53)에 부착되어 제11도의 실선으로 표시하는 처리위치와 일점쇄선으로 표시되는 반송위치사이를 회전이동한다. 기판(25)는 도시하지 않는 지지수단에 의해 기판전극(10)에 지지되어 있다 엘리베이터(39)는 스프링(40)에 의해 통상시에는 제11도에서 실선으로 표시하는 도면의 왼족으로 눌리어저 있다. 일점쇄선으로 표시하는 반송위치에 있을 때에 엘리베이터 실린더(52)에 의해 엘리베이터(39)를 누르는 것에 의해 피처리 기판(10)을 반송기구(49), (50)에서 기판전극(10)으로 바꾸어 놓게된다. 제11도에 도시하는 장치도 스퍼터 에칭 장치에 적용할 수 있는 것은 명백한 것이다.

Claims (16)

  1. 전압이 인기된 스퍼터 전극에 얹혀 놓여진 피스퍼터 물질을 소정의 간격을 두고 대면하는 시료 기판에 스퍼터하는 스퍼터링 방법에 있어서, 상기 타게트와 기판사이에 카스프 자계를 혈성하는 것에 의해 고밀도 플라즈마를 발생시킴과 동시에 기판 표면에 바이어스 전압을 인가하는 것에 의해 기판 표면에 이온을 입사시키면서 타게트에서 분출된 스퍼터 재료를 기판에 부착시켜서 성막하는 것을 특징으로 하는 스퍼터 방법.
  2. 특허청구의 범위 제1항의 스퍼터 방법에 있어서, 상기 기판 표면에 직류전압을 인가하는 것을 특징로 하는 스퍼터 방법.
  3. 특허청구의 범위 제1항의 스퍼터 방법에 있어서, 상기 기판을 얹혀놓는 기판전극에 고죽파 전압을 인가하여 기판 표면측에 부의 직류 바이어스 전압을 유기하는 것을 특징으로 하는 스퍼터 방법.
  4. Ar 개스등의 비활성 개스가 충진된 진공용기내에 스퍼터 전극에 접합하는 피스퍼터 물질인 타게트와시료 기판을 대의해서 배설하며, 상기 시료 기판과 상기 타게트사이에 반대로 향하는 자계를 형성하여 양자간에 카스프 자계를 형성함과 동시에 상기 스퍼터 전극에 전압인가하여 고밀도의 플라즈마를 상기 타게트표면에서 상기 시료 기판 표면 근방까지 발생시키고, 다시 상기 시료 기판 표면에 직류 바이어스를 인가하던가, 또는 고주파 전력을 인가하여 상기 시료 기판 표면을 부의 바이어스 전위로 유지하며, 상기 플라즈마를 상기 시료 기판내에 유입시키고, 또한 상기 시료 기판을 적합한 온도로 온도 제어하는 것을 특징으로 하는 스퍼터 성막방법.
  5. Ar 개스등치 비활성 개스가 충진되는 진공용기, 상기 진공용기내에 대의해서 배설되는 시료 기판 및 스퍼터 전극에 접합하는 피스퍼터 물질인 타게트, 상기 시료 기판 및 타게트에 반대자계를 발생시키는 자성수단, 상기 스퍼트 전극에 전압인가 하는 전원, 상기 시료 기판에 전류 바이어스 또는 고주파 전력을 인가하는 전원, 및 삶기 시료 기판에 상기 비활성 개스와 동일한 개스를 공급하여 이것을 소정의 온도로 온도조절하는 기판온도 제어수단을 마련하는 것을 특징으로 하는 스퍼터 성막 장치.
  6. 타게트측 자기장치와 기판측 자기장치의 협조에 의해 전압이 인가된 타게트전극에 얹혀 놓여진 타게트와 기판사이에 카스프자계를 형성하고, 상기 기판측 자기장치에 의해 만들어진 자력선이 기판중앙부를 횡단하지 않도록 기판주변에 인도하여 상기 타게트의 성막 재료를 소정의 간격을 두고 대면하는 상기 기판에 스퍼터하는 것을 특징으로 하는 스퍼터 성막방법.
  7. 특허청구의 범위 제6항의 스퍼터 성막방법에 있어서, 살기 기놘 표면에 전압을 인가시키는 것을 특징으로 하는 스퍼터 성막방법.
  8. 특허청구의 범위 제6항의 스퍼터 성막방법에 있어서, 상기 기판은 온도제어된 것을 특징으로 하는 스퍼터 성막방법
  9. 기판을 얹어놓는 부재, 상기 기판의 퇴적면과 소정의 간격을 두고 대면하는 성막 재료로 되는 타게트, 상기 타게트를 얹어놓는 타게트 전극, 상기 타게트사이에 자계를 발생시키는 타게트측 자기장치, 및 상기 타게트측 자기장치와 협조해서 기판과 타게트사이에 카스프자계를 형성하여 자력선이 기판중앙부를 횡단하지 않도록 기판주변에 자력선을 발생시키는 기판측 자기장치를 구비한 것을 특징으로 하는 스퍼트 성막장치.
  10. 특허청구의 범위 제9항의 스퍼터 성막 장치에 있어서, 상기 기판측 자기장치는 기판주변에 위치하는의전자석과 상기 외 전자석의 내측에 위치하는 내전자석으로 구성한 것을 특징으로 하는 스퍼터 성막 장치.
  11. 특허청구의 범위 제9항의 스퍼터 성막 장치에 있어서, 상기 기판측 자기장치는 1개조의 영구자석에의해 구성한 것을 특징으로 하는 스퍼터 성막 장치.
  12. 특허청구의 범위 제9항의 스퍼터 성막 장치에 있어서, 상기 부재는 기판 표면에 전압을 발생시키는 전압인가 수단을 갖는 스퍼터 성막 장치.
  13. 특허청구의 범위 제9항의 스퍼터 성막 장치에 있어서, 상기 기판측 자기장치는 기판주변에 위치하는 전자석과 상기 전자석의 내측에 위치하는 요크로 구성한 것을 특징으로 하는 스퍼터 성막 장치.
  14. 기판을 얹어놓아 얹어놓여진 면이 일정온도로 제어된 기판전극, 상기 기판전극과 기판사이에 온도 제어용 개스도입수단, 상기 기판의 퇴적면과 소정의 간격을 두고 대면하는 성막 재료로 되는 타게트, 상기 타게트를 얹어놓는 타게트 전극, 상기 타게트사이에 자계를 발생시키는 타게트측 자기장치, 및 상기 타게트측 자기장치와 협조해서 기판과 타게트사이에 카스프 자계를 형성하여 자력선이 기판중앙부를 횡단하지 않도록 기판의 주변에 자력선을 발생시키는 기판측 자개장치를 구비한 것을 특징으로 하는 스퍼터 성막 장치.
  15. 피처리 기판의 처리면과 소정의 간격을 두고 대향하는 제1의 전극, 상기 퍼처리 기판을 얹어놓는 제2의 전극, 및 상기 제1 및 제2의 전극사이에 자계를 발생시키는 상기 제1의 전극측 자기장치와 상기 제2의 전극측 자기장치가 협조해서 상기 제1 및 제2의 전극사이에 카스프 자계를 형성하고, 상기 제2의 전극측 자기장치에 의해 만들어진 자력선이 상기 피처리 기판의 적어도 중앙부를 횡단하지 않도록 상기 피처리 기판의 주변에 자력선을 발생시키는 자기장치를 배설한 것을 특징으로 하는 플라즈마 처리 장치.
  16. 특허청구의 범위 제15항의 플라즈마 처리 장치에 있어서, 상기 피처리 장치를 상기 제2의 전극에 얹어놓는 반송위치와 상기 피처리 기판에 플라즈마 처리를 시행하는 처리위치사이에 상기 제2의 전극을 이동시키는 이동수단과 상기 반송위치에 상기 피처리 기판을 반송하는 반송수단을 구비한 것을 특징으로 하는 플라즈마 처리 장치.
KR1019870015286A 1987-01-07 1987-12-30 스퍼터 성막방법 및 그 장치 KR910001879B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP?62-363 1987-01-07
JP62000363A JPH0791639B2 (ja) 1987-01-07 1987-01-07 スパツタ方法
JP62-363 1987-01-07
JP?62-54005 1987-03-11
JP62-54005 1987-03-11
JP62054005A JP2674995B2 (ja) 1987-03-11 1987-03-11 基板処理方法およびその装置
JP62-77419 1987-04-01
JP62077419A JP2594935B2 (ja) 1987-04-01 1987-04-01 スパツタ成膜方法と装置
JP?62-77419 1987-04-01

Publications (2)

Publication Number Publication Date
KR880009454A KR880009454A (ko) 1988-09-15
KR910001879B1 true KR910001879B1 (ko) 1991-03-28

Family

ID=27274437

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870015286A KR910001879B1 (ko) 1987-01-07 1987-12-30 스퍼터 성막방법 및 그 장치

Country Status (4)

Country Link
US (1) US4853102A (ko)
EP (1) EP0275021B1 (ko)
KR (1) KR910001879B1 (ko)
DE (1) DE3854276T2 (ko)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834984A1 (de) * 1988-10-14 1990-04-19 Leybold Ag Einrichtung zur erzeugung von elektrisch geladenen und/oder ungeladenen teilchen
US4957605A (en) * 1989-04-17 1990-09-18 Materials Research Corporation Method and apparatus for sputter coating stepped wafers
EP0396919A3 (en) * 1989-05-08 1991-07-10 Applied Materials, Inc. Plasma reactor and method for semiconductor processing
US5225024A (en) * 1989-05-08 1993-07-06 Applied Materials, Inc. Magnetically enhanced plasma reactor system for semiconductor processing
CZ278295B6 (en) * 1989-08-14 1993-11-17 Fyzikalni Ustav Avcr Process of sputtering layers and apparatus for making the same
EP0465733A1 (en) * 1990-07-13 1992-01-15 Consorzio Ce.Te.V. Centro Tecnologie Del Vuoto Vacuum ion plating method for the deposition of thin layers
JP3056772B2 (ja) * 1990-08-20 2000-06-26 株式会社日立製作所 プラズマの制御方法ならびにプラズマ処理方法およびその装置
JP3231900B2 (ja) * 1992-10-28 2001-11-26 株式会社アルバック 成膜装置
US5630916A (en) * 1993-03-02 1997-05-20 Cvc Products, Inc. Magnetic orienting device for thin film deposition and method of use
US5744011A (en) * 1993-03-18 1998-04-28 Kabushiki Kaisha Toshiba Sputtering apparatus and sputtering method
KR100271244B1 (ko) * 1993-09-07 2000-11-01 히가시 데쓰로 전자빔 여기식 플라즈마장치
US5496455A (en) * 1993-09-16 1996-03-05 Applied Material Sputtering using a plasma-shaping magnet ring
JP2659919B2 (ja) * 1994-01-13 1997-09-30 インターナショナル・ビジネス・マシーンズ・コーポレイション プラズマの不均一性を補正するプラズマ装置
DE4441117C1 (de) * 1994-11-18 1995-10-26 Plasma Applikation Mbh Ges Verfahren zur Beschichtung von Substraten und Vorrichtung zur Durchführung des Verfahrens
JP3257328B2 (ja) * 1995-03-16 2002-02-18 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
US5962923A (en) 1995-08-07 1999-10-05 Applied Materials, Inc. Semiconductor device having a low thermal budget metal filling and planarization of contacts, vias and trenches
EP0799903A3 (en) * 1996-04-05 1999-11-17 Applied Materials, Inc. Methods of sputtering a metal onto a substrate and semiconductor processing apparatus
TW402778B (en) * 1996-07-12 2000-08-21 Applied Materials Inc Aluminum hole filling using ionized metal adhesion layer
JP4355036B2 (ja) * 1997-03-18 2009-10-28 キヤノンアネルバ株式会社 イオン化スパッタリング装置
US5897753A (en) * 1997-05-28 1999-04-27 Advanced Energy Industries, Inc. Continuous deposition of insulating material using multiple anodes alternated between positive and negative voltages
JPH111770A (ja) * 1997-06-06 1999-01-06 Anelva Corp スパッタリング装置及びスパッタリング方法
JPH11172432A (ja) * 1997-12-16 1999-06-29 Hitachi Ltd 磁性膜形成装置
US6280563B1 (en) * 1997-12-31 2001-08-28 Lam Research Corporation Plasma device including a powered non-magnetic metal member between a plasma AC excitation source and the plasma
US6773562B1 (en) * 1998-02-20 2004-08-10 Applied Materials, Inc. Shadow frame for substrate processing
US6106682A (en) * 1998-05-22 2000-08-22 Cvc Products, Inc. Thin-film processing electromagnet for low-skew magnetic orientation
US6042707A (en) * 1998-05-22 2000-03-28 Cvc Products, Inc. Multiple-coil electromagnet for magnetically orienting thin films
US6497796B1 (en) * 1999-01-05 2002-12-24 Novellus Systems, Inc. Apparatus and method for controlling plasma uniformity across a substrate
US6579421B1 (en) 1999-01-07 2003-06-17 Applied Materials, Inc. Transverse magnetic field for ionized sputter deposition
US6620298B1 (en) * 1999-04-23 2003-09-16 Matsushita Electric Industrial Co., Ltd. Magnetron sputtering method and apparatus
US6464795B1 (en) 1999-05-21 2002-10-15 Applied Materials, Inc. Substrate support member for a processing chamber
US10047430B2 (en) 1999-10-08 2018-08-14 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US8696875B2 (en) * 1999-10-08 2014-04-15 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US6818103B1 (en) 1999-10-15 2004-11-16 Advanced Energy Industries, Inc. Method and apparatus for substrate biasing in multiple electrode sputtering systems
US6899795B1 (en) * 2000-01-18 2005-05-31 Unaxis Balzers Aktiengesellschaft Sputter chamber as well as vacuum transport chamber and vacuum handling apparatus with such chambers
US6352629B1 (en) * 2000-07-10 2002-03-05 Applied Materials, Inc. Coaxial electromagnet in a magnetron sputtering reactor
US6709721B2 (en) 2001-03-28 2004-03-23 Applied Materials Inc. Purge heater design and process development for the improvement of low k film properties
WO2002086937A1 (en) 2001-04-20 2002-10-31 Applied Process Technologies Dipole ion source
US20030192646A1 (en) * 2002-04-12 2003-10-16 Applied Materials, Inc. Plasma processing chamber having magnetic assembly and method
US6841050B2 (en) * 2002-05-21 2005-01-11 Applied Materials, Inc. Small planetary magnetron
US6852202B2 (en) * 2002-05-21 2005-02-08 Applied Materials, Inc. Small epicyclic magnetron with controlled radial sputtering profile
US7504006B2 (en) * 2002-08-01 2009-03-17 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering
US7932678B2 (en) * 2003-09-12 2011-04-26 General Plasma, Inc. Magnetic mirror plasma source and method using same
US7294224B2 (en) * 2003-12-01 2007-11-13 Applied Materials, Inc. Magnet assembly for plasma containment
US20050211547A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Reactive sputter deposition plasma reactor and process using plural ion shower grids
US7695590B2 (en) 2004-03-26 2010-04-13 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids
US8058156B2 (en) 2004-07-20 2011-11-15 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
US7767561B2 (en) 2004-07-20 2010-08-03 Applied Materials, Inc. Plasma immersion ion implantation reactor having an ion shower grid
EP2253735B1 (en) 2009-05-13 2017-11-22 SiO2 Medical Products, Inc. Vessel processing
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
KR20110039920A (ko) * 2009-10-12 2011-04-20 삼성모바일디스플레이주식회사 스퍼터링 장치
WO2011119611A2 (en) * 2010-03-22 2011-09-29 Applied Materials, Inc. Dielectric deposition using a remote plasma source
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
EP2846755A1 (en) 2012-05-09 2015-03-18 SiO2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
JP6509734B2 (ja) 2012-11-01 2019-05-08 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド 皮膜検査方法
EP2920567B1 (en) 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
CA2892294C (en) 2012-11-30 2021-07-27 Sio2 Medical Products, Inc. Controlling the uniformity of pecvd deposition on medical syringes, cartridges, and the like
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
WO2014134577A1 (en) 2013-03-01 2014-09-04 Sio2 Medical Products, Inc. Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus
KR102167557B1 (ko) 2013-03-11 2020-10-20 에스아이오2 메디컬 프로덕츠, 인크. 코팅된 패키징
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
EP2971227B1 (en) 2013-03-15 2017-11-15 Si02 Medical Products, Inc. Coating method.
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
CA2995225C (en) 2015-08-18 2023-08-29 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
EP3753039B1 (en) * 2018-02-13 2023-09-27 Evatec AG Methods of and apparatus for magnetron sputtering
DE102019119384A1 (de) * 2019-07-17 2021-01-21 VON ARDENNE Asset GmbH & Co. KG Prozessieranordnung, Sputtervorrichtung, Verfahren

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325394A (en) * 1963-07-01 1967-06-13 Ibm Magnetic control of film deposition
US4025410A (en) * 1975-08-25 1977-05-24 Western Electric Company, Inc. Sputtering apparatus and methods using a magnetic field
US4605469A (en) * 1983-11-10 1986-08-12 Texas Instruments Incorporated MBE system with in-situ mounting
US4588343A (en) * 1984-05-18 1986-05-13 Varian Associates, Inc. Workpiece lifting and holding apparatus
EP0173164B1 (en) * 1984-08-31 1988-11-09 Hitachi, Ltd. Microwave assisting sputtering
US4670126A (en) * 1986-04-28 1987-06-02 Varian Associates, Inc. Sputter module for modular wafer processing system

Also Published As

Publication number Publication date
EP0275021A2 (en) 1988-07-20
DE3854276D1 (de) 1995-09-14
KR880009454A (ko) 1988-09-15
EP0275021B1 (en) 1995-08-09
DE3854276T2 (de) 1996-01-11
US4853102A (en) 1989-08-01
EP0275021A3 (en) 1990-08-08

Similar Documents

Publication Publication Date Title
KR910001879B1 (ko) 스퍼터 성막방법 및 그 장치
US4610770A (en) Method and apparatus for sputtering
US5080772A (en) Method of improving ion flux distribution uniformity on a substrate
EP0555339B1 (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
JPH03240944A (ja) アルミニウム薄膜形成用対向ターゲット式スパッタ法及び装置
JP2674995B2 (ja) 基板処理方法およびその装置
JP3766762B2 (ja) マグネトロンスパッタリング方法および装置
JPS6128029B2 (ko)
JPH05295538A (ja) 両面スパッタ成膜方法及びその装置
JP4312400B2 (ja) スパッタ装置
JP2594935B2 (ja) スパツタ成膜方法と装置
JPS58199862A (ja) マグネトロン形スパツタ装置
JP2835462B2 (ja) スパッタ装置
JPH02185967A (ja) バイアススパッタリング方法およびその装置
JP3718237B2 (ja) スパッタリング方法
JPS6361387B2 (ko)
JP2789251B2 (ja) ダイポールリング型磁気回路を用いたスパッタ装置
JPS63307272A (ja) イオンビ−ムスパツタ装置
JP2789252B2 (ja) ダイポールリング型磁気回路を用いたスパッタ装置
JPH02290971A (ja) スパッタ装置
JPS63247366A (ja) マグネトロンスパツタ装置
JPH0791639B2 (ja) スパツタ方法
JPH01119666A (ja) マグネトロンスパッタリング装置
JPS6127464B2 (ko)
JPS6127463B2 (ko)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050316

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee