KR20210144762A - 구상 산화마그네슘, 그 제조 방법, 열전도성 필러 및 수지조성물 - Google Patents

구상 산화마그네슘, 그 제조 방법, 열전도성 필러 및 수지조성물 Download PDF

Info

Publication number
KR20210144762A
KR20210144762A KR1020217033079A KR20217033079A KR20210144762A KR 20210144762 A KR20210144762 A KR 20210144762A KR 1020217033079 A KR1020217033079 A KR 1020217033079A KR 20217033079 A KR20217033079 A KR 20217033079A KR 20210144762 A KR20210144762 A KR 20210144762A
Authority
KR
South Korea
Prior art keywords
magnesium oxide
ppm
resin
spherical magnesium
spherical
Prior art date
Application number
KR1020217033079A
Other languages
English (en)
Inventor
요시히사 오사키
토모아키 치카자와
케이스케 츠츠미
Original Assignee
다테호 가가쿠 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다테호 가가쿠 고교 가부시키가이샤 filed Critical 다테호 가가쿠 고교 가부시키가이샤
Publication of KR20210144762A publication Critical patent/KR20210144762A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명의 목적은, 진구도가 높고, 내습성 및 수지에 충진했을 때의 수지조성물의 유동성이 뛰어난 구상 산화마그네슘 및 그 제조 방법의 제공이다.
본 발명은, 붕소 300 ∼ 2000 ppm을 함유하고, 리튬의 함유량이 15 ppm 미만이며, 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)가 3 ∼ 200 ㎛의 범위이고, SEM 사진으로부터 읽어낼 수 있는 진구도가 1.00 ∼ 1.20인 것을 특징으로 하는 구상 산화마그네슘이다.

Description

구상 산화마그네슘, 그 제조 방법, 열전도성 필러 및 수지조성물
본 발명은 진구도(眞球度; sphericity)가 높고, 내습성(耐濕性) 및 수지에 충진(充塡)했을 때의 수지조성물의 유동성이 뛰어난 구상(球狀) 산화마그네슘, 그 제조방법, 상기 구상 산화마그네슘을 함유하는 열전도성 필러 및 그것을 함유하는 수지조성물에 관한 것이다.
최근 각종 전자기기의 고집적화, 고전력화 및 고속화 등에 의해 절연성의 방열성 필러(filler)에 요구되는 성능은 더욱 향상되고 있다. 종래 열전도성 필러로는 실리카(Silica), 알루미나(alumina), 질화알루미늄(aluminum nitride) 등이 널리 사용되고 있다. 그러나 실리카는 저렴하지만 열전도성이 낮고, 최근의 발열량의 증대에 대응하는 방열이 충분하지 않으며, 반도체용으로 사용한 경우 그 안정 동작 등에 문제가 있었다. 한편, 알루미나는 실리카보다 열전도성이 높아서 방열성은 개선되지만, 경도가 높아서 제조설비를 마모시키는 결점이 있었다. 또한, 질화알루미늄 등의 질화물계 필러는 열전도성이 뛰어나지만 고가이고, 적용할 수 있는 용도가 한정되어 있었다. 그래서, 열전도율이 실리카에 비해 1 자리 증가하고, 알루미나에 비해 약 2배이며, 또한 경도가 알루미나에 비해 낮아서 각 제조설비의 마모를 억제시킬 수 있고, 게다가 절연성이 높은 열전도성 필러로서 산화마그네슘이 검토되고 있다. 그러나 산화마그네슘은 실리카, 알루미나보다 흡습성이 높고, 대기중의 수분과 반응함으로써 필러의 체적 팽창에 의한 크랙(crack)이 발생하거나, 열전도성이 저하하거나 하는 등의 문제가 발생하므로, 장기간의 사용에서도 내습성이 뛰어난 산화마그네슘이 요구되고 있다. 또한 산화마그네슘을 열전도성 필러로서 사용할 경우, 보다 방열 성능을 얻기 위해서 수지조성물로의 높은 충진성도 요구되고 있다.
산화마그네슘을 열전도성 필러로서 사용할 경우, 높은 방열성을 얻기 위해서 높은 충진성이 필요하며, 이것에 대해 붕소 화합물 등을 첨가하고, 응집 상태나 입도(粒度) 분포를 제어한 산화마그네슘이 제안되고 있다(특허문헌 1). 그러나 해당 문헌의 산화마그네슘은 진구도가 높지 않고, 충진성이나 입자 표면의 평활성 및 내습성이 충분하지 않았다. 그 때문에, 진구도를 개선시키기 위해서, 붕소 화합물 대신에 리튬 화합물을 리튬 함유량이 15 ∼ 500 ppm이 되도록 첨가한 구상 산화마그네슘이 제안되기에 이르렀다(특허문헌 2). 또한 입자 표면의 평활성을 향상시키고 내습성을 얻기 위해서, 리튬이 아니라 붕소와 철을 포함하는 구상 산화마그네슘이 제안되고 있다(특허문헌 3).
특허문헌 1: 특개 2011-020870 공보 특허문헌 2: 특개 2016-088838 공보 특허문헌 3: 특개 2018-131378 공보
그러나 상술한 방법에 의해 얻어진 구상 산화마그네슘은, 내습성, 충진성은 개선되었지만, 수지에 충진했을 때 그 수지조성물의 혼련(混練)시의 유동성이 충분하지 않고 수지의 성형성에 문제가 있었다. 그래서, 본 발명은, 붕소 화합물을 첨가한 구상 산화마그네슘에 있어서, 진구도가 높고, 내습성 및 수지에 충진했을 때의 수지조성물의 유동성이 뛰어난 구상 산화마그네슘 및 그 제조 방법을 제공하는 것을 과제로 한다.
상기 과제를 해결하기 위해서, 본 발명자들은, 구상 산화마그네슘 중의 미량성분에 대해 착안하여 다양한 검토를 거듭한 결과, 리튬 원소가 일정량 이상 포함되어 있는 경우, 수지에 충진했을 때의 수지조성물의 유동성이 떨어지는 것을 알아내었다. 그리고 본 발명자들은, 붕소를 함유하는 구상 산화마그네슘에 있어서, 리튬 원소의 함유량을 극히 낮게 제어함으로써, 진구도가 높고 내습성이 뛰어나며, 또한 수지에 충진했을 때의 수지조성물의 유동성이 뛰어난 구상 산화마그네슘이 되는 것을 알아내었다.
즉, 본 발명은, 붕소 300 ∼ 2000 ppm을 함유하고, 또한 리튬 함유량을 15 ppm 미만으로 하고, 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)가 3 ∼ 200 ㎛의 범위이며, SEM 사진으로 읽어낼 수 있는 진구도가 1.00 ∼ 1.20인 구상 산화마그네슘에 있다.
또한, 본 발명은, 상기 구상 산화마그네슘을 함유하는 열전도성 필러에 있다.
또한, 본 발명은, 상기 구상 산화마그네슘을 함유하는 수지조성물에 있다.
또한, 본 발명은,
1) 염화마그네슘 수용액과 알칼리 수용액을 반응시켜서 수산화마그네슘 슬러리를 준비하는 공정과,
2) 상기 수산화마그네슘 슬러리를 건조 후 소성하고, 산화마그네슘 입자를 준비하는 공정과,
3) 상기 산화마그네슘 입자를 분산액으로 하여 습식 분쇄하는 공정과,
4) 상기 습식분쇄한 산화마그네슘을 분무 건조하는 공정과,
5) 상기 공정에 의해 조립(造粒)된 산화마그네슘을 소성하는 공정을 포함하고,
상기 1)∼4) 중 적어도 1개 이상의 공정에 있어서, 소성 후의 붕소 함유량이 300 ∼ 2000 ppm이 되도록 붕소의 양을 조정하고, 및 리튬 함유량이 15 ppm 미만이 되도록 리튬의 혼입량을 제어하는 것을 특징으로 하는 구상 산화마그네슘의 제조 방법에 있다.
본 발명에 따르면, 진구도가 높고 내습성이 뛰어나며, 또한 수지에 충진했을 때의 수지조성물의 유동성이 뛰어난 구상 산화마그네슘 및 그 제조 방법을 제공할 수 있다.
도 1은 실시예 2의 구상 산화마그네슘의 SEM 사진을 도시한다.
본 발명의 구상 산화마그네슘은, 붕소 300 ∼ 2000 ppm을 함유하고, 또한 리튬 함유량이 15 ppm 미만이며, 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)가 3 ∼ 200 ㎛의 범위이고, SEM 사진으로 읽어낼 수 있는 진구도가 1.00 ∼ 1.20이다. 또한, 명세서 중 ppm이란 달리 언급이 없는 한 질량ppm을 의미한다.
본 발명에서는, 붕소 300 ∼ 2000 ppm을 함유하고, 또한 리튬을 15 ppm 미만으로 제어함으로써, 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)가 3 ∼ 200 ㎛의 범위이고, SEM 사진으로 읽어낼 수 있는 진구도가 1.00 ∼ 1.20으로 진구도가 높으며, 내습성 및 수지에 충진했을 때의 수지조성물의 유동성이 뛰어난 구상 산화마그네슘을 얻을 수 있다.
본 발명에서는, 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)가 3 ∼ 200 ㎛라는 방열 성능을 높일 수 있는 비교적 큰 입자 크기의 범위이고, SEM 사진으로 읽어낼 수 있는 진구도가 1.00 ∼ 1.20으로 진구도가 높은 구상 산화마그네슘을 얻을 수 있다. 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)는, 바람직하게는 15 ∼ 150 ㎛, 더 바람직하게는 25 ∼ 130 ㎛로 할 수 있다. 또한, 여기서, 진구도는 SEM 사진으로 읽어낼 수 있는 진구도를 말하고, 1.00 ∼ 1.20, 바람직하게는 1.00 ∼ 1.15, 더 바람직하게는 1.00 ∼ 1.10으로 하는 것이 좋다. 특히, 본 발명에서의 산화마그네슘의 리튬 함유량은 15 ppm 미만이기 때문에, 후술하는 이유에 의해서 진구도를 1.00 ∼ 1.10으로 높게 하는 것이 가능하다. 또한, 본 발명에서는, 주사형전자현미경(SEM)을 이용하여 촬영한 전자현미경 사진의 100개의 입자에 대해서, 입자의 중심을 통과하는 장경(長徑)과 단경(短徑)의 길이를 계산하여 장경/단경의 비를 구하고, 그 평균값을 진구도로 하고 있다.
본 발명에 있어서, 그 산화마그네슘의 진구도가 높고, 내습성 및 수지에 충진했을 때의 수지조성물의 유동성이 뛰어난 이유는, 붕소를 첨가하는 것과, 게다가 불순물 리튬의 함유량을 극히 낮게 제어하기 때문이다. 붕소 함유량은 300 ∼ 2000 ppm, 바람직하게는 400 ∼ 1500 ppm, 더 바람직하게는 500 ∼ 1000 ppm으로 하는 것이 좋다. 붕소를 첨가함으로써, SEM 사진으로 읽어낼 수 있는 진구도를 1.00 ∼ 1.20, 바람직하게는 1.00 ∼ 1.15, 더 바람직하게는 1.00 ∼ 1.10으로 할 수 있으며, 내습성 시험에서의 168시간 경과 후의 중량 증가율을 1 중량% 미만으로 할 수 있다. 그리고, 리튬 함유량은 15 ppm 미만, 바람직하게는 10 ppm 미만, 더 바람직하게는 1 ppm 미만으로 하는 것이 좋다. 이 때 산화마그네슘의 리튬 함유량이 충분히 낮게 제어됨으로써, 수지에 충진했을 때의 수지조성물의 유동성이 향상된다. 여기서, 산화마그네슘의 리튬 함유량은, 보다 낮게 제어될수록 산화마그네슘의 진구도를 보다 향상시키는 경향이 있다.
본 발명에 있어서, 입자의 평활성 및 흡습성에 영향을 미치는 BET 비표면적은, 0.01 ∼ 1.00 m2/g, 바람직하게는 0.02 ∼ 0.80 m2/g, 더 바람직하게는 0.02 ∼ 0.50 m2/g으로 할 수 있다.
본 발명에 있어서, 철의 함유량은 특별히 제한되지 않지만, 진구도 및 내습성의 관점에서, 예를 들면 100 ∼ 1500 ppm이 바람직하고, 200 ∼ 1300 ppm이 더 바람직하며, 300 ∼ 1000 ppm이 특히 바람직하다.
본 발명의 구상 산화마그네슘의 제조 방법에 특별히 제한은 없지만, 예를 들면 아래와 같이 제조할 수 있다.
1) 염화마그네슘 수용액과 알칼리 수용액을 반응시켜서 수산화마그네슘 슬러리를 얻고,
이어서,
2) 슬러리를 여과, 수세, 건조시킨 후 소성하여 산화마그네슘 입자를 얻으며,
3) 상기 산화마그네슘 입자를 분산액으로 하고, 바람직하게는 유기용매를 첨가하고, 분산액으로 하여 습식 분쇄를 행한 후,
4) 분무 건조를 행하고,
5) 상기에 의해 얻어진 산화마그네슘을 소성함으로써, 원하는 구상 산화마그네슘을 얻는다. 이 때, 최종 소성까지, 최종 소성 후의 구상 산화마그네슘의 붕소 함유량이 300 ∼ 2000 ppm이 되도록 붕소원을 혼합 및/또는 첨가 등으로 조정한다. 또한, 최종 소성 후의 구상 산화마그네슘의 리튬 함유량이 15 ppm 미만이 되도록, 필요에 따라서 리튬 함유량을 저감시키는 것에 의해 리튬의 혼입량을 제어한다.
붕소 함유량의 조정은, 구체적으로는, 예를 들면 a) 염화마그네슘 용액 중에 붕소원을 첨가하는, b) 생성된 수산화마그네슘 슬러리에 붕소원을 첨가하는, c) 산화마그네슘 입자에 붕소원을 혼합하는, d) 산화마그네슘 입자의 습식 분쇄 중에 붕소원을 첨가하는 것에 의해 최종적으로 얻어진 구상 산화마그네슘 중의 붕소 함유량을 조정한다.
붕소원으로는 붕소를 포함하는 화합물이면 특별히 한정되지 않지만, 예를 들면 붕산, 산화붕소, 수산화붕소, 질화붕소, 탄화붕소, 붕산암모늄 등을 사용할 수 있다. 다만, 리튬을 구조중에 포함하는 붕소계 화합물 또는 불순물로서 리튬을 다량으로 포함하는 붕소원은 본 발명에 적합하지 않다.
최종 소성 후의 구상 산화마그네슘의 붕소 함유량이 300 ∼ 2000 ppm이 되도록 붕소원을 조정하는 이유는, 붕소 함유량이 300 ppm 미만인 경우에는, 표면이 평활화되지 않고, 내습성이 나빠진다. 또한, 붕소 함유량이 2000 ppm을 넘을 경우에는, 구상의 일부에 함몰(凹)이 형성되거나, 도넛형의 산화마그네슘이 형성되어, 진구도가 높은 구상 산화마그네슘을 얻을 수 없기 때문이다.
그리고, 최종 소정 후의 구상 산화 마그네슘의 리튬 함유량을 15 ppm 미만으로 극히 낮게 제어함으로써, 수지에 충진했을 때의 수지조성물의 유동성을 향상시킬 수 있다. 여기서, 리튬 함유량은 보다 적은 쪽이 바람직하다. 한편으로, 15 ppm 이상 혹은 15 ppm을 넘을 경우, 본 발명의 효과는 얻을 수 없게 된다.
리튬 함유량을 저감시키는 방법은 특별히 한정되지 않지만, 예를 들면 전구체 수산화마그네슘 케이크의 재슬러리화와 여과 후 수세를 반복하는 리펄프 세정, 수산화마그네슘의 수열법(水熱法)에 의한 불순물 흡착 침전물의 제거, 알칼리원과의 반응시에 있어서의 일차침전물의 제거, 염화마그네슘 수용액의 흡착제에 의한 전처리의 실시, 소성시의 승온 프로파일 조정에 의한 리튬 제거의 촉진 등, 이미 알고 있는 프로세스를 이용할 수 있으며, 또는 그들을 조합하여 이용할 수 있다.
상기 염화마그네슘 수용액은, 예를 들면 염화마그네슘 6 수화물, 염화마그네슘 2 수화물, 염화마그네슘 무수화물, 간수, 바닷물 등, 및 이들의 조합으로부터 선택하여 사용할 수 있다.
상기 알칼리 수용액으로는, 예를 들면 수산화나트륨 수용액, 수산화칼슘 수용액, 암모니아수 등, 및 이들의 조합으로부터 선택하여 사용할 수 있다.
염화마그네슘 수용액과 알칼리 수용액을 반응시켜서 얻은 수산화마그네슘 슬러리는, 예를 들면 해당 기술 분야에서의 일반적인 방법에 의해 여과, 수세, 건조시킨 후 소성하여 산화마그네슘 입자로 한다. 그리고 얻어진 산화마그네슘 입자는, 용매에 분산시켜서 분산액(예를 들면 슬러리)으로 하며, 이것을 습식 분쇄하고 분무 건조함으로써 조립한다. 이 때의 용매는 특별히 한정되지 않지만, 예를 들면 수계(水系), 물-유기용매 혼합계, 메탄올, 에탄올 등의 알코올류, 아세톤(acetone) 등의 케톤류, 초산에틸(ethyl acetate) 등의 에스테르류, 디에틸에테르(Diethyl ether) 등의 에테르류, 테트라히드로푸란(tetrahydrofuran), 톨루엔(toluene) 등의 방향족 화합물 용매 등, 공지의 용매를 사용할 수 있다.
분무 건조 방법은 특별히 한정되지 않지만, 예를 들면 상기 습식 분쇄 후의 산화마그네슘 분산액(예를 들어 슬러리)을 회전디스크나 노즐로부터 분무하여 산화마그네슘 입자를 얻는 스프레이 드라이법 등을 이용하는 것이 바람직하다. 조작 조건은 슬러리 점도나 슬러리 중의 분체(粉體)의 입도, 목적으로 하는 입자 크기 등에 따라서 적당히 조정한다. 또한, 슬러리에는 분산제를 적당히 첨가해도 된다. 그 조작 조건은 특별히 한정된 것은 아니지만, 예를 들면 회전디스크나 노즐로부터, 점도를 10 ∼ 3000 cps로 조정한 슬러리를, 유량을 적당히 조절하여 80 ℃ ∼ 250 ℃의 기류 중에 분무하고, 1 ∼ 200 ㎛ 정도의 입자를 제조할 수 있다. 또한, 습식 분쇄 및 분무 시의 분산액의 농도는, 예를 들면 산화마그네슘이 50 ∼ 70 wt%가 되도록 조정하는 것이 바람직하다. 여기서, 분무 조건을 적절하게 설정함으로써, 얻어지는 구상 산화마그네슘의 누적 50% 입자 크기(D50) 및 BET 비표면적을 조정할 수 있다. 또한, 분무 조건을 적절하게 설정함으로써, 얻어지는 구상 산화마그네슘의 진구도를 조정할 수 있다.
조립한 산화마그네슘의 소성 조건은 산화마그네슘 입자가 소결되는 범위라면 특별히 한정되지 않지만, 온도를 1000 ℃ ∼ 1800 ℃로 하는 것이 바람직하고, 1100 ℃ ∼ 1700 ℃로 하는 것이 더 바람직하며, 1200 ℃ ∼ 1600 ℃로 하는 것이 특히 바람직하다. 소성 시간은 소성 온도에 따르지만 0.5 ∼ 10 시간인 것이 바람직하다. 소성 온도는 1000 ℃가 되지 못하면 충분히 소결되지 않고, 1800 ℃를 넘으면 입자끼리가 소결되어 거칠고 엉성한 응집체를 형성하기 때문에 상기의 범위로 조정한다. 여기서, 소성 조건을 적절하게 조정함으로써, 얻어지는 구상 산화마그네슘의 BET 비표면적을 조정할 수 있다.
본 발명의 구상 산화마그네슘은, 표면 처리를 하지 않더라도 충분한 내습성을 갖는 것을 특징으로 하지만, 더욱 내습성을 개선할 목적으로 공지의 방법을 이용하여 표면 처리를 실시할 수도 있다. 본 발명의 구상 산화마그네슘에 표면 처리를 실시함에 있어서, 사용하는 표면처리제는 특별히 한정되지 않지만, 예를 들면 콜로이달 실리카(colloidal silica), 실란계 커플링제, 티타니아졸(titania sol), 티타네이트계 커플링제, 인 화합물, 알루미나졸(alumina sol), 알루미네이트계 커플링제, 지르코늄계 커플링제 등을 이용할 수 있다.
실란계 커플링제로서는, 예를 들면 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리알콕시실란(vinyl trialkoxysilane), 글리시독시프로필트리알콕시실란(glycidoxypropyltrialkoxysilane), 메타크릴록시프로필메틸디알콕시실란(methacryloxypropylmethyldialkoxysilane) 등을 들 수 있다.
티타네이트계 커플링제로서는, 예를 들면 테트라이소프로필 티타네이트(tetraisopropyl titanate), 테트라노르말부틸 티타네이트(tetra-n-butyl titanate), 테트라옥틸 티타네이트(tetra octyl titanate), 테트라스테아릴 티아네이트(tetrastearyl titanate), 이소프로필트리이소스테아로일 티타네이트(isopropyltriisostearoyl titanate), 테트라옥틸비스(디트리덴실 포스파이트) 티타네이트(tetraoctylbis(ditridencyl phosphite) titanate), 비스(디옥틸파이로호스페이트) 옥시 아세테이트 티타네이트(bis(dioctylpyrophosphate) oxyacetate titanate) 등을 들 수 있다.
인 화합물로서는, 예를 들면 산화마그네슘과 반응하여 인산마그네슘계 화합물을 형성할 수 있는 화합물이면 특별히 한정되지 않지만, 예를 들면 인산, 인산염, 산성인산 에스테르를 들 수 있다. 이들은 단독으로 사용해도 되고, 2종류 이상을 병행해도 된다. 산성인산 에스테르로서는, 이소프로필산 호스페이트(isopropyl acid phosphate), 2-에틸헥실산 호스페이트(2-ethylhexyl acid phosphate), 올레일산 호스페이트(oleyl acid phosphate), 메틸산 호스페이트(methyl acid phosphate), 에틸산 호스페이트(ethyl acid phosphate), 프로필산 호스페이트(propyl acid phosphate), 부틸산 호스페이트(butyl acid phosphate), 라우릴산 호스페이트(lauryl acid phosphate), 스테아릴산 호스페이트(stearyl acid phosphate are mentioned) 등을 들 수 있다.
알루미네이트계 커플링제로서는, 예를 들면 알루미늄 이소프로필레이트(aluminum isopropylate), 모노 sec-부톡시 알루미늄 디이소프로필레이트(mono sec-butoxy aluminum diisopropylate), 알루미늄 sec-부틸레이트(aluminium sec-butylate), 알루미늄 에틸아세토아세테이트 디이소프로필레이트(aluminum ethylacetoacetate diisopropylate), 알루미늄 트리스(에틸아세토아세테이트)(aluminum tris(ethylacetoacetate)), 알루미늄 알킬아세토아세이트 디이소프로필레이트(aluminum alkylacetoacetate diisopropylate) 등을 들 수 있다.
지르코늄계 커플링제로서는, 예를 들면 노르말프로필 지르코네이트(n-propyl zirconate), 노르말부틸 지르코네이트(n-butyl zirconate) 등을 들 수 있다.
본 발명의 구상 산화마그네슘은 진구도가 높고, 내습성 및 수지에 충진할 때의 수지조성물의 유동성이 뛰어나며 수지로의 충진성도 우수하기 때문에, 바람직하게 충전재로서 수지에 배합할 수 있으며, 열전도성 필러로서 뛰어나다. 본 발명에서 사용가능한 수지로서는, 예를 들면 열경화성 수지 또는 열가소성 수지를 들 수 있다. 열경화성 수지로서는 특별히 한정되지 않지만, 예를 들면 페놀 수지(phenol resin), 요소 수지(urea resin), 멜라민 수지(melamine resin), 알키드 수지(alkyd resin), 폴리에스테르 수지(Polyester resin), 에폭시 수지(epoxy resin), 디알릴프탈레이트 수지(diallyl phthalate resin), 폴리우레탄 수지(polyurethane resin) 또는 실리콘 수지를 들 수 있다. 열가소성 수지로서는 특별히 한정되지 않지만, 예를 들면 폴리에틸렌 수지(polyethylene resin), 폴리아크릴 수지(polyacrylic resin), 에틸렌-에틸아크릴산 수지(ethylene-ethylacrylate resin), 폴리아미드 수지(polyamide resin), 폴리아세탈 수지(polyacetal resin), 폴리카보네이트 수지(polycarbonate resin), 폴리부틸렌테레프탈레이트 수지(polybutylene terephthalate resin), 폴리설폰 수지(polysulfone resin), 폴리아미드이미드 수지(polyamideimide resin), 폴리에테르이미드 수지(polyetherimide resin), 폴리아릴레이트 수지(polyarylate resin), 폴리페닐렌설파이드 수지(polyphenylenesulfide resin), 폴리에테르에테르케톤 수지(polyether ether ketone resin), 불소 수지(fluoro resin) 또는 액정 폴리머(liquid crystalline polymer)를 들 수 있다.
본 발명의 수지조성물에서의 구상 산화마그네슘의 배합량은, 수지 조성물에 요구되는 특성에 따라서 적당히 결정하면 되고 특별히 한정되지 않는다. 그러나, 일예로서 수지 100 질량부에 대해서 구상 산화마그네슘 0.1 ∼ 100 질량부의 범위에서 사용하면 좋다.
본 발명의 구상 산화마그네슘을 포함하는 수지조성물은, 그 수지의 특성에 따라서 다양한 분야에서 이용할 수 있다. 그러나, 본 발명의 구상 산화마그네슘은 열전도성이 뛰어나기 때문에, 특히 방열성이 요구되는 용도에서 바람직하게 사용할 수 있다. 또한, 본 발명의 수지 조성물은 열전도성 및 내습성이 뛰어난 반도체 봉지 재료로서 이용할 수도 있다.
실시예
하기의 실시예에 의해 본 발명을 상세하게 설명하지만, 이들 실시예는 본 발명을 어떠한 의미에서도 제한하는 것은 아니다.
<측정 방법·평가 방법>
(1) 원소 함유량의 측정 방법
원소 함유량의 측정은 ICP 발광 분광 분석에 의해 행했다. 측정 시료를, 12N의 염산(시약특급)에 첨가하고 가열하여 완전히 용해시킨 후, ICP 측정 장치(PS3520 VDD, Hitachi High-Tech Science Corporation제)를 이용하여 각 원소의 함유량을 측정했다. 또한, 하기 표 1에서는 리튬 함유량이 검출 한계를 밑돌 경우, 추종량(trace amount)으로서 <1 ppm으로 표기했다.
(2) BET 비표면적의 측정 방법
비표면적 측정 장치(Macsorb, Mountech Co.Ltd.제)를 사용하여, 질소 가스를 이용한 가스 흡착법(BET법)에 의해 BET 비표면적을 측정했다.
(3) 체적 기준의 누적 50% 입자 크기(D50)
측정 시료 0.1 × 10-3 kg을 정밀하게 칭량(秤量)하고, 40 mL의 메탄올로 용해하여, 레이저 회절 산란식 입도 분포 측정 장치(MT3300, Nikkiso Co., Ltd.제)를 이용하여 측정했다.
(4) SEM 사진으로 읽어낼 수 있는 진구도 및 표면의 평활성
주사형전자현미경(SEM)(JSM6510LA, JEOL Ltd.(日本電子株式會社)제)을 이용했다. 촬영한 전자현미경 사진의 100개의 입자에 대해서, 입자의 중심을 통과하는 장경(長徑)과 단경(短徑)의 길이를 계산하여 장경/단경의 비를 구하고, 그 평균값을 진구도로 했다. 또한, 주사형전자현미경(SEM)으로 촬영한 전자현미경 사진의 구상 산화마그네슘의 표면 상태에 대해서, 구상 산화마그네슘 표면에 미세입자가 거의 존재하지 않고 표면이 평활한 것을 ○, 구상 산화마그네슘 표면에 미세입자가 복수 존재하지만 표면이 평활하거나 또는 표면에 미세입자가 거의 존재하지 않지만 표면이 울퉁불퉁하여 평활하지 않은 것을 △, 구상 산화마그네슘 표면에 미세입자가 복수 존재하고 표면이 울퉁불퉁하여 평활하지 않은 것을 ×로 하여 평가했다.
(5) 항온항습 시험에 의한 내습성 평가
구상 산화마그네슘의 내습성은 항온항습 시험에 의한 중량 증가율에 의해 평가했다. 항온항습기는 어드밴테크 토요 주식회사(Advantec Toyo Co., Ltd.)제의 THN040FA를 사용했다. 구상 산화마그네슘 10 g을, 항온항습기를 이용하여 85 ℃ 85 % RH의 환경하에 168 시간 노출시킨 후의 중량 증가율을 구했다.
(6)멜트 플로우 레이트(Melt Flow Rate) 측정에 의한 수지 유동성 평가
우선, 측정용 시료가 되는 수지조성물을 이하의 순서로 조제했다. EEA(Ethylene-Ethylacrylate Copolymer)(REXPEARLTM EEA A1150, 일본 폴리에틸렌 주식회사제) 100 g을 용융 후, 롤(roll) 혼련기(混練機)를 이용하여 구상 산화마그네슘 333 g을 소량씩 혼련 상태를 보면서 약 10분 동안 첨가하고, 또한 10분간 마무리 혼련을 행했다. 이 때의 롤 간격은 0.5 mm였다. 혼련 종료 후 컴파운드(compound)를 떼어 내고, 회수한 콤파운드를 5 mm 각 정도로 재단, 진공건조기로 90 ℃ × 1 시간 건조하고, 멜트 플로우 레이트 측정용 시료로 했다. 그리고, 이 측정용 시료(수지조성물)에 대해서 JIS-K7210에 준거하여 측정 온도 230 ℃, 하중 2.16 Kg으로 측정했다.
(7) 혼련 토크(torque) 측정에 의한 수지 혼련성 평가
EEA(Ethylene-Ethylacrylate Copolymer)(REXPEARLTM EEA A1150, 일본 폴리에틸렌 주식회사제)에, 구상 산화마그네슘을 전체의 45 wt%가 되도록 배합한 혼합물을, LABO PLASTOMILL(도요세이키제작소(東洋精機製作所)제)을 이용하여, 회전수 50 rpm, 160 ℃에서 용융 혼련했다. 혼련 개시로부터 360 초 후의 시점에서 혼련기의 교반 날개를 회전시키는데 필요한 혼련 토크를 측정함으로써, 수지 혼련성을 평가했다. 혼련 토크가 낮을수록 수지 혼련성이 좋고, 구상 산화마그네슘을 배합한 수지의 유동성 즉 성형성, 가공성이 좋다고 평가할 수 있다.
<실시예 1>
무수 염화마그네슘(MgCl2)을 이온교환수에 용해하여, 약 3.5 mol/L의 염화마그네슘 수용액을 조제했다. MgCl2의 반응율이 90몰(mol)%가 되도록, MgCl2 용액과 25% NaOH 용액을 각각 정량 펌프로 리액터(reactor)로 보내서 연속 반응을 실시했다. 그 후 여과, 수세, 건조하여 수산화마그네슘을 얻었다. 얻어진 수산화마그네슘에 순수를 첨가하여 슬러리화하고, 1시간 교반한 후, 건조 수산화마그네슘 중량에 대해서 40배 양의 순수로 수세, 여과, 건조하고, 다시 수산화마그네슘을 얻었다. 이 세정 조작을 5번 반복했다. 그 후, 다시 순수를 첨가하여 슬러리화하고, 이것에 최종적으로 얻어지는 구상 산화마그네슘 중의 붕소 함유량이 400 ppm이 되도록 붕산(KANTO CHEMICAL CO.,INC.제, 시약특급)을 첨가하고, 철 함유량이 300 ppm이 되도록 산화철(II)(Hayashi Pure Chemical Ind.Ltd.제, 화학용)을 첨가했다. 그 후 여과, 건조하여 붕산, 철 함유량을 조정한 수산화마그네슘을 얻었다. 얻어진 수산화마그네슘을 900 ℃에서 1 시간 소성하여 산화마그네슘 입자를 얻었다. 상기 산화마그네슘 입자에 유기용매를 농도가 60 wt%가 되도록 첨가했다. 그 후 볼밀(ball mill)을 이용하여 4 시간 습식 분쇄를 행한 후, 스프레이 드라이법(회전수 12000 rpm)에 의한 분무 건조를 행했다. 얻어진 분무 건조 후의 산화마그네슘을, 전기로를 이용하여 1600 ℃, 1 시간 소성하고, 목적의 구상 산화마그네슘을 얻었다.
<실시예 2>
스프레이 드라이법의 조건을 회전수 6,000 rpm으로 한 것 외에는, 실시예 1과 동일한 방법에 의해 구상 산화마그네슘을 얻었다.
<실시예 3>
최종적으로 얻어지는 구상 산화마그네슘 중의 리튬 함유량이 10 ppm이 되도록 탄산 리튬(간토화학사제, Cica 특급)을 첨가하고, 스프레이 드라이법의 조건을 회전수 6,000 rpm으로 한 것 외에는, 실시예 1과 동일한 방법에 의해 구상 산화마그네슘을 얻었다.
<비교예 1>
최종적으로 얻어지는 구상 산화마그네슘 중의 리튬 함유량이 18 ppm이 되도록 탄산 리튬(간토화학사제, Cica 특급)을 첨가하고, 철 함유량이 800 ppm이 되도록 산화철(II)(Hayashi Pure Chemical Ind.Ltd.제, 화학용)을 첨가한 것 외에는, 실시예 1과 동일한 방법에 의해 구상 산화마그네슘을 얻었다.
<비교예 2>
최종적으로 얻어지는 구상 산화마그네슘 중의 리튬 함유량이 25 ppm이 되도록 탄산 리튬(간토화학사제, Cica 특급)을 첨가하고, 철 함유량이 500 ppm이 되도록 산화철(II)(Hayashi Pure Chemical Ind.Ltd.제, 화학용)을 첨가하며, 스프레이 드라이법의 조건을 회전수 6,000 rpm으로 한 것 외에는, 실시예 1과 동일한 방법에 의해 구상 산화마그네슘을 얻었다.
<결과>
실시예 1∼3 및 비교예 1∼2의 구상 산화마그네슘에 대해서, 상기의 측정 및 멜트 플로우 레이트(Melt Flow Rate) 측정에 의한 수지 유동성 평가를 행했다. 결과를 아래의 표 1에 나타낸다.
Figure pct00001
표 1로부터 명확한 바와 같이, 실시예 1∼3의 구상 산화마그네슘은 진구도가 높고 내습성이 뛰어났다. 또한, 멜트 플로우 레이트 측정에 의한 수지 유동성 평가 결과, 리튬 함유량을 15 ppm 미만으로 극히 낮게 제어하여 제조한 실시예 1 ∼ 3의 구상 산화마그네슘은, 리튬을 15 ppm 이상 함유하도록 제조한 비교예 1 및 2의 산화마그네슘과 비교하여 수지 유동성이 높았다.
또한, 실시예 1 ∼ 3 및 비교예 1 ∼ 2의 구상 산화마그네슘에 대해서, 혼련 토크 측정에 의한 수지 혼련성 평가를 행했다. 결과를 아래의 표 2에 나타낸다.
Figure pct00002
표 2와 같이, 실시예 1의 구상 산화마그네슘을 이용했을 때의 혼련 토크는 19.0 N·m 미만의 낮은 값이었지만, 비교예 1의 구상 산화마그네슘을 이용했을 때의 혼련 토크는 19.0 N·m 이상의 높은 값이었다. 또한, 상기 이외에, 실시예 2 및 3의 구상 산화마그네슘에 대해서는 실시예 1과 마찬가지로 혼련 토크는 19.0 N·m 미만의 낮은 값이고, 비교예 2의 구상 산화마그네슘에 대해서는 비교예 1과 마찬가지로 혼련 토크는 19.0 N·m 이상의 높은 값이었다. 이와 같이, 리튬 함유량을 15 ppm 미만으로 극히 낮게 제어하여 제조한 구상 산화마그네슘은, 리튬을 15 ppm 이상 함유하도록 제조한 구상 산화마그네슘보다도, 구상 산화마그네슘을 배합한 수지의 유동성이 뛰어난 것이 나타내어졌다.
이것에 의해, 본 발명의 구상 산화마그네슘은, 진구도가 높고, 내습성이 뛰어나며, 또한 수지에 충진했을 때의 수지조성물의 유동성이 뛰어남을 알 수 있었다. 따라서, 본 발명의 구상 산화마그네슘은 뛰어난 열전도성 필러로서 유용함을 알 수 있었다.
본 발명의 구상 산화마그네슘은, 진구도가 높고, 내습성이 뛰어나며, 또한 수지에 충진했을 때의 수지조성물의 유동성이 뛰어나기 때문에, 우수한 열전도성 필러로서 유용하다.

Claims (6)

  1. 붕소 300 ∼ 2000ppm을 함유하고, 리튬의 함유량이 15 ppm 미만이며, 레이저 회절 산란식 입도 분포 측정에 의한 체적 기준의 누적 50% 입자 크기(D50)가 3 ∼ 200 ㎛의 범위이고, SEM 사진으로 읽어낼 수 있는 진구도가 1.00 ∼ 1.20인 것을 특징으로 하는 구상 산화마그네슘.
  2. 제1항에 있어서,
    누적 50% 입자 크기(D50)가 15 ∼ 150 ㎛ 이하인 구상 산화마그네슘.
  3. 제1항 또는 제2항에 있어서,
    BET 비표면적이 0.01 ∼ 1.00 m2/g인 구상 산화마그네슘.
  4. 제1항 내지 제3항 중 어느 한 항에 기재한 구상 산화마그네슘을 함유하는 열전도성 필러.
  5. 제4항에 기재한 열전도성 필러를 함유하는 수지조성물.
  6. 1) 염화마그네슘 수용액과 알칼리 수용액을 반응시켜서 수산화마그네슘 슬러리를 준비하는 공정과,
    2) 상기 수산화마그네슘 슬러리를 건조 후 소성하고, 산화마그네슘 입자를 준비하는 공정과,
    3) 상기 산화마그네슘 입자를 분산액으로 하여 습식 분쇄하는 공정과,
    4) 상기 습식분쇄한 산화마그네슘을 분무 건조하는 공정과,
    5) 상기 공정에 의해 조립된 산화마그네슘을 소성하는 공정을 포함하고,
    상기 1) ∼ 4) 중 적어도 1개 이상의 공정에 있어서, 소성 후의 붕소 함유량이 300 ∼ 2000 ppm이 되도록 붕소의 양을 조정하고, 및, 리튬 함유량이 15 ppm 미만이 되도록 리튬의 혼입량을 제어하는 것을 특징으로 하는 구상 산화마그네슘의 제조 방법.
KR1020217033079A 2019-03-29 2020-03-27 구상 산화마그네슘, 그 제조 방법, 열전도성 필러 및 수지조성물 KR20210144762A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2019-066925 2019-03-29
JP2019066925 2019-03-29
PCT/JP2020/013879 WO2020203710A1 (ja) 2019-03-29 2020-03-27 球状酸化マグネシウム、その製造方法、熱伝導性フィラー及び樹脂組成物

Publications (1)

Publication Number Publication Date
KR20210144762A true KR20210144762A (ko) 2021-11-30

Family

ID=72667845

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217033079A KR20210144762A (ko) 2019-03-29 2020-03-27 구상 산화마그네슘, 그 제조 방법, 열전도성 필러 및 수지조성물

Country Status (6)

Country Link
US (1) US20220219999A1 (ko)
JP (1) JPWO2020203710A1 (ko)
KR (1) KR20210144762A (ko)
CN (1) CN113874323A (ko)
TW (1) TW202041463A (ko)
WO (1) WO2020203710A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6831498B1 (ja) * 2019-03-29 2021-02-17 タテホ化学工業株式会社 球状酸化マグネシウム、その製造方法、熱伝導性フィラー及び樹脂組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020870A (ja) 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd 酸化マグネシウム粒子、その製造方法、放熱性フィラー、樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2016088838A (ja) 2014-10-31 2016-05-23 堺化学工業株式会社 酸化マグネシウム粒子、その製造方法、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2018131378A (ja) 2017-02-17 2018-08-23 タテホ化学工業株式会社 球状酸化マグネシウム及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108218B2 (ja) * 2005-09-28 2012-12-26 日本化学工業株式会社 酸化マグネシウム粉末、酸化マグネシウム成形体用前駆体、それらの製造方法および酸化マグネシウム成形体並びに酸化マグネシウム焼結体ペレット
JP5415215B2 (ja) * 2009-10-02 2014-02-12 タテホ化学工業株式会社 分散性に優れる酸化マグネシウム粉末及びその製造方法
JP5773695B2 (ja) * 2011-03-23 2015-09-02 タテホ化学工業株式会社 球状の水酸化マグネシウム粒子、及び球状の酸化マグネシウム粒子、並びにそれらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020870A (ja) 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd 酸化マグネシウム粒子、その製造方法、放熱性フィラー、樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2016088838A (ja) 2014-10-31 2016-05-23 堺化学工業株式会社 酸化マグネシウム粒子、その製造方法、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2018131378A (ja) 2017-02-17 2018-08-23 タテホ化学工業株式会社 球状酸化マグネシウム及びその製造方法

Also Published As

Publication number Publication date
TW202041463A (zh) 2020-11-16
US20220219999A1 (en) 2022-07-14
WO2020203710A1 (ja) 2020-10-08
JPWO2020203710A1 (ko) 2020-10-08
CN113874323A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
KR102404942B1 (ko) 구상 산화마그네슘 및 그 제조방법
JP7005523B2 (ja) 窒化ホウ素凝集体を製造するためのプロセス
JP5972179B2 (ja) 被覆酸化マグネシウム粉末及びその製造方法
JP5356665B2 (ja) ジルコニア焼結体
CN112752732B (zh) 球状氧化镁、其制造方法、导热性填料和树脂组合物
JP5773110B2 (ja) 酸化マグネシウム粒子、酸化マグネシウム粒子の製造方法、樹脂組成物及び該樹脂組成物を用いた成形体、接着剤若しくはグリース
KR20210144762A (ko) 구상 산화마그네슘, 그 제조 방법, 열전도성 필러 및 수지조성물
JP4046491B2 (ja) 複酸化物被覆酸化マグネシウムの製造方法
JP2012121742A (ja) 球状窒化アルミニウム粉末の製造方法
CN107428550B (zh) 氧化镁粉末及含其的树脂组成物、以及氧化镁粉末的制造方法
JP2003034522A (ja) 被覆酸化マグネシウム粉末の製造方法
TW202132222A (zh) 被覆氧化鋯微粒子及其製造方法
TW201908241A (zh) 矽酸鹽化合物微粒子及其製造方法
WO2023063413A1 (ja) 球状酸化マグネシウム、その製造方法、樹脂フィラー及び樹脂組成物
JP2023059538A (ja) 球状酸化マグネシウム、その製造方法、樹脂フィラー及び樹脂組成物
KR102497275B1 (ko) 나트륨 제거제를 이용한 알루미나의 고순도화 및 초미립 알루미나 입자의 제조방법
WO2023163057A1 (ja) 負熱膨張材及び複合材料
KR102612361B1 (ko) α-알루미나 입자를 포함하는 연마재 및 그 제조 방법
JP7364418B2 (ja) 熱膨張抑制フィラー、その製造方法及びそれを含む複合材料
CN118103330A (zh) 球状氧化镁、其制造方法、树脂填料及树脂组合物
KR20200118689A (ko) 리튬 치환된 질화알루미늄 분말 및 이를 제조하기 위한 방법