KR20210016482A - MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 - Google Patents
MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 Download PDFInfo
- Publication number
- KR20210016482A KR20210016482A KR1020217003513A KR20217003513A KR20210016482A KR 20210016482 A KR20210016482 A KR 20210016482A KR 1020217003513 A KR1020217003513 A KR 1020217003513A KR 20217003513 A KR20217003513 A KR 20217003513A KR 20210016482 A KR20210016482 A KR 20210016482A
- Authority
- KR
- South Korea
- Prior art keywords
- conductivity
- model
- volume
- map
- tissue
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/36025—External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0531—Measuring skin impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0456—Specially adapted for transcutaneous electrical nerve stimulation [TENS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0476—Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/08—Arrangements or circuits for monitoring, protecting, controlling or indicating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36002—Cancer treatment, e.g. tumour
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36031—Control systems using physiological parameters for adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Neurology (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- High Energy & Nuclear Physics (AREA)
- Social Psychology (AREA)
- Oncology (AREA)
- Child & Adolescent Psychology (AREA)
- Psychiatry (AREA)
- Developmental Disabilities (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physiology (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physical Education & Sports Medicine (AREA)
- Neurosurgery (AREA)
- Dermatology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Electrotherapy Devices (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
해부학적 부피 내의 표적 조직에 전계를 가하는 데 전극을 사용하는 경우 (예 : 종양 치료를 위해 TTField를 적용하는 경우) 해부학적 부피에서 전기 전도도를 측정하고 3D 맵을 생성하여 전극의 위치를 최적화할 수 있다 해부학적 부피를 조직 유형으로 분할하지 않고 얻어진 전도도 또는 저항률 측정치로부터 직접 전도도를 측정할 수 있다. 해부학적 체적 내에서 표적 조직의 위치가 확인되고, 전기 전도도의 3D지도 및 표적 조직의 위치에 기초하여 전극에 대한 위치가 결정된다.
Description
본 기술은 MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료에 관한 것이다.
암 치료필드(Tumor Treating Field, TTFields)는 중간 주파수 범위(100-300 kHz)내의 낮은 강도(예: 1-3 V / cm)의 교번 전기필드(alternating electric field)이다. 이 비침습적인 치료는 고형 암을 표적으로 하며, 그 전체가 본원에 참고로인용된 미국 특허 제 7,565,205 호에 기재되어있다. TTFields는 유사 분열 동안 주요 분자(key molecules)와의 물리적 상호 작용을 통해 세포 분열을 방해한다. TTFields 치료법은 재발성 아교 모세포종에 대한 승인된 단일 치료법이며 새로 진단받은 환자에게 화학 요법으로 승인된 병용 치료법이다. 이러한 전기장은 환자의 두피에 직접 배치된 트랜스듀서 어레이(즉, 전극들의 어레이)에 의해 비침습적으로 유도된다. TTField는 또한 신체의 다른 부위의 암을 치료하는데 유익한 것으로 보인다.
TTField는 중기 도중 적절한 미세 소관 조립을 방해하고 결과적으로 상 세포 및 세포질 분열시 세포를 파괴하기 때문에 항-유사 분열 암 치료 양식으로 확립되었다. 효능은 전계 강도가 증가함에 따라 증가하고, 최적 주파수 는 암 세포주에 의존하며, 200kHz는 TTField에 의해 유발된 신경 교종 세포 성장의 억제가 가장 최고일 때의 주파수 이다.암 치료를 위해 암 근처의 피부에 직접 배치된 용량 결합형 트랜스듀서(capacitively coupled transducer)인 비침습적 장치가 개발되었다. 인간에게 가장 흔한 일차성 악성 뇌암인 Glioblastoma Multiforme(GBM) 환자에게 TTField 치료법을 제공하는 장치를 Optune ™이라고한다.
TTField의 효과는 다른 방향으로 분할하는 세포들에 비하여 장과 평행한 방향으로 분할하는 세포들에 더 영향을 미치고, 세포들은 모든 방향으로 분할하기 때문에, TTfield는 일반적으로 치료되는 종양 내에서 수직인 전기장을 제공하는 두 쌍의 트랜스듀서 어레이들에 의하여 제공된다. 보다 구체적으로 Optune 시스템의 경우한 쌍의 전극이 종양의 왼쪽과 오른쪽(LR)에 위치하고 다른한 쌍의 전극은 종양의 앞쪽과 뒤쪽(AP)에 위치한다. 이 두 방향(즉, LR 및 AP) 사이에서 필드를 교번하는 것은 최대 셀 방향의 최대 범위를 목표로 할 수 있다.
생체 내(in-vivo) 및 시험 관내(in-vitro) 연구는 전기장의 강도가 증가함에 따라 TTFields 요법의 효능이 증가한다는 것을 보여준다. 따라서 Optune 시스템에서 뇌내 병소 부위에 강도를 증가시키기 위하여 환자의 두피에 어레이 배치를 최적화하는 것이 일반적이다. 현재까지, 어레이 배치 최적화는 경험 법칙(예를 들어, 종양에 가능한한 가까운 두피에 어레이 배치) 또는 NovoTal ™ 시스템을 사용하여 수행된다.
NovoTal ™은 최적의 배열 레이아웃을 찾기 위해 환자의 머리의 기하 구조, 종양 치수 및 위치를 설명하는 제한된 측정 세트를 사용한다. NovoTal ™의 입력으로 사용된 측정값은 의사가 환자 MRI에서 수동으로 얻는다. NovoTal ™ 최적화 알고리즘은 전기장이 어레이의 위치의 함수로서 머리 내에 어떻게 분포되는지에 대한 일반적인 이해에 의존하며, 다른 환자의 머리 내의 전기적 특성 분포의 변화를 고려하지 않는다. 이러한 변화는 머리와 종양 내 필드분포에 영향을 미쳐 NovoTal ™에서 권장하는 레이아웃이 최고의 효과를 내지 못하는 상황으로 이어질 수 있다.
본 발명의 일 측면은 대상의 신체상에 배치된 복수의 전극들의 위치를 최적화하는 제1 방법에 관한 것으로, 전극들은 해부학적 체적 내의 표적 조직(target tissue)에 전계를 가하는 데 사용된다. 제1 방법은 해부학적 체적에서 전기 전도도 또는 비저항 측정치를 얻는 단계 및 해부학적 체적을 조직 유형으로 분할하지 않고 얻어진 전기 전도도(electrical conductivity) 또는 비저항(resistivity) 측정치로부터 직접 해부학적 체적의 전기 전도도 또는 비저항의 3D 맵을 생성하는 단계를 포함한다. 본 방법은 또한 해부학적 체적 내에서 표적 조직의 위치를 확인하는 단계 및 생성 단계에서 생성된 전기 전도도 또는 비저항의 3 차원 지도 및 확인 단계에서 확인된 표적 조직의 위치에 기초하여 전극에 대한 위치를 결정하는 단계를 포함한다.
제1 방법의 몇몇 실시예는 결정 단계에서 결정된 위치에서 대상의 신체에 전극을 부착하는 단계 및 부착 단계 후에 전극 사이에 전기 신호를 인가하여 표적 조직에 전계를 가하는 단계를 더 포함한다.
제1 방법의 몇몇 실시예에서, 획득 단계에서 얻어진 측정값들은 분자의 확산을 나타낸다. 제1 방법의 몇몇 실시예에서, 획득 단계는 확산 가중 이미징(diffusion weighted imaging)을 사용하여 MRI 데이터를 획득하는 단계를 포함한다. 제1 방법의 몇몇 실시예에서, 획득 단계는 커스터마이즈된 다중 에코 그라디언트 시퀀스(multi echo gradient sequence)를 사용하여 MRI 데이터를 획득하는 단계를 포함한다.
제1 방법의 몇몇 실시예에서, 획득 단계는 확산 텐서 이미징(diffusion tensor imaging)을 사용하여 MRI 데이터를 획득하는 단계를 포함한다. 선택적으로, 이들 실시예에서, 확산 텐서 이미징을 사용하여 MRI 데이터를 얻는 단계는 확산 및 도전성 텐서의 고유치(eigenvalue), σv=s·dv, 사이의 선형 관계를 가정하는 직접 맵핑 방법을 포함한다. 여기서 σv 및 dv는 각각 v번째 전도도 및 확산의 고유치를 각각 나타낸다. 선택적으로, 이러한 실시예에서, 확산 텐서 이미징을 사용하여 MRI 데이터를 획득하는 단계는 해부학적 체적 내의 각 체적 요소의 전도도 텐서 고유치의 기하 평균이 체적 요소가 포함된 조직 타입의 특정 등방성 전도도(isotropic conductivity) 값에 국부적으로 매칭되는 체적 정규화 방법을 포함한다.
제1 방법의 몇몇 실시예에서, 해부학적 체적은 뇌의 백질 및 회색질을 포함한다.
제1 방법의 일부 실시예에서, 해부학적 체적은 뇌이고, 전극에 대한 위치의 결정은 복합 모델(composite model)에 기초하되, 뇌의 3D 전기 전도도 또는 저항률의 3D 맵은 제1 상수 전도도를 가지는 제1 셸(first shell)의 모델로 둘러싸인다. 이들 실시예에서, 제1 셸의 모델은 함께 모인 두피, 두개골 및 CSF(cerebrospinal fluid)를 나타낼 수 있다. 대안적으로, 이들 실시예에서, 제1 셸의 모델은 CSF를 나타낼 수 있고, 복합 모델은 두개골을 나타내는 제2 셸을 더 포함하고, 제2 셸은 제2 일정한 전도도를 가지며, 복합 모델은 두피를 나타내는 제3 셸을 더 포함하고, 제3 쉘은 제3 일정한 전도도를 갖는다. 이들 실시예에서, 전극에 대한 위치를 결정하는 단계는 표적 조직에 대응하는 위치에서 쌍극자(diopole)를 복합 모델에 부가하는 단계 및 쌍극자에 기인하는 전위가 최대인 외부 위치를 선택하는 단계를 포함할 수 있다.
제1 방법의 몇몇 실시예에서, 전극 위치를 결정하는 단계는 표적 조직 내에 전기장의 최대 강도를 제공할 전극에 대한 위치를 계산하는 단계를 포함한다. 제1 방법의 몇몇 실시예에서, 생성 단계에서, 3D 맵은 1mm x 1mm x 1mm보다 높은 해상도를 갖는다. 제1 방법의 일부 실시예에서, 3D 맵을 생성하는 단계는 해부학적 체적을 나타내는 간단한 기하학적 객체를 생성하는 단계를 포함한다.
제1 방법의 몇몇 실시예에서, 3D 맵을 생성하는 단계는 부분 이방성(fractional anisotropy)에 기초하여 각 체적 요소에 대한 조직 유형을 분류하는 단계를 포함한다. 제1 방법의 몇몇 실시예에서, 3D 맵을 생성하는 단계는 평균 전도도에 기초하여 각 체적 요소에 대한 조직 유형을 분류하는 단계를 포함한다. 제1 방법의 몇몇 실시예에서, 3D 맵을 생성하는 단계는 전도도 텐서의 고유 값의 기하 평균을 특정 등방성 기준값에 일치시키는 것을 포함한다.
본 발명의 또 다른 측면은 포유류의 머리 모델을 생성하는 제2 방법에 관한 것이다. 머리에는 뇌 조직, 뇌척수 액(CSF), 두개골 및 두피가 포함된다. 이 방법은 전도도 텐서의 3D 세트를 사용하여 뇌 조직에 상응하는 머리의 영역을 모델링하고 상수 전도성을 갖는 적어도 하나의 쉘을 사용하여 CSF, 두개골 및 두피를 모델링하는 단계를 포함한다.
제2 방법의 몇몇 실시예에서, 전도도 텐서들의 3D 세트를 이용하여 뇌 조직에 상응하는 머리의 영역을 모델링하는 단계는 건강한 뇌의 서로 다른 유형의 경계를 식별함 없이 구현된다.
제2 방법의 몇몇 실시예에서, 전도도 텐서의 3D 세트는 MRI를 사용하여 얻어진다. 이들 실시예 중 일부에서, 전도도 텐서의 3D 세트는 확산 텐서 이미징 데이터 세트로부터 도출된다.
제2 방법의 일부 실시예에서, CSF, 두개골 및 두피를 모델링하는 단계는 CSF를 뇌 조직 외부에 배치되고 뇌 조직과 접촉하는 제1 일정 전도율을 가지는 제 1 셸(shell)로서 모델링하는 단계; 상기 두개골을 상기 CSF와 접촉하고 상기 CSF 외부에 배치되고 제2 일정한 전도도를 갖는 제2 셸로 모델링하는 단계; 및 상기 두개골 외측에 배치되고 상기 두개골과 접촉하는 제3 쉘로서 상기 두피를 모델링하는 단계로서, 상기 제 3 쉘은 제3 일정한 전도도를 갖도록한다.
제2 방법의 일부 실시예에서, CSF, 두개골, 및 두피를 모델링하는 단계는 CSF, 두개골 및 두피를 함께 모아서 뇌 조직과 접촉하고, 뇌 조직 외부에 배치되며, 일정한 전도도를 가지는 단일 쉘로 모델링하는 단계를 포함한다.
제2 방법의 몇몇 실시예는 뇌 조직 내의 표적 조직의 위치를 식별하는 단계와, 식별 단계에서 식별된 표적 조직의 위치, 전도도 텐서들(tensors)의 3D 세트 및 적어도 하나의 쉘의 전도도에 기초하여 복수의 전극에 대한 위치를 결정하는 단계를 포함한다. 선택적으로, 이들 실시예는 결정 단계에서 결정된 위치에서 포유류의 머리에 전극을 부착하는 단계와, 부착 단계 이후에 전극 사이에 전기 신호를인가하여 표적 조직에 전기장을 가하는 단계를 더 포함한다. 선택적으로, 이들 실시예에서, 전극에 대한 위치를 결정하는 단계는 표적 조직에 대응하는 위치에서 쌍극자을 모델링하고 쌍극자에 기인하는 전위가 최대인 위치를 선택하는 단계를 포함한다. 선택적으로, 이들 실시예에서, 전극에 대한 위치를 결정하는 단계는 표적 조직에서 최적의 조합된 치료를 제공할 전극에 대한 위치를 계산하는 단계를 포함한다.
제2 방법의 몇몇 실시예에서, 전도도 텐서의 3D 세트를 사용하여 영역을 모델링하는 단계는 부분 이방성에 기초하여 각 체적 요소에 대한 조직 유형을 분류하는 단계를 포함한다. 제2 방법의 일부 몇몇 예에서, 전도도 텐서의 3D 세트를 사용하여 영역을 모델링하는 단계는 평균 전도도에 기초하여 각 체적 요소에 대한 조직 유형을 분류하는 단계를 포함한다. 제2 방법의 일부 실시예들에서, 전도도 텐서들의 3D 세트를 사용하여 영역을 모델링하는 단계는 특정 등방성 기준값들에 대한 전도 텐서들의 고유값(eighenvalue)들의 기하 평균을 매칭시키는 단계를 포함한다.
본 발명의 실시예는 최소한의 사용자 개입으로 TTField를 시뮬레이션할 수 있는 실제 두부(頭部) 모델을 만드는 작업 흐름과 이러한 두부 모델을 사용하여 환자의 TTField 배열 레이아웃을 최적화할 수 있다. 제시된 접근 방식에서 두부 모델의 전도도 값은 MRI 기반 전도도 측정에서 직접 결정된다. 따라서 복잡하고 정확한 세그먼트화의 필요성이 제거되어 환자의 연산적인 머리 모델(computational head model)을 생성하는 데 필요한 시간과 인력이 절감된다. 현실적인 모델이 구축되면, 여기에 설명된 일련의 알고리즘을 사용하여 완전 또는 반자동 방식으로 최적화를 수행할 수 있다.
도 1은 머리의 모델을 생성하고, 모델을 이용하여 전기장을 최적화하는 일 예의 순서도이다.
도 2는 동일한 MRI 데이터 세트를 사용하여 생성된 3 개의 상이한 모델에서 가상 종양을 통한 다양한 횡단면에서의 전기장 분포를 도시한다.
도 3은 종양을 통한 하나의 축 방향 슬라이스에서 3 개의 이방성 모델에 대한 전계 분포를 도시한다.
도 4는 두피에 부착된 트랜스듀서 어레이를 갖는 두피의 정면도를 도시한다.
도 5A 및 도 5B는 각각 2 개의 상이한 모델에 대한 쉘 세트를 도시한다.
도 6A 및 도 6B는 뇌실 및 백질 껍질 내부의 가상 종양의 측면도 및 상면도를 각각 도시한다.
도 7은 5 개의 각각의 모델에 대한 축 방향 슬라이스의 대뇌 피질 및 종양 조직에서의 전도도 맵 및 그에 따른 전기장 분포를 도시한다.
도 2는 동일한 MRI 데이터 세트를 사용하여 생성된 3 개의 상이한 모델에서 가상 종양을 통한 다양한 횡단면에서의 전기장 분포를 도시한다.
도 3은 종양을 통한 하나의 축 방향 슬라이스에서 3 개의 이방성 모델에 대한 전계 분포를 도시한다.
도 4는 두피에 부착된 트랜스듀서 어레이를 갖는 두피의 정면도를 도시한다.
도 5A 및 도 5B는 각각 2 개의 상이한 모델에 대한 쉘 세트를 도시한다.
도 6A 및 도 6B는 뇌실 및 백질 껍질 내부의 가상 종양의 측면도 및 상면도를 각각 도시한다.
도 7은 5 개의 각각의 모델에 대한 축 방향 슬라이스의 대뇌 피질 및 종양 조직에서의 전도도 맵 및 그에 따른 전기장 분포를 도시한다.
본 출원은 미국 가출원(US provisional application) 번호 62/247,413(2015년 10월28일 출원) 및 62/294,372(2016년2월 12일 출원)에 기초하여 우선권을 주장하며, 이들 각각은 그 전문이 본 출원에 참고로 포함된다.
NovoTal™ 시스템의 한계를 극복하기 위한 한 가지 방법은 어레이 위치에 대한 함수로 환자 머리 내부의 전기장 분포의 정확한 계산에 근거하여 어레이 레이아웃(array layout)을 최적화하는 것이다. 환자는 인간 또는 다른 종류의 포유 동물 또는 다른 동물 일 수 있다. 이것은 환자의 머리 내에서 전도도의 분포를 설명하는 현실적인 계산 모델을 구성함으로써 수행될 수 있다. 이것은 MRI 데이터를 사용하여 달성할 수 있다. 그러나 현재까지 그러한 현실적인 계산 두부 모델을 유도하는 것은 시간 소모적이며 많은 수작업 개입이 필요하다. 그 이유는 MR 이미지를 다양한 조직 유형으로 분할하고 대표적인 전도도 값을 각 조직 유형에 할당함으로써 모델을 얻기 때문이다. 두피, 두개골 및 뇌척수 액(CSF)과 같은 머리의 바깥 쪽 세그먼트화(segmentation)는 큰 어려움 없이 표준 소프트웨어로 달성될 수 있지만, 피질 조직(cortical tissues)은 매우 복잡한 기하학적 패턴을 가지며 처리하는 것이 훨씬 더 복잡하다.
피질 조직을 세그먼트화하기 위한 자동 및 반자동 알고리즘이 존재하지만, 일반적으로 상세한 모델을 생성하기에는 성능이 충분하지 않다. 또한, 종양 조직 및 부종으로 인한 큰 왜곡을 가진 환자의 MRI가 뇌에 존재할 때 피질 조직 세그먼트화 알고리즘의 성능이 저하되므로, 이 작업을 위해서는 광범위한 사용자 개입이 필요하다. 따라서 MR 이미지의 엄격한 세그먼트화를 통해 환자의 사실적인 머리 모델을 생성하는 것은 노동 집약적이며 많은 시간을 필요로 한다.
이 애플리케이션은 최소한의 사용자 개입으로 TTField를 시뮬레이션할 수 있는 실제 두부(頭部) 모델을 만드는 작업 흐름과 이러한 두부 모델을 사용하여 환자의 TTField 배열 레이아웃을 최적화하는 방법에 대해 자세히 설명한다. 제시된 접근 방식에서 두부 모델의 전도도 값은 MRI 기반 전도도 측정에서 직접 결정된다. 따라서 복잡하고 정확한 세그먼트화의 필요성이 제거되어 환자의 연산적인 머리 모델(computational head model)을 생성하는 데 필요한 시간과 인력이 절감된다. 현실적인 모델이 구축되면, 여기에 설명된 일련의 알고리즘을 사용하여 완전 또는 반자동 방식으로 최적화를 수행할 수 있다.
편의상 설명은 세 부분으로 구분된다. 파트 1은 사용자 개입을 최소화하면서 MRI 데이터에서 TTField 시뮬레이션을 위한 실제적인 머리 모델을 만드는 방법에 대한 자세한 설명을 제공한다. 파트2는 파트 1에서 작성된 모델을 사용하여 TTField 배열 위치를 최적화하는 방법에 대한 자세한 설명을 제공한다. 파트 3는 최소한의 사용자 개입으로 TTFields 시뮬레이션을 위한 실제 두부 모델을 생성하는 개념 증명을 바깥 레이어를 모델하기 위한 간단한 볼록한 외피(hull)와 뇌를 모델하기 위한 전도도 맵을 사용하여 설명한다.
도 1은 모델을 생성하고(단계 S1-S14), 그 모델을 사용하여 전계를 최적화하는 일례의 흐름도이다(단계 S21-S24).
파트 1: MRI 데이터로부터 사실적인 연산 패텀(phantom) 생성
정확한 연산 팬텀(computational phantom)을 생성하는 것은 바람직하게는 연산 팬텀 내의 각 지점에서의 전기 특성(예를 들어, 전도율, 저항률)을 정확하게 매핑하는 것을 포함한다. 연산 팬텀을 생성하기 위한한 가지 전통적인 방법은 뚜렷한 등방성 전기 특성을 갖는 다른 조직 유형으로 두부를 세그먼트화 하는 것이다. 이 방법을 사용하여 모델을 만들 때 각 조직 유형의 전기적 특성이 모델에 정확하게 매핑되도록 3D 공간에서 각 조직 유형의 경계를 정확하게 식별하는 것이 중요하다.
본 명세서에 설명된 실시예는 3D 공간의 각 지점에서 전기적 특성을 직접 평가하기 위해 확산 가중 이미징(DWI, diffusion weighted imaging), 확산 텐서 이미징(DTI, diffusion tensor imaging) 또는 맞춤형 다중 에코 그라디언트 시퀀스(GRE, customized multi echo gradient sequences)와 같은 MRI 시퀀스를 사용하여 엄격한 세그먼트화의 필요성을 극복한다. MRI 시퀀스를 사용하여 직접 전기 특성을 매핑하면 모든 포인트의 전기적 특성이 MRI에서 직접 정의되며, 세그먼트화 과정에서할당된 조직 유형에 의하여 정의되지 않기 때문에 정확한 조직 세그먼트화의 필요성이 감소한다. 따라서, 세그먼트화 프로세스는 연산 패텀의 정확성을 손상시키지 않고 단순화되거나 제거될 수 있다. 여기에 기술된 실시예는 전도성을 매핑하는 것을 논의하지만, 대안적인 실시예는 비저항과 같은 상이한 전기적 특성을 매핑함으로써 유사한 결과를 제공할 수 있음을 주목한다.
도 1의 단계 S11~S14는, MRI 전도도 측정치에 기초하여 환자를 나타내는 연산 패텀을 생성하는데 사용될 수 있는 단계들의 세트의 일례를 나타낸다.
단계 S11은 이미지 획득 단계이다. 이 단계에서 전도도 맵을 계산할 수 있는 구조 데이터와 데이터가 모두 수 집된다. 구조 데이터는 예를 들어 표준 T1 및 T2 MRI 시퀀스로부터 얻을 수 있다. 전도도는 DWI, DTI 또는 GRE와 같은 다양한 MRI 데이터 수 집 모드를 사용하여 얻을 수 있다. 좋은 연산 팬텀을 만들기 위해서는 고해상도 이미지를 얻어야한다. 구조 및 전도성 관련 이미지 모두에 대해 최소 1 mm x 1 mm x 1 mm의 해상도가 바람직하다. 해상도가 낮은 이미지는 이러한 유형의 이미지 중 하나 또는 둘 모두에 사용될 수 있지만 해상도가 낮으면 덜 정확한 팬텀이 산출된다.
바람직하게 데이터 세트는 검사되고 큰 아티팩트(aftifact)에 의해 영향을 받은 이미지는 바람직하게 제거된다. 바람직하게는 스캐너 특유의 전처리가 적용된다. 예를 들어, 이미지는 DICOM 형식에서 NIFTI로 변환될 수 있다. 사전 처리의 다른 단계는 모든 이미지를 표준 공간(예: Montreal Neurological Institute, MNI, space)에 등록하는 것이다. 이는 FSL FLIRT 및 SPM을 포함하되 이에 국한되지 않고 쉽게 사용할 수 있는 소프트웨어 패키지를 사용하여 수행될 수 있다.
단계 S12는 구조 영상을 처리하는 단계이다. 위에서 언급했듯이 여기에 제시된 작업 흐름은 MRI 기반 전도도 측정을 사용하여 연산 팬텀을 생성한다. 그러나 뇌의 경계를 확인하고 MRI 측정에서 파생되지 않은 일반적인 전도도 값을 할당하는 것이 유리할 수 있는 뇌 내의 특정 조직에 속한 영역을 식별하는 데에도 구조 이미지가 사용될 수 있다. 예를 들어, 이미지 내에서 두개골, 두피 및 CSF를 확인(및 세그먼트 화)하고 이들 조직에 해당하는 영역에 일반적인 전도도 값을 할당하는 것이 유리할 수 있다(그러나 여전히 뇌에 해당하는 영역에 대한 주요 MRI에 기초한 측정에 의존한다).
사용 가능한 소프트웨어 패키지를 사용하여 뇌실(ventricle) 뿐만 아니라 세 가지 조직 유형의 상세한 세그먼트화를 얻을 수 있다. 그러나 이러한 구조 중 일부가 복잡하기 때문에 상당한 수 동 조작이 필요하다. 따라서, 머리 모형을 구축하기위한 단순화된 방안이 유익할 수 있다. 팬텀 생성의 복잡성을 낮추는한 가지 가능성은 외부 모델 레이어(두피, 두개골 및 CSF)를 나타내는 지오메트리를 단순화하는 것이다. 예를 들어 외부 조직의 셸이나 볼록한 외피가 이 층의 모델로 사용될 수 있다. 외부 레이어의 대략적인 세그먼트화가 가능하다면, 대응하는 볼록 외피의 생성은 간단하며 표준 알고리즘과 소프트웨어를 사용하여 수행할 수 있다. 또 다른 옵션은 사용자가 구조적 이미지의 검사를 통해 대표 영역(트랜스 듀서 어레이가 배치될 수 있는 영역)에서 세 외부 층(두피, 두개골 및 CSF)의 두께를 측정하는 것이다. 이 측정은 두피, 두개골 및 CSF를 나타내는 3 개의 동심 껍질 또는 레이어를 만드는 데 사용할 수 있다. 이 레이어는 기본 타원형 구조를 변형하여 얻을 수 있다. 기본 타원형 구조는 두피 분할의 기본 볼록 외피일 수 있다.
단계 S13 및 S14는 모두 DTI 이미지의 처리를 다룬다. 단계 S13은 이미지의 전처리 및 텐서 추정의 단계이다. DTI 측정은 서로 다른 이미징 조건으로 획득한 여러 이미지를 수 집하는 것을 포함한다. 각 이미지는 그라데이션 방향과 b 값의 특징을 가진다. DTI 이미지 처리의 경우 그래디언트 방향과 b 값을 먼저 추출해야한다. 이것은 표준 소프트웨어를 사용하여 수행할 수 있다. 일단 그래디언트 방향 및 b- 값이 추출되면, 이미지는 바람직하게는 샘플 모션(예를 들어, 두부 움직임)뿐만 아니라 데이터 획득 중에 생성된 와전류로부터 발생하는 왜곡으로부터 MRI로 발생하는 왜곡에 대해 보정된다. 또한, 이미지는 바람직하게는 이전 단계에서 논의된 구조 이미지와 겹치도록 등록된다. 왜곡 및 등록 수 정은 표준 소프트웨어 패키지를 사용하여 수행될 수 있다. 이 전처리가 완료된 후, 모델의 관련 영역에서 각 지점의 확산 텐서가 추정될 수 있다.
DTI 이미지로부터 확산 텐서를 유도하기 위한 많은 소프트웨어 번들이 존재한다. 예를 들어, 히치하이커를 위한 확산 텐서 가이드(J. T. Soares et al. 저 frontiels in Neuroscience, vol. 7, 31, p.1-14, doi: 10.3389/ fhins.2013.00031,2013)에는 텐서 추정 및 DTI 전처리에 사용 가능한 소프트웨어에 대한 자세한 요약이 포함되어 있다. DTI 영상으로부터 확산 텐서를 유도하기 위한 두 가지 옵션이 테스트되었다. 첫 번째 옵션은 이미지의 보정 및 등록과 주 방향(고유 벡터, eigen vector), 주 확산(고유 값, eighen value) 및 부분 이방성 계산을 위해 FSL 확산 도구 상자를 사용한다. 두 번째 옵션은 B- 매트릭스 재배향(reorientation)으로 모션 및 에디 전류 왜곡 보정을 수행하기 위해 Tortoise 소프트웨어의 DIFFPREP 모듈을 사용하는 것이다. 그런 다음 DIFFCALC 모듈을 사용하여 각 복셀(voxel)의 확산 텐서를 추정하고 텐서 유도량을 계산할 수 있다. 두 소프트웨어 패키지 모두에서 B- 매트릭스 재배향으로 데이터 세트를 표준 참조 프레임으로 방향을 재조정할 수 있으며, 이는 구조 이미지이다.
단계 S14는 연산 팬텀 내의 전도도를 매핑하는 단계이다. 이 단계에서 전도도 값은 연산 패텀 내의 각 볼륨 요소에 매핑된다. 세그먼테이션이 충분히 정확한 조직 유형(예를 들어, 두개골 또는 CSF)에 속하는 영역에서, 각 조직 유형에 대한 대표적인 등방성 전도도 값이 할당될 수 있다. 다른 지역에서는 전도도 값이 DTI와 같은 MRI 기반 전도도 측정값을 기준으로 지정된다.
DTI 데이터로부터 전도도 값을 도출하는 것은 전도도 텐서가 효과적인 확산 텐서와 동일한 고유 벡터를 공유한다는 명제를 따른다. 이미징된 각 체적 요소에 대해 확산 텐서가 추정되면, 전도도 텐서의 추정치는 임의의 적절한 접근법을 사용하여 형성될 수 있으며, 그 중 일부는 "How the Brain Tissue Shapes the Electric Field Induced by Transcranial Magnetic Stimulation"(A. Opitz et al. Neuroimage, vol. 58, no.)에 자세히 설명되어있다. 예를 들어, 적합한 방법 중 어느 하나는 확산과 전도 텐서의 고유 값, 즉 σv = s·dv 사이의 선형 관계를 가정하는 직접 매핑(dM)이라고 불리운다. σν와 dv는 각각 전도도와 확산의 v 번째 고유치이다. 스케일링 요소(scaling factor)에 대한 다른 가정들이 사용될 수 있는 반면에, 적응 스케일링인자(adaptive scaling factor) s가 적용될 수 있다.(M. Rullmann 등에 의한 1mm 이방성 헥사 헤라 유한 요소 두부 모델을 이용한 간질 성 활동의 EEG 소스 분석을 참조. Neuroimage 44, 399-410(2009)). 또 다른 적절한 방법은 뇌의 각 체적 요소에서 전도도 텐서의 고유 값의 기하 평균이 그 요소가 속한 조직 유형의 특정 등방성 전도도 값에 국부적으로 일치하는 체적 정규화(vN, volume normalized) 방법이다.(뇌파 / MEG 전하 및 역 용액상의 백색 물질 조직에서의 이방성 전기 전도도의 영향 - D. Giillmar, Neuroimage 51, 145-163(2010)에 의한 고해상도 전체 두부 시뮬레이션 연구 참조.)
이 두 가지 방법 모두 연산 패텀 내의 관련 영역(주로 피질 영역)에 전도도를 매핑하는 데 사용할 수 있다. 그러나 vN 방법은 전도도 값이 해당 영역의 조직 유형에 대한 정보를 사용하여 각 볼륨 요소에 매핑되기 때문에 세그먼트화에서 더 높은 정확도를 요구한다. 그러므로 볼륨 요소를 잘못된 조직 유형에할당하면 연산 패텀 내의 전도도 맵에 오류가 발생한다. 반면에 dM 방법의 경우 전도율 값은 해당 지역의 조직 유형에 관계없이 동일한 선형 관계를 사용하여 모든 요소에 지정된다. 그러므로 DTI 데이터의 dM은 TTField 시뮬레이션을 위한 연산 패텀을 생성하기 위해 파이프라인을 단순화하기 위한 DTI 데이터의 vN 매핑보다 유용할 수 있다. 그러나 dM의 상수 스케일링 계수 는 건강한 조직의 정확한 값으로만 연결될 수 있으며 종양 조직의 경우 최적치보다 낮을 수 있다.
대체 맵핑 방법이 적용될 수 있다. 예를 들어, vN 방법의한계를 극복하기 위해(각 체적 요소를 특정 조직 유형에할당할 수 있도록 세그먼트 화되어 있어야 함) 체적 요소의 조직 유형은 부분 이방성, 평균 전도도 또는 기타 관련 측정 값으로 분류될 수 있다. 대안으로, 전도도 텐서 고유치의 기하 평균을 특정 등방성 기준치와 일치시킬 수 있다. 이것은 DTI 데이터에서만 조직 유형을 분류하거나 분류할 수 있는 일반적인 방법이다(전체 모델을 만들 수 도 있다). 부분 이방성(또는 전도도 데이터로부터 유도될 수 있는 임의의 다른 측정치)이 발견될 때, 바람직하게 이웃하는 요소는(예를 들어, WM 내부에서 식별된 GM 포인트를 제거하기 위해) 이상치를 피하기 위해 점검된다.
파트 2: 실제적 머리 모델들을 이용하는 TTFelds 어레이 위치 최적화
배열 레이아웃을 최적화한다는 것은 환자 뇌(종양)의 병변 부위에서 전기장을 최적화하는 배열 레이아웃을 찾는 것을 의미한다. 이 최적화는 다음의 4 단계를 수행함으로써 구현될 수 있다:(S21) 현실적인 머리 모델 내에서 치료를 위해 목표된 볼륨(표적 볼륨)을 식별하는 단계;(S22) 트랜스듀서 어레이를 배치하고 현실적인 머리 모델 상에 경계 조건을 설정하는 단계; 현실적인 머리 모델 및 적용된 경계 조건에 어레이를 배치한 후에 현실적인 머리 모델 내에서 전개되는 전계를 계산하는 단계(S23); 및 표적 볼륨 내에서 최적의 전계 분포를 생성하는 레이아웃을 찾기 위해 최적화 알고리즘을 실행하는 단계(S24)를 포함한다. 이 네 단계를 구현하기위한 자세한 예제가 아래에 제공되어 있다.
S21 단계는 현실적인 머리 모델 내에 표적 볼륨의 위치를 찾는 단계를 포함한다(즉, 관심 영역을 정의). 환자의 신체 내에 최적의 전계 분포를 생성하는 레이아웃을 찾는 첫 번째 단계는 전기장을 최적화해야하는 위치 및 목표 볼륨을 정확하게 식별하는 것이다.
몇몇 실시예에서, 표적 볼륨은 총 종양 부피(GTV, gross tumor volume) 또는 임상 표적 부피(CTV, clinical target volume) 일 것이다. GTV는 종양의 전체적인 증명 가능한 범위와 위치인 반면, CTV는 존재하는 경우 입증된 종양 및 추정 종양이 있는 기타 조직을 포함한다. 대부분의 경우 CTV는 GTV를 둘러싼 볼륨을 정의하고 GTV 주변에 미리 정의된 너비가 있는 여백을 추가하여 찾는다.
GTV 또는 CTV를 확인하려면 MRI 영상에서 종양의 체적을 확인하여야한다. 이것은 사용자에 의해 수 동으로, 자동으로 또는 사용자 보조 알고리즘이 사용되는 반자동 접근법을 사용하여 수행될 수 있다. 이 작업을 수 동으로 수행할 때 MRI 데이터를 사용자에게 제공할 수 있으며 사용자에게 데이터에서 CTV 체적의 개요를 표시하도록 요청될 수 있다. 사용자에게 제공되는 데이터는 구조적 MRI 데이터(예: Ti, T2 데이터) 일 수 있다. 서로 다른 MRI 양식을 서로 등록할 수 있으며 사용자는 데이터 세트를 보고 CTV를 요약할 수 있는 옵션이 제공될 수 있다. 사용자는 MRI의 3D 체적 표현에서 CTV를 윤곽을 그리도록 요청되거나 사용자가 데이터의 개별2D 슬라이스를 보고 각 슬라이스에서 CTV 경계를 표시하는 옵션이 제공될 수 있다. 각 슬라이스에 경계가 표시되면 해부학적 체적(따라서 실제 모델 내)의 CTV를 찾을 수 있다. 이 경우 사용자가 표시한 볼륨은 GTV에 해당한다. 일부 실시예에서, CTV는 GTV에 소정의 폭의 여백을 부가함으로써 얻어질 수 있다. 유사하게, 다른 실시예에서, 사용자는 유사한 절차를 사용하여 CTV를 표시하도록 요청받을 수 있다.
수동 접근 방식에 대한 대안은 자동 분할 알고리즘을 사용하여 CTV를 찾는 것이다. 이러한 알고리즘은 구조적 MRI 데이터 또는 가능하면 DTI 데이터를 사용하여 CTV를 식별하는 자동 세그먼트화 알고리즘을 수행한다. DTI 데이터는 종양 내의 확산 텐서(및 임의의 부종 영역)가 그 주변과 다르기 때문에 이러한 목적을 위한 세그먼트화에 사용될 수 있다는 점에 대하여 유의하여야한다.
그러나, 상술한 바와 같이, 현재의 완전 자동 분할 알고리즘은 충분히 안정적이지 않을 수 있다. 따라서 MRI 데이터의 반자동 세그먼트화 접근이 바람직할 수 있다. 이러한 접근법의 예에서 사용자는 반복적으로 알고리즘에 입력(예: 이미지상의 종양 위치, 종양의 경계를 대략적으로 표시, 종양이 위치한 관심 영역의 경계 구분)을 제공하고, 이어서, 분할 알고리즘에 의해 사용된다. 사용자에게는 머리 내의 CTV 위치 및 체적을 더 잘 예측하기 위해 세그먼트화를 조정할 수 있는 옵션이 제공될 수 있다.
자동 또는 반자동 접근법 사용 여부에 관계없이 식별된 종양 체적은 GTV와 상응하며 CTV는 GTV 체적을 사전 정의된 양(예: CTV를 종양 주위 20 mm 여백) 만큼 확장하여 자동으로 찾을 수 있다.
경우에 따라 사용자가 전기장을 최적화하려는 관심 영역을 정의하는 것으로 충분할 수 있다. 이 관심 영역은 예를 들어 박스 체적, 구형 체적 또는 종양을 둘러싸는 해부학적 체적 부피의 임의의 형태 일 수 있다. 이 방법을 사용하면 종양을 정확하게 식별하기 위한 복잡한 알고리즘이 필요하지 않을 수 있다.
단계 S22는 주어진 반복에 대한 현실적인 두부 모델 상의 어레이들의 위치 및 방위를 자동으로 계산하는 단계를 포함한다. Optune ™ 장치에서 TTField를 전달하는 데 사용되는 각 트랜스듀서 어레이는 의학용 젤 층을 통해 환자의 머리에 연결된 일련의 세라믹 디스크 전극을 포함한다. 실제 환자에게 배열을 배치할 때 디스크는 자연스럽게 피부에 평행하게 배열되며 의학용 젤이 신체의 윤곽과 일치하도록 변형되기 때문에 어레이와 피부 사이에는 양호한 전기 접촉이 형성된다. 그러나 가상 모델은 엄격하게 정의된 형상으로 만들어진다. 모델에 어레이를 배치하는 것은 어레이들이 배치될 모델 표면의 방향과 외주를 찾는 방법 뿐만 아니라 실제적 환자 모델과 모델 어레이 사이의 양호한 전기 접촉을 얻기 위한 젤의 두께/형상을 찾기 위한 정확한 방법이 필요하다. 전기장 분포의 완전 자동화된 최적화를 가능하게 하도록 이러한 계산은 자동으로 수행되어야 한다.
이 작업을 수행하는 다양한 알고리즘이 사용될 수 있다. 이러한 목적을 위해 최근에 고안된 하나의 알고리즘의 단계가 이하에 설명된다.
a. 모델 머리에 트랜스듀서 어레이의 중심점을 배치할 위치를 정의하여야한다. 위치는 사용자에 의해 정의되거나 또는 S24 단계에서 논의된 필드 최적화 알고리즘의 단계들 중 하나로서 정의될 수 있다.
b. 단계(a)의 입력을 디스크 지오메트리 및 어레이에서 디스크가 어떻게 위치하는지에 대한 지식과 함께 사용하여 모델 내의 트랜스듀서 어레이에 있는 모든 디스크 중심의 대략적인 위치를 계산한다.
*c. 디스크가 놓일 위치에서 실제 모델 표면의 방향을 계산한다. 계산은 디스크의 지정된 중심으로부터 하나의 디스크 직경 범위 내의 연산 패텀 표면상 모든 점들을 찾음으로서 수행된다. 이 점의 좌표는 행렬의 열에 정렬되고 행렬에 대해 특이값 분해(singular value decomposition)가 수행된다. 모델 표면의 법선은 발견된 가장 작은 고유값(eigenvalue)에 상응하는 고유 벡터(eigenvector)이다.
d. 트랜스듀서 배열의 각 디스크에 대해: 디스크와 환자의 신체 사이의 양호한 접촉을 보장하는 데 필요한 의료용 젤의 두께를 계산한다. 이것은 높이를 피부 표면 법선과 평행하게 향하게 하여 원통(cylinder)에 대한 파라미터를 찾는 것이다. 실린더는 디스크의 반경과 같은 반경으로 정의되며 높이는 법선을 찾기 위해 사용된 스킨의 점을 초과하여 사전 결정된 양(사전 정의된 상수 임)을 넘어서도록 설정된다. 이것은 결과적으로 팬텀 표면으로부터 적어도 미리 결정된 양만큼 연장되는 실린더를 형성한다.
e. 모델에서,(d) 에서 설명된 실린더를 생성한다.
f. 이진 논리 연산을 통하여 환자의 실제적 모델로 돌출된 실린더 영역을 모델에서 제거한다. 결과인 "절단된 실린더(truncated cyliner)"는 트랜스듀서 어레이와 관련된 의료용 젤을 나타낸다.
g. "절단된 실린더" 바깥쪽에는 트랜스듀서 배열의 세라믹 디스크를 나타내는 디스크를 배치한다.
S23 단계는 주어진 반복에 대한 두부 모델 내의 전계 분포를 계산하는 단계를 포함한다. 일단 두부 팬텀이 구성되고 필드를 제공하는 데 사용될 트랜스듀서 어레이(즉, 전극 어레이)가 실제 두부 모델에 배치되면 유한 요소(FE, finite element)법 분석에 적합한 볼륨 메쉬(volume mesh)가 생성될 수 있다. 다음 경계 조건을 모델에 적용할 수 있다. 사용될 수 있는 경계 조건은 예로서 트랜스듀서 어레이에 대한 Dirichlet 경계(일정 전압) 조건, 트랜스듀서 어레이에 대한 노이만 경계 조건(정전류) 또는 전류 밀도의 법선 성분의 적분이 특정한 진폭과 동일하도록 경계에서의 전위를 정하는 부동 전위 경계 조건을 포함할 수 있다. 이어서, 모델은 적합한 유한 요소 해석기(예: 저주파수 준 정상파 전자기 해석기(a low frequency quasistatic electromagnetic solver)) 또는 유한 차분(FD, finite difference) 알고리즘을 사용하여 해석할 수 있다. Sim4Life, Comsol Multiphysics, Ansys 또는 Matlab과 같은 기존 소프트웨어 패키지를 사용하여 메싱, 경계 조건의 맞물림 및 모델링 문제를 풀 수 있다. 또는 FE(또는 FD) 알고리즘을 구현하는 사용자 정의 컴퓨터 코드를 작성할 수 있다. 이 코드는 C-Gal(메시 생성 용) 또는 FREEFEM ++(빠른 테스트 및 유한 요소 시뮬레이션을 위한 C++로 작성된 소프트웨어)와 같은 기존의 오픈 소스 소프트웨어 리소스를 활용할 수 있다. 모델의 최종 솔루션은 전계 분포 또는 주어진 반복에 대한 연산 팬텀 내의 전위와 같은 관련 양을 설명하는 데이터 세트이다.
S24 단계는 최적화 단계이다. 최적화 알고리즘은 두 가지 적용 방향(위에서 언급한 바와 같이 LR 및 AP)에 대해 환자 뇌(종양)의 병변 부위로의 전기장 전달을 최적화하는 배열 레이아웃을 찾는 데 사용된다. 최적화 알고리즘은 최적의 배열 레이아웃을 찾기 위해 잘 정의된 순서로 두부 모델 내의 전기장을 해결하는 자동 배열 배치 및 방법을 사용한다. 최적의 레이아웃은 전기장이 적용되는 두 방향을 모두 고려하여 뇌의 병이 있는 영역에서 전기장의 일부 표적 기능을 최대화하거나 최소화하는 레이아웃이다. 이 표적 기능은 예를 들어 병변 부위 내의 최대 강도 또는 병변 부위 내의 평균 강도 일 수 있다. 다른 대상 기능을 정의하는 것도 가능하다.
환자를 위한 최적의 배열 레이아웃을 찾는 데 사용할 수 있는 여러 가지 방법이 있으며 그 중 3 가지가 아래에 설명되어 있다. 최적화 방법 중 하나는 철저한 검색이다. 이 접근법에서 최적화 프로그램은 테스트되어야 하는 제한된 어레이 레이아웃의 수를 가지는 뱅크(bank)을 포함한다. 최적화 프로그램은 뱅크의 모든 배열 레이아웃(예: 각 레이아웃에 대해 S22 및 S23 단계를 반복)을 시뮬레이션하고 종양에서 최적의 필드 강도를 생성하는 배열 레이아웃을 선택한다(최적 레이아웃은 최적화 표적 기능(예를 들어, 종양에 전달되는 전기장 세기)에 대해 가장 높은(또는 가장 낮은) 값을 제공하는 레이아웃이다).
또 다른 최적화 방법은 반복 검색이다. 이 접근법은 최소 하강 최적화 방법 및 단방향 검색 최적화와 같은 알고리즘의 사용을 다룬다. 이 접근법을 사용하여 알고리즘은 머리에 있는 다양한 배열 레이아웃을 반복적으로 테스트하고 각 레이아웃에 대해 종양의 전계에 대한 표적 기능을 계산한다. 따라서, 이 방법은 각 레이아웃에 대해 단계 S22 및 S23을 반복하는 것을 포함한다. 매 반복마다 알고리즘은 이전 반복의 결과를 기반으로 테스트할 구성을 자동으로 선택한다. 알고리즘은 수렴하도록 설계되어 종양의 필드에 대해 정의된 표적 기능을 최대화(또는 최소화)한다.
또 다른 최적화 접근법은 모델에서 종양의 중앙에 쌍극자를 놓는 것을 기반으로 한다. 이 접근법은 다른 배열 레이아웃에 대한 전계 강도 해결에 의존하지 않으므로 다른 두 접근법과 다르다. 오히려, 배열의 최적 위치는 모델에서 종양의 중심에 예상 필드의 방향에 정렬된 쌍극자를 배치하고 전자기 포텐셜을 해결함으로써 얻을 수 있다. 전기 전위(또는 가능한 전기장)가 최대인 두피의 영역은 어레이가 배치된 위치가 된다. 이 방법의 논리는 쌍극자가 종양 중심에서 최대인 전기장을 생성한다는 것이다. 상호성에 의해 계산에 따라 산출된 두피의 전계/전압을 생성할 수 있다면 종양 중심(쌍극자가 놓인 곳)에서 최대인 필드 분포를 얻을 것으로 기대할 수 있다. 우리가 현재 우리의 시스템에서 실제로 얻을 수 있는 가장 가까운 것은 두피의 쌍극자에 의해 유도된 전위가 최대인 영역에 어레이를 배치하는 것이다.
뇌의 병이 있는 영역 내에서 전기장을 최적화하는 배열 레이아웃을 찾기 위해 다른 최적화 방법을 사용할 수 있다. 예를 들어 위에서 언급한 다양한 접근 방식을 결합한 알고리즘이다. 이들 접근법들이 결합될 수 있는 방법의 예로서, 제2 접근법(즉, 반복적 탐색)과 상기 논의된 제3 접근법(즉, 모델에서 종양의 중앙에 쌍극자를 위치시킴)의 알고리즘을 고려한다. 이 조합을 사용하면 초기에는 종양 접근법의 중심에 쌍극자를 사용하여 배열 레이아웃을 찾는다. 이 배열 레이아웃은 최적 레이아웃을 찾는 반복 검색의 입력으로 사용된다.
파트
3: 단순화된 머리 모델이 구축될 수 있고 정확한 결과를 얻을 수 있다는 개념의 증명
개념 증명은 이전에 개발된 대뇌 피질 조직의 이방 전도도 값을 통합한 현실적인인간 머리 모델에 대한 수정을 기반으로 하였다. 이 모델은 건강한 대상에서 유래한 바, 종양이 가상 병변으로 표시되어야 한다. 팬텀은 이미 TTFields 적용 후 전기장 분포를 계산하는 데 사용되었다.
개념을 테스트하기 위해 뇌실을 제외한 모든 조직 유형의 첫 번째 볼록 외피가 만들어졌다. 이 모델의 낭성 종양은 괴사성 코어를 둘러싼 활성 셸의 두 개의 동심구로 표현되었다. 그것은 측뇌실 인접한 오른쪽 반구에 위치하였다.
도 2는 동일한 MRI 데이터 세트를 사용하여 생성된 3 가지 모델의 종양을 통한 다양한 단면에서의 전기장 분포를 보여준다. 보다 구체적으로, 도2는 TTField 치료에 사용된 두 가지 수직 구성 즉, 왼쪽 및 오른쪽(LR) 어레이(패널21-23) 및 머리의 앞쪽 및 뒤쪽(AP) 부분의 어레이(패널24 - 26)를 도시한다. 패널21과 24는 MRI가 정확하게 세그먼트화 되고 각 조직의 대표적인 등방성 유전체 특성이 해당 조직에 속한 모든 부피 요소에 할당되는 고전적인 모델링 접근법, 사실적인 머리 모형에 대한 결과를 보여준다. 패널22와 24는 조직 유형이 볼록 외피로 분할되고 대표적인 등방성 유전체 특성이 각 조직 유형에 할당되는 단순화된 모델링 접근법의 결과를 보여준다. 패널23 및 26은 전도도 값이 DTI 이미지로부터 유도된 전도도 맵에 기초하여 피질 조직(GM, WM 및 소뇌)의 각 체적 요소에 할당된 단순화 모델의 결과를 나타낸다.
다양한 모델링 접근법 간의 상관 관계가 강하다. 보다 구체적으로, 현실적인 두부 모델의 두뇌 및 종양 내에서의 TTFields 유도 전계 분포는 비균일하다. 이것은 전계 강도가 액티브 트랜스 듀서 어레이에 가장 가깝지만 추가적인 핫 스폿(hotspot)은 패널21 및 24에서 볼 수 있듯이(전기장이 수직인 경계에 가까운 낮은 전도도를 갖는 조직에서) 머리 중심에 유도된다는 것을 의미한다. 등방성 단순화 모델에서, 부드러운 조직 계면의 결과로, 필드 분포는 트랜스 듀서에서 단순히 감소한다. 그럼에도 불구하고 이질적인 유전 특성이 사용되기 때문에 "일반적인" 핫스팟은 뇌실 가까이에 그리고 종양의 활성 셸 안에서도 볼 수 있다. 종양 내부의 전계 분포를 면밀히 관찰하면 패널22와25에서 볼 수 있듯이 원래의 단순 등방성 모델과 매우 비슷한 패턴을 나타낸다. 뇌 조직에 이방 전도성 텐서를 통합하면 패널23 및26에서 볼 수 있듯이 뇌 내에서 훨씬 더 유사한 전기장 분포가 발생한다. 몇몇 주요 섬유관(fiber tracts) 뿐만 아니라 뇌회(腦回, gyri)가 가시적이며, 이들을 통하는 전류 흐름은 주목할 만하다.
현실적인 모델 대 단순화된 모델을 사용하여 계산된 종양의 평균 전기장 값을 비교할 때 등방성 모델의 백분율 차이는 6 % 미만이다. 현실적인 이방성 모델을 단순화된 이방성 모델과 비교하면 종양 셸에서의 평균 전계 강도 차이는 5 % 미만이다. 두 경우 모두 단순화된 모델에서 약간 낮은 값이 예측된다.
도 3에서 가상 종양을 통하여 하나의 축 방향 슬라이스에 전계 분포가 다시 도시되었다. 각각의 패널(31-33)에서, LR 및 AP 어레이에 대한 축 방향 슬라이스의 전계 분포가 각각 패널의 상부 및 하부에 나타난다. 오리지널 모델(패널 31)은 피질 조직에 대해 dM 이방성을 갖는 모든 조직의 현실적인 표현에 해당한다. 심플 모델(패널 32)은 대뇌 피질 조직(볼록 외피로 표시)에 dM 이방성 전도도 텐서를 사용하며, 등방 전도도 값을 갖는 뇌실을 제외한 모든 표면의 볼록 외피 또는 껍데기를 사용한다. 심플2 모델(패널 33)은 심플 모델과 비슷하지만 뇌실의 상세한 표현은 무시되고, 반면 DTI 데이터에서 이 영역에 대해 유도된 이방성 전도도 텐서를 사용하여 존재가 확인된다(오리지널 모델 및 심플 1 모델에서 이 데이터는 등방성 전도도 값을 갖는 뇌실 세그먼테이션에 의해 무시되거나 겹쳐 쓰여진다). 표 1은 뇌와 두 종양 조직에서 상응하는 평균 전계 강도 값을 정리한 것이다. 이 가상 병변은 뇌실에 가깝기 때문에 종양의 전기장은 진행중인 단순화에 더 많은 영향을 받는다. 여전히 차이는 비교적 작지만, LR 어레이에 의해 유도된 종양의 평균 전기장은 원래의 현실적인 모델(단순한2와 비교)에서 114 %로 증가하고 AP 자극에서는 95 %로 감소하였다.
이것은 여기에서 설명된 접근 방법을 사용하는 것은 머리에서의 정확한 전계 분포와 정확한 전계 강도 값을 이끌어 낼 수 있으며, 시간과 계산상 효율적이라는 것을 알 수 있다. 특히, 단순화된 모델은 전극 배치 최적화를 위해 충분히 정확해야한다.
간단한 외피(hull) 또는 셸을 사용하여 외부 레이어들을 모델링하고 전도도 맵을 사용하여 두뇌를 모델링하는 모델을 포함하는 파트 3 모델링에 대한 추가 세부 정보가 논의된다. 이들 모델은 확산 텐서 이미징(Diffusion Tensor Imaging)으로부터 추정된 텐서 표현을 사용하여 피질 조직에서의 이방 전도성을 설명할 수 있다. 유도 전계 분포는 단순화되고 현실적인 머리 모델에서 비교된다. 뇌와 종양 조직의 평균 전계 강도 값은 현실적인 머리 모델에서 일반적으로 약간 더 높으며 표준 심플 모델(합리적인 두께의 레이어가 보장되는 경우)의 경우 최대 비율은 114 %이다. 따라서 증가된 전계 분포에 대한 정확한 예측을 가능하게 하는 조직인터페이스 사이의 복잡성이 감소된 개인화된 머리 모델에 대해 빠르고 효율적인 방법을 제공한다.
이 연구는 서로 다른 머리 조직의 기본적인 세그먼트화가 필요 없는 개인화된 머리 모델에 대한 첫 번째 접근법을 제시한다. 이 방법은 단순히 볼록한 외피를 사용하여 DTI(Diffusion Tensor Imaging) 데이터 세트에서 파생된 대뇌 피질 조직의 바깥층과 전도도 표현을 모델링한다.
이전에 개발된 현실적인 인간의 머리 모델이 기준 모델로 사용되었다. 건강하고 젊은 여성의 MRI 데이터 세트는 두피, 두개골, 뇌척수 액(CSF), 소뇌, 백색질(WM) 및 뇌실을 포함한 회색 물질(GM)로 분류되었다. 중심에 위치한 가상 종양은 활성 종양 껍질로 둘러싸인 내부 괴사 코어인 두 개의 동심원 구로 모델링되었다. 중앙 대칭 레이아웃을 갖춘 Optune ™ 시스템을 모든 계산에 사용하였다. 도 4는 두피에 부착된 Optune™ 트랜스듀서 어레이(42, 44)가 있는 두피(40)의 정면도로, 이러한 레이아웃을 도시한다. 네 개의 패치 중 세 개의 패치 만이 그림에서 볼 수 있으며 볼록한 외피에는 눈이나 귀가 표시되어 있지 않다. 최종 볼륨 메쉬는 Mimics(www.materialise.com)로 조립되었다.
이질 조직의 등방성 전도도와 유전율 값은 이전의 연구에서와 같이 가정하였으며, 피질 조직의 이방 전도도 텐서는 DTI(Diffusion Tensor Imaging) 데이터로부터 추정되었다. 확산 텐서의 스케일링에 대해 다른 접근법이 가정된다. 이 예제에서는 각 복셀(voxel)에 대해 동일한 스케일링 계수를 사용하는 직접 매핑(dM) 접근 방식만 사용되었다. 자세한 내용은 "The Electric Field Distribution in the Brain During TTFields Therapy and Its Dependence on Tissue Dielectric Properties and Anatomy: A Computational Study"(C. Wenger at al, Phys. Med. Biol, vol. 60, no. 18, pp. 7339-7357,2015)에 기재되어 있으며, 이는 참조로 본 설명에 병합된다.
모델을 단순화하는 한 가지 방법은 복잡하고 불규칙한 형상 대신 표면 메쉬의 볼록한 외피를 사용하는 것이다. 이 연구에서는 MeshLab(http://meshlab.sourceforge.net/)을 사용하여 볼록 외피를 생성하였다. GM과 소뇌는 단일 엔벨롭(envelope)로 근사되었으며, WM, 두피, 두개골, CSF는 각각 하나의 볼록한 외피로 표현되었다. 도 5A 및 도 5B는 각각 SHM1(51) 및 SHM2(52)로 지칭되는2 개의 유사한 단순화된 모델에 대한 볼록한 외피(즉, 쉘)의 배열을 도시한다. 두 모델 모두 볼록한 외피는 두개골(54), CSF(55), 회색 물질(GM)(56) 및 백색 물질(WM)(58)을 포함한다. SHM151의 CSF 55는 SHM2의 CSF 55 52에 비하여 매우 얇다는 점을 유의한다. 도 6a 및도 6b는 WM 볼록 외피(62) 내부의 뇌실(64) 및 종양(66)의 측면도 및 평면도를 도시한다. 뇌실 및 종양 조직(활성 껍질 및 괴사성 코어)은 변하지 않았다.
네 가지 다른 단순한 머리 모델(SHM1-SHM4)이 개발되었다. 첫 번째 SHM1은 언급된 볼록 외피로 구성되어 있으며 RHM과 비교하여 매우 다른 조직 용적을 나타낸다. WM은 변경된 조직의 가장 안쪽에 있으며 두 배 이상의 조직 체적을 갖는 볼록한 엔벨롭을 적용하면 큰 영향을 받는다. 이것은 주변 조직에 영향을 미친다. GM은 SHM1에서 더 작은 부피를 갖는다. GM 뇌회(gyri) 및 전체 소뇌에 대한 엔벨롭은 SHM1에서 CSF의 부피를 감소시킨다. RHM에 비해 SHM1에서 약간 더 큰 부피를 가진 유일한 조직은 두피의 부피 감소로 이어지는 두개골이다. 그럼에도, 트랜스듀서 아래의 두피의 두께 및 두개골 레이어는 SHM1과 RHM에서 매우 유사(즉, 모든 36개의 트랜스듀서의 평균적으로 RHM 대 SHM1 레이어 두께의 비는 두피에서 102%이고, 두개골에서 110%임)한 것에 유의하여야한다. 그럼에도 불구하고 CSF의 경우 이 비율은270% 이다. 두께는 교차하는 실린더의 체적으로 추정되었는데, 즉, 트랜스 듀서를 연장하는 실린더가 생성되고, 다음 조직 표면과 교차하는 체적이 계산되었다. 따라서, RHM의 CSF 실린더의 더 높은 부피는 SHM1에서와 같이 평면 GM가 아닌 뇌의 열구(裂溝, sulci)에서 발생하는 추가 부피에 기인한다.
두 번째 단순 모델, SHM2는 SHM1에서 이러한 불일치, 즉 변경된 조직 부피 및 최소 CSF 두께를 감소시키기 위해 생성되었다(도 5A에서 보여짐). SHM2는 Mimics에서 메시를 스케일링한 결과이다. WM과 GM은 동시에 0.97의인수 에 이어 CSF를 0.995로 스케일링되었다. 이것은 SHM2의 레이어 두께 차이를 RHM 대비 두피의 102%, CSF 대비 두개골의 100%, CSF의 128%와 감소시킨 것으로부터 기인한다. 이 두 모델은 등방성 및 이방성 모델로 처음 해결되었으며 RHM 결과와 비교되었다. DTI 데이터를 이용한 전도도 텐서의 평가는 변경되지 않았다. RHM에서 GM 경계 외부의 모든 DTI 데이터는 무시되었다. SHM1과 SHM2에서 GM 볼록 외피의 일부인 모든 추가 복셀에 대한 확산 정보가 추가되었다.
SHM3은 대뇌 피질 조직에 하나의 볼록 외피만을 사용하고 WM과 GM 사이의 경계를 남기지 않는 보다 단순한 모델이다. 마지막 단순화 단계로서 SHM4는 뇌실을 절단하고 다른 모든 모델의 CSF로 채워진 등방성 챔버 대신 DTI에서 추출한 전도도 데이터로만 작동한다.
전기장 분포를 계산하기 위해 유한 요소(FE) 소프트웨어 Comsol Multiphysics(http://www.comsol.com)를 사용하여 200kHz의 주파수 영역에서 Maxwell 방정식의 준 정적 근사를 풀었다. 등방성 및 이방성 재료 특성은 이미 논의되었다. 경계 조건은 내부 경계에서 정상적인 구성 요소의 연속성, 외부 경계에서의 전기 절연을 가정하였다. TTFields 활성화는 각 활성 트랜스듀서에 대해 100mA의 부동 전위 조건으로 시뮬레이트되었다.
연구 결과는 다음과 같다. 각 모델 설정(모델 유형, 뇌 전도도의 등방성 또는 dM 표현)이 어레이 필드 방향, LR 및 AP 모두에 대해 해결되었다.
첫 번째 시뮬레이션은 SHM1 모델로 수행되었으며 등방성 및 이방성 솔루션은 RHM 모델의 시뮬레이션과 비교되었다. 이 초기 단순 모델인 SHM1은 얇은 CSF를 사용하여 뇌 및 종양 조직에서 높은 전계 강도 값을 생성한다(표2). SHM2에 의해 도입된 CSF 두께를 적용할 때, 얻어진 평균 전계 강도 값은 RHM과 비교하여 매우 유사하고 종양에서 약간 감소한다. 표2에 제시된 바와 같이, LR 활성화 및 등방성 전도성 하에서 종양 껍질의 평균 전계 강도가 최대 107 % 증가한 것으로 나타났다.
도 7은 5 개의 패널(71-75)을 포함하는데, 각각은 각각의 모델에 대한 축 방향 슬라이스에서 피질 및 종양 조직에서의 전도도 맵 및 결과적인 전계 분포를 나타낸다. 각 패널(71-75)에서 텐서 트레이스에 대한 범례가 고정되었으며, 0.1-0.6 S / m의 범위에 있다. 전도성 텐서의 궤적은 상단에 표시된다. 본 도면에서 종양 조직의 색깔은 임의적다. 각 패널에서 LR 및 AP 전극에 대한 전계 분포는 중간 및 아래쪽에 각각 나타나며 강도 범례는 0-4V / cm이다.
패널 71 및 72는 등방성 뇌 및 종양 전도성을 갖는 등방성 RHM 및 SHM2 모델을 예시한다. 두뇌의 전기장 분포는 SHM2에서 미세한 세부 사항 만 있지만 종양의 필드 분포는 LR 및 AP 설정 모두에서 유사하며 유도된 평균 전계 강도는 유사하다(표2). 뇌 조직에 이방성이 도입되면 RHM 모델의 뇌에서의 전계 분포는 약간 변경되며(패널 71 및 73 비교), SHM2 이방성 모델(패널 74)은 증가된 디테일을 보여 주며 계산된 평균 전계 강도 값은 이방성 RHM 모델(패널 73)의 그것보다 일관성이 있다.
SHM2 모델(패널 74)을 전술한 SHM3 및 SHM4의 추가 단순화를 위한 베이스라인 모델로 삼았다. GM과 WM는 두 개의 볼록 외피로만 표현된다는 사실을 감안할 때 dM 접근법이 전도도 텐서의 스케일링에 사용되었기 때문에 내부 껍질을 제거해도 아무런 효과가 기대되지 않았다. 실제로 평균 전계 강도 값에서 거의 변화가 발견되지 않았다(표 2).
뇌실은 CSF로 채워진 뇌 중심의 복잡한 구조이므로 등방성으로 간주된다. 따라서 DTI 데이터로부터 추정된 정보는 현실적인 두부 모델을 이용한 전계 계산에 보통 생략되며 등방성 전도성을 가진 상세한 세그먼트화가 사용된다. SHM4는 DTI 데이터 세트에서 평가된 텐서를 사용하여 뇌실 세그먼테이션을 무시하고 그 존재를 설명하는 효과를 조사하기 위해 생성되었다. 도전율 텐서의 결과 트레이스는 패널(75)의 상부에 디스플레이된다. 뇌의 평균 전계 강도는 SHM4보다 RHM에서 약간 높다(LR 102 %, AP 101 %). 종양 셸에서 SHM4 모델 대비 RHM에서 가장 높은 전계 강도 증가는 LR에 대해 114 %이다(표2). 이는 SHM4 모델에 추가된 단순화에도 불구하고 결과가 여전히 수용 가능하다는 표시를 제공한다.
표 2는 LR 및 AP 방향 모두에서 다양한 모델 간의 전계 강도의 변화를 보여준다. 표 2의 SHM3과 SHM4는 각각 위 표 1의 Simplel과 Simple2 모델에 해당한다.
제시된 접근법은 TTField의 맞춤 치료 계획을 위해 GBM 환자의 머리 모델을 신속하게 생성하는 데 사용될 수 있다. 두피 윤곽은 알려진 소프트웨어로 최소 소모 시간으로 구조상 이미지를 분할하여 얻을 수 있다. 대안적으로, 두부 측정치는 전체 두부 형상을 예측하는데 사용될 수 있다. 다음의 층(두개골, 뇌척수 액, 뇌)은 구조 영상으로부터 두께 측정에 의해 생성될 수 있다. 요약하자면 제안된 기법은 미래의 모델링에 쉽게 적용할 수 있어야한다. 두뇌 밖의 볼록한 외피는 머리의 측정 만 입력으로 생성될 수 있기 때문이다. 종양 및 뇌 자체에 관해서는 환자의 DTI 데이터 세트가 유전 특성(예: 전도성)을 결정하는 데 사용된다.
그러나 DTI의 획득은 표준이 아니지만, 확산 가중 이미징(DWI)는 비교적 일반적으로 얻어지며 전도도 텐서의 궤적은 단지 세 방향만으로 추정할 수 있다. 다른 실시예에서, 유도된 필드 분포는 전체 텐서가 아닌 각 복셀의 트레이스 값만을 사용하여 결정될 수 있다. 이는 가능한 정확성을 희생하여 모델의 추가 단순화를 제공한다.
DTI는 여전히 비교적 새로운 기술이며, 이미지 해상도는 매우 낮다(즉, 1mm3 등방성). 결과적으로, 이미지 보정 및 텐서 추정 방법을 신중하게 선택하는 것이 중요하며 적절한 보간 방법이 바람직하다. 확산 텐서를 전도 텐서로 스케일링하기 위해 두 가지 방법이 도입된다. dM 접근법에 덧붙여, 볼륨 정규화(vN) 방법에서 고유치의 기하 평균은 각 복셀에 대한 등방성 기준값과 일치된다. 이를 달성하기 위해 조직 유형의 근본적인 세그먼트화가 구현될 수 있다. 일부 실시예에서, 각 복셀의 텐서의 추정된 자취는 조직 유형을 분류하고 세그먼테이션을 위한 프록시로서 작용할 수 있다.
이미 지적했듯이, 자세한 GBM 세그먼트화를위한 자동화된 세그먼트화 알고리즘이 이미 존재한다. 공개적으로 이용 가능한 알고리즘의 예로는 괴사성 코어, 부종, 비 종양 종양 및 종양 증강을 구분하는 4 가지 영상 진단 양식(Tl, T1- 대조군, T2- 대조법 및 T2- 대조군)을 필요로 하는 최근의 Brain Tumor Image Analysis(BraTumlA)가 있다. Tl 만 입력으로 필요로 하는 기술도 존재한다. 여전히 GBM과 주변 부종의 이기종 환경은 복셀(voxel) 방식의 텐서 표현으로 더 자세히 묘사될 수 있다. 따라서 단순화된 모델은 복잡성이 줄어들지만 TTField의 전기장 분포를 보다 자세히 설명하는 데 사용될 수 있다.
이 섹션(즉, 파트 3)은 TTField의 적용을 위해 전기장 분포를 계산하기위한 정확한 결과를 제공하는 간단한 두부 모델을 만드는 첫 번째 시도를 제시한다. 하나의 중앙 종양에서 전계 강도는 단순한 모델을 사용할 때 구조상 이미지에서 파생된 실제인간 머리 모델에 비해 크게 변하지 않았다. 여기에 설명된 방법은 시간 소모적인 조직 세그먼트화의 필요성 없이 개인화된 모델을 생성하도록 확장될 수 있다. 향후 이 방법을 사용하면 DTI 데이터 세트를 사용할 수 있다는 요구 사항에도 불구하고 병변을 자세하게 묘사한 개별 환자 머리 모델을 신속하게 개발할 수 있다.
환자의 뇌의 질환 부위 내의 전기장을 최적화하는 레이아웃이 결정되면 (예를 들어, 여기에 설명된 방법 중 하나를 사용하여), 전극은 결정된 위치에 배치된다. 이어서, AC 전압이 질병을 치료하기 위해 전극에 인가된다(예를 들어, 본원에 참고로 인용 된 미국 특허 제 7,565,205 호에 기재된 바와 같이).
여기에 설명된 개념은 DTI를 사용하여 뇌의 전기적 특성을 유도하는 데에만 국한되지 않는다. 반대로 DWI, 전기 전도도 이미징, 전기 임피던스 단층 촬영(EIT) 및 다중 에코 GRE를 포함하되 이에 국한되지 않는 동일한 목적으로 사용될 수 있는 다른 방법으로 확장될 수 있다.
또한, 여기에 설명된 개념은 외부 층(두피, 두개골, CSF)을 볼록한 외피로 표현하는 것에 국한되지 않으며, 다른 방법은 MRI 데이터를 개략적으로 근사화하는 데 사용될 수 있음을 주목해야한다. 예는 타원체, 구, 타원형 구조 또는 조직의 엔벨롭를 만드는 다른 방법과 같은 단순한 기하학적 형태를 포함한다. 또한, 본원에 설명된 개념들은 외부 층의 근사에 제한되지 않으며, 즉, 두피, 두개골 및 CSF 층은 MRI의 통상적인 세그먼테이션을 통해 얻어질 수 있다.
선택적으로, 결과를 향상시키기 위한 전도도 맵의 후 처리(예: 평활화 또는 이상치 제거 / 대체, 적응된 보간 기법 등)가 구현될 수 있다. 또한, 언급된 두 방법(예를 들어, dM 및 vN 접근법)의 조합뿐만 아니라 확산으로부터 전도성 방법까지의 다른 맵핑 방법이 사용될 수 있다. 따라서 대뇌 피질 조직에 대해 dM을 사용하는 것이 유리할 수 있으며, 임상의 또는 방사선 전문의에 의해 관심 영역(ROI)으로 모두 식별될 수 있는 부종 영역을 포함하는 뇌실 및 종양 조직에 대한 vN을 사용할 수 있다.
전술한 실시예들 중 일부는 일부 볼륨 요소가 자신이 속한 조직 유형의 대표적인 전기 특성이 할당되는 혼합된 방법을 사용하는 반면, 다른 것은 특정 MRI 시퀀스 데이터(이 경우 DTI)에 기초한 전기적 특성을할당받는 혼합 방법을 사용한다. 예를 들어, 두개골, 두피 및 CSF에는 대표적인 등방성 유전 특성이 부여되었지만, 백색 및 회색 물질(및 일부 실시예에서는 뇌실)의 전도도는 DTI 데이터로부터 유도되었다. 제시된 경우에 종양 조직은 건강한 대상에서 유래한 이미지이기 때문에 가상 위치에서 등방성 유전체 특성이 지정되었다. 그러나, 대안적인 실시예에서, 전체 두부 내의 체적 요소의 총량은 특정 이미징 기술로부터 단독으로 유도된 등방성 또는 이방성 유전 특성 중 어느 하나에 할당될 수 있다.
일부 실시예들에서, 예를 들어 두피 표면의 통상적인 세그먼테이션(segmentation)에 의해 두부의 경계면만이 식별되고 전도도 및 / 또는 유전율은 MRI 전도도 측정치로부터 도출된 전도도 측정치를 사용하여 팬텀 내의 모든 포인트에 할당된다.
일부 실시예에서, 뇌는 기존의 전체 뇌 추출 알고리즘을 사용하여 식별된다. 다음으로, 두피, 두개골 및 CSF는 자동 절차를 사용하여 세그먼트화된다. 전도도 값은 MRI 전도도 측정을 사용하여 뇌, 종양 조직(활성 셸 및 괴사 코어 포함), 부종성 구역 및 뇌실에 할당된다. 벌크 전도도 값은 두피, 두개골 및 CSF에 지정된다.
일부 실시예에서, 뇌는 기존의 전체 뇌 추출 알고리즘을 사용하여 식별된다. 다음으로, 두피, 두개골, CSF 및 뇌실이 자동 절차를 사용하여 분할된다. 전도도 값은 MRI 전도도 측정을 사용하여 뇌, 종양 조직(활성 셸 및 괴사 코어 포함) 및 부종성 부위에 할당된다. 벌크 전도도 값은 두피, 두개골, CSF 및 뇌실에 할당된다.
일부 실시예에서, 뇌는 기존의 전체 뇌 추출 알고리즘을 사용하여 식별된다. 종양은 임상의 또는 방사선 전문의에 의해 ROI(관심영역)로 표시된다. 다음으로, 두피, 두개골 및 CSF는 자동 절차를 사용하여 세그먼트화된다. 전도도 값은 MRI 전도도 측정을 사용하여 뇌 및 뇌실에 할당된다. 벌크 전도도 값은(예를 들어, 각각의 영역에 일정한 전도도 값을 할당함으로써) 두피, 두개골, CSF 및 종양 조직에 할당된다.
두피, 두개골 및 CSF의 세그먼트화를 사용하는 대신, 이들 외층의 근사가 사용될 수 있음을 주목한다. 예를 들어, 사용자는 대표 지역에서 두피, 두개골 및 CSF의 두께를 측정하도록 요청될 수 있다. 이 조직은 뇌를 둘러싼 사용자가 측정한 두께로 동심원 기하학 요소(두피, 구, 타원 등의 기본 볼록 외피와 유사)로 근사된다. 이 근사는 머리를(거의) 타원형의 구조로 시뮬레이션하여 귀, 코, 입, 턱 등의 기능을 무시한다. 그러나, 배열과 치료가 머리의 천막상(supratentorial)에만 전달되기 때문에, 이 근사는 정당화되는 것으로 보인다. 일부 실시예들에서, 3 개 조직 유형들 중2 개 이상을 하나의 층에 결합시키고 그 층에 단일 도전율 값을할당하는 것이 가능할 수 있다. 예를 들어, 두피 및 두개골은 단일 전도도(및 선택적으로 균일한 두께)를 갖는 하나의 층으로 도입될 수 있다.
발명자는 개별 환자에 대한 현실적인 머리 모델을 개발하는 능력은 종양 내에서 전기장의 최적화를 허용할 뿐만 아니라 장외 재발을 완화시키는 치료 계획을 가능하게 할 것으로 기대한다. 이것은 종양 내의 전계 강도를 설명할 뿐만 아니라 뇌의 다른 영역에서 전계 강도를 최적화하려고하는 최적화 방법을 개발함으로써 달성될 수 있다.
선택적으로, 환자 특정 연산 머리 모델은 환자 내 전계 강도 분포와 질병 진행 사이의 연결을 명확히할 수있는 소급 적 환자 분석에 사용될 수 있으며 궁극적으로 환자에서 TTField를 전달하는 방법에 대한 더 나은 이해를 유도할 수 있다.
이러한 방식으로 구축된 연산 팬텀은 또한 머리 내의 전계 및 / 또는 전류 분포를 계산하는 것이 유용한 다른 애플리케이션에 사용될 수있다. 이하를 포함하나, 국한되지 않는 응용에는: 현재의 두개골 자극의 직접 및 대체; 이식된 자극 전극 필드 맵의 시뮬레이션; 이식된 자극 전극의 배치 계획; 및 뇌파의 소스 지역화가 있을 수 있다.
마지막으로 이 응용 프로그램에서는 머리에 배열 레이아웃을 최적화하는 방법을 설명하지만 흉부 또는 복부와 같은 다른 본문 영역의 치료를 위해 배열 레이아웃을 최적화하기 위해 잠재적으로 확장될 수 있다.
본 발명은 특정 실시예를 참조하여 개시되었지만, 첨부된 청구 범위에서 정의된 바와 같이, 본 발명의 영역 및 범위를 벗어나지 않고 설명된 실시예에 대한 많은 수정, 변경 및 변경이 가능하다. 따라서, 본 발명은 설명된 실시예들에 한정되지 않으며, 다음의 청구 범위의 언어 및 그 균등물에 의해 정의된 전체 범위를 갖는다.
40: 두피
42, 44: 트랜스듀서 어레이
51: SHM1 52: SHM2
54: 두개골 55: CSF
56: 회색질 58: 백질
62: 볼록 외피 64: 뇌실
66: 종양
51: SHM1 52: SHM2
54: 두개골 55: CSF
56: 회색질 58: 백질
62: 볼록 외피 64: 뇌실
66: 종양
Claims (19)
- 대상의 신체에 배치하기 위한 복수의 전극들의 위치를 최적화하는 방법으로, 상기 방법은:
소프트웨어를 사용하여, 해부학적 체적을 조직 유형으로 세그먼트화하지 않고 전기 전도도 또는 비저항 측정값들로부터 직접 상기 해부학적 체적의 전기 전도도 또는 비저항의 3D 맵을 형성하는 단계;
사용자의 입력과 함께, 형성된 상기 전기 전도도 또는 비저항의 3D 맵 내의 표적 조직의 위치를 확인하는 단계; 및
소프트웨어를 사용하여, 형성된 상기 전기 전도도 또는 비저항 측정값의 3D 맵 및 확인된 상기 표적 조직의 위치에 기초하여 상기 전극들이 배치되는 위치를 결정하는 단계를 포함하는 방법. - 제1항에 있어서,
상기 전기 전도도 또는 비저항 측정값들은 확산 가중 MRI 데이터 세트를 포함하는 방법. - 제1항에 있어서,
상기 전기 전도도 또는 비저항 측정값들은 커스터마이즈된 다중 에코 그래디언트 시퀀스(customized multi-echo gradient sequences) MRI 데이터 세트를 포함하는 방법. - 제1항에 있어서,
상기 전기 전도도 또는 비저항 측정값들은 확산 텐서(diffusion tensor) MRI 데이터 세트를 포함하는 방법. - 제4항에 있어서,
상기 확산 텐서 MRI 데이터 세트는,
확산 및 전도도 텐서들의 고유값들 사이의 선형 관계를 가지는 직접 맵, σv =s·dv, 을 포함하는 방법.(σv: 는 v 번째 전도도 고유값, dv: v 번째 확산 텐서 고유값) - 제4항에 있어서,
소프트웨어를 사용하여,
상기 확산 텐서 MRI 데이터 세트는,
체적 정규화 되었으며,
상기 해부학적 체적 내의 각각의 체적 요소내의 전도도 텐서 고유값(eigenvalues)들의 기하 평균은 상기 각 체적 요소가 속한 각 조직 유형의 특정 등방성 전도도 값에 국부적으로 상응하는 방법. - 제1항에 있어서,
상기 해부학적 체적은 뇌의 백질 및 회색질을 포함하는 방법. - 제1항에 있어서,
상기 해부학적 체적은 뇌이고,
상기 전극들이 배치되는 위치는 복합 모델(composite model)에 기초하여 결정되되, 상기 복합 모델은 상기 형성된 3D 전기 전도도 또는 비저항의 3D 맵은 제1 상수 전도도를 가지는 제1 셸(first shell)의 모델로 둘러싸인 것인 방법. - 제8항에 있어서,
상기 제1 셸은 두피, 두개골 및 CSF 모두인 방법. - 제8항에 있어서,
상기 제1 셸의 상기 모델은 CSF를 나타내고,
상기 복합 모델은 두개골을 나타내는 제2 셸을 더 포함하고, 상기 제2 셸은 제2 상수 전도도를 가지며,
상기 복합 모델은 두피를 나타내는 제3 셸을 더 포함하고, 상기 제3 셸은 제3 상수 전도도를 가지는 방법. - 제8항에 있어서,
상기 전극들이 배치되는 위치는
소프트웨어를 사용하여,
쌍극자를 상기 복합 모델의 상기 표적 조직에 상응하는 위치에 부가하고,
상기 쌍극자에 기인한 전위가 최대치가 되는 외부 위치를 선택하여 결정되는 방법. - 제1항에 있어서,
상기 전극들이 배치되는 위치는,
상기 표적 조직 내에 전기장의 최대 강도를 제공할 상기 전극들이 배치되는 위치를 계산하여 결정되는 방법. - 제1항에 있어서,
형성된 상기 전기 전도도 또는 비저항의 3D 맵은 1mm x 1mm x 1mm보다 높은 해상도를 가지는 방법. - 제1항에 있어서,
형성된 상기 전기 전도도 또는 비저항의 3D 맵은
해부학적 체적을 나타내는 기하학적 객체를 포함하는 방법. - 제1항에 있어서,
형성된 상기 전기 전도도 또는 비저항의 3D 맵은 부분 이방성(fractional anisotropy)에 기초하여 각 체적 요소에 대한 조직 유형의 분류를 포함하는 방법. - 제1항에 있어서,
형성된 상기 전기 전도도 또는 비저항의 3D 맵은 평균 전도도에 기초하여 각 체적 요소에 대한 조직 유형의 분류를 포함하는 방법. - 제1항에 있어서,
형성된 상기 전기 전도도 또는 비저항의 3D 맵은 특정 등방성 기준값에 일치된 전도도 텐서의 고유 값의 기하 평균을 포함하는 방법. - 제1항에 있어서,
상기 해부학적 체적은 상기 대상의 흉부(thorax)를 포함하는 방법. - 제1항에 있어서,
상기 해부학적 체적은 상기 대상의 복부(abdomen)를 포함하는 방법.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562247314P | 2015-10-28 | 2015-10-28 | |
US62/247,314 | 2015-10-28 | ||
US201662294372P | 2016-02-12 | 2016-02-12 | |
US62/294,372 | 2016-02-12 | ||
PCT/IB2016/056495 WO2017072706A1 (en) | 2015-10-28 | 2016-10-28 | Ttfield treatment with optimization of electrode positions on the head based on mri-based conductivity measurements |
KR1020207018250A KR102278628B1 (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207018250A Division KR102278628B1 (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210016482A true KR20210016482A (ko) | 2021-02-15 |
KR102312079B1 KR102312079B1 (ko) | 2021-10-13 |
Family
ID=57321363
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217003513A KR102312079B1 (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
KR1020207018250A KR102278628B1 (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
KR1020187014817A KR20180072811A (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207018250A KR102278628B1 (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
KR1020187014817A KR20180072811A (ko) | 2015-10-28 | 2016-10-28 | MRI 기반 전도도 측정에 기반한 머리 위 전극 위치의 최적화된 TTField 치료 |
Country Status (13)
Country | Link |
---|---|
US (3) | US10188851B2 (ko) |
EP (2) | EP3838338B1 (ko) |
JP (5) | JP7183045B2 (ko) |
KR (3) | KR102312079B1 (ko) |
CN (2) | CN108348761B (ko) |
CA (1) | CA3003370A1 (ko) |
DK (2) | DK3368152T3 (ko) |
ES (2) | ES2860714T3 (ko) |
FI (1) | FI3838338T3 (ko) |
HU (2) | HUE062370T2 (ko) |
PL (2) | PL3838338T3 (ko) |
PT (1) | PT3368152T (ko) |
WO (1) | WO2017072706A1 (ko) |
Families Citing this family (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2845023A1 (en) * | 2012-05-04 | 2015-03-11 | The Regents of the University of Michigan | Mean diffusivity measurement corrections for gradient non-linearity |
US10779875B2 (en) | 2013-05-06 | 2020-09-22 | Novocure Gmbh | Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment |
WO2016134474A1 (en) * | 2015-02-25 | 2016-09-01 | London Health Sciences Centre Research Inc. | Automated segmentation of histological sections for vasculature quantification |
US10188851B2 (en) | 2015-10-28 | 2019-01-29 | Novocure Limited | TTField treatment with optimization of electrode positions on the head based on MRI-based conductivity measurements |
US10821283B2 (en) | 2016-04-04 | 2020-11-03 | Novocure Gmbh | Reducing motility of cancer cells using tumor treating fields (TTFields) |
AU2017289870B2 (en) | 2016-06-30 | 2021-12-23 | Novocure Gmbh | Arrays for longitudinal delivery of TTFields to a body |
US11446487B2 (en) | 2016-09-23 | 2022-09-20 | Beth Israel Deaconess Medical Center, Inc. | System and methods for cancer treatment using alternating electric fields |
US11109773B2 (en) | 2016-12-13 | 2021-09-07 | Novocure Gmbh | Treating patients with TTFields with the electrode positions optimized using deformable templates |
CN110178029B (zh) | 2017-01-19 | 2021-11-16 | 诺沃库勒有限责任公司 | 用于在施加TTFields的同时在显微镜下观察细胞培养物的系统 |
CN110770792B (zh) * | 2017-05-18 | 2023-07-18 | 博医来股份公司 | 确定临床靶体积 |
US11986319B2 (en) | 2017-08-25 | 2024-05-21 | NEUROPHET Inc. | Patch guide method and program |
KR101950815B1 (ko) * | 2017-08-25 | 2019-02-21 | 뉴로핏 주식회사 | 패치 가이드 방법 및 프로그램 |
KR101995900B1 (ko) * | 2017-09-11 | 2019-07-04 | 뉴로핏 주식회사 | 3차원 뇌지도 생성 방법 및 프로그램 |
EP3684463A4 (en) | 2017-09-19 | 2021-06-23 | Neuroenhancement Lab, LLC | NEURO-ACTIVATION PROCESS AND APPARATUS |
US11338135B2 (en) | 2017-10-23 | 2022-05-24 | Cardiac Pacemakers, Inc. | Medical devices for cancer therapy with electric field shaping elements |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11478603B2 (en) | 2017-12-31 | 2022-10-25 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US10953209B2 (en) | 2018-03-28 | 2021-03-23 | Board Of Regents Of The University Of Texas System | Treating tumors using TTFields combined with a PARP inhibitor |
JP7139448B2 (ja) | 2018-04-09 | 2022-09-20 | ノボキュア ゲーエムベーハー | TTFields及びオーロラキナーゼ阻害剤による腫瘍の治療 |
CN112424626A (zh) * | 2018-04-10 | 2021-02-26 | 吉夫·波姆桑 | 从具有不同重复时间的两个mri图像导出的低频(<1mhz)ac电导率估计 |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
KR102104961B1 (ko) * | 2018-07-03 | 2020-04-27 | 고려대학교산학협력단 | 최적화 알고리즘을 이용한 전기장 암치료장치 |
AU2019299533B2 (en) | 2018-07-03 | 2023-03-09 | Novocure Gmbh | Using alternating electric fields to increase cell membrane permeability |
WO2020009306A1 (ko) * | 2018-07-03 | 2020-01-09 | 고려대학교 산학협력단 | 최적화 알고리즘을 이용한 전기장 암치료장치 및 방법 |
US11179322B2 (en) | 2018-07-10 | 2021-11-23 | Novocure Gmbh | Methods and compositions for treating tumors with TTFields and sorafenib |
JP7366990B2 (ja) | 2018-07-10 | 2023-10-23 | ノボキュア ゲーエムベーハー | 交流電場を用いたウイルス感染の抑制 |
CN112423836A (zh) * | 2018-07-17 | 2021-02-26 | 迪格尼提健康公司 | 利用交变电场产生治疗癌症的系统和方法 |
MX2020013431A (es) * | 2018-07-18 | 2021-05-27 | Novocure Gmbh | Uso de densidad de perdida de potencia y mediciones relacionadas para cuantificar la dosis de campos de tratamiento de tumores (ttfield). |
HUE059062T2 (hu) | 2018-08-23 | 2022-10-28 | Novocure Gmbh | Váltakozó elektromos mezõk alkalmazása vér-agy gát permeabilitásának növelésére |
WO2020047285A1 (en) * | 2018-08-29 | 2020-03-05 | Regents Of The University Of Minnesota | Devices and methods for treatment of tumors using electromagnetic signal |
US11160977B2 (en) | 2018-09-04 | 2021-11-02 | Novocure Gmbh | Delivering tumor treating fields (TTFields) to the infratentorial brain |
US11986647B2 (en) | 2018-09-07 | 2024-05-21 | Novocure Gmbh | Treating autoinflammatory and mitochondrial diseases using an alternating electric field |
US11020585B2 (en) | 2018-09-07 | 2021-06-01 | Novocure Gmbh | Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells |
WO2020056418A1 (en) | 2018-09-14 | 2020-03-19 | Neuroenhancement Lab, LLC | System and method of improving sleep |
WO2020074480A1 (en) | 2018-10-09 | 2020-04-16 | Koninklijke Philips N.V. | Automatic eeg sensor registration |
PL3984590T3 (pl) | 2018-10-15 | 2023-05-02 | Novocure Gmbh | Wytwarzanie pól leczących guzy (pól elektrycznych do leczenia nowotworów ttfields) o wysokiej równomierności w całym mózgu |
WO2020084596A1 (en) | 2018-10-25 | 2020-04-30 | Zeev Bomzon | Delivering alternating electric fields (e.g., ttfields) to a subject's spinal anatomy |
US11395916B2 (en) | 2018-11-19 | 2022-07-26 | Novocure Gmbh | Arrays for delivering tumor treating fields (TTFields) with selectively addressable sub-elements |
MX2021002625A (es) | 2018-11-29 | 2021-05-12 | Novocure Gmbh | Arreglos de transductores de mayor flexibilidad para suministrar campos tt (campos de tratamiento de tumores). |
US11141585B2 (en) * | 2018-12-28 | 2021-10-12 | Palo Alto Research Center Incorporated | Non-invasive neural interface |
JP7246486B2 (ja) * | 2019-01-08 | 2023-03-27 | ノボキュア ゲーエムベーハー | 腫瘍治療電場(ttfields)を使用した治療を計画するための異なるタイプの組織への画像のセグメンテーションの品質評価 |
CN109864733A (zh) * | 2019-01-16 | 2019-06-11 | 漫迪医疗仪器(上海)有限公司 | 心脑异常的检测方法、系统、介质及设备 |
KR102185662B1 (ko) * | 2019-01-31 | 2020-12-02 | 뉴로핏 주식회사 | 10-20 시스템 기반의 위치 정보 제공 방법 |
CN113573774A (zh) | 2019-02-26 | 2021-10-29 | 诺沃库勒有限责任公司 | 基于靶向癌细胞的电特性确定TTfield治疗的频率 |
US11471676B2 (en) | 2019-02-27 | 2022-10-18 | Novocure Gmbh | Delivering tumor treating fields (TTFields) using implantable transducer arrays |
CN113613651A (zh) | 2019-03-29 | 2021-11-05 | 诺沃库勒有限责任公司 | 用PTGER3抑制剂恢复TTField抗性癌细胞中对TTField的敏感性的方法 |
EP3924039B1 (en) | 2019-04-17 | 2023-11-22 | Novocure GmbH | Uploading data from an isolated system without compromising isolation |
JP2022530872A (ja) | 2019-04-22 | 2022-07-04 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 癌治療のための電気刺激機器 |
CN113766948A (zh) | 2019-04-22 | 2021-12-07 | 波士顿科学国际有限公司 | 对癌症的电与化学组合治疗 |
JP7410176B2 (ja) | 2019-04-22 | 2024-01-09 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 癌を治療するために電気刺激を与えるためのシステム |
WO2020219517A2 (en) | 2019-04-23 | 2020-10-29 | Boston Scientific Scimed, Inc. | Electrical stimulation for cancer treatment with internal and external electrodes |
EP3958956B1 (en) | 2019-04-23 | 2024-02-28 | Boston Scientific Scimed Inc. | Electrodes for electrical stimulation to treat cancer |
JP7476231B2 (ja) | 2019-04-23 | 2024-04-30 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 温熱療法又は熱モニタと共に行われる電気刺激 |
US11620789B2 (en) * | 2019-05-03 | 2023-04-04 | Novocure Gmbh | Methods, systems, and apparatuses for managing transducer array placement |
WO2020236956A1 (en) * | 2019-05-20 | 2020-11-26 | Neuroelectrics Corporation | Systems and methods for treating tumors using targeted neurostimulation |
CN110119586B (zh) * | 2019-05-21 | 2023-02-28 | 中煤科工集团西安研究院有限公司 | 轴向电导率各向异性瞬变电磁三分量三维fdtd正演方法 |
US11786694B2 (en) | 2019-05-24 | 2023-10-17 | NeuroLight, Inc. | Device, method, and app for facilitating sleep |
KR20210003333A (ko) * | 2019-07-01 | 2021-01-12 | 고려대학교 산학협력단 | 피부에 인가되는 분산 전류를 이용한 전기장 기반 암 치료장치 |
JP7472264B2 (ja) | 2019-07-31 | 2024-04-22 | ノボキュア ゲーエムベーハー | 頭蓋骨インプラントに埋め込まれた電極による腫瘍治療電場(ttフィールド)の印加 |
CN114364433A (zh) | 2019-08-30 | 2022-04-15 | 诺沃库勒有限责任公司 | 向颈部输送肿瘤治疗场(TTFields) |
US20240061398A1 (en) * | 2019-10-07 | 2024-02-22 | Novocure Gmbh | Methods, systems, and apparatuses for guiding transducer array placement |
WO2021071871A1 (en) * | 2019-10-09 | 2021-04-15 | Trustees Of Boston University | Electrography system employing layered electrodes for improved spatial resolution |
WO2021092402A1 (en) | 2019-11-08 | 2021-05-14 | Novocure Gmbh | Perforated hydrogel configurations and methods of production and use thereof |
EP4099336A1 (en) | 2019-12-02 | 2022-12-07 | Novocure GmbH | Methods and apparatuses for optimizing transducer array placement |
EP4074369A1 (en) | 2019-12-31 | 2022-10-19 | Novocure GmbH | High voltage, high efficiency sine wave generator that prevents spikes during amplitude adjustments and switching of channels |
WO2021136971A1 (en) | 2019-12-31 | 2021-07-08 | Novocure Gmbh | Methods, systems, and apparatuses for fast approximation of electric field distribution |
WO2021136960A1 (en) | 2019-12-31 | 2021-07-08 | Novocure Gmbh | Methods, systems, and apparatuses for combined tumor treating fields and mental health therapy |
CN114845767A (zh) | 2019-12-31 | 2022-08-02 | 诺沃库勒有限责任公司 | 用于管理由交变场感应的温度的方法、系统和装置 |
CN114868156A (zh) | 2019-12-31 | 2022-08-05 | 诺沃库勒有限责任公司 | 用于图像分割的方法、系统和装置 |
DK4074367T3 (da) | 2019-12-31 | 2023-05-22 | Novocure Gmbh | Arrays til levering af tumorbehandlingsfelter (tt-felter) med individuelt tilgængelige elektrodeelementer og temperatursensorer |
US20210196207A1 (en) | 2019-12-31 | 2021-07-01 | Novocure Gmbh | Methods, systems, and apparatuses for associating dielectric properties with a patient model |
US11458298B2 (en) | 2020-01-22 | 2022-10-04 | Novocure Gmbh | Assemblies containing two conductive gel compositions and methods of production and use thereof |
EP4110455B1 (en) | 2020-02-24 | 2024-05-22 | Boston Scientific Scimed, Inc. | Systems for treatment of pancreatic cancer |
US20210299439A1 (en) * | 2020-03-31 | 2021-09-30 | Novocure Gmb | Methods, systems, and apparatuses for guiding transducer placements for tumor treating fields |
CN111420271A (zh) * | 2020-04-02 | 2020-07-17 | 河北普尼医疗科技有限公司 | 一种基于头部肿瘤治疗的电极贴片定位方法 |
TW202200232A (zh) | 2020-05-06 | 2022-01-01 | 瑞士商諾沃庫勒有限責任公司 | 用於產生腫瘤治療電場之導電襯墊以及生產和使用其之方法 |
KR102464313B1 (ko) | 2020-05-18 | 2022-11-08 | 주식회사 필드큐어 | 전기장 암 치료 시스템을 위한 품질 보증 장치 및 방법 |
WO2021257967A1 (en) | 2020-06-19 | 2021-12-23 | The Methodist Hospital Dba Houston Methodist Hospital | Method and apparatus for oncomagnetic treatment |
US11818943B2 (en) | 2020-06-25 | 2023-11-14 | Novocure Gmbh | Fabricating organic light emitting diodes (OLEDs) using tubulin |
KR102490645B1 (ko) * | 2020-07-16 | 2023-01-25 | 고려대학교 산학협력단 | 흡수에너지 기반 전기장 암치료 계획 시스템 및 방법 |
KR102385708B1 (ko) * | 2020-07-20 | 2022-04-13 | 경희대학교 산학협력단 | 알츠하이머병 진단을 위한 인공지능 기반의 전도도 영상 복원 장치 및 방법 |
CN116367882A (zh) | 2020-09-25 | 2023-06-30 | 诺沃库勒有限责任公司 | 改变肿瘤治疗场(ttfield)系统中个体电极元件上的金属化面积以使电流最大化而不会过热 |
KR102458768B1 (ko) * | 2020-09-29 | 2022-10-26 | 고려대학교 산학협력단 | 체내 온도 제어 및 흡수에너지 기반 종양치료 전기장 최적화 방법 및 시스템, 및 이를 포함하는 전기장 시스템 구동 방법 및 시스템 |
US20220096853A1 (en) * | 2020-09-30 | 2022-03-31 | Novocure Gmbh | Methods and systems for transducer array placement and skin surface condition avoidance |
US20220096829A1 (en) * | 2020-09-30 | 2022-03-31 | Novocure Gmbh | Method and apparatus for delivering tumor treating fields to a torso, and method for determining locations for transducers to deliver tumor treating fields |
TWI827889B (zh) * | 2020-10-16 | 2024-01-01 | 瑞士商諾沃庫勒有限責任公司 | 用於管理傳感器陣列佈置的方法和設備以及相關的非暫態的電腦可讀取的媒體 |
TWI805954B (zh) * | 2020-10-16 | 2023-06-21 | 瑞士商諾沃庫勒有限責任公司 | 經由嵌入顱骨植入物中之電極來應用腫瘤治療電場(TTFields) |
US20220148171A1 (en) * | 2020-11-06 | 2022-05-12 | Novocure Gmbh | Methods and apparatuses for determining transducer locations to generate tumor treating fields |
US11883652B2 (en) | 2020-12-21 | 2024-01-30 | Novocure Gmbh | Optimization of composite electrode |
US11869151B2 (en) | 2021-01-26 | 2024-01-09 | Beth Israel Deaconess Medical Center | Systems and methods for finite element analysis of tumor treating fields |
JP2024514045A (ja) | 2021-03-12 | 2024-03-28 | ノボキュア ゲーエムベーハー | 電極アレイ、ならびにその製造および使用方法 |
CN117425514A (zh) | 2021-03-18 | 2024-01-19 | 诺沃库勒有限责任公司 | 用液体水凝胶构造3d模型 |
CN117120139A (zh) * | 2021-03-31 | 2023-11-24 | 诺沃库勒有限责任公司 | 使用肿瘤治疗场(ttfield)系统的电极的阻抗断层摄影 |
US20240165419A1 (en) * | 2021-04-04 | 2024-05-23 | Dignity Health | Systems and methods for machine-learning guided treatment planning and monitoring of electric field therapy implants |
CN113101517B (zh) * | 2021-04-15 | 2022-02-01 | 中国医学科学院北京协和医院 | 植入式电极装置及其制备方法 |
CN113096765A (zh) * | 2021-04-16 | 2021-07-09 | 湖南安泰康成生物科技有限公司 | 一种用于靶向目标范围电场强度计算的有限元建模方法及装置 |
CN117813131A (zh) | 2021-07-21 | 2024-04-02 | 诺沃库勒有限责任公司 | 生成肿瘤治疗场的导电衬垫及其生产和使用的方法 |
WO2023042080A1 (en) | 2021-09-14 | 2023-03-23 | Novocure Gmbh | Temperature independent method and system for applying ttfields |
JP2024533808A (ja) | 2021-09-30 | 2024-09-12 | ノボキュア ゲーエムベーハー | 毛包と相互作用する腫瘍治療電場を印加するための方法およびシステム |
WO2023084340A1 (en) * | 2021-11-12 | 2023-05-19 | Novocure Gmbh | Adjusting tumor treating fields simulation and treatment using molecular imaging |
WO2023095111A1 (en) | 2021-11-29 | 2023-06-01 | Novocure Gmbh | Methods of reducing ciliogenesis with alternating electric fields |
US20230173265A1 (en) | 2021-12-10 | 2023-06-08 | Novocure Gmbh | Garment providing a biasing force on a transducer array |
WO2023168033A1 (en) * | 2022-03-03 | 2023-09-07 | Medtronic, Inc. | Electric field therapy via implantable electrodes |
WO2023242741A1 (en) | 2022-06-13 | 2023-12-21 | Novocure Gmbh | Systems and methods for increasing intestinal absorption of therapeutic agents |
US20230405316A1 (en) | 2022-06-20 | 2023-12-21 | Novocure Gmbh | Compositions, systems, and methods for treating cancer using tumor treating fields and vegf inhibitors |
US20230407282A1 (en) | 2022-06-21 | 2023-12-21 | Novocure Gmbh | Systems and methods for treating conditions and diseases using alternating electric fields and crispr-cas system |
US20240001133A1 (en) * | 2022-06-30 | 2024-01-04 | Novocure Gmbh | Tumor treating field transducers with protective border, and apparatuses and methods for active detection of improper transducer configuration |
WO2024052877A1 (en) | 2022-09-08 | 2024-03-14 | Novocure Gmbh | Constructing a 3d phantom with a matrix material having conductive particles dispersed therein |
WO2024069488A1 (en) | 2022-09-27 | 2024-04-04 | Novocure Gmbh | Ingestible implantable device to measure internal ttfield intensity |
US20240108908A1 (en) | 2022-09-29 | 2024-04-04 | Novocure Gmbh | System and method for maintaining ttfields during battery changes |
CA3180284A1 (en) | 2022-09-29 | 2024-03-29 | Novocure Gmbh | Transducer array having a temperature sensor isolation layer between a temperature sensor and external environment |
WO2024069531A1 (en) | 2022-09-30 | 2024-04-04 | Novocure Gmbh | Compositions, systems, and methods for treating cancer using alternating electric fields and apoptotic cancer cell vaccination |
US20240110174A1 (en) | 2022-09-30 | 2024-04-04 | Novocure Gmbh | Compositions, systems, and methods for treating cancer using alternating electric fields and dendritic cells |
WO2024069321A1 (en) | 2022-09-30 | 2024-04-04 | Novocure Gmbh | Compositions, systems, and methods for reducing electrosensation and/or skin irritation |
WO2024069539A1 (en) | 2022-09-30 | 2024-04-04 | Novocure Gmbh | Single wire temperature measurement solution for a ttfield application system and methods of production and use thereof |
US20240173544A1 (en) | 2022-11-30 | 2024-05-30 | Novocure Gmbh | Transducer arrays having alternative array materials |
WO2024127192A1 (en) | 2022-12-13 | 2024-06-20 | Novocure Gmbh | Wireless transducer arrays applying tumor treating fields and systems and methods of use thereof |
WO2024141995A1 (en) | 2022-12-28 | 2024-07-04 | Novocure Gmbh | Compositions, systems, and methods for treating cancer using tumor treating fields and anti-vegfr-2 antibodies |
SE2350149A1 (en) | 2023-02-15 | 2024-08-16 | Force Oncology Ab | Methods and apparatuses for application of tumor treating fields based on high-frequency real-time tumor positioning |
WO2024201385A1 (en) | 2023-03-30 | 2024-10-03 | Novocure Gmbh | Compositions, systems, and methods for treating cancer using tumor treating fields and killer cells |
WO2024201344A1 (en) | 2023-03-30 | 2024-10-03 | Novocure Gmbh | Compositions, systems, and methods for treating cancer using tumor treating fields and chimeric antigen receptor (car)-immune cells |
WO2024201412A1 (en) | 2023-03-31 | 2024-10-03 | Novocure Gmbh | Microneedles to overcome contact resistance |
CN116542115B (zh) * | 2023-07-06 | 2023-10-20 | 湖南安泰康成生物科技有限公司 | 生物体目标区域电场强度模的确定方法、装置及电子设备 |
CN117933174B (zh) * | 2024-03-22 | 2024-05-31 | 湖南安泰康成生物科技有限公司 | 电极片定制化方法及装置、肿瘤电场治疗仪及存储介质 |
CN117954050B (zh) * | 2024-03-25 | 2024-07-16 | 湖南安泰康成生物科技有限公司 | 电极片贴敷方案确定方法及装置、设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060017749A1 (en) * | 2004-07-07 | 2006-01-26 | Mcintyre Cameron C | Brain stimulation models, systems, devices, and methods |
US20100113959A1 (en) * | 2006-03-07 | 2010-05-06 | Beth Israel Deaconess Medical Center, Inc. | Transcranial magnetic stimulation (tms) methods and apparatus |
US20120265261A1 (en) * | 2009-04-13 | 2012-10-18 | Marom Bikson | Neurocranial Electrostimulation Models, Systems, Devices, and Methods |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5568816A (en) | 1990-09-07 | 1996-10-29 | Sam Technology, Inc. | EEG deblurring method and system for improved spatial detail |
JPH09173315A (ja) * | 1995-12-26 | 1997-07-08 | Hitachi Medical Corp | 磁気共鳴イメージング方法 |
CA2400526C (en) | 2000-02-17 | 2013-04-23 | Yoram Palti | Method and apparatus for destroying dividing cells |
US7016725B2 (en) | 2001-11-06 | 2006-03-21 | Standen Ltd. | Method and apparatus for destroying dividing cells |
US7089054B2 (en) | 2002-10-02 | 2006-08-08 | Standen Ltd. | Apparatus and method for treating a tumor or the like |
US8447395B2 (en) | 2000-02-17 | 2013-05-21 | Novocure Ltd | Treating bacteria with electric fields |
US6868289B2 (en) | 2002-10-02 | 2005-03-15 | Standen Ltd. | Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor |
US7136699B2 (en) | 2002-10-02 | 2006-11-14 | Standen, Ltd. | Apparatus for destroying dividing cells |
US7146210B2 (en) | 2000-02-17 | 2006-12-05 | Standen Ltd. | Apparatus and method for optimizing tumor treatment efficiency by electric fields |
US8175698B2 (en) | 2000-02-17 | 2012-05-08 | Novocure Ltd. | Treating bacteria with electric fields |
US7599746B2 (en) | 2000-02-17 | 2009-10-06 | Standen Ltd | Apparatus and method for preventing the spread of cancerous metastases and for elimination of metastases |
US7890183B2 (en) | 2000-02-17 | 2011-02-15 | Novocure Ltd. | Treating parasites with electric fields |
WO2005069032A1 (en) | 2004-01-14 | 2005-07-28 | Koninklijke Philips Electronics, N.V. | Magnetic resonance imaging with real-time magnetic field mapping |
CN1946339A (zh) * | 2004-02-20 | 2007-04-11 | 佛罗里达大学研究基金会公司 | 用于提供适形放射治疗同时对软组织进行成像的系统 |
CA2563817C (en) | 2004-04-23 | 2018-07-10 | Yoram Palti | Treating a tumor or the like with electric fields at different frequencies |
US8180601B2 (en) * | 2006-03-09 | 2012-05-15 | The Cleveland Clinic Foundation | Systems and methods for determining volume of activation for deep brain stimulation |
ATE463277T1 (de) | 2004-12-07 | 2010-04-15 | Standen Ltd | Elektroden zum anlegen eines elektrischen felds in vivo über einen längeren zeitraum |
EP1833554A2 (en) | 2004-12-27 | 2007-09-19 | Standen Ltd. | Treating a tumor or the like with electric fields at different orientations |
CN101287519B (zh) | 2005-06-08 | 2014-10-29 | 斯坦顿有限公司 | 利用被导引到身体内的期望位置的电场来治疗癌症的装置 |
US9307925B2 (en) | 2005-06-16 | 2016-04-12 | Aaken Laboratories | Methods and systems for generating electrical property maps of biological structures |
AU2006261150A1 (en) * | 2005-06-16 | 2006-12-28 | Michael J. Russell | Guided electrical transcranial stimulation (gets) technique |
JP2009520509A (ja) | 2005-10-03 | 2009-05-28 | ノヴォキュアー・リミテッド | 増殖細胞における電場の効果を増大させるための電場の最適化特性 |
US8019414B2 (en) | 2006-04-05 | 2011-09-13 | Novocure Ltd. | Treating cancer using electromagnetic fields in combination with other treatment regimens |
WO2009044289A1 (en) | 2007-03-06 | 2009-04-09 | Novocure Ltd. | Treating cancer using electromagnetic fields in combination with photodynamic therapy |
US8715203B2 (en) | 2007-09-17 | 2014-05-06 | Novocure Limited | Composite electrode |
WO2012052543A1 (en) * | 2010-10-22 | 2012-04-26 | Herlev Hospital | A method for treating a tissue region with an electric field |
US9265557B2 (en) | 2011-01-31 | 2016-02-23 | Medtronic Ablation Frontiers Llc | Multi frequency and multi polarity complex impedance measurements to assess ablation lesions |
EP2882335A4 (en) * | 2012-08-09 | 2016-04-06 | Univ Northeastern | ELECTROFIELD ENZEPHALOGRAPHY: ELECTROFIELD-BASED BRAIN SIGNAL DETECTION AND MONITORING |
US9655669B2 (en) | 2013-05-06 | 2017-05-23 | Novocure Limited | Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment |
US10779875B2 (en) | 2013-05-06 | 2020-09-22 | Novocure Gmbh | Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment |
CN104123416A (zh) * | 2014-07-21 | 2014-10-29 | 中国医学科学院生物医学工程研究所 | 一种模拟真实人体颅脑电特性分布的有限元仿真模型 |
CN104096316B (zh) * | 2014-07-21 | 2015-11-18 | 中国医学科学院生物医学工程研究所 | 一种用于脑深部经颅磁刺激的h型线圈优化方法 |
CN104063565A (zh) * | 2014-07-21 | 2014-09-24 | 中国医学科学院生物医学工程研究所 | 一种用于深部磁刺激研究的真实人体头部有限元模型 |
US20190117963A1 (en) | 2014-07-25 | 2019-04-25 | Loyalty Based Innovations, LLC | Apparatus and method for treating multiple tumors in patients with metastatic disease by electric fields |
US10188851B2 (en) | 2015-10-28 | 2019-01-29 | Novocure Limited | TTField treatment with optimization of electrode positions on the head based on MRI-based conductivity measurements |
US10821283B2 (en) | 2016-04-04 | 2020-11-03 | Novocure Gmbh | Reducing motility of cancer cells using tumor treating fields (TTFields) |
AU2017289870B2 (en) | 2016-06-30 | 2021-12-23 | Novocure Gmbh | Arrays for longitudinal delivery of TTFields to a body |
CA2972699A1 (en) | 2016-07-10 | 2018-01-10 | Novocure Limited | Synchronizing tumor cells to the g2/m phase using ttfields combined with taxane or other anti-microtubule agents |
EP4218908A1 (en) | 2016-08-18 | 2023-08-02 | Novocure GmbH | Temperature measurement in arrays for delivering ttfields |
US11109773B2 (en) | 2016-12-13 | 2021-09-07 | Novocure Gmbh | Treating patients with TTFields with the electrode positions optimized using deformable templates |
CN110178029B (zh) | 2017-01-19 | 2021-11-16 | 诺沃库勒有限责任公司 | 用于在施加TTFields的同时在显微镜下观察细胞培养物的系统 |
JP7139448B2 (ja) | 2018-04-09 | 2022-09-20 | ノボキュア ゲーエムベーハー | TTFields及びオーロラキナーゼ阻害剤による腫瘍の治療 |
CN112424626A (zh) | 2018-04-10 | 2021-02-26 | 吉夫·波姆桑 | 从具有不同重复时间的两个mri图像导出的低频(<1mhz)ac电导率估计 |
AU2019299533B2 (en) | 2018-07-03 | 2023-03-09 | Novocure Gmbh | Using alternating electric fields to increase cell membrane permeability |
US11179322B2 (en) | 2018-07-10 | 2021-11-23 | Novocure Gmbh | Methods and compositions for treating tumors with TTFields and sorafenib |
MX2020013431A (es) | 2018-07-18 | 2021-05-27 | Novocure Gmbh | Uso de densidad de perdida de potencia y mediciones relacionadas para cuantificar la dosis de campos de tratamiento de tumores (ttfield). |
HUE059062T2 (hu) | 2018-08-23 | 2022-10-28 | Novocure Gmbh | Váltakozó elektromos mezõk alkalmazása vér-agy gát permeabilitásának növelésére |
US11160977B2 (en) | 2018-09-04 | 2021-11-02 | Novocure Gmbh | Delivering tumor treating fields (TTFields) to the infratentorial brain |
US11020585B2 (en) | 2018-09-07 | 2021-06-01 | Novocure Gmbh | Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells |
US20200108031A1 (en) | 2018-10-05 | 2020-04-09 | Novocure Gmbh | Treating Tumors Using TTFields Combined with ABT-751 |
WO2020086753A1 (en) | 2018-10-23 | 2020-04-30 | The Board Of Trustees Of The Leland Stanford Junior University | Prevention and treatment of teratoma formation in stem cell-based thereapies using alternating electric fields |
WO2020084596A1 (en) | 2018-10-25 | 2020-04-30 | Zeev Bomzon | Delivering alternating electric fields (e.g., ttfields) to a subject's spinal anatomy |
US20200146586A1 (en) | 2018-11-14 | 2020-05-14 | Novocure Gmbh | Creating Accurate Computational Head Models of Patients Using Datasets Combining MRI and CT Images |
US11395916B2 (en) | 2018-11-19 | 2022-07-26 | Novocure Gmbh | Arrays for delivering tumor treating fields (TTFields) with selectively addressable sub-elements |
MX2021002625A (es) | 2018-11-29 | 2021-05-12 | Novocure Gmbh | Arreglos de transductores de mayor flexibilidad para suministrar campos tt (campos de tratamiento de tumores). |
JP7246486B2 (ja) | 2019-01-08 | 2023-03-27 | ノボキュア ゲーエムベーハー | 腫瘍治療電場(ttfields)を使用した治療を計画するための異なるタイプの組織への画像のセグメンテーションの品質評価 |
US20200269041A1 (en) | 2019-02-22 | 2020-08-27 | Novocure Gmbh | Treating Gastric Cancer Using TTFields Combined with XELOX, FOLFOX or the Individual Constituents Thereof |
CN113573774A (zh) | 2019-02-26 | 2021-10-29 | 诺沃库勒有限责任公司 | 基于靶向癌细胞的电特性确定TTfield治疗的频率 |
US11471676B2 (en) | 2019-02-27 | 2022-10-18 | Novocure Gmbh | Delivering tumor treating fields (TTFields) using implantable transducer arrays |
CN113613651A (zh) | 2019-03-29 | 2021-11-05 | 诺沃库勒有限责任公司 | 用PTGER3抑制剂恢复TTField抗性癌细胞中对TTField的敏感性的方法 |
EP3924039B1 (en) | 2019-04-17 | 2023-11-22 | Novocure GmbH | Uploading data from an isolated system without compromising isolation |
-
2016
- 2016-10-27 US US15/336,660 patent/US10188851B2/en active Active
- 2016-10-28 EP EP21155810.1A patent/EP3838338B1/en active Active
- 2016-10-28 FI FIEP21155810.1T patent/FI3838338T3/fi active
- 2016-10-28 KR KR1020217003513A patent/KR102312079B1/ko active IP Right Grant
- 2016-10-28 ES ES16795424T patent/ES2860714T3/es active Active
- 2016-10-28 WO PCT/IB2016/056495 patent/WO2017072706A1/en active Application Filing
- 2016-10-28 HU HUE21155810A patent/HUE062370T2/hu unknown
- 2016-10-28 PT PT167954247T patent/PT3368152T/pt unknown
- 2016-10-28 HU HUE16795424A patent/HUE054032T2/hu unknown
- 2016-10-28 KR KR1020207018250A patent/KR102278628B1/ko active IP Right Grant
- 2016-10-28 ES ES21155810T patent/ES2953093T3/es active Active
- 2016-10-28 CA CA3003370A patent/CA3003370A1/en active Pending
- 2016-10-28 CN CN201680062777.8A patent/CN108348761B/zh active Active
- 2016-10-28 KR KR1020187014817A patent/KR20180072811A/ko active Application Filing
- 2016-10-28 EP EP16795424.7A patent/EP3368152B1/en active Active
- 2016-10-28 DK DK16795424.7T patent/DK3368152T3/da active
- 2016-10-28 PL PL21155810.1T patent/PL3838338T3/pl unknown
- 2016-10-28 DK DK21155810.1T patent/DK3838338T3/da active
- 2016-10-28 JP JP2018541590A patent/JP7183045B2/ja active Active
- 2016-10-28 CN CN202110776647.3A patent/CN113332601A/zh active Pending
- 2016-10-28 PL PL16795424T patent/PL3368152T3/pl unknown
-
2018
- 2018-12-17 US US16/222,042 patent/US11013909B2/en active Active
-
2021
- 2021-02-03 JP JP2021015687A patent/JP7301080B2/ja active Active
- 2021-03-03 US US17/190,979 patent/US11642514B2/en active Active
- 2021-10-28 JP JP2021176654A patent/JP7383679B2/ja active Active
- 2021-10-28 JP JP2021176655A patent/JP7311572B2/ja active Active
- 2021-11-12 JP JP2021184818A patent/JP7301112B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060017749A1 (en) * | 2004-07-07 | 2006-01-26 | Mcintyre Cameron C | Brain stimulation models, systems, devices, and methods |
US20100113959A1 (en) * | 2006-03-07 | 2010-05-06 | Beth Israel Deaconess Medical Center, Inc. | Transcranial magnetic stimulation (tms) methods and apparatus |
US20120265261A1 (en) * | 2009-04-13 | 2012-10-18 | Marom Bikson | Neurocranial Electrostimulation Models, Systems, Devices, and Methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7383679B2 (ja) | Mriによる導電率測定値に基づいて頭部上の電極位置を最適化したttfield治療 | |
JP7405818B2 (ja) | 変形可能テンプレートを使用して最適化された電極位置を有するttフィールドを用いて患者を治療する | |
CA3096429C (en) | Low frequency (<1 mhz) ac conductivity estimates derived from two mri images having different repetition times | |
US20200146586A1 (en) | Creating Accurate Computational Head Models of Patients Using Datasets Combining MRI and CT Images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |