KR20210005238A - 박슬래브 주조에 있어서의 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법 - Google Patents
박슬래브 주조에 있어서의 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법 Download PDFInfo
- Publication number
- KR20210005238A KR20210005238A KR1020207034730A KR20207034730A KR20210005238A KR 20210005238 A KR20210005238 A KR 20210005238A KR 1020207034730 A KR1020207034730 A KR 1020207034730A KR 20207034730 A KR20207034730 A KR 20207034730A KR 20210005238 A KR20210005238 A KR 20210005238A
- Authority
- KR
- South Korea
- Prior art keywords
- mold
- flow
- equation
- immersion nozzle
- nozzle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/103—Distributing the molten metal, e.g. using runners, floats, distributors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/114—Treating the molten metal by using agitating or vibrating means
- B22D11/115—Treating the molten metal by using agitating or vibrating means by using magnetic fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
이 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 장치는, 메니스커스부의 짧은 변 두께가 150mm 이하, 주조 폭이 2m 이하인 강의 박슬래브 주조에 사용하는 주형 내 유동 제어 장치이며, 직류 자장 발생 유닛과, 토출 구멍의 저부와 연결되고 외부로 개구되도록 저부에 형성된 슬릿을 갖는 침지 노즐을 구비하고, 상기 토출 구멍 및 상기 슬릿은 직류 자장대에 존재하고, 상기 직류 자장대의 자속 밀도 B(T)와, 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (1) 및 식 (2)를 만족시킨다.
0.35T≤B≤1.0T … 식 (1)
L≥0.06m … 식 (2)
0.35T≤B≤1.0T … 식 (1)
L≥0.06m … 식 (2)
Description
본 발명은 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법에 관한 것이다.
본원은 2018년 6월 7일에 일본에 출원된 일본 특허 출원 제2018-109150호 및 2018년 11월 9일에 일본에 출원된 일본 특허 출원 제2018-211091호에 기초하여 우선권을 주장하며, 그 내용을 여기에 원용한다.
슬래브 두께가 40 내지 150mm인 박슬래브(박주편)를 주조하는 박슬래브 주조 방법이 알려져 있다. 주조된 박슬래브는 가열된 후, 4단 내지 7단 정도의 소규모의 압연기로 압연된다. 박슬래브 주조에 사용하는 연속 주조 주형으로서는, 깔때기상 주형(퍼널 주형)을 사용하는 방법과 직사각형의 평행 주형을 사용하는 방법이 채용되고 있다. 깔때기상 주형은, 주형 하단부의 개구부(용강과 응고 셸이 충전되는 부분)에 대해서는 직사각형으로 하고, 주형 메니스커스부의 개구부에 대해서는, 짧은 변부의 개구 폭은 주형 하단부의 짧은 변 폭과 동일하게 하면서, 침지 노즐이 삽입되는 부분의 개구 폭을 넓혀, 침지 노즐의 하단보다 하방에 있어서 개구부 표면 형상이 점차 좁아지는 깔때기상으로 형성한 형상의 주형이다. 박슬래브의 연속 주조에서는 고속 주조에 의해 생산성을 확보하는 것이 필요하며, 공업적으로는 5 내지 6m/분, 최고 10m/분의 고속 주조가 가능하게 되어 있다(비특허문헌 1 참조).
박슬래브 주조에 있어서는, 상술한 바와 같이 주조 두께가 일반적으로 150mm 이하로 얇고, 한편 주조 폭은 1.5m 정도로서 애스펙트비가 높다. 그리고, 주조 속도가 5m/분으로 고속 주조이기 때문에 스루풋도 높다. 게다가, 주형에 대한 용강 주탕을 용이하게 하기 위해, 깔때기상 주형이 사용되는 경우가 많아, 주형 내 유동은 보다 복잡화된다. 그 때문에, 노즐 형상을 편평화, 또한 노즐 토출 구멍을 다공화하여, 토출류를 분할함으로써 노즐 토출 유속을 저감하는 것이 일반적이다(특허문헌 1 참조). 또한, 복수의 노즐 토출류 각각을 제동하기 위해, 복수의 전자석을 주형 긴 변에 배치하여 유동을 제동하는 방법도 제안되어 있다(특허문헌 2, 3 참조).
박슬래브 주조가 아닌 통상의 연속 주조에서 사용되는 침지 노즐은, 바닥이 있는 원통형의 형상이며, 침지부의 양측면에 각각 토출 구멍을 갖고 있다. 한편, 침지 노즐의 저부에, 하방을 향하여 외부로 개구되는 슬릿을 갖는 노즐이 알려져 있다(특허문헌 4, 5 참조). 슬릿은 원통 저부 및 좌우의 토출 구멍의 저부를 연결하여 개구된다. 침지 노즐을 통하여 주형 내로 유출되는 용탕은, 좌우의 토출 구멍에 더하여 이 슬릿으로부터도 유출되므로, 토출 구멍으로부터 유출되는 용탕 유속을 상대적으로 저감시킬 수 있다. 그러나, 박슬래브 주조가 아닌 통상의 연속 주조에 있어서는, 침지 노즐의 막힘 방지 등을 목적으로 하여, 침지 노즐을 통과하는 용탕 중에 Ar 가스를 불어넣은 결과, 슬릿으로부터 노즐 토출류와 함께 하향으로 불어넣어진 기포가 그대로 상방에 부상하기 때문에, 노즐 주위에서 보일링되어 버려 잘 활용되지 못하고 있다.
또한, 박슬래브 주조가 아닌 통상의 슬래브 연속 주조에 있어서는, 주형 내 전자 교반이 사용되고 있으며, 수평 단면 내에서 선회류를 형성하고 있다. 한편, 박슬래브 주조에 있어서는, 이러한 주형 내 전자 교반은 사용되지 않는다. 이것은 주형 두께가 얇기 때문에 선회류의 형성이 곤란하다고 상정되는 것, 이미 고속 주조로 인해 응고 셸 전방면에는 충분한 유동이 부여되어 있고, 또한 탕면 근방에서 선회류를 부여하면, 주형 내 유동이 복잡화되어 바람직하지 않다고 여겨지는 것 등에 따른다고 생각된다.
제5판 철강 편람 제1권 제철ㆍ제강 제454쪽 내지 제456쪽
오카노 시노부 등 저서 「철과 강」 61(1975), 2982쪽
전술한 바와 같이, 박슬래브 주조에 있어서는 노즐 토출 구멍을 다공화하여, 토출류를 분할함으로써 노즐 토출 유속을 저감함과 함께, 복수의 전자석을 주형 긴 변에 배치하여 유동을 제동하는 방법이 제안되어 있다. 그러나, 노즐 토출류를 분할할 때, 난류이기 때문에 일정한 유동 패턴이 형성되고 있다고는 하기 어렵다. 또한, 복수의 전자석을 마련하여 자장을 형성하면, 전자석의 단부는 자장이 저하되고, 자장 분포가 불균일해진다. 자장이 약한 부위를 유체가 용이하게 빠져 나가기 때문에, 결과적으로 유동 분포를 안정되게 저감하기는 어렵다. 그 때문에, 박슬래브 주조에 있어서, 노즐 토출류를 어떻게 형성할지 여전히 해결되었다고 하기는 어렵다.
그래서, 본 발명은 강의 박슬래브 주조에 있어서, 주형 내 유동을 안정적으로 제어함과 함께, 주형 내의 메니스커스에 대한 열공급을 유효하게 행함으로써, 표면, 내부 품위 모두 우수한 주편의 주조가 가능한 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법을 제공하는 것을 목적으로 한다.
본 발명이 요지로 하는 바는 이하와 같다.
(1) 본 발명의 제1 양태는, 메니스커스부의 짧은 변 두께가 150mm 이하, 주조 폭이 2m 이하인 강의 박슬래브 주조에 사용하는 주형 내 유동 제어 장치이며,
주형 폭 방향의 전체 폭에 있어서, 주형 두께 방향을 향하는 직류 자장을 부여하는 코어를 갖는 직류 자장 발생 유닛과, 상기 주형 폭 방향의 양측면에 형성된 토출 구멍과, 이들 토출 구멍의 저부와 연결되고 외부로 개구되도록 저부에 형성된 슬릿을 갖는 침지 노즐을 구비하고, 상기 토출 구멍 및 상기 슬릿은, 상기 직류 자장 발생 유닛의 상기 코어가 존재하는 높이 영역인 직류 자장대에 존재하고, 상기 직류 자장대의 자속 밀도 B(T)와, 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (1) 및 식 (2)를 만족시키는
것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 장치이다.
0.35T≤B≤1.0T … 식 (1)
L≥0.06m … 식 (2)
(2) 상기 (1)에 기재된 주형 내 유동 제어 장치에서는, 상기 침지 노즐의 측면으로 개구되는 부분의 합계 단면적과 동일한 단면적의 원 상당 직경인 상기 토출 구멍의 토출 구멍 직경 d(mm), 상기 슬릿의 슬릿 두께 δ(mm) 및 상기 침지 노즐의 내경 D(mm)가 하기 식 (3) 및 식 (4)를 만족시켜도 된다.
D/8≤δ≤D/3 … 식 (3)
δ≤d≤2/3×D … 식 (4)
(3) 상기 (1) 또는 (2)에 기재된 주형 내 유동 제어 장치에서는, 상기 토출 구멍은, 토출류가 상기 침지 노즐의 축 방향에 대하여 수직 방향으로 되도록 형성되어도 된다.
(4) 상기 (1) 내지 (3) 중 어느 한 항에 기재된 주형 내 유동 제어 장치는, 또한, 주형 내의 용강 표면에서 선회류를 부여할 수 있는 전자 교반 유닛을 가져도 된다.
(5) 상기 (4)에 기재된 주형 내 유동 제어 장치에서는, 상기 주형의 긴 변 벽을 구성하는 동판의 두께 DCu(mm), 주편의 두께 T(mm), 상기 전자 교반 유닛의 주파수 f(Hz), 상기 동판의 전기 전도도 σCu(S/m)가 하기 식 (7A), 식 (7B)를 만족시키도록 조정되어도 된다.
DCu<√(2/(σCuωμ)) … 식 (7A)
√(1/(2σωμ))<T … 식 (7B)
단, ω=2πf: 각속도(rad/sec), μ=4π×10-7: 진공의 투자율(N/A2), σ: 용강의 전기 전도도이다.
(6) 본 발명의 제2 양태는, 상기 (1) 내지 (3) 중 어느 한 항에 기재된 주형 내 유동 제어 장치를 사용한 박슬래브 주조에 있어서의 주형 내 유동 제어 방법이며, 침지 노즐 내 평균 유속 V(m/s)에 대하여, 인가하는 직류 자장의 자속 밀도 B(T) 및 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (5) 및 식 (6)을 만족시킨다.
L≥LC=(ρV)/(2σB2) … 식 (5)
0.1×B√((σDV)/ρ)≥0.1(m/s) … 식 (6)
단, D: 침지 노즐 내경(m), ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다.
(7) 본 발명의 제3 양태는, 상기 (4) 또는 (5)에 기재된 주형 내 유동 제어 장치를 사용한 박슬래브 주조에 있어서의 주형 내 유동 제어 방법이며, 침지 노즐 내 평균 유속 V(m/s)에 대하여, 인가하는 직류 자장의 자속 밀도 B(T) 및 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (5), 식 (6)을 만족시키는
것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 방법.
L≥LC=(ρV)/(2σB2) … 식 (5)
0.1×B√((σDV)/ρ)≥0.1(m/s) … 식 (6)
단, D: 침지 노즐 내경(m), ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다.
(8) 상기 (7)에 기재된 주형 내 유동 제어 방법에서는, 주형 긴 변의 동판 두께 DCu, 주편 두께 T, 상기 전자 교반 유닛의 주파수 f(Hz), 동판 전기 전도도 σCu가 하기 식 (7A), 식 (7B)를 만족시키도록 조정되어도 된다.
DCu<√(2/(σCuωμ)) … 식 (7A)
√(1/(2σωμ))<T … 식 (7B)
단, ω=2πf: 각속도(rad/sec), μ=4π×10-7: 진공의 투자율(N/A2), σ: 용강의 전기 전도도(S/m)이다.
(9) 상기 (8)에 기재된 주형 내 유동 제어 방법에서는, 주형 내 용강 표면의 용강 교반 유속 VR이 하기 식 (8)을 만족시켜도 된다.
VR≥0.1×B√((σDV)/ρ) … 식 (8)
단, 용강 교반 유속 VR은 주편 단면의 덴드라이트 경각에 기초하여 정한다.
본 발명에 따르면, 박슬래브 주조에 있어서, 침지 노즐 토출류를 가장 제동 효율이 높은 노즐 토출류로 함으로써, 노즐 토출류의 제동을 가능하게 하고, 노즐 토출류의 균일 분산화와 메니스커스에 대한 열공급이 가능하게 된다. 그 결과, 표면, 내부 품위 모두 우수한 주편의 주조가 가능하게 된다. 즉, 고 스루풋의 조건에서 주형 내 유동을 안정적으로 제어할 수 있어, 박슬래브 주조 프로세스의 생산성이 비약적으로 개선된다. 아울러, 고품위 주편의 제조가 가능하게 된다.
도 1은 본 발명의 일 실시 형태에 관한 주형 내 유동 제어 장치를 갖는 박슬래브 연속 주조 설비를 도시하는 도면이며, (A)는 평면 모식도, (B)는 정면 모식도이다.
도 2는 침지 노즐의 일례를 도시하는 도면이며, (A)는 A-A 화살표 방향으로 본 정면 단면도, (B)는 B-B 화살표 방향으로 본 측면 단면도, (C)는 C-C 화살표 방향으로 본 평면 단면도이다.
도 3은 자장 내를 유동하는 도전성 유체 중의 유도 전류의 생성 상황을 도시하는 도면이며, (A1)(A2)는 도체 내의 유동, (B1)(B2)는 절연체 내의 유동인 경우를 도시하고, (A1)(B1)은 정면 단면도, (A2)(B2)는 평면 단면도이다.
도 4는 자장 내에서 침지 노즐 토출류에 생성되는 유도 전류의 상황을 도시하는 도면이며, (A)는 측면에 토출 구멍을 갖는 경우, (B)는 저부에 토출 구멍을 갖는 경우, (C)는 측면의 토출 구멍과 저부의 슬릿의 양쪽을 갖는 경우이다.
도 5는 도전성 용융 금속을 사용한 주조 시험에 있어서, 침지 노즐의 슬릿의 유무, 직류 자장의 유무와, 짧은 변 유량비의 관계를 나타내는 도면이다.
도 6은 직류 자장의 자속 밀도와, 노즐 내 유속과, 필요 코어 거리의 관계를 나타내는 도면이다.
도 7은 슬릿을 갖는 침지 노즐로부터의 토출류와 대향류의 관계를 나타내는 단면 모식도이다.
도 8은 도전성 용융 금속을 사용한 주조 시험에 있어서, 직류 자장의 자속 밀도와, 노즐 내 유속과, Ar 가스 취입 유무와, 대향 유속의 관계를 나타내는 도면이다.
도 9는 슬릿 두께비(δ/D)와 노즐 유속비(Vb/V)의 관계를 나타내는 도면이다.
도 10은 토출 구멍 직경비(d/D)와 노즐 유속비(Va/V)의 관계를 나타내는 도면이다.
도 11은 주형 내 전자 교반에 대하여 설명하는 도면이며, (A)는 주형 내 전자 교반을 행하지 않는 경우의 주형 내 용강 표면, (B)는 주형 내 전자 교반을 행하는 경우의 주형 내 용강 표면, (C)는 (B)의 정면 단면도이다.
도 12는 주형 표피 깊이와 용강 전자력 표피 깊이에 미치는 전자 교반 주파수의 영향을 나타내는 도면이다.
도 13은 전자 교반 조건을 횡축으로 하여, 주형 내 교반 유속에 미치는 영향을 도시한 도면이며, (A)는 종축이 주편의 덴드라이트 경각, (B)는 종축이 덴드라이트 경각 평균값으로부터 구한 교반 유속이다.
도 2는 침지 노즐의 일례를 도시하는 도면이며, (A)는 A-A 화살표 방향으로 본 정면 단면도, (B)는 B-B 화살표 방향으로 본 측면 단면도, (C)는 C-C 화살표 방향으로 본 평면 단면도이다.
도 3은 자장 내를 유동하는 도전성 유체 중의 유도 전류의 생성 상황을 도시하는 도면이며, (A1)(A2)는 도체 내의 유동, (B1)(B2)는 절연체 내의 유동인 경우를 도시하고, (A1)(B1)은 정면 단면도, (A2)(B2)는 평면 단면도이다.
도 4는 자장 내에서 침지 노즐 토출류에 생성되는 유도 전류의 상황을 도시하는 도면이며, (A)는 측면에 토출 구멍을 갖는 경우, (B)는 저부에 토출 구멍을 갖는 경우, (C)는 측면의 토출 구멍과 저부의 슬릿의 양쪽을 갖는 경우이다.
도 5는 도전성 용융 금속을 사용한 주조 시험에 있어서, 침지 노즐의 슬릿의 유무, 직류 자장의 유무와, 짧은 변 유량비의 관계를 나타내는 도면이다.
도 6은 직류 자장의 자속 밀도와, 노즐 내 유속과, 필요 코어 거리의 관계를 나타내는 도면이다.
도 7은 슬릿을 갖는 침지 노즐로부터의 토출류와 대향류의 관계를 나타내는 단면 모식도이다.
도 8은 도전성 용융 금속을 사용한 주조 시험에 있어서, 직류 자장의 자속 밀도와, 노즐 내 유속과, Ar 가스 취입 유무와, 대향 유속의 관계를 나타내는 도면이다.
도 9는 슬릿 두께비(δ/D)와 노즐 유속비(Vb/V)의 관계를 나타내는 도면이다.
도 10은 토출 구멍 직경비(d/D)와 노즐 유속비(Va/V)의 관계를 나타내는 도면이다.
도 11은 주형 내 전자 교반에 대하여 설명하는 도면이며, (A)는 주형 내 전자 교반을 행하지 않는 경우의 주형 내 용강 표면, (B)는 주형 내 전자 교반을 행하는 경우의 주형 내 용강 표면, (C)는 (B)의 정면 단면도이다.
도 12는 주형 표피 깊이와 용강 전자력 표피 깊이에 미치는 전자 교반 주파수의 영향을 나타내는 도면이다.
도 13은 전자 교반 조건을 횡축으로 하여, 주형 내 교반 유속에 미치는 영향을 도시한 도면이며, (A)는 종축이 주편의 덴드라이트 경각, (B)는 종축이 덴드라이트 경각 평균값으로부터 구한 교반 유속이다.
우선, 주형 하단 부근에 있어서의 미응고 용강 풀에 있어서, 하방을 향하는 용강 유속이 거의 균일, 즉 플러그 플로를 형성하기 위한 전자 제동에 적합한 노즐 토출류를 형성하는 점에 대하여 설명한다.
본 발명자들은 이차 냉각대의 스프레이와 같은 평판형 제트이며, 또한 주형 내 전체 폭에 걸쳐 운동량을 형성할 수 있는 노즐 토출류를 형성하는 것에 대하여 검토하였다.
전술한 바와 같이, 박슬래브 주조가 아닌 통상의 연속 주조에 있어서는, 침지 노즐의 막힘 방지 등을 목적으로 하여, 침지 노즐을 통과하는 용탕 중에 Ar 가스를 불어넣는 일이 행해지고 있다. 그 결과, 침지 노즐의 측면에 마련한 토출 구멍 외에 저부에 슬릿을 마련하고, 하향으로 노즐 토출류를 형성한 경우, 노즐 토출류와 함께 하향으로 불어넣어진 기포가 그대로 상방에 부상하기 때문에, 노즐 주위에서 보일링되어 버려 잘 활용할 수 없었다. 그에 비해, 메니스커스부의 짧은 변 두께가 150mm 이하인 박슬래브 주조에 있어서는, 침지 노즐을 통과하는 용탕으로의 Ar 가스 취입을 행하지 않는다. 그 때문에, Ar 기포를 노즐 토출류에 의해 분산시키는 것을 고려할 필요가 없고, 하향의 노즐 토출류를 활용할 수 있다. 본 발명자들은 첫 번째로 이 점에 착안하여, 박슬래브 주조에 있어서, 도 2에 도시하는 바와 같이 침지 노즐(2)의 저부에 슬릿(4)을 마련하는 것으로 하였다. 즉, 침지 노즐(2)의 토출 구멍(3)은 통상 일반적으로 사용되는 측면(주형 폭 방향(11) 양쪽 측면)에 각각 토출 구멍(3)을 마련한 2구멍으로 하고, 또한 그 2구멍의 토출 구멍(3)(이하 「2구멍부」라고도 함)이 연속되도록, 침지 노즐(2)의 저부와 2개의 토출 구멍(3)의 저부를 연결하고 외부로 개구되는 슬릿(4)을 마련한다. 이에 의해, 이차 냉각대의 스프레이와 같은 평판형 제트이며, 또한 주형 내 전체 폭에 걸쳐 운동량을 형성할 수 있는 노즐 토출류를 형성할 수 있다.
일방향으로 유동하는 용강에 대하여, 도 3에 도시하는 바와 같이, 용강류(24)의 유동 방향에 직각으로 직류 자장(23)을 작용시킨 경우, 유동 용강 중에 유도 기전력(25)이 발생한다. 도면에 있어서, ○ 안에 ×를 부여한 기호는, 직류 자장(23)의 자력선의 방향이 지면에 수직으로 지면의 표면으로부터 이면을 향하고 있는 것을 나타내고 있다. 유도 기전력(25)에 의해 유동 용강 중에 유도 전류(26)가 흐르려고 한다. 이때, 도 3의 (A2)와 같이 용강의 주위에 도전체(21)가 존재하면, 리턴 경로(28)가 도전체(21) 내에 형성되기 때문에, 실제로 유도 전류(26)가 흐르고, 전자 제동에 의한 제동력(27)이 얻어진다. 그러나, 도 3의 (B2)에 도시하는 바와 같이, 내화물(22)과 같은 절연체의 유로 내를 용강이 흐르는 경우, 유동 용강 중에 유도 기전력(25)이 발생해도, 유도 전류의 리턴 경로가 흐르는 루트가 존재하지 않으므로, 유도 전류가 흐를 수 없고, 제동력을 없애 버리는 데 따른다. 즉, 일반적으로 침지 노즐은 비도전성 내화물로 되어 있기 때문에, 침지 노즐 내 유동에 직류 자장을 작용시켜도 전자 제동은 얻어지지 않는다. 전자 제동 효율을 높이기 위해서는 유도 전류 경로 형성을 고려할 필요가 있는 것이 분명하다.
그래서, 다음의 착안점으로서, 본 발명자들은 침지 노즐 내의 용강 흐름에 전자 제동을 작용시키는 수단에 대하여 검토하였다. 하기의 구성 a, b, c의 침지 노즐에 대하여, 노즐 토출 구멍부에 직류 자장을 작용시킨 경우를 생각한다.
구성 a: 도 4의 (A)에 도시되는, 양측면에 노즐 토출 구멍(3)을 마련한 침지 노즐(202)
구성 b: 도 4의 (B)에 도시되는, 복수의 노즐 토출 구멍(3)을 노즐 저면에 마련한 침지 노즐(302)
구성 c: 도 4의 (C)에 도시되는, 노즐 토출 구멍(3)과 노즐 저부의 슬릿(4)을 포함하는 침지 노즐(2)
침지 노즐(202)을 사용하는 구성 a의 경우, 토출 구멍 내부의 유동 용강에 직류 자장(23)을 작용시켜도, 노즐 토출 구멍부에서는 전류 경로를 형성할 수 없고, 노즐 외부에서 전류 경로를 형성하게 된다.
침지 노즐(302)을 사용하는 구성 b의 경우, 구성 a와 마찬가지로 노즐 토출 구멍부에서는 전류 경로는 형성되지 않고, 또한 인접한 노즐 토출 구멍 사이에서도 전류 경로는 형성되지 않는다. 그 때문에, 노즐 외에서 전류 경로를 형성하게 된다.
한편, 침지 노즐(2)을 사용하는 구성 c의 경우, 노즐 토출 구멍(3)과 슬릿(4)을 포함한 전체에서 노즐 토출류(12)를 형성할 수 있다. 이러한 구성에 따르면, 노즐의 제약 없이 전류 경로를 형성할 수 있으므로, 침지 노즐(2) 내의 토출류에 직류 자장(23)을 작용시켰을 때에 유도 전류(26)를 유기할 수 있고, 제동력을 작용시키는 것이 가능하게 된다.
본 발명자들은, 이러한 침지 노즐(2)을 사용함과 함께, 주형의 전체 폭에 걸쳐 균일한 직류 자계를 두께 방향으로 인가할 수 있는 직류 자장 발생 유닛(5)을 설치하는 데 상도하였다. 이에 의해, 직류 자장 발생 유닛(5)의 전자석의 철심인 코어(6)가 존재하는 높이 영역이 직류 자장대(7)로 된다. 침지 노즐(2)은 2개의 토출 구멍(3)과 저부의 슬릿(4)으로 노즐 토출류를 형성하기 때문에, 직류 자장 발생 유닛(5)의 직류 자장대(7) 내에 침지 노즐(2)의 토출 구멍(3)과 슬릿(4)의 부분을 배치한다. 이러한 토출부의 형상을 갖는 침지 노즐(2)을 사용하는 결과로서, 평판형 제트를 직류 자계대 내에서 형성할 수 있다. 따라서, 제트 영역뿐만 아니라 노즐 토출 구멍 사이를 포함하는 전체에 걸쳐 유도 전류가 흐르기 때문에, 매우 효율적으로 제동할 수 있다. 또한, 침지 노즐(2)은, 그 축 방향에 수직인 단면이 타원형 또는 직사각형이어도 된다.
또한, 본 발명자들은, 주형 내 유동 제어 방법에 관하여, 상기한 바와 같이 평판형 제트이며, 또한 주형 내 전체 폭에 걸쳐 운동량을 형성할 수 있는 노즐 토출류를 형성하는 것에 추가하여, 노즐 토출류의 제동을 도모하기 위해, 침지 노즐(2)의 하단에서부터 코어(6)의 하단까지의 거리인 노즐 하 코어 거리 L이 이하의 관계식을 만족시키는 것이 유효한 것을 알아냈다.
L≥LC=(ρV)/(2σB2) … 식 (5)
단, ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다.
후술하는 바와 같이 2구멍의 토출 구멍(3)과 슬릿(4)을 갖는 침지 노즐(2)에 있어서는, 토출류의 유속이 침지 노즐 내 평균 유속 V(침지 노즐의 연직 방향 직관부 내의 평균 유속)와 거의 동등한 유속으로 된다. 유속 V의 유체가 갖는 운동 에너지 E는
E=(ρV2)/2 … 식 (5A)
로 표현할 수 있다. 또한, 자속 밀도 B의 자장 내를 유속 V로 가로지르는 도전성 유체에 걸리는 제동력 F는
F=σVB2 … 식 (5B)
로 된다. 제동력 F에 의해 유체의 유속을 유속 V로부터 유속 제로로 제동하는 데 필요한 제동 거리를 필요 코어 거리 LC라고 하면,
LC=E/F=(ρV)/(2σB2) … 식 (5C)
로 될 것이 예상된다. 그래서, 박슬래브 주조의 주형 내 용강 풀과 침지 노즐을 모의한 모델 실험 장치를 사용하여, 도전성 유체로서 Sn-10% Pb 합금의 액체를 사용하여 노즐 토출류 주위에 직류 자장을 인가하는 실험을 행하였다. 구체적으로는, 도 4의 (C)에 도시하는 바와 같은 2구멍의 토출 구멍(3)과 슬릿(4)을 설비한 침지 노즐(2)과, 도 4의 (A)에 도시하는 바와 같은 슬릿을 갖지 않는 통상의 2구멍의 토출 구멍의 침지 노즐(202)을 사용하여, 또한 자속 밀도 B=0.35T, 침지 노즐 하단에서부터 코어 하단까지의 거리 L=0.06m의 조건에서, 코어 하단으로부터 0.2m 하방 위치에서의 짧은 변 근방 하강 유속을 조사하였다. 짧은 변 근방 하강 유속은 초음파 도플러 유속계를 사용하여 측정하였다. 또한, 측정은 각 조건에 대하여 1분간 행하고, 그의 시간 평균값을 측정값으로 하였다. 유속계는 두께 중앙에서 짧은 변의 내벽으로부터 20mm의 위치에 세트하였다. 액체의 온도를 220℃로 하고 있으며, 액체의 전기 전도도 σ=2100000S/m, 액체의 밀도 ρ=7000kg/㎥이다. 상기 식 (5C)로 계산되는 LC=0.018m이며, L≥LC이다. 2종류의 침지 노즐에 대하여 자속 유무의 영향을 조사한 결과를 도 5에 도시한다. 또한, 도 5의 종축의 「짧은 변 유속비」는, 측정한 짧은 변 근방 하강 유속을 평균 유속(평균 유량을 풀 단면적으로 나눈 값)으로 나눈 값을 나타내고 있으며, 짧은 변 유속비가 1이면 코어 하단 근방에 있어서 하강 유속이 주형 폭 방향에서 균일하게 되어 있음을 나타내고 있다. 도 4의 (C)에 도시하는 바와 같은 침지 노즐(2)을 사용함으로써, 짧은 변 하강 유속을 자장을 인가하지 않는 조건에 있어서도 저감할 수 있는 것에 추가하여, 상기 식 (5)를 만족시키도록 자장을 인가한 조건에서는 유속비가 거의 1, 즉 도 1의 플러그 플로(29)가 형성되는 것이 명확하다. 상기 결과를 근거로 하여, 용강인 경우의 자속 밀도 B, 노즐 내 평균 유속 V와, 필요 코어 거리 LC의 관계에 대하여 도 6에 도시한다.
다음에, 주형 내의 메니스커스에 대한 열공급 수단에 대하여 설명한다.
주형 내의 용강 풀 중에 직류 자장을 부여하고, 이 직류 자장 내에 침지 노즐로부터의 토출류가 흐를 때, 유동 용강 중에 유도 기전력이 발생하고, 유동 용강 중에 유도 전류가 흐른다. 유도 전류는 폐루프로 될 필요가 있다는 점에서, 유동 용강의 외측의 정지 용강으로 흘러, 폐루프의 전류를 형성한다. 정지 용강 중에 흐르는 유도 전류와 직류 자장의 작용으로 정지 용강에는 토출류와 반대 방향으로 힘이 작용하고, 전술한 제트의 단부에서는 제트를 제동하기 위한 유도 전류가 그 주위를 역방향으로 가속하여, 토출류와 역방향의 흐름이 탄생한다. 이 흐름은 일반적으로 대향류라고 칭한다. 그 대향류는 노즐 토출류를 따라 형성되고, 노즐 측면에 도달하면 노즐 측면을 따라 상방으로 흐른다.
그래서, 본 발명자들은 대향류 기인의 상승류를 메니스커스에 대한 열공급 수단으로서 활용하는 기술 사상에 상도하였다.
우선, 저융점 합금 실험을 행하여 대향류의 관찰을 행하였다. 전술한 저융점 합금 실험의 조건에서, 노즐 주위의 액면 근방의 상황이, 인가하는 자장, 노즐 내 유속, 침지 노즐 내로의 Ar 가스 취입 유무에 따라 어떻게 변화하는지를 상세하게 관찰하였다. 그 결과, 인가하는 자속 밀도를 높여 가면 어떤 조건에서, 노즐 주위의 측면(2구멍 노즐 바로 위)에 상승류(대향류)가 관찰되었다. 또한, Ar 가스 취입(액체 금속의 10%의 체적 유량)을 행한 조건에서는 대향류가 현저하게 되었다. 특히 하향 제트와 함께 불어넣어진 Ar 기포가 그대로 노즐 주위에서 부상하는 것과, 대향류와 함께 Ar 기포가 부상하는 것에 따른다. 박슬래브 주조에서는 노즐 내에 Ar 가스를 불어넣지 않기 때문에, 액체 금속의 유동과 자장의 상호 작용에 의한 유동만을 고려하면 된다. 또한, 노즐 주위에 형성되는 대향류는 메니스커스까지 상승하고, 그 후, 노즐로부터 짧은 변을 향하여 흐른다.
그래서 다음에, 실제의 용강의 박슬래브 연속 주조에 있어서, 노즐로부터 짧은 변을 향하는 흐름을 대향류라고 하고, 그 유속을 측정하였다. 측정에 있어서는, 이하의 용강 유속계를 사용하였다. 유속계는 몰리브덴 서멧 막대를 용강 중에 침지하고, 그 단부에 부착된 스트레인 게이지에 의해, 침지부에 작용하는 관성력을 측정하고, 유속으로 환산한다. 또한, 측정은 각 조건에 대하여 1분간 행하고 그의 시간 평균값을 측정값으로 하였다. 유속 측정 개소는 노즐 측면으로부터 50mm의 위치에서 메니스커스로부터 50mm 깊이까지 상기 유속계를 침지하여 측정하였다. 주형 사이즈는, 주조 폭은 1.2m, 주조 두께(메니스커스부의 짧은 변 두께)는 0.15m이다. 침지 노즐 내 평균 유속 V는 1.0 또는 1.6m/s로 하였다. 자장의 자속 밀도 B를 0.1 내지 0.5T의 범위에서 변화시켜, Ar 가스 취입 유무의 조건과 대향류의 유속 U의 관계에 대하여 조사하였다. 침지 노즐(2)로서, 노즐 내경(침지 노즐(2)의 연직 방향 직관부의 내경) D, 2구멍의 토출 구멍(3)(구멍 직경 d)과 슬릿(4)(슬릿 두께 δ)을 갖고, d/D=0.5, δ/D=0.2인 침지 노즐을 사용하였다. 침지 노즐(2)에 있어서의 토출류(12)와 대향류(13)의 관계 모식도를 도 7에 도시한다. 측정 결과를 도 8에 도시한다. 대향류(13)의 유속 U는, 노즐 내 평균 유속 V의 평방근에 비례하며, 자속 밀도 B에 비례하여 변화하는 것, 또한 Ar 가스 취입을 행한 조건에서는 대향 유속이 보다 현저해지는 것을 알 수 있다. 노즐 내경 D를 변화시켜 실험한 결과, 대향류의 유속 U는 노즐 내경 D의 평방근에 비례하는 것이 판명되었다. 또한, 침지 노즐(2)의 직관부의 내주가 진원이 아닌 경우(예를 들어, 타원형 또는 직사각형), 동일한 단면적의 원 상당 직경을 갖고 침지 노즐 내경 D로 한다.
이들 결과로부터 자속 밀도 B, 노즐 내 평균 유속 V, 노즐 내경 D, 액체 금속의 밀도 ρ, 전기 전도도 σ를 사용하여, 대향류의 유속 U가 이하의 식 (6A)의 aB√((σDV)/ρ)에 의해 결정되는 것을 알 수 있었다. 여기서 a는 파라미터이며, Ar 흡입을 행하지 않는 조건에서는 0.1, Ar 흡입을 행하는 조건에서는 0.5로 하면 실험 결과와 잘 대응하였다. 또한, 대향류의 유속 U를 0.1m/s 이상으로 함으로써, 대향류 기인의 상승류를 메니스커스에 대한 열공급 수단으로서 활용할 수 있는 것도 알 수 있었다.
U=aB√((σDV)/ρ)≥0.1(m/s) … 식 (6A)
Ar 가스 취입 없음: a=0.1, Ar 가스 취입 있음: a=0.5
단, D: 침지 노즐 내경(m), ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다.
박슬래브 주조에서는 Ar 흡입을 행하지 않으므로, 식 (6A)에 a=0.1을 대입한 이하의 식 (6)을 만족시키는 자속 밀도 B를 인가함으로써, 노즐 주위에 상승류를 형성할 수 있다. 이에 의해, 메니스커스에 대한 열공급에 추가하여, 노즐 토출류 상방에 상승류를 형성함으로써 개재물의 부상 촉진이 기대된다. 대향류를 형성하기 위해서는 강자장 인가가 필요하게 되는데, 박슬래브 주조에 있어서는 주조 두께가 얇기 때문에, 긴 변 주형을 구성하는 동판의 배면에 전자석을 설치할 때, 그 자극간 거리가 짧아지므로 바람직하다. 또한, 인가하는 자장의 자속 밀도의 최댓값은 1T로 한다.
0.1×B√((σDV)/ρ)≥0.1(m/s) … 식 (6)
단, D: 침지 노즐 내경(m), ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다.
이와 같이 노즐 토출류의 형상을 제어하고, 또한 균일 자장 내에 전술한 노즐 토출 구멍을 배치하고, 주형 내에 용강을 공급함으로써, 노즐 토출류의 제동과 동시에 제트 단부에만 형성하는 대향류가 노즐 측면에만 형성됨으로써, 메니스커스에 대한 열공급 수단 및 개재물 부상 촉진 수단으로서 활용할 수 있다. 그 결과, 침지 노즐 토출류를 가장 제동 효율이 높은 노즐 토출류로 함으로써, 노즐 토출류의 제동을 가능하게 하고, 노즐 토출류의 균일 분산화에 의한 주형 내 하강 유속의 균일화, 대향류를 활용한 메니스커스에 대한 열공급, 개재물의 부상 촉진이 가능하게 된다. 따라서, 표면, 내부 품위 모두 우수한 주편의 주조가 가능하게 된다.
또한, 본 발명자들은 노즐 토출 구멍으로부터의 토출류가 침지 노즐의 축 방향에 대하여 대략 수직 방향(85°내지 95°)으로 되도록 형성되는 경우에, 대향류를 보다 적합하게 발생시킬 수 있고, 메니스커스에 대한 열공급 수단 및 개재물 부상 촉진 수단으로서 바람직한 것도 알아냈다.
이하, 상술한 지견에 기초하여 이루어진 본 발명의 일 실시 형태에 관한 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 장치(이하, 본 실시 형태에 관한 주형 내 유동 제어 장치라고 칭하는 경우가 있음)에 대하여 설명한다.
본 실시 형태에 관한 주형 내 유동 제어 장치는, 메니스커스부의 짧은 변 두께가 150mm 이하, 주조 폭이 2m 이하인 박슬래브 주조에 사용된다. 메니스커스부의 짧은 변 두께의 하한은 특별히 한정되는 것은 아니지만, 100mm 초과여도 된다.
본 실시 형태에 관한 주형 내 유동 제어 장치는, 직류 자장 발생 유닛(5)과, 침지 노즐(2)을 갖는다.
직류 자장 발생 유닛(5)은, 주형(1)의 폭 방향 전체 폭에 있어서, 주형(1)의 두께 방향을 향하는 직류 자장을 부여하는 코어(6)를 갖는다.
침지 노즐(2)은, 주형(1)의 폭 방향의 양측면에 형성된 토출 구멍(3)과, 이들 토출 구멍(3)의 저부와 연결되고 외부로 개구되도록 저부에 형성된 슬릿(4)을 갖는다.
침지 노즐(2)의 토출 구멍(3) 및 슬릿(4)은, 직류 자장 발생 유닛(5)의 코어(6)가 존재하는 높이 영역 내인 직류 자장대에 존재하도록 배치된다.
본 실시 형태에서는, 박슬래브 주조에 있어서, 주조 속도는 3 내지 5m/분이다. 침지 노즐 내경 D는 100mm 정도이기 때문에, 그 경우, 노즐 내 평균 유속 V는 1.0m/s 내지 2.0m/s이며, 통상 1.5m/s 정도이다. 용강의 전기 전도도 σ=650000S/m, 용강의 밀도 ρ=7200kg/㎥라는 점에서, 상기 식 (6)을 만족시키기 위해서는 인가하는 직류 자장의 자속 밀도 B(T)가 0.35T 이상으로 되면 된다. 한편, 자속 밀도 B의 상한은 1.0T 정도로 된다. 즉, 하기 식 (1)을 만족시키면 된다. 또한, 자속 밀도가 하기 식 (1)의 범위 내에 있는 조건 하에 있어서, 침지 노즐 하단에서부터 코어 하단까지의 거리 L(m)이 0.06m 이상이면 상기 식 (5)를 만족시킬 수 있다. 즉, 하기 식 (2)를 만족시키면 된다. 그 때문에, 용강을 박슬래브로 주조하는 경우의 본 발명에 관한 주형 내 유동 제어 장치는, 이하의 관계식을 만족시키게 된다.
0.35T≤B≤1.0T … 식 (1)
L≥0.06m … 식 (2)
다음에, 바람직한 침지 노즐의 형상에 대하여 설명한다.
여기서, 슬릿(4)의 두께 δ, 침지 노즐(2) 내경 D, 2구멍부(토출 구멍(3))의 토출 구멍 직경 d와, 토출 구멍(3) 및 슬릿(4)으로부터의 토출류(12)의 유속의 바람직한 관계를 조사하기 위해, 물 모델 실험을 행하여 검토하였다. 측면의 토출 구멍(3)의 형상은 원형+슬릿이며, 원형부와 슬릿부 합계의 면적을 구하고, 동일한 단면적의 원 상당 직경을 토출 구멍 직경 d로 하였다. 또한, 직사각형의 토출 구멍의 경우에도 동일하게 취급하면 된다. 실험에서는 노즐 토출 구멍(3), 슬릿(4) 주위의 유동 상황을 관찰함과 함께, 각각의 토출 구멍, 슬릿 전방면의 유속 측정을 행하였다. 2구멍부(토출 구멍(3)) 전방면의 유속 Va와 노즐 하단의 슬릿(4) 전방면의 유속 Vb를 측정하였다. 침지 노즐(2)의 노즐 내경 부분의 물의 평균 유속을 V라고 한다. 그 결과, 슬릿 두께 δ 및 2구멍부의 토출 구멍 직경 d와 노즐 내경 D의 관계는 이하의 관계식을 만족시킴으로써, 평판형 제트이며, 또한 주형 내 전체 폭에 걸쳐 운동량을 부여하는 노즐 토출류를 안정되게 형성할 수 있다.
D/8≤δ≤D/3 … 식 (3)
δ≤d≤2/3×D … 식 (4)
구체적으로는, 우선, 슬릿 두께 δ가 노즐 내경 D의 1/8 미만이면, 슬릿부 전체로부터의 토출류가 충분히는 형성되지 않았다. 한편, 슬릿 두께 δ가 노즐 내경 D의 1/3을 초과하면, 반대로 슬릿부로부터의 흐름이 주가 되고, 2구멍부의 구멍 직경 d에 따라서는 반대로 흡입이 발생하여, 노즐 토출류가 약간 불안정하게 되었다. 다음에 2구멍부의 토출 구멍 직경에 대해서는, 평판형 제트의 양단부의 유속은 슬릿부보다 빠른 편이 바람직하기 때문에, 바람직한 하한값은 슬릿 두께의 하한값보다 크게 할 필요가 있다. 이것은 짧은 변부에 대한 운동량, 열공급의 목적 때문이다. 한편, 바람직한 상한값에 대해서는, 노즐 내경 D의 2/3를 초과하면, 슬릿을 마련한 조건에서는 흡입류가 발생하여, 노즐 토출류가 불안정화되는 것을 알 수 있었다. 그래서, 따라서, 상기 관계식을 만족시킴으로써 평판형 제트이며, 또한 주형 내 전체 폭에 걸쳐 운동량을 부여하는 바람직한 노즐 토출류를 형성할 수 있다.
d/D=0.4로 일정하게 하면서 슬릿 두께비 δ/D를 변화시켜, Vb/V의 관계를 도 9에 플롯하였다. 또한, δ/D=0.25로 일정하게 하면서 토출 구멍 직경비 d/D를 변화시켜, Va/V의 관계를 도 10에 플롯하였다. Vb/V, Va/V 모두 0.8 내지 1.3의 범위 내에 있으면, 균일한 흐름을 안정되게 실현할 수 있다. 도 9, 10으로부터 명백한 바와 같이, 상기 식 (3), 식 (4)를 만족시킴으로써, Vb/V, Va/V 모두 0.8 내지 1.3의 범위 내로 할 수 있으므로 바람직하다.
전술한 바와 같이, 본 실시 형태에 관한 주형 내 유동 제어 장치에서는, 대향류 기인의 상승류를 메니스커스에 대한 열공급 수단으로서 활용한다. 고속의 노즐 토출류를 강자장에서 제동할 때에 침지 노즐 측면을 따라 대향류가 형성된다. 이 유동은 노즐 측벽을 따라 상승하고, 주형 내의 용강 표면에서는, 도 11의 (A)에 도시하는 바와 같이, 대향류(13)는 침지 노즐(2)로부터 짧은 변을 향하는 흐름으로 되고, 메니스커스에서는 방사상으로 넓어진다. 전술한 바와 같이, 실제의 용강의 박슬래브 연속 주조에 있어서, 노즐로부터 짧은 변을 향하는 흐름을 대향류로 하여, 그의 유속을 측정할 수 있었다.
한편, 주형 내표면의 폭 중앙에서는, 침지 노즐 좌우 측면을 따라 상승한 유동이 부딪치기 때문에, 동일하게 도 11의 (A)에 도시하는 바와 같이 정체점(30)을 형성한다. 정체점(30)은 용강 온도가 저하하는 것이나 개재물 포착의 기점이 되기 때문에 바람직하지 않다.
주형 내 용강 표면에 용강의 선회류를 형성할 수 있다면, 정체점(30)을 해소할 수 있을 가능성이 있다. 그러나, 전술한 바와 같이, 박슬래브 주조에 있어서는, 일반적인 슬래브 연속 주조에 있어서 사용되는 주형 내 전자 교반은 사용되고 있지 않았다. 그래서, 추가로 메니스커스부에 선회류를 형성하는 방법에 대하여 검토하였다.
본 발명자들은 150mm 이하의 주편 두께의 박슬래브 주조에 있어서, 주형 내 용강 표면부에서 교반류(16)를 형성하기 위한 조건에 대하여 검토하였다.
그를 위해서는, 우선, 전자 교반 유닛(8)에 의해 형성되는 교류 자장의 표피 깊이를 주형 긴 변 벽(17)을 구성하는 동판의 두께 DCu보다 크게 하는 것이 중요하다. 이 조건은 하기 식 (7A)로 규정된다. 즉, 도체 중에서의 전자장의 표피 깊이가 동판 두께 DCu보다 크게 되는 것이 중요하다.
DCu<√(2/(σCuωμ)) … 식 (7A)
종래, 주편 두께 T가 150mm 이하인 박슬래브 주조에 있어서는, 주형 내에서 선회류가 형성되도록 전자 교반 추력을 부여해도, 주형 내 용강에 선회류를 형성 할 수 없었다. 이에 비해 본 발명자들은, 대향하는 2매의 긴 변 벽(17)의 각각의 배면에 설치한 전자 교반 유닛이 주형 내에서 형성하는 전자장이 서로 간섭하지 않도록, 전자 교반 유닛이 용강 중에서 형성하는 전자력의 표피 깊이가 주편 두께 T보다 작아지는 주파수로 함으로써, 탕면 레벨에 있어서 선회류가 형성되는 것을 새롭게 알아냈다. 이 조건은 식 (7B)로 규정된다. 이 식은 전자력의 표피 깊이와 주편 두께 T의 관계를 나타낸 것이며, 전자력의 표피 깊이는 도체 중의 전자장의 표피 깊이의 1/2로 규정된다. 이것은 전자력은 전류 밀도×자속 밀도로 되는데, 전류 밀도, 자장의 도체 내부에의 침입은 √(2/(σωμ))로 기술되기 때문에, 그 곱의 전자력의 표피 깊이는 1/2×√(2/(σωμ))로 되고, √(1/(2σωμ))로 기술되는 데 따른다.
√(1/(2σωμ))<T … 식 (7B)
상기 식 (7A), 식 (7B)에 있어서, ω=2πf: 각속도(rad/sec), μ: 진공의 투자율(N/A2), DCu: 주형 동판 두께(mm), T: 주편 두께(mm), f: 주파수(Hz), σ: 용강의 전기 전도도(S/m), σCu: 동판 전기 전도도(S/m)이다.
식 (7B)로 규정되는 높은 주파수에서 전자 교반을 행함으로써 비로소, 주편 두께가 150mm 이하인 박슬래브 주조에 있어서, 주형 내에 충분한 유속의 선회류를 형성하는 것이 가능하게 되었다. 종래의 주형 내 전자 교반에 있어서는, 주형 동판에서의 에너지 손실을 저감하기 위해, 낮은 주파수를 사용하는 것이 일반적이었다. 또한, 용강의 전기 전도도와 동판의 전기 전도도는, 시판 중인 전기 전도율계(전기 전도도계)를 사용하여 측정하면 된다.
주형 표피 깊이와 용강 전자력 표피 깊이에 미치는 전자 교반 주파수의 영향의 일례를 도 12에 도시한다. 주형(1)의 긴 변 벽을 구성하는 동판의 두께 DCu가 25mm일 때, 전자 교반 주파수 f를 20Hz보다 작게 하면, 식 (7A)를 만족시킬 수 있다. 주형 내 주편 두께 T가 150mm일 때, 전자 교반 주파수 f를 5Hz보다 크게 하면, 식 (7B)를 만족시킬 수 있다.
이와 같이 박슬래브 주조에 있어서 주형 내에 전자 교반 유닛을 설치하고, 또한 전자 교반 유닛에 인가하는 교류 전류의 주파수를 적정화함으로써, 주편 두께가 150mm 이하인 박슬래브 주조에 있어서도 탕면 레벨 근방에서 선회류가 형성된다. 이에 의해, 정체점(30)의 발생을 해소하고, 용강 온도가 저하하는 것이나 개재물 포착의 기점으로 되는 것을 방지할 수 있다.
본 발명자들은 상기한 바와 같이 150mm 이하의 주편 두께의 박슬래브 주조에 있어서, 메니스커스부에서 교반류를 형성하기 위한 조건을 명확히 하였다. 그리고, 주형 동판 재질, 두께가 다른 주형을 몇 개 제작함과 함께, 전자 교반 유닛에 인가하는 교류 전류의 주파수가 다른 조건에서 주조를 행하였다. 더불어, 주조한 주편의 폭 중앙부에 대하여, 폭 방향 중앙부로부터 응고 조직을 조사하고 주편 표면으로부터 내부를 향하여 성장하고 있는 덴드라이트의 경각, 즉 긴 변 표면의 수선에 대한 각도를 측정함과 함께, 비특허문헌 2에 기재된 오카노의 식을 사용하여 교반 유속 VR을 구하였다. 또한 대향류(13)의 유속 U의 관계에 대하여 조사하였다. 대향류(13)의 유속 U는, 상기 식 (6A)로 구할 수 있다.
전자 교반의 코일 전류를 변화시켜, 조건을 No.1부터 No.8까지 여러 가지로 설정하고, 전자 교반 코일의 두께 방향 중심(메니스커스 하 75mm 위치)에서의 셸 두께 3mm에서의 덴드라이트 경각을 측정한 결과를 도 13의 (A)에 도시하였다. 조건 No.2, 3, 4이면, 덴드라이트 경각은 0°를 사이에 두고 플러스 마이너스 변동되는 데 비해, 조건 No.1, 5, 6, 7, 8이면, 변동이 있기는 하지만 적어도 일방향으로 기울어져 있음을 알 수 있다. 덴드라이트 경각의 평균값으로부터 오카노 등의 식을 사용하여 응고 셸 전방면의 교반 유속 VR을 구하여 플롯한 결과를 도 13의 (B)에 도시한다. 이 실험에서는 식 (6A)에서 a=0.1로서 구한 대향류(13)의 유속 U는 모두 0.15m/s였지만, 조건 1, 5, 6, 7, 8은 모두 교반 유속 VR이 대향 유속 U와 동등하거나, 그 이상으로 되어 있었다. 이상의 결과로부터, 교반 유속 VR과 대향 유속 U의 관계에 대해서는, 하기 식 (8)의 관계를 만족시킴으로써, 메니스커스부에서의 선회류 형성이 안정화되고, 적합한 결과를 얻을 수 있음을 알 수 있었다.
VR≥U=0.1×B√((σDV)/ρ) … 식 (8)
이상의 결과를 근거로 하여, 전자 교반 유닛에 통전하는 교류 전류의 주파수 f와 주형 동판의 전기 전도도 σCu, 긴 변의 동판 두께 DCu 및 주편 두께 T 사이의 관계가 식 (7A), 식 (7B)를 만족시킴과 함께 교반 유속 VR이 대향 유속 U와 동등하거나 그 이상인 조건, 식 (8)을 만족시킴으로써, 메니스커스부에서의 선회류 형성이 안정화되었다.
주형 내의 용강 표면에 교반류를 형성하기 위한 전자 교반 유닛(8)에 대해서는, 주조 방향에 있어서의 코어 두께가 100mm 이상이면 바람직하다. 그리고, 메니스커스부(14)가 코어 상단으로부터 하단의 범위 내로 들어가는 것으로 한다. 메니스커스부(14)는 통상은 주형 상단으로부터 100mm의 위치로 되므로, 코어의 상단이 주형 상단으로부터 100mm 위치를 포함하고 그 위치로부터 상방이면 된다. 코어의 하단 위치에 대해서는, 전자 교반 유닛(8)의 하방에 배치되는 직류 자장 발생 유닛(5)에 간섭하지 않는 위치로서 정해진다.
<실시예>
[실시예 1]
도 1에 도시하는 주형 내 유동 제어 장치를 갖는 박슬래브 연속 주조 설비를 사용하여 저탄소강을 연속 주조하였다. 주형(1)의 사이즈는 1200mm 폭, 150mm 두께이며, 직사각형 주형 형상이다. 주형 내에 있어서의 주조 속도 3m/분으로 주조하였다. 도 1의 (A)는 주형 내 변(15)을 포함하는 수평 단면의 모식도, 도 1의 (B)는 종단면의 모식도이다. 침지 노즐(2)은, 도 2에 도시하는 바와 같이 침지 노즐(2)의 주형 폭 방향(11) 양쪽 측면에 토출 구멍(3)을 갖고, 침지 노즐(2)의 저부와 2개의 토출 구멍(3)의 저부를 연결하고 외부로 개구되는 슬릿(4)(슬릿 두께 δ)을 갖는다. 노즐 측면의 토출 구멍(3)의 형상은 원형+슬릿이며, 원형부와 슬릿부 합계의 면적과 동일한 단면적의 원 상당 직경을 토출 구멍 직경 d로 하였다. 여기서는 노즐 형상을 변화시켜 주조하였다.
도 1에 도시하는 바와 같이 직류 자장 발생 유닛(5)을 마련하였다. 직류 자장 발생 유닛(5)의 코어(6)는, 주형 내 탕면 레벨(메니스커스부(14))로부터 300mm 하방을 높이 방향 중심으로서 배치하였다. 이에 의해, 주형 폭 방향(11)으로 균일한 자속 밀도 분포를 갖는 직류 자장(23)이며, 주편의 두께 방향을 향하는 직류 자장(23)을 인가할 수 있다. 주형 내에 있어서의 용융 금속 통과 공간의 직류 자장대(7)에 최대 0.8T의 직류 자장(23)을 인가할 수 있다. 직류 자장 발생 유닛(5)의 코어(6)가 존재하는 높이 영역이 직류 자장대(7)로 된다. 이 직류 자장 발생 유닛(5)의 코어(6)의 두께가 200mm이기 때문에, 탕면 레벨(메니스커스부(14))로부터 주조 방향으로 200 내지 400mm의 범위 내에 걸쳐 거의 동일한 자속 밀도의 직류 자장(23)을 최대 0.8T 인가할 수 있다. 또한, 주형 내 탕면 레벨은 주형 동판 상단으로부터 일반적으로 100mm 정도 하방에 위치된다.
주형 내에 용강을 공급하는 침지 노즐(2)의 위치(침지 노즐(2)의 하단과 코어(6) 하단의 거리 L)에 대해서는, 조건에 따라 바꾸어 결과를 비교하였다. 침지 노즐(2)의 하단이 코어(6) 하단보다 하방으로 되는 경우에는, L의 값을 마이너스로서 표시하였다.
주조 조건은, 침지 노즐 내경 D(침지 노즐의 수직 방향을 향하는 직관부의 내경)를 100mm로 하였기 때문에, 노즐 내 평균 유속 V는 1.16m/s로 된다. 조건의 선정 그리고 결과의 평가 시, 용강의 전기 전도도 σ=650000S/m, 용강의 밀도 ρ=7200kg/㎥로 하였다. 박슬래브 주조이며 침지 노즐 내로의 Ar 가스 취입은 행하지 않으므로, 식 (6A)에 있어서 a=0.1로 한 식 (6)을 사용하였다.
주편의 개재물 개수에 대해서는, 주편 표면의 결함 지수와 주편 내부의 개재물 지수의 2종류로 평가하였다.
주편 표면의 결함 지수에 대해서는, 전체 폭×주조 방향 길이 200mm의 샘플을 주편의 상면, 하면 각각으로부터 잘라냈다. 그리고, 전체 폭×길이 200mm의 표면 내에 있어서의 개재물을 표면으로부터 1mm 간격으로 두께 20mm까지 연삭하였다. 그리고, 100㎛ 이상의 개재물 개수를 조사하고, 그 개수 총합을 지수화한 것을 결함 지수로 하였다. 슬릿을 마련하지 않는 2구멍 노즐을 사용하여 전자력을 인가하지 않는 조건에서 주조를 행하였을 때의 비교예(비교예 No.8)의 조건을 10으로 하여 그 비로 표시하여, 결함 지수 6 이하를 필요 조건으로 하고, 결함 지수 5 이하를 양호, 6 초과를 불량으로 하였다.
주편 내부의 개재물 지수에 대해서는, 상면측 1/4 두께부의 폭 중앙을 사이에 두고 좌우 1/4 폭부, 1/2 폭부로부터 샘플을 잘라내고, 개재물 개수를 슬라임 추출법으로 조사하였다. 슬릿을 마련하지 않는 2구멍 노즐을 사용하여 전자력을 인가하지 않는 조건(비교예 No.8)에서 주조한 조건을 10으로 하여 그 비로 표시하여, 개재물 지수 6 이하를 필요 조건으로 하고, 개재물 지수 5 이하를 양호, 6 초과를 불량으로 하였다.
또한, 주조 중의 탕면 레벨의 변동이나 지금(地金) 부착 등의 탕면 상태에 대해서도 함께 조사하였다.
결과를 표 1에 나타낸다. 본 발명의 주형 내 유동 제어 장치에 규정하는 범위를 벗어난 수치(침지 노즐 조건, 자속 밀도 B, 노즐 하 코어 거리 L)에 밑줄을 긋고 있다. 또한, 본 발명의 주형 내 유동 제어 방법에 규정되는 식 (5)를 벗어나는 경우에는 「필요 코어 거리 LC」의 수치에 밑줄을 긋고, 식 (6)을 벗어나는 경우에는 「대향 유속 U」의 수치에 밑줄을 긋고 있다.
본 발명의 조건을 만족시키는 실험예에서는 모두 양호한 결과를 나타내었다. 발명예 No.4, 5는 슬릿 두께 δ가 본 발명의 적합 범위로부터 벗어나고, 발명예 No.6, 7은 토출 구멍 직경이 본 발명의 적합 범위로부터 벗어나, 모두 주조성이 약간 불안정하게 되었지만, 본 발명의 효과를 발휘할 수 있었다.
비교예 No.8은, 본 발명의 효과를 설명하기 위한 기준으로 한 예에서, 상기한 바와 같이, 슬릿을 마련하지 않는 2구멍 노즐을 사용하여 전자력을 인가하지 않는 조건이므로 탕면 변동이 컸다. 비교예 9는, 비교예 8과 동일하게 슬릿을 마련하지 않는 2구멍 노즐을 사용한 것 이외에는, 자속 밀도 B, 노즐 하 코어 거리 L 모두 본 발명에 규정한 요건을 만족시키도록 한 예이지만, 탕면이 불안정하여 원하는 평가를 얻을 수 없었다.
비교예 10, 비교예 11, 비교예 12는 모두, 자속 밀도가 식 (1)을 하한에서 벗어나 있다. 그 때문에, 비교예 10, 11은 침지 노즐 하단에서부터 코어 하단까지의 거리(노즐 하 코어 거리) L의 요건에 관하여, 식 (2)는 만족시켰지만, 유동 제어 방법의 요건인 식 (5)는 만족시키지 못하는 것이었다. 비교예 No.12의 노즐 하 코어 거리는 식 (2), 식 (5) 모두 확보할 수 없었다. 그 결과, 비교예 10 내지 12 모두, 노즐 토출류의 제동이 불충분한 결과로 됨과 함께, 대향 유속 U도 불충분하였다.
비교예 No.15에서는, 침지 노즐의 하단 위치가 코어 상단의 상방으로부터 벗어난 조건이다. 비교예 No.16은 침지 노즐의 하단 위치가 코어 하단의 하방으로부터 벗어난 조건이다. 이러한 조건에 있어서는, 토출 구멍 및 슬릿은, 코어가 존재하는 높이 영역인 직류 자장대에 존재하지 않았기 때문에, 모두 본 발명의 효과를 발휘할 수 없었다.
[실시예 2]
상기 실시예 1에서 채용한 조건에 추가하여, 주편 두께 T=150mm의 주형 내 메니스커스 부위에 전자 교반 유닛(8)을 배치하고, 주형 내 용강에 선회류를 형성함으로써, 메니스커스부에서 교반류(16)를 형성하여 효과를 확인하였다. 그를 위해, 주형 동판 재질, 주형 동판 두께 DCu는 표 2에 나타내는 조건으로 하고, 전자 교반 유닛에 통전하는 교류 자장의 주파수 f를 표 2와 같이 변화시킨 조건에서 통전하여 주조하였다. 식 (7A)의 우변을 「주형 표피 깊이」, 식 (7B)의 좌변을 「용강 전자력 표피 깊이」로 하여 표 2에 나타내었다.
침지 노즐(2), 직류 자장 발생 유닛(5)의 조건은, 표 1의 발명예 13의 조건을 채용하였다. 침지 노즐 내경 D=100mm, 슬릿 두께 δ=23mm, 2구멍 노즐의 토출 구멍 직경 d=65mm, 직류 자장 발생 유닛에서 형성하는 자속 밀도 B=0.4T로 하였다. 식 (6A)에 a=0.1을 대입하여 산출한 대향 유속 U=0.12m/s로 되었다.
상기 조건에서 주조된 주편의 C단면 응고 조직을 채취하고, 폭 중앙부의 셸 두께 3mm에서의 덴드라이트 경각을 측정하고, 그 경각으로부터 오카노 등의 식을 사용하여 교반 유속 VR을 추정하였다. 그 결과를 표 2에 나타내었다.
주편 표면의 결함 지수에 대해서는, 전체 폭×주조 방향 길이 200mm의 샘플을 주편의 상면, 하면 각각으로부터 잘라내고, 전체 폭×길이 200mm의 표면 내에 있어서의 개재물을 표면으로부터 1mm 간격으로 두께 20mm까지 연삭하고, 100㎛ 이상의 개재물 개수를 조사하여, 그 개수 총합을 지수화한 것을 결함 지수로 하였다. 2구멍 노즐을 사용하여 전자력을 인가하지 않는 조건에서 주조를 행한 조건(표 1의 비교예 No.8)을 10으로 하여 그 비로 표시하여, 개재물 지수 5 이하를 양호, 그 이상을 불량으로 하였다.
주편 내부의 개재물 지수에 대해서는, 상면측 1/4 두께부의 폭 중앙을 사이에 두고 좌우 1/4 폭부, 1/2 폭부로부터 샘플을 잘라내고, 개재물 개수를 슬라임 추출법으로 조사하였다. 2구멍 노즐을 사용하여 전자력을 인가하지 않는 조건에서 주조한 조건(표 1의 비교예 No.8)을 10으로 하여 그 비로 나타내어, 개재물 지수 5 이하를 양호, 그 이상을 불량으로 하였다. 또한, 주조 중의 탕면 레벨의 변동이나 유동 상태에 대해서도 함께 조사하였다.
표 2의 발명예 No.A0은 주형 내 전자 교반을 행하지 않은 조건이며, 표 1의 발명예 No.13에 대응한다.
그 결과, 주형 내 전자 교반을 행한 발명예 No.A1 내지 A5 모두 양호한 결과를 얻을 수 있었다. 그 중에서도 발명예 No.A2는, 주형 표피 깊이(식 (7A) 우변)가 주형 동판 두께 DCu보다 크고, 또한 용강 전자력 표피 깊이(식 (7B) 좌변)가 주편 두께 T=0.15m보다 작게 하는 주파수 f로 하고, 또한 교반 유속 VR을 대향 유속 U보다 크게 함으로써, 탕면 레벨에 있어서 효율적으로 선회류가 형성되었고, 결함 지수, 개재물 지수 모두 가장 양호한 결과를 얻을 수 있었다.
이상 설명한 바와 같이, 박슬래브 주조에 있어서도, 침지 노즐 토출류를 가장 제동 효율이 높은 노즐 토출류로 함으로써, 노즐 토출류의 제동을 가능하게 하고, 노즐 토출류의 균일 분산화와 메니스커스에 대한 열공급이 가능하게 된다. 또한, 메니스커스 근방에 있어서 선회류를 부여함으로써 폭 중앙부에서의 정체 없이 선회류를 부여할 수 있다. 그 결과, 표면, 내부 품위 모두 우수한 주편의 주조가 가능하게 된다. 즉, 고 스루풋의 조건에서는 주형 내 유동을 안정적으로 제어할 수 있어, 박슬래브 주조 프로세스의 생산성이 비약적으로 개선된다.
<산업상 이용가능성>
본 발명에 따르면, 표면, 내부 품위 모두 우수한 주편의 주조가 가능하게 된다.
1: 주형
2: 침지 노즐
3: 토출 구멍
4: 슬릿
5: 직류 자장 발생 유닛
6: 코어
7: 직류 자장대
8: 전자 교반 유닛
11: 주형 폭 방향
12: 토출류
13: 대향류
14: 메니스커스부
15: 주형 내 변
16: 교반류
17: 주형 긴 변 벽
21: 도전체
22: 내화물
23: 직류 자장
24: 용강류
25: 유도 기전력
26: 유도 전류
27: 제동력
28: 리턴 경로
29: 플러그 플로
2: 침지 노즐
3: 토출 구멍
4: 슬릿
5: 직류 자장 발생 유닛
6: 코어
7: 직류 자장대
8: 전자 교반 유닛
11: 주형 폭 방향
12: 토출류
13: 대향류
14: 메니스커스부
15: 주형 내 변
16: 교반류
17: 주형 긴 변 벽
21: 도전체
22: 내화물
23: 직류 자장
24: 용강류
25: 유도 기전력
26: 유도 전류
27: 제동력
28: 리턴 경로
29: 플러그 플로
Claims (9)
- 메니스커스부의 짧은 변 두께가 150mm 이하, 주조 폭이 2m 이하인 강의 박슬래브 주조에 사용하는 주형 내 유동 제어 장치이며,
주형 폭 방향의 전체 폭에 있어서, 주형 두께 방향을 향하는 직류 자장을 부여하는 코어를 갖는 직류 자장 발생 유닛과,
상기 주형 폭 방향의 양측면에 형성된 토출 구멍과, 이들 토출 구멍의 저부와 연결되고 외부로 개구되도록 저부에 형성된 슬릿을 갖는 침지 노즐을
구비하고,
상기 토출 구멍 및 상기 슬릿은, 상기 직류 자장 발생 유닛의 상기 코어가 존재하는 높이 영역인 직류 자장대에 존재하고,
상기 직류 자장대의 자속 밀도 B(T)와, 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (1) 및 식 (2)를 만족시키는 것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 장치.
0.35T≤B≤1.0T … 식 (1)
L≥0.06m … 식 (2) - 제1항에 있어서,
상기 침지 노즐의 측면으로 개구되는 부분의 합계 단면적과 동일한 단면적의 원 상당 직경인 상기 토출 구멍의 토출 구멍 직경 d(mm), 상기 슬릿의 슬릿 두께 δ(mm) 및 상기 침지 노즐의 내경 D(mm)가 하기 식 (3) 및 식 (4)를 만족시키는 것을 특징으로 하는 주형 내 유동 제어 장치.
D/8≤δ≤D/3 … 식 (3)
δ≤d≤2/3×D … 식 (4) - 제1항 또는 제2항에 있어서,
상기 토출 구멍은, 토출류가 상기 침지 노즐의 축 방향에 대하여 수직 방향으로 되도록 형성되어 있는 것을 특징으로 하는 주형 내 유동 제어 장치. - 제1항 내지 제3항 중 어느 한 항에 있어서,
또한, 주형 내의 용강 표면에서 선회류를 부여할 수 있는 전자 교반 유닛을 갖는 것을 특징으로 하는 주형 내 유동 제어 장치. - 제4항에 있어서,
상기 주형의 긴 변 벽을 구성하는 동판의 두께 DCu(mm), 주편의 두께 T(mm), 상기 전자 교반 유닛의 주파수 f(Hz), 상기 동판의 전기 전도도 σCu(S/m)가 하기 식 (7A), 식 (7B)를 만족시키도록 조정되는 것을 특징으로 하는 주형 내 유동 제어 장치.
DCu<√(2/(σCuωμ)) … 식 (7A)
√(1/(2σωμ))<T … 식 (7B)
단, ω=2πf: 각속도(rad/sec), μ=4π×10-7: 진공의 투자율(N/A2), σ: 용강의 전기 전도도(S/m)이다. - 제1항 내지 제3항 중 어느 한 항에 기재된 주형 내 유동 제어 장치를 사용한 박슬래브 주조에 있어서의 주형 내 유동 제어 방법이며,
침지 노즐 내 평균 유속 V(m/s)에 대하여, 인가하는 직류 자장의 자속 밀도 B(T) 및 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (5) 및 식 (6)을 만족시키는 것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 방법.
L≥LC=(ρV)/(2σB2) … 식 (5)
0.1×B√((σDV)/ρ)≥0.1(m/s) … 식 (6)
단, D: 침지 노즐 내경(m), ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다. - 제4항 또는 제5항에 기재된 주형 내 유동 제어 장치를 사용한 박슬래브 주조에 있어서의 주형 내 유동 제어 방법이며,
침지 노즐 내 평균 유속 V(m/s)에 대하여, 인가하는 직류 자장의 자속 밀도 B(T) 및 상기 침지 노즐의 하단에서부터 상기 코어의 하단까지의 거리 L(m)이 하기 식 (5), 식 (6)을 만족시키는 것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 방법.
L≥LC=(ρV)/(2σB2) … 식 (5)
0.1×B√((σDV)/ρ)≥0.1(m/s) … 식 (6)
단, D: 침지 노즐 내경(m), ρ: 용융 금속의 밀도(kg/㎥), σ: 용융 금속의 전기 전도도(S/m)이다. - 제7항에 있어서,
주형 긴 변의 동판 두께 DCu(mm), 주편 두께 T(mm), 상기 전자 교반 유닛의 주파수 f(Hz), 동판 전기 전도도 σCu(S/m)가 하기 식 (7A), 식 (7B)를 만족시키도록 조정되는 것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 방법.
DCu<√(2/(σCuωμ)) … 식 (7A)
√(1/(2σωμ))<T … 식 (7B)
단, ω=2πf: 각속도(rad/sec), μ=4π×10-7: 진공의 투자율(N/A2), σ: 용강의 전기 전도도(S/m)이다. - 제8항에 있어서,
주형 내 용강 표면의 용강 교반 유속 VR(m/s)이 하기 식 (8)을 만족시키는 것을 특징으로 하는 강의 박슬래브 주조에 있어서의 주형 내 유동 제어 방법.
VR≥0.1×B√((σDV)/ρ) … 식 (8)
단, 용강 교반 유속 VR(m/s)은 주편 단면의 덴드라이트 경각에 기초하여 정한다.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018109150 | 2018-06-07 | ||
JPJP-P-2018-109150 | 2018-06-07 | ||
JPJP-P-2018-211091 | 2018-11-09 | ||
JP2018211091 | 2018-11-09 | ||
PCT/JP2019/022726 WO2019235613A1 (ja) | 2018-06-07 | 2019-06-07 | 薄スラブ鋳造における鋳型内流動制御装置および鋳型内流動制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210005238A true KR20210005238A (ko) | 2021-01-13 |
KR102442885B1 KR102442885B1 (ko) | 2022-09-14 |
Family
ID=68769189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207034730A KR102442885B1 (ko) | 2018-06-07 | 2019-06-07 | 박슬래브 주조에 있어서의 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11358213B2 (ko) |
JP (1) | JP7078110B2 (ko) |
KR (1) | KR102442885B1 (ko) |
CN (1) | CN112272593B (ko) |
TW (1) | TW202000340A (ko) |
WO (1) | WO2019235613A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7230597B2 (ja) * | 2019-03-11 | 2023-03-01 | 日本製鉄株式会社 | 注湯ノズル、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法 |
EP4076788B1 (en) * | 2019-12-20 | 2024-05-15 | Novelis, Inc. | A 7xxx series aluminum alloys ingot and a method for direct chill casting |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6152336A (en) | 1996-06-19 | 2000-11-28 | Giovanni Arvedi | Submerged nozzle for the continuous casting of thin slabs |
JP2001047196A (ja) | 1999-08-16 | 2001-02-20 | Sumitomo Metal Ind Ltd | 広幅薄鋳片の連続鋳造方法 |
JP2001205396A (ja) | 1999-11-15 | 2001-07-31 | Nippon Steel Corp | 溶融金属の連続鋳造方法 |
JP2007105769A (ja) | 2005-10-14 | 2007-04-26 | Nippon Steel Corp | 連続鋳造用の浸漬ノズル及び鋼の連続鋳造方法 |
JP2010110765A (ja) * | 2008-11-04 | 2010-05-20 | Nippon Steel Corp | 鋼の連続鋳造用装置 |
US9352386B2 (en) | 2010-08-05 | 2016-05-31 | Danieli & C. Officine Meccaniche S.P.A. | Process and apparatus for controlling the flows of liquid metal in a crystallizer for the continuous casting of thin flat slabs |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3408374B2 (ja) * | 1996-04-23 | 2003-05-19 | 新日本製鐵株式会社 | 連続鋳造方法 |
JP3566904B2 (ja) * | 1999-04-20 | 2004-09-15 | 新日本製鐵株式会社 | 鋼の連続鋳造方法 |
JP2003033847A (ja) * | 2001-07-19 | 2003-02-04 | Nippon Steel Corp | 鋼の連続鋳造方法 |
JP3593328B2 (ja) * | 2001-10-10 | 2004-11-24 | 新日本製鐵株式会社 | 溶鋼の鋳型内流動制御方法並びにそのための電磁場形成装置 |
JP4519600B2 (ja) * | 2004-10-15 | 2010-08-04 | 新日本製鐵株式会社 | 電磁攪拌コイル |
JP4569715B1 (ja) * | 2009-11-10 | 2010-10-27 | Jfeスチール株式会社 | 鋼の連続鋳造方法 |
CA2844450C (en) * | 2011-11-09 | 2017-08-15 | Nippon Steel & Sumitomo Metal Corporation | Continuous casting apparatus for steel |
CN103343246B (zh) * | 2013-07-03 | 2015-08-05 | 上海大学 | 长尺寸弥散强化铜基复合材料的制备方法及其熔铸装置 |
KR20190016613A (ko) * | 2015-03-31 | 2019-02-18 | 신닛테츠스미킨 카부시키카이샤 | 강의 연속 주조 방법 |
-
2019
- 2019-06-06 TW TW108119796A patent/TW202000340A/zh unknown
- 2019-06-07 KR KR1020207034730A patent/KR102442885B1/ko active IP Right Grant
- 2019-06-07 US US17/059,686 patent/US11358213B2/en active Active
- 2019-06-07 JP JP2020523202A patent/JP7078110B2/ja active Active
- 2019-06-07 WO PCT/JP2019/022726 patent/WO2019235613A1/ja active Application Filing
- 2019-06-07 CN CN201980037756.4A patent/CN112272593B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6152336A (en) | 1996-06-19 | 2000-11-28 | Giovanni Arvedi | Submerged nozzle for the continuous casting of thin slabs |
JP2001047196A (ja) | 1999-08-16 | 2001-02-20 | Sumitomo Metal Ind Ltd | 広幅薄鋳片の連続鋳造方法 |
JP2001205396A (ja) | 1999-11-15 | 2001-07-31 | Nippon Steel Corp | 溶融金属の連続鋳造方法 |
JP2007105769A (ja) | 2005-10-14 | 2007-04-26 | Nippon Steel Corp | 連続鋳造用の浸漬ノズル及び鋼の連続鋳造方法 |
JP2010110765A (ja) * | 2008-11-04 | 2010-05-20 | Nippon Steel Corp | 鋼の連続鋳造用装置 |
US9352386B2 (en) | 2010-08-05 | 2016-05-31 | Danieli & C. Officine Meccaniche S.P.A. | Process and apparatus for controlling the flows of liquid metal in a crystallizer for the continuous casting of thin flat slabs |
Non-Patent Citations (2)
Title |
---|
오카노 시노부 등 저서 「철과 강」 61(1975), 2982쪽 |
제5판 철강 편람 제1권 제철ㆍ제강 제454쪽 내지 제456쪽 |
Also Published As
Publication number | Publication date |
---|---|
BR112020023441A2 (pt) | 2021-02-23 |
JP7078110B2 (ja) | 2022-05-31 |
KR102442885B1 (ko) | 2022-09-14 |
WO2019235613A1 (ja) | 2019-12-12 |
US20210205877A1 (en) | 2021-07-08 |
US11358213B2 (en) | 2022-06-14 |
TW202000340A (zh) | 2020-01-01 |
CN112272593A (zh) | 2021-01-26 |
JPWO2019235613A1 (ja) | 2021-05-13 |
CN112272593B (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2500120A1 (en) | Method of continuous casting of steel | |
EP2500121A1 (en) | Method of continuous casting of steel | |
WO2013190799A1 (ja) | 高清浄度鋼鋳片の製造方法及びタンディッシュ | |
US10512970B2 (en) | Method for continuously casting steel | |
JP5321528B2 (ja) | 鋼の連続鋳造用装置 | |
KR20210005238A (ko) | 박슬래브 주조에 있어서의 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법 | |
KR102088117B1 (ko) | 슬라브 주편의 연속 주조 방법 | |
JP6123549B2 (ja) | 連鋳鋳片の製造方法 | |
JP6164040B2 (ja) | 鋼の連続鋳造方法 | |
CN111194247B (zh) | 铸模设备 | |
WO2019235615A1 (ja) | 鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法 | |
JP7332885B2 (ja) | 溶融金属の連続鋳造方法及び連続鋳造装置 | |
JP2015085370A (ja) | 鋼の連続鋳造方法 | |
CN110573271B (zh) | 钢的连续铸造方法 | |
JP2020124738A (ja) | タンディッシュ | |
KR20090073500A (ko) | 주형 내 용강의 유동 제어 방법 및 연속 주조 주편의 제조방법 | |
JP2007021572A (ja) | 連続鋳造鋳片およびその製造方法 | |
JP6500682B2 (ja) | 複層鋳片の連続鋳造方法及び連続鋳造装置 | |
JP2020078814A (ja) | 連続鋳造方法 | |
JP7200722B2 (ja) | 湾曲型連続鋳造装置における鋳型内流動制御方法 | |
JP4432263B2 (ja) | 鋼の連続鋳造方法 | |
JP6287901B2 (ja) | 鋼の連続鋳造方法 | |
BR112020023441B1 (pt) | Equipamento para controlar o fluxo no molde e método para controlar o fluxo no molde no lingotamento de placas finas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |