WO2019235615A1 - 鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法 - Google Patents

鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法 Download PDF

Info

Publication number
WO2019235615A1
WO2019235615A1 PCT/JP2019/022730 JP2019022730W WO2019235615A1 WO 2019235615 A1 WO2019235615 A1 WO 2019235615A1 JP 2019022730 W JP2019022730 W JP 2019022730W WO 2019235615 A1 WO2019235615 A1 WO 2019235615A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
thickness
slab
molten steel
Prior art date
Application number
PCT/JP2019/022730
Other languages
English (en)
French (fr)
Inventor
原田 寛
華乃子 山本
拓也 高山
圭太 池田
悠衣 伊藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US15/734,351 priority Critical patent/US11400513B2/en
Priority to BR112020023468A priority patent/BR112020023468B8/pt
Priority to JP2020523204A priority patent/JP7040613B2/ja
Priority to CN201980037801.6A priority patent/CN112236249B/zh
Priority to KR1020207034686A priority patent/KR102448621B1/ko
Publication of WO2019235615A1 publication Critical patent/WO2019235615A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to an equipment for continuous casting used for thin slab casting of steel and a continuous casting method.
  • This application claims priority on June 7, 2018 based on Japanese Patent Application No. 2018-109469 for which it applied to Japan, and uses the content for it here.
  • a thin slab casting method for casting a thin slab (thin cast piece) having a slab thickness of 40 to 150 mm, and further 40 to 100 mm is known.
  • the cast thin slab is heated and then rolled by a small-scale rolling mill of about 4 to 7 stages.
  • a continuous casting mold used for thin slab casting a method using a funnel mold (funnel mold) and a method using a rectangular parallel mold are employed.
  • the casting thickness is generally as thin as 150 mm or less, and further 100 mm or less, while the casting width is about 1.5 m and the aspect ratio is high. Since the casting speed is 5 m / min and high speed casting, the throughput is also high.
  • a funnel mold is often used, and the flow in the mold becomes more complicated. Therefore, in order to brake the nozzle discharge flow, a method (electromagnetic brake) in which an electromagnet is arranged on the long side of the mold to brake the flow has been proposed (see Patent Document 1).
  • Patent Document 2 discloses a method of installing an immersion nozzle discharge hole at a position where the magnetic flux density in the immersion nozzle discharge hole is 50% or less of the maximum magnetic flux density of the electromagnetic stirring device.
  • an electromagnetic brake is generally used to brake the nozzle discharge flow and stabilize the molten metal surface level.
  • the gap between the immersion nozzle and the mold long side becomes narrow, and thus the flow of molten steel tends to stagnate in this narrow gap.
  • an electromagnetic stirrer (hereinafter sometimes referred to as EMS) is installed on the back side of the long side wall of the mold, and the opposing long side walls are placed.
  • EMS electromagnetic stirrer
  • the pressure rises at the portion where the stirring flow collides, and the molten metal surface rises.
  • the thickness central part In the central part in the thickness direction (hereinafter also referred to as the thickness central part), a phenomenon occurs in which the molten metal surface is recessed. Specifically, as shown in FIG. 2A, the molten steel surface 7 rises at the corner portion by applying a stirring flow so as to swirl within the horizontal section by EMS, and the thickness on the short side wall side is increased. Raises in the center. A powder layer 18 is present on the molten steel surface 7.
  • a solidified shell 19 is first formed at the corner portion as shown in FIG. In the central part, solidification starts later than the corner part due to unevenness at the level of the hot water surface. Therefore, as shown in FIG. 2C, the solidification is most delayed at the center of the thickness, and the solidification delay portion 20 is formed further down in the mold.
  • the immersion nozzle 2 is provided with a discharge hole 3 directed in the long side direction of the mold 12, and when a discharge flow of molten steel (hereinafter also referred to as a nozzle discharge flow 4) is formed from the discharge hole 3, the thickness of the slab In the direction, the flow velocity is the fastest at the center of the thickness.
  • the nozzle discharge flow 4 collides with the short side solidified shell. The solidification delay due to the collision of the nozzle discharge flow with the short-side solidified shell is most noticeable in the thickness center in the thickness direction of the slab.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel continuous casting equipment and a continuous casting method capable of preventing a vertical crack at the center of the long side of a slab in thin slab casting.
  • a first aspect of the present invention is a continuous casting facility used for casting a thin slab of steel having a cast slab thickness of 150 mm or less and a casting width of 2 m or less in the mold, each of which is composed of a copper plate.
  • the mold for molten steel casting provided with a pair of long side walls and a pair of short side walls, an immersion nozzle for supplying molten steel into the mold, and the back side of the pair of long side walls, An electromagnetic stirrer arranged along the long side wall and capable of applying a swirling flow on the surface of the molten steel in the mold, and satisfies the following formulas (1) -a and (1) -b
  • the thickness T (mm) of the slab casted in step (2) may satisfy the following formula (2). 0.01 ⁇ ⁇ / T ⁇ 0.1 (2)
  • a second aspect of the present invention is a steel continuous casting method using the steel continuous casting equipment described in (1) or (2) above, wherein the following (1) -a formula, ( 1) The thickness D Cu (mm) of the copper plate, the thickness T (mm) of the slab, the frequency f (Hz) of the electromagnetic stirrer, and the electric conductivity ⁇ ( S / m) and a continuous casting method of steel for adjusting the electrical conductivity ⁇ Cu (S / m) of the copper plate.
  • 2 ⁇ f: angular velocity (rad / sec)
  • vacuum permeability (N / A 2 ).
  • the equipment for continuous casting and the continuous casting method used for thin slab casting of steel according to the present invention includes an electromagnetic stirrer installed in a mold in thin slab casting, and further optimizes the frequency of the alternating current applied to the electromagnetic stirrer. As a result, a swirl flow is formed in the vicinity of the molten metal surface level even in thin slab casting with a slab thickness of 150 mm or less. Thereby, it is possible to make solidification uniform on the long side surface, and it is possible to prevent vertical cracks at the center of the long side of the slab.
  • the flat cross-sectional shape of the inner surface of the short side wall is a curved shape and the formation range is defined, solidification on the short side wall side can be made uniform, and the shape of the solidified part on the short side wall side is made rectangular (flat) Shape).
  • FIG. 1 It is a perspective conceptual diagram explaining the molten steel flow in the casting_mold
  • a facility for continuous casting of a thin slab cast having a cast slab thickness of 150 mm or less according to an embodiment of the present invention (hereinafter referred to as a continuous casting facility according to the present embodiment) will be described.
  • the slab thickness may be greater than 100 mm.
  • the equipment for continuous casting includes a mold 12 for casting a molten steel having a pair of long side walls and a pair of short side walls, each of which is made of a copper plate and arranged opposite to each other, and a molten steel 6 in the mold.
  • the immersion nozzle 2 to be supplied and the rear surface of the pair of long side walls are arranged along the long side wall, and a swirl flow 9 is given to the molten steel in the vicinity of the molten steel surface 7 (hereinafter also referred to as a molten metal surface) in the mold.
  • FIG. 1 the schematic diagram of the molten steel flow in a casting_mold
  • the long side wall and the short side wall of the mold 12 are not shown, and the casting space 5 surrounded by the long side wall and the short side wall is shown. Since the molten steel surface 7 in the mold is normally cast around 100 mm from the upper end of the mold, the position below 100 mm from the upper end of the mold is referred to as a meniscus position P1 in the following description.
  • the continuous casting equipment has the following configuration (a).
  • the continuous casting facility preferably further has the following configuration (b) and configuration (c).
  • the cross-sectional shape of the inner surface of the short side wall 10 (hereinafter also referred to as the inner surface shape) is a curved shape projecting outside the mold near the meniscus position P1, as shown in FIG.
  • the amount of protrusion of the curved shape is sequentially reduced (narrowed) downward, and the lower portion (other than the curved shape) is flattened.
  • the part which protruded in the curved shape turns into a recessed part seeing from the casting_mold
  • template 12 it is also called the recessed part 14.
  • the formation range of the curved shape is equal to or lower than the lower end 16 (lower end position of the core (iron core)) of the electromagnetic stirrer from the meniscus position P1, and the immersion depth 17 of the immersion nozzle. It is set as the range to position P2 above.
  • the immersion depth 17 of the immersion nozzle is the depth of the lower end position of the discharge hole 3 (for example, about 200 to 350 mm), and the lower end position of the discharge hole 3 of the immersion nozzle is from the lower end 16 of the electromagnetic stirrer. Located below.
  • the solidification on the short side wall side can be made uniform, and the shape of the solidified part on the short side wall side can be made rectangular (flat shape). This eliminates subepidermal cracking at the center of the long side width and at the center of the short side thickness, and further eliminates breakout due to solidification delay near the center of the short side thickness.
  • the present inventors examined conditions for forming a stirring flow at the surface of the molten steel in the mold in thin slab casting with a slab thickness of 150 mm or less. For that purpose, first, it is important that the skin depth of the AC magnetic field formed by the electromagnetic stirring device 1 is larger than the copper plate thickness D Cu of the long side wall 15 of the mold. This condition is defined by the following equation (1) -a. That is, the skin depth of the electromagnetic field in the conductor needs to be larger than the copper plate thickness D Cu . D Cu ⁇ (2 / ⁇ Cu ⁇ ) (1) -a
  • This equation shows the relationship between the skin depth of electromagnetic force and the slab thickness, and the skin depth of electromagnetic force is defined by 1/2 of the skin depth of the electromagnetic field in the conductor. This is because the electromagnetic force is current density ⁇ magnetic flux density, but the penetration of the current density and magnetic field into the conductor is described by ⁇ (2 / ⁇ ), and therefore the skin depth of the electromagnetic force of the product is 1 / 2 ⁇ ⁇ (2 / ⁇ ), which is described by ⁇ (1 / 2 ⁇ ).
  • 2 ⁇ f: angular velocity (rad / sec), ⁇ : permeability of vacuum (N / A 2 ), D Cu : mold copper plate thickness (mm), T: slab thickness (mm), f: frequency (Hz), ⁇ : electric conductivity (S / m) of molten steel, ⁇ Cu : copper plate electric conductivity (S / m).
  • FIG. 1 An example of the influence of the electromagnetic stirring frequency on the mold skin depth and the molten steel electromagnetic force skin depth is shown in FIG.
  • the expression (1) -a can be satisfied if the electromagnetic stirring frequency f is less than 20 Hz.
  • the expression (1) -b can be satisfied if the electromagnetic stirring frequency f is greater than 10 Hz.
  • an electromagnetic stirrer is installed in the mold in the thin slab casting, and the frequency of the alternating current applied to the electromagnetic stirrer is optimized so that the surface of the slab is cast even in a thin slab cast with a slab thickness of 150 mm or less.
  • a swirling flow is formed near the level.
  • the present inventors have studied a method for homogenizing solidification in the vicinity of the short side wall under the flow of molten steel obtained by applying EMS.
  • C steel subperitectic steel
  • a slab having a width of 1200 mm and a thickness of 150 mm was cast at a casting speed of 5 m / min.
  • the molten steel surface position in the mold was set to 100 mm from the upper end of the mold.
  • the casting was performed using a continuous casting facility in which the electromagnetic stirrer 1 (EMS) is mounted on the back side of the long side wall 15 for the purpose of forming a swirl flow in the horizontal cross section near the meniscus. .
  • EMS electromagnetic stirrer 1
  • the EMS was placed so that the upper end of the EMS core coincided with the meniscus position P1 in the mold (100 mm from the upper end of the mold).
  • the core thickness of the EMS is 200 mm
  • the lower end 16 of the electromagnetic stirrer is 200 mm from the meniscus position.
  • the immersion depth 17 of the immersion nozzle was 250 mm from the meniscus position P1. Further, casting was performed without using an electromagnetic stirring device under the same conditions.
  • a linear negative segregation line called a white band 21 showing a solidified shell front at a certain moment is observed on the slab cross section. This occurs because the molten steel flow hits the solidified shell and the concentrated molten steel in front of the solidified shell is washed away. Therefore, the thickness from the surface 25 of the slab 22 to the white band 21 represents the thickness of the solidified shell at the position where the molten steel flow collides.
  • the flow rate of the stirring flow at the molten metal surface is ensured to be 20 cm / sec by adjusting the thrust 8 of electromagnetic stirring. I also found it possible.
  • the formation range of the curved shape is a range from the meniscus position P1 (position 100 mm from the upper end of the mold) to the position P2 shown in FIG.
  • the curved shape is continuously formed from the meniscus position P1 to the upper end of the mold as shown in FIG.
  • the molten metal level in the mold is adjusted so that the meniscus position P1 is at the molten metal level (molten steel surface 7).
  • the electromagnetic stirring conditions were such that the above formulas (1) -a and (1) -b were satisfied, and the thrust of the electromagnetic stirring was adjusted so that the flow rate of the stirring flow on the molten metal surface was 30 cm / second. .
  • the lower end position P2 of the curved shape forming range was set to 200 mm in the casting direction from the surface level (meniscus position P1).
  • the lower end position P2 is equal to the lower end 16 of the electromagnetic stirrer and is located above the immersion depth 17 of the immersion nozzle.
  • the amount of overhang ⁇ at the meniscus position P1 was changed to 0 to 15 mm, and the influence on the solidification uniformity of the slab was evaluated by setting B / A in FIG. 5 as the solidification uniformity.
  • the flat cross-sectional shape can be selected from an arc shape, an elliptical shape, a sine curve, and other arbitrary curved shapes.
  • an arc shape adopted, the inner side shape of the short side wall is made into a gently curved shape so as to protrude outside the mold near the meniscus, based on the schematic diagram shown in FIG.
  • ⁇ / T at the meniscus position P1 is expressed by the curvature radius R (mm) of the curved shape and the thickness T (mm) of the slab, the relationship of the following expression (3) is obtained.
  • ⁇ / T R / T ⁇ ( ⁇ (4R 2 ⁇ T 2 )) / (2T) (3)
  • FIG. 8 shows the results (relationship between the radius of curvature R and the overhang amount ⁇ ) obtained by using the above equation (3) with the thickness T of the slab being 150 mm. It was found that within the range shown, the above formula (2) was satisfied and high coagulation uniformity was obtained.
  • FIG. 9 shows the result.
  • the overhang range on the horizontal axis is the distance from the meniscus position P1 to the lower end position P2 of the curved shape.
  • the upper end of the core of the EMS is at the meniscus position P1, and the thickness in the height direction of the core (hereinafter also referred to as core thickness) is 200 mm. Therefore, the lower end 16 of the electromagnetic stirrer is 200 mm from the meniscus position P1. is there. If the lower end position P2 of the region (formation range) provided with the overhang is equal to or lower than the lower end 16 of the electromagnetic stirring device, the improvement effect by providing the overhang was obtained. However, when the formation range of the overhang is 100 mm, which is shorter than the core thickness of EMS, the improvement in solidification uniformity was insufficient.
  • the overhang formation range was longer than the core thickness of EMS and longer than 250 mm, which is the immersion depth 17 of the immersion nozzle, the effect was small. Therefore, the above-described configuration (c) is also included in the preferable configuration of the short side wall of the mold.
  • the test was performed by changing the EMS current value and swinging the molten steel flow velocity at the meniscus to 1 m / sec.
  • the molten steel flow velocity was calculated from the dendrite inclination angle of the slab cross section.
  • the effect of improving the solidification uniformity was obtained under the above conditions until the molten steel flow velocity at the meniscus was 60 cm / second or less, including the condition where EMS was not applied. Uniform solidification could not be achieved only by changing the inner surface shape.
  • solidification and homogenization can be achieved by applying a molten steel flow velocity of 20 cm / second or more, more preferably by applying a molten steel flow velocity of about 30 cm / second.
  • the application range of the steel continuous casting equipment of the present invention is that the meniscus flow rate is 60 cm / second or less (particularly, the lower limit is 10 cm / second), and the raised height on the short side wall side is 30 mm or less. I can say that.
  • the upper end width and the lower end width of the mold may be set by changing the setting angle of the short side wall according to the taper rate selected in each casting condition on the basis of the corner portion when no overhang is formed.
  • the overhang formation range may be set so as to be in a range from the meniscus position P1 to the position P2 which is equal to or greater than the core thickness of the EMS and above the immersion depth of the immersion nozzle.
  • the ratio ⁇ / T between the overhang amount ⁇ (mm) at the position P1 and the thickness T (mm) of the slab can be adjusted to 0.01 or more and 0.1 or less (that is, the above equation (2)). preferable.
  • the lower end position of the short side protrusion is preferably set to a position from the core lower end position of the EMS to a maximum of 150 mm from the lower end of the core. .
  • the size of the mold can be variously changed according to the size of the cast slab (slab) to be cast.
  • the thickness (the interval between the opposing long side walls) is about 100 to 150 mm and the width (the opposing short sides).
  • the size of the slab is about 1000 to 2000 mm.
  • the continuous casting equipment according to this embodiment has a casting speed of 3 m / min. It is preferable to apply to the above casting.
  • the upper limit value is not defined, but the upper limit value that is currently available is, for example, about 6 m / min.
  • the continuous casting according to the present embodiment is performed even when the stirring flow is applied so as to form a swirling flow near the molten metal surface, that is, the molten metal surface is raised at the corner and recessed at the center of the thickness.
  • solidification delay in the central part of the short side can be prevented, and solidification progresses uniformly.
  • the solidification can be made uniform by narrowing down uniformly in the thickness direction by a normal taper.
  • the shape of the short side wall can be a straight line, and the solidification delay at the short side thickness central portion can be eliminated.
  • the effect of relieving the pressure when the swirling flow collides with the corner can be obtained. Therefore, it also has an effect of reducing the unevenness of the hot water surface shape on the short side wall side.
  • the mold skin depth is larger than the mold copper plate thickness (satisfaction (1) -a is satisfied), and the skin depth of electromagnetic force is larger than the slab thickness. It was found that by setting the frequency to be small (satisfaction of (1) -b formula), the molten steel flow velocity was 20 cm / second or more, and the swirling flow was efficiently formed at the level of the molten metal.
  • the taper of the short side wall was 1.4% / m.
  • the taper of the short side wall is the inner surface (slab contact surface) of the short side wall on both sides (when there is a recess, the deepest part of the recess when the short side wall is viewed in plan view) )
  • Is a value expressed in% by dividing the difference between the distance A at the upper end of the mold and the distance B at the lower end of the mold by the length L of the short side wall in the vertical direction (casting direction). That is, taper (%) (AB) / L ⁇ 100.
  • the solidification structure of C cross section of slab was investigated. Similar to FIG. 6, the white band 21 (see FIG. 5) in which the solidified structure appears and is observed by etching is observed from the surface in the region from the corner portion 26 toward the center of the width on the long side 23 side of the slab.
  • solidification uniformity 0.7 or more was evaluated as favorable. Furthermore, it was investigated whether or not subepidermal cracking was observed in the coagulation delay part. The method for evaluating subepidermal cracking is as described above.
  • the mold resistance was also examined.
  • the oscillation current is measured, and the value smaller than the oscillation current value when the sticking breakout occurs is “small”.
  • the oscillation current value when the sticking breakout occurs The above cases were evaluated as “large”.
  • Table 2 shows the test conditions and results.
  • Invention Examples 2 to 4 shown in Table 2, the lower end of the curved shape of the short side wall is unified to the meniscus position P1 to 200 mm ( the same position as the lower end of the electromagnetic stirrer), and ⁇ / T Shows the results when 0.012, 0.05, and 0.093 within the preferable range (0.01 to 0.1), but the solidification uniformity is not increased without increasing the mold resistance. A value of 0.7 or more was obtained, which was greatly improved. Moreover, since the coagulation uniformity was improved, no coagulation delay part was observed, and no epidermal crack was observed. On the other hand, Invention Example 1 was a condition in which no overhang was provided, but the solidification uniformity was lower than that of Invention Examples 2 to 4.
  • Invention Example 5 is a condition in which ⁇ / T is set to 0.12, which exceeds the upper limit value of the preferred range, although an overhang is provided. In this case, although the solidification uniformity was relatively good, the resistance value was locally increased, and the surface property was partially constrained.
  • Invention Example 6 is a condition in which ⁇ / T is set to 0.007, which is less than the lower limit of the preferred range, although an overhang is provided. In this case, the solidification uniformity was 0.66, which was better than that of Invention Example 1 without bending, but small epidermal cracks were scattered.
  • Invention Example 7 although the overhang was provided and ⁇ / T was set to 0.03 within a preferable range, the formation range of the overhang was shorter than the core thickness of the EMS, so that the solidification uniformity was invented. Compared to Examples 2 to 4, the value was low.
  • Invention Example 8 provided an overhang, ⁇ / T was set to 0.03 within a preferable range, and the formation range of the overhang was set to 0.4 m that is equal to or greater than the core thickness of the EMS and equal to or greater than the immersion depth of the immersion nozzle. It is a result. In this case, the effect of improving the solidification uniformity was small as compared with Invention Examples 2-4. In addition, subepidermal cracking due to the delayed solidification part was also observed.
  • Invention Example 9 provided an overhang and ⁇ / T was set to 0.04 within the preferred range, but the overhang formation range was set to 0.5 m, which is equal to or greater than the immersion depth of the immersion nozzle. Was smaller than Invention Examples 2 to 4.
  • Inventive Example 10 provided an overhang and ⁇ / T was set to 0.013 within the preferred range, but the overhang formation range was set to 0.4 m, which is equal to or greater than the immersion depth of the immersion nozzle. Compared to Invention Examples 2 to 4, it was small.
  • subepidermal cracking due to the delayed solidification part was also observed. In any of Invention Examples 7 to 10, no vertical crack was observed at the center of the long side surface of the slab.
  • Comparative Example 1 does not perform electromagnetic stirring in the mold and does not have a curved shape of the short side wall.
  • the solidification uniformity was only 0.2, which was a level at which there was a risk of interruption of casting (breakout).
  • breakout since no swirl flow was formed, a large vertical crack occurred in the center of the width of the long side of the slab.
  • the maximum value of the overhang amount ⁇ is set to be the central portion of the thickness of the short side wall, but, for example, it is shifted from the central portion of the thickness to the corner side according to the size and configuration of the mold. You can also.
  • the curved protrusion is formed in a range from the upper end of the short side wall to the position P2 below the EMS lower end and above the immersion depth of the immersion nozzle, but at least from the meniscus position P1. If it forms in the direction, it will not specifically limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

この薄スラブ鋳造に用いる連続鋳造用設備は、溶鋼鋳造用の鋳型と、鋳型内に溶鋼を供給する浸漬ノズルと、鋳型内の溶鋼表面で旋回流を付与することのできる電磁攪拌装置と、を有し、下記(1)-a式、(1)-b式を満足するように、長辺壁の銅板の厚みDCu(mm)、鋳片の厚みT(mm)、電磁攪拌装置の周波数f(Hz)、溶鋼の電気伝導度σ(S/m)、及び、長辺壁の銅板の電気伝導度σCu(S/m)が調整される。 DCu<√(2/σCuωμ) (1)-a √(1/2σωμ)<T (1)-b ここで、ω=2πf:角速度(rad/sec)、μ=4π×10-7:真空の透磁率(N/A2)である。

Description

鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法
 本発明は、鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法に関する。
 本願は、2018年6月7日に、日本に出願された特願2018-109469号に基づき優先権を主張し、その内容をここに援用する。
 スラブ厚が40~150mm、さらには40~100mmの薄スラブ(薄鋳片)を鋳造する薄スラブ鋳造方法が知られている。鋳造された薄スラブは、加熱された後、4段から7段程度の小規模な圧延機で圧延される。薄スラブ鋳造に用いる連続鋳造鋳型としては、漏斗状鋳型(ファンネル鋳型)を用いる方法と矩形の平行鋳型を用いる方法が採用されている。薄スラブの連続鋳造では、高速鋳造によって生産性を確保することが必要であり、工業的には5~6m/分、最高10m/分の高速鋳造が可能となっている(非特許文献1参照)。
 薄スラブ鋳造においては、上述のように鋳造厚みが一般的に150mm以下、さらには100mm以下と薄く、その一方で鋳造幅は1.5m程度でありアスペクト比が高い。そして、鋳造速度が5m/分と高速鋳造であるため、スループットも高い。加えて、鋳型への溶鋼注湯を容易にするため、漏斗状鋳型が用いられることが多く、鋳型内流動はより複雑化する。そのため、ノズル吐出流を制動するため、電磁石を鋳型長辺に配置し流動を制動する方法(電磁ブレーキ)も提案されている(特許文献1参照)。
 一方、薄スラブ鋳造ではない一般的なスラブ連続鋳造においては、湯面近傍の溶鋼温度均一化、凝固均一化、さらには、凝固シェルへの介在物捕捉防止を目的として、鋳型内電磁撹拌装置が使用されている。電磁攪拌装置を使用する場合、鋳型内の水平断面内で溶鋼の旋回流を安定形成することが必要となる。そこで、従来から、電磁撹拌装置と湯面との位置関係、電磁撹拌装置とタンディッシュから鋳型内に溶鋼を供給する浸漬ノズル吐出孔との位置関係、ノズルから吐出する溶鋼の流速と撹拌流速との関係について、様々な技術が開示されている。例えば、特許文献2では、浸漬ノズル吐出孔における磁束密度が電磁撹拌装置の最大磁束密度の50%以下である位置に浸漬ノズル吐出孔を設置する方法が開示されている。
 薄スラブ鋳造においても、同じ目的で、湯面近傍においてC断面内で旋回流を付与することができれば湯面近傍の溶鋼温度均一化、凝固均一化、さらには、凝固シェルへの介在物捕捉防止が図れ、好ましいといえる。しかしながら、薄スラブ鋳造において、一般的なスラブ連続鋳造において用いられる鋳型内電磁撹拌は使用されない。これは、鋳型厚みが薄いため、旋回流の形成が困難と想定されること、すでに高速鋳造のため凝固シェル前面には十分な流動が付与されており、さらに湯面近傍で旋回流を付与すると、鋳型内流動が複雑化し、好ましくないと考えられたこと等によると思われる。
日本国特開2001-47196号公報 日本国特開2001-47201号公報
第5版鉄鋼便覧 第1巻製銑・製鋼 第454~456頁 岡野忍ら著「鉄と鋼」61(1975),2982頁
 薄スラブ鋳造においては、鋳片厚が薄い中で高速鋳造を行うため、まずはノズル吐出流を制動し、湯面レベルを安定化させるため、前述のように、一般的に電磁ブレーキが用いられる。しかしながら、薄スラブ鋳造においては特に、浸漬ノズルと鋳型長辺との間の間隙が狭くなるため、この狭い間隙において溶鋼の流動が淀みやすい。薄スラブ鋳造においても、浸漬ノズルと鋳型長辺との間の流動を確保し、湯面レベル全体で一様な旋回流ができれば好ましい。薄スラブ鋳造ではない一般的なスラブ鋳造においては、前述のように、鋳型の長辺壁の背面側に電磁攪拌装置(以下、EMSともいう場合がある。)を設置し、相対する長辺壁でそれぞれ逆向きの推力を付与することにより、鋳型内のメニスカス近傍の水平断面内で旋回流を形成するように攪拌流を付与する方法が、広く用いられている。
 上記方法を適用することで、鋳型内湯面近傍の溶鋼温度分布の均一化、凝固シェル厚みの均一化が実現でき、加えて、凝固シェルへの介在物の捕捉を防止することができる。そのため、まず、薄スラブ鋳造においても、鋳型内のメニスカス近傍の水平断面内で旋回流を形成することが好ましい。次に、攪拌流の流速増大と共に凝固シェル厚の均一化効果は大きくなるため、十分な攪拌流を付与することが好ましい。特に、亜包晶鋼のように、δ/γ変態に伴う不均一凝固を生じやすい鋼種の薄スラブ鋳造においては、浸漬ノズルと鋳型長辺間の狭い間隙における溶鋼の流動の淀みが原因で長辺中央に縦割れが発生し易く、十分な攪拌流を付与することが重要である。
 鋳型内で旋回流を形成した場合、図2に示すように、鋳型内の4つのコーナー部では、攪拌流が衝突する部位において圧力が高くなって湯面が盛り上がり、鋳型の短辺壁側の厚み方向中央部(以下、厚み中央部ともいう)では、逆に湯面が凹む現象が発生する。具体的には、図2の(A)に示すように、EMSにより水平断面内で旋回するように攪拌流を付与することで、溶鋼表面7は、コーナー部で盛り上がり、短辺壁側の厚み中央部で盛り下がる。尚、溶鋼表面7の上部にはパウダー層18が存在する。
 特に、コーナー間の距離が短く、湯面レベルの凹凸に伴う勾配が大きい短辺壁に着目すると、図2の(B)に示すように、コーナー部に最初に凝固シェル19が形成され、厚み中央部では、湯面レベルの凹凸によってコーナー部よりも遅れて凝固が開始する。そのため、鋳型内のさらに下方において、図2の(C)に示すように、厚み中央部で最も凝固が遅れ、凝固遅れ部20が形成される。
 浸漬ノズル2には、鋳型12の長辺方向に向かう吐出孔3が設けられ、この吐出孔3から溶鋼の吐出流(以下、ノズル吐出流4ともいう)が形成された場合、鋳片の厚み方向では厚み中央部が最も流速が速くなる。ノズル吐出流4は短辺凝固シェルに衝突する。ノズル吐出流が短辺凝固シェルに衝突することによる凝固遅れは、鋳片の厚み方向では厚み中央部が最も顕著となる。特に、亜包晶鋼のように、δ/γ変態に伴う不均一凝固を生じやすい鋼種の鋳造においては、短辺厚み中央部は曲げモーメントにより更に浮き上がり、凝固遅れが加速することに加え、界面で引張応力が作用し表皮下割れを生じ易い。
 以上より、EMSによる攪拌流が形成する湯面レベル形状の凹凸の結果、凝固が遅れることに加え、ノズル吐出流が衝突するため、局部的に過大な凝固遅れ部をつくり、その程度が顕著になると、ブレークアウトが発生する。また、このような現象は、鋳造幅が狭いほど浸漬ノズルと短辺壁との距離が短くなるため生じやすい。
 以上のような状況から、薄スラブ鋳造においては鋳型内で旋回流を付与する電磁攪拌を行うことが困難であり、たとえ行ったとしても、凝固シェルを均一化し、特に亜包晶鋼の長辺中央の縦割れを防止するに十分な攪拌流速を付与することは困難であった。
 本発明はかかる事情に鑑みてなされたもので、薄スラブ鋳造において鋳片の長辺中央の縦割れの防止が可能な鋼の連続鋳造用設備及び連続鋳造方法を提供することを目的とする。
 本発明の要旨とするところは以下のとおりである。
(1)本発明の第一の態様は、鋳型内の鋳片厚みが150mm以下、鋳造幅が2m以下の鋼の薄スラブ鋳造に用いる連続鋳造用設備であって、それぞれ銅板から構成されると共に対向配置された、一対の長辺壁と一対の短辺壁とを備えた溶鋼鋳造用の鋳型と、前記鋳型内に溶鋼を供給する浸漬ノズルと、前記一対の長辺壁の裏面側に前記長辺壁に沿って配置され、前記鋳型内の溶鋼表面で旋回流を付与することのできる電磁攪拌装置と、を有し、下記(1)-a式、(1)-b式を満足するように、前記長辺壁の前記銅板の厚みDCu(mm)、前記鋳片の厚みT(mm)、前記電磁攪拌装置の周波数f(Hz)、前記溶鋼の電気伝導度σ(S/m)、及び、前記長辺壁の前記銅板の電気伝導度σCu(S/m)が調整される鋼の連続鋳造用設備である。
  DCu<√(2/σCuωμ)    (1)-a
  √(1/2σωμ)<T     (1)-b
ここで、ω=2πf:角速度(rad/sec)、μ=4π×10-7:真空の透磁率(N/A2)である。
(2)上記(1)に記載の鋼の連続鋳造用設備では、前記短辺壁の内面の平断面形状が、前記鋳型の上端から100mm下方の位置であるメニスカス位置で前記鋳型の外側に張り出す湾曲形状であり、前記湾曲形状の張り出し量が鋳造方向の下方に向けて順次減少し、前記鋳型内の下部で平坦形状であり、前記湾曲形状の形成範囲が、前記メニスカス位置から、前記電磁攪拌装置の下端と同等またはそれよりも下方であって前記浸漬ノズルの浸漬深さよりも上方の位置までの範囲であり、前記湾曲形状の前記メニスカス位置での張り出し量δ(mm)と、前記鋳型で鋳造する前記鋳片の厚みT(mm)とが、下記(2)式の関係を満足してもよい。
  0.01≦δ/T≦0.1     (2)
(3)本発明の第二の態様は、上記(1)又は(2)に記載の鋼の連続鋳造用設備を用いた鋼の連続鋳造方法であって、下記(1)-a式、(1)-b式を満足するように、前記銅板の厚みDCu(mm)、前記鋳片の厚みT(mm)、前記電磁攪拌装置の周波数f(Hz)、前記溶鋼の電気伝導度σ(S/m)、及び、前記銅板の電気伝導度σCu(S/m)を調整する鋼の連続鋳造方法である。
  DCu<√(2/σCuωμ)    (1)-a
  √(1/2σωμ)<T     (1)-b
ここで、ω=2πf:角速度(rad/sec)、μ:真空の透磁率(N/A2)である。
 本発明に係る鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法は、薄スラブ鋳造において鋳型内に電磁撹拌装置を設置し、さらに電磁攪拌装置に印加する交流電流の周波数を適正化することで、鋳片厚みが150mm以下の薄スラブ鋳造においても湯面レベル近傍で旋回流が形成される。これにより、長辺面での凝固均一化を可能とすることができ、鋳片の長辺中央の縦割れを防止することができる。
 さらに、短辺壁の内面の平断面形状を湾曲形状とし、その形成範囲を規定する場合、短辺壁側における凝固の均一化が図れ、短辺壁側の凝固部分の形状を矩形化(平坦形状)することができる。これにより、長辺幅中央部や短辺厚み中央での表皮下割れがなくなり、更には、短辺厚み中央近傍での凝固遅れによるブレークアウトがなくなる。
 その結果、鋳型内の湯面近傍で旋回流を付与しつつ凝固の均一化が図れ、鋳造速度の高速化も可能となり好適である。
電磁攪拌による鋳型内の溶鋼流動を説明する斜視概念図である。 電磁攪拌による鋳型内の溶鋼表面形状と初期凝固状況を示す概念図であり、(A)はA-A矢視部分側面断面図、(B)はB-B矢視部分平面断面図、(C)はC-C矢視部分平面断面図である。 短辺壁に形成した湾曲形状を示す図であり、(A)はA-A矢視側面断面図、(B)はB-B矢視平面断面図、(C)はC-C矢視平面断面図、(D)はD-D矢視平面断面図である。 鋳型表皮深さと溶鋼電磁力表皮深さに及ぼす電磁攪拌周波数の影響を示すグラフである。 鋳片断面に観察されるホワイトバンドについて説明する図である。 短辺壁の湾曲形状の張り出し量δと凝固均一度との関係を示すグラフである。 円弧である湾曲形状の曲率半径Rと張り出し量δとを示す図である。 円弧である湾曲形状の曲率半径Rと張り出し量δとの関係を示すグラフである。 高さ方向の湾曲形状形成範囲(張り出し範囲)と凝固均一度の関係を示すグラフである。 短辺テーパーについて説明する図である。
 以下、本発明の一実施形態に係る、鋳型内の鋳片厚みが150mm以下の薄スラブ鋳片の連続鋳造用設備(以下、本実施形態に係る連続鋳造用設備と称する)について説明する。鋳片厚みは、100mm超であってもよい。
 本実施形態に係る連続鋳造用設備は、それぞれ銅板から構成されて対向配置された一対の長辺壁と一対の短辺壁を備えた溶鋼鋳造用の鋳型12と、この鋳型内に溶鋼6を供給する浸漬ノズル2と、一対の長辺壁の裏面側にこの長辺壁に沿って配置され、鋳型内の溶鋼表面7(以下、湯面ともいう)の近傍で溶鋼に旋回流9を付与する電磁攪拌装置1とを有する設備である。図1に、EMS印加時の鋳型内の溶鋼流動の模式図を示す。図1においては、理解を容易にするために鋳型12の長辺壁、短辺壁は図示せず、長辺壁と短辺壁とで囲まれた鋳造空間5を図示している。なお、鋳型内の溶鋼表面7は、通常は鋳型上端から100mm付近にて鋳造が行われることから、以下の説明において、鋳型上端から100mm下方位置をメニスカス位置P1と称する。
 本実施形態に係る連続鋳造用設備は以下の構成(a)を有する。 構成(a):図2の(A)に示す鋳型長辺壁15の銅板厚みDCu、鋳型内の鋳片厚みT、電磁攪拌装置に印加する交流電流の周波数fとが所定の関係式を満足する。
 構成(a)を有することで、鋳型内の鋳片厚みが150mm以下の薄スラブ鋳造においてもメニスカス部で攪拌流を形成することができる。
 連続鋳造用設備は、更に以下の構成(b)、構成(c)を有することが好ましい。
 構成(b):短辺壁10の内面の平断面形状(以下、内面形状ともいう)を、図3に示すように、メニスカス位置P1の近傍で鋳型の外側に張り出した湾曲形状とし、鋳造方向の下方に向けて、湾曲形状の張り出し量を順次減少させ(絞り込む)、下部(湾曲形状以外)で平坦形状とする。なお、湾曲形状に張り出した部分は、鋳型12から見て凹んだ部分となるため、凹部14ともいう。
 構成(c):湾曲形状の形成範囲を、メニスカス位置P1から、電磁攪拌装置の下端16(コア(鉄芯)の下端位置)と同等またはそれよりも下方であって浸漬ノズルの浸漬深さ17よりも上方の位置P2までの範囲とする。なお、浸漬ノズルの浸漬深さ17とは、吐出孔3の下端位置の深さ(例えば、200~350mm程度)であり、浸漬ノズルの吐出孔3の下端位置は、電磁攪拌装置の下端16より下方に位置している。
 構成(b)、構成(c)を有する場合、短辺壁側における凝固の均一化が図れ、短辺壁側の凝固部分の形状を矩形化(平坦形状)することができる。これにより、長辺幅中央部や短辺厚み中央での表皮下割れがなくなり、更には、短辺厚み中央近傍での凝固遅れによるブレークアウトがなくなる。
 以下、構成(a)について説明する。
 本発明者らは、150mm以下の鋳片厚みの薄スラブ鋳造において、鋳型内溶鋼表面部で攪拌流を形成するための条件について検討した。
 そのためには、まず、電磁攪拌装置1によって形成される交流磁場の表皮深さが鋳型長辺壁15の銅板厚みDCuよりも大きくすることが重要である。この条件は下記(1)-a式で規定される。すなわち、導体中での電磁場の表皮深さが銅板厚みDCuよりも大となる必要がある。
  DCu<√(2/σCuωμ)    (1)-a
 従来、鋳片厚みTが150mm以下の薄スラブ鋳造においては、鋳型内で旋回流が形成するように電磁攪拌推力を付与しても、鋳型内溶鋼に旋回流を形成することができなかった。これに対して本発明者らは、対向する2枚の長辺壁15のそれぞれの背面に設置した電磁攪拌装置が鋳型内で形成する電磁場が互いに干渉しないように、電磁攪拌装置が溶鋼中で形成する電磁力の表皮深さが鋳片厚みTよりも小さくするような周波数とすることで、湯面レベルにおいて旋回流が形成することをはじめて見出した。この条件は(1)-b式で規定される。この式は電磁力の表皮深さと鋳片厚みとの関係を示したものであり、電磁力の表皮深さは導体中の電磁場の表皮深さの1/2で規定される。これは、電磁力は電流密度×磁束密度となるが、電流密度、磁場の導体内部への侵入は√(2/σωμ)で記述されるため、その積の電磁力の表皮深さは1/2×√(2/σωμ)となり、√(1/2σωμ)で記述されることによる。
  √(1/2σωμ)<T     (1)-b
 上記(1)-a式、(1)-b式において、ω=2πf:角速度(rad/sec)、μ:真空の透磁率(N/A2)、DCu:鋳型銅板厚み(mm)、T:鋳片厚み(mm)、f:周波数(Hz)、σ:溶鋼の電気伝導度(S/m)、σCu:銅板電気伝導度(S/m)である。
 (1)-b式で規定されるような高い周波数で電磁攪拌を行うことによりはじめて、鋳片厚みが150mm以下の薄スラブ鋳造において、鋳型内に十分な流速の旋回流を形成することが可能となった。従来の鋳型内電磁攪拌においては、鋳型銅板でのエネルギーロスを低減するため、低い周波数を用いることが一般的であった。
 尚、溶鋼の電気伝導度と銅板の電気伝導度は、市販の電気伝導率計(電気伝導度計)を用いて測定すればよい。
 鋳型表皮深さと溶鋼電磁力表皮深さに及ぼす電磁攪拌周波数の影響の一例を図4に示す。長辺壁銅板厚みが25mmのとき、電磁攪拌周波数fを20Hzより小さくすれば、(1)-a式を満足することができる。鋳型内鋳片厚みTが100mmのとき、電磁攪拌周波数fを10Hzより大きくすれば、(1)-b式を満足することができる。
 このように、薄スラブ鋳造において鋳型内に電磁撹拌装置を設置し、さらに電磁攪拌装置に印加する交流電流の周波数を適正化することで、鋳片厚みが150mm以下の薄スラブ鋳造においても湯面レベル近傍で旋回流が形成される。これにより、長辺面での凝固均一化を可能とすることができ、鋳片の長辺中央の縦割れを防止することができる。
 次に、構成(b)について説明する。
 本発明者らは、EMSを印加することによって得られる溶鋼の流動下で、短辺壁近傍の凝固を均一化する方法について検討した。
 まず、鋳型の短辺壁の構成として、上記した構成(b)を採用することにより、
1)長辺壁と短辺壁の各方向への凝固収縮を補償できること
2)コーナー部近傍の形状変化に対し、鋳型自体の構成で追随できること
3)攪拌流の衝突によるコーナー部での圧力上昇を緩和できること
の3点が可能となるのではないかと考えた。
 そこで、短辺壁10の内面形状が異なる鋳型を作製し、その鋳型を用いて鋳造を行い、短辺壁10の内部形状が鋳片の形状に及ぼす影響を調査した。
 調査に際しては、転炉での精錬と還流式真空脱ガス装置での処理、並びに合金添加により、0.1%C鋼(亜包晶鋼)を溶製した。そして、幅1200mm、厚み150mmの鋳片を、鋳造速度5m/分で鋳造した。鋳型内溶鋼表面位置を鋳型上端から100mmとした。
 ここで、鋳造は、メニスカス近傍で水平断面内に旋回流を形成することを目的として、長辺壁15の背面側に電磁攪拌装置1(EMS)を搭載した連続鋳造用設備を用いて行った。なお、EMSの設置は、EMSコアの上端が鋳型内のメニスカスの位置P1(鋳型上端から100mm)と一致するように行った。EMSのコア厚は200mmであり、電磁攪拌装置の下端16はメニスカス位置から200mmである。浸漬ノズルの浸漬深さ17はメニスカス位置P1から250mmであった。また、同一条件ながら、電磁攪拌装置を用いない鋳造も行った。
 鋳造した鋳片からサンプルを切り出し、短辺部の凝固組織を調査した。鋳片断面には、図5に示すように、ホワイトバンド21とよばれるある瞬間の凝固シェルフロントを示す線状の負偏析線が観察される。これは、溶鋼流が凝固シェルに当たり、凝固シェル前面の濃化した溶鋼を洗い流すために生じるものである。従って、鋳片22の表面25からホワイトバンド21までの厚みが、溶鋼流が衝突した位置での凝固シェルの厚みを表す。このため、鋳片22の長辺23側でコーナー部26から幅中央に向かった領域において、表面25からホワイトバンド21までの厚みが、略一定となった部位の厚みAと、短辺24の厚み中央27の最も薄い部位の厚みBとを計測し、厚みAと厚みBとの比、即ちB/Aを、凝固均一度とした。なお、凝固均一度は0.7以上であれば、表皮下割れも見られないため、0.7を判定条件とした。
 また、鋳型抵抗は、測定したオシレーション電流値と、スティッキング性ブレークアウトが生じた際のオシレーション電流値とを比較することで、大小を評価した。
 以下、実験結果について説明する。
 まず、鋳型銅板の材質、厚みが異なる鋳型を幾つか製作するとともに、電磁攪拌装置1に印加する交流電流の周波数fが異なる条件で鋳造を行った。鋳造した鋳片の幅中央部について、凝固組織を調査し鋳片表面から内部に向けて成長しているデンドライトの傾き角、すなわち、長辺表面の垂線に対する角度を測定するとともに、その傾き方向について調査した。デンドライトの傾き角と傾き方向から、非特許文献2に基づき、当該部位における溶鋼の流速と流れ方向の評価を行った。その結果、電磁攪拌装置1に通電する交流電流の周波数fと鋳型銅板の電気伝導度σCu(S/m)、銅板厚みDCu(S/m)、及び鋳片の厚みT(mm)との間で以下の関係を満足する条件であれば、メニスカス部で好ましい旋回流が形成されていることを見出した。
  DCu<√(2/σCuωμ)   (1)-a
  √(1/2σωμ)<T     (1)-b
 ここで、ω=2πf:角速度(rad/sec)、μ:真空の透磁率(N/A2)、σ:溶鋼の電気伝導度(S/m)である。
 また、上記(1)-a式、(1)-b式を満足する条件であれば、電磁攪拌の推力8を調整することにより、湯面での攪拌流の流速として20cm/秒を確保することが可能であることもわかった。
 次に、短辺壁10に図3に示すような湾曲形状を設けた上で、湾曲形状の張り出しが、凝固均一度と鋳型抵抗に及ぼす影響について検討した。湾曲形状の形成範囲は、メニスカス位置P1(鋳型上端から100mm位置)から、図3に示す位置P2までの範囲である。もちろん、メニスカス位置P1から鋳型上端までについても、図3に示すように湾曲形状は連続して形成されている。鋳造に際しては、メニスカス位置P1が湯面レベル(溶鋼表面7)となるように、鋳型内の湯面レベル調整を行う。電磁攪拌の条件は、上記(1)-a式、(1)-b式を満足する条件とし、湯面での攪拌流の流速が30cm/秒となるように、電磁攪拌の推力を調整した。
 まず、湾曲形状の形成範囲の下端位置P2を、湯面レベル(メニスカスの位置P1)から鋳造方向に200mmとした。下端位置P2は、電磁攪拌装置の下端16に等しく、浸漬ノズルの浸漬深さ17よりも上方に位置している。その上で、メニスカス位置P1での張り出し量δを0~15mmに変化させ、前述の図5におけるB/Aを凝固均一度として、鋳片の凝固均一度に及ぼす影響を評価した。
 結果を図6に示す。EMSを用いなかった場合、凝固均一度は0~0.3で、ブレークアウトによる鋳造を中断したこともあったが、上記(1)-a式、(1)-b式を満足する条件では、メニスカス位置P1での張り出し量δが0でも短辺厚み中央での凝固遅れが解消され、凝固均一度は0.6と大幅に改善した。
 さらに、その張り出し量δ=1mmでは凝固均一度が0.66、δ=1.5mmでは凝固均一度が0.70、δ=2mmでは凝固均一度が0.72であった。したがって、張り出し量δを1.5mm以上とすれば、0.1%C鋼(亜包晶鋼)においても表皮下割れが見られない、凝固均一度が0.7以上が達成される程の効果が認められたといえる。なお、張り出し量δが15mm(δ/T=0.1)を超えると、鋳型抵抗が増大する傾向が得られた。即ち、δ/Tが0.01~0.1の範囲で、凝固均一度が一層改善され、鋳型抵抗の増大も見られなかった。
 この結果は、鋳片の厚みTを150mmとした場合の結果であるが、厚みを種々変更した実験の結果、メニスカスの位置P1での必要な張り出し量δ(mm)は、鋳型で鋳造する鋳片の厚みT(mm)に比例することもわかった。この関係式を(2)式に示す。
  0.01≦δ/T≦0.1     (2)
 短辺壁10に形成する湾曲形状としては、その平断面形状を円弧形状、楕円形状、サインカーブ、その他の任意の湾曲形状から選択することができる。例えば円弧形状を採用した場合、図7に示す模式図をもとに、短辺壁の内面形状を、メニスカス近傍で鋳型の外側に張り出すように緩やかな湾曲形状とし、上記した(2)式の結果、即ち、メニスカスの位置P1でのδ/Tを、湾曲形状の曲率半径R(mm)と鋳片の厚みT(mm)で表すと、以下の(3)式の関係が得られる。
  δ/T=R/T-(√(4R2-T2))/(2T)  (3)
 図8は、上記(3)式を用いて、鋳片の厚みTを150mmとして求めた結果(曲率半径Rと張り出し量δの関係)であり、図8中の⇔(白抜き両矢印)で示した範囲であれば上記(2)式を満足し、高い凝固均一度が得られることがわかった。
 ここで、前記した(b)の構成により、高い凝固均一度が得られた理由について整理すると、以下のようになる。
1)短辺壁の内面を湾曲形状とすることにより、平断面視した短辺壁の内面長さが実質的に変わる(増大する)ことになるため、メニスカス近傍で長辺壁にテーパーを付与したのと同じ効果が得られる。
2)コーナー部の形状についても、メニスカスでは90度よりも鈍角となるため、コーナー部の圧力上昇が緩和され、盛り上がり量そのものが小さくなる。
3)鋳型は、鋳片に対して鋳造方向に、短辺全体を絞り込むように短辺形状をR状からフラットに変化させる。そのため、EMSによる溶鋼の盛り上がりが生じて短辺厚み中央部で盛り下がることで、凝固遅れが生じやすい、短辺厚み中央部の凝固均一化に有効である。
 さらに、短辺壁に湾曲形状の張り出しを形成するに際し、その形成範囲(下端位置P2)を鋳造方向に振って試験を行った。図9に結果を示す。横軸の張り出し範囲は、メニスカス位置P1から湾曲形状の下端位置P2までの距離である。
 この鋳造試験で、EMSのコア上端はメニスカス位置P1であり、コアの高さ方向の厚み(以下、コア厚ともいう)は200mmであるから、電磁攪拌装置の下端16はメニスカス位置P1から200mmである。張り出しを設けた領域(形成範囲)の下端位置P2が電磁攪拌装置の下端16と同等又はそれより下方であれば、張り出しを設けることによる改善効果が得られた。しかしながら、張り出しの形成範囲が、EMSのコア厚と比較して短い100mmの場合、凝固均一度の改善は不十分であった。一方、張り出しの形成範囲がEMSのコア厚よりも更に長く、かつ、浸漬ノズルの浸漬深さ17である250mmより長い場合、効果は小さくなった。
 従って、鋳型の短辺壁の好ましい構成に、上記した構成(c)も含めた。
 次に、メニスカスでの攪拌流の流速の影響を検討した結果について説明する。
 ここでは、EMSの電流値を変化させ、メニスカスでの溶鋼流速を1m/秒まで振って試験を行った。溶鋼流速は、前述のように、鋳片断面のデンドライト傾角から算出した。その結果、EMSを印加しない条件を含めて、メニスカスでの溶鋼流速が60cm/秒以下までは、上記した条件で凝固均一化の改善効果が得られたが、60cm/秒を超えると、鋳型の内面形状の変更のみでは、凝固の均一化が図れなかった。
 溶鋼流速の最低値については、20cm/秒以上の溶鋼流速が付与されていること、さらに好ましくは30cm/秒程度の溶鋼流速が付与されていることで凝固均一化が図れた。
 なお、メニスカスの流速が60cm/秒のとき、メニスカスでのコーナー部の盛り上がり高さは、短辺壁側の厚み中央部と比較して30mmの差があった。そのため、本発明の鋼の連続鋳造用設備の適用範囲は、メニスカスの流速が60cm/秒以下(特には、下限が10cm/秒)で、短辺壁側の盛り上がり高さが30mm以下の場合といえる。
 また、湾曲形状の張り出しを形成する短辺壁のテーパー値の設定方法について、以下、説明する。
 短辺壁は、一段のテーパーを前提としている。そのため、張り出しを形成しない場合のコーナー部を基準にして、それぞれの鋳造条件において選択されるテーパー率に従い、短辺壁の設定角度を変え、鋳型の上端幅と下端幅を設定すればよい。その際、メニスカスの位置P1から、EMSのコア厚以上であって浸漬ノズルの浸漬深さよりも上方の位置P2までの範囲となるように、張り出しの形成範囲を設定すればよく、更には、メニスカスの位置P1での張り出し量δ(mm)と鋳片の厚みT(mm)との比δ/Tを、0.01以上0.1以下(即ち、前記した(2)式で調整することが好ましい。
 仮に、δ/Tが0.1であったとしても、メニスカスにおける短辺壁の内面が形成する円弧の長さと、下部の平坦部における長さとの比をとると、凝固収縮量よりも明らかに小さい。そのため、鋳片は、張り出しの領域で拘束されることはなく、凝固均一化を図ることができる。
 なお、浸漬ノズルの浸漬深さは、EMSのコア下端から50~150mmが普通であるので、短辺張り出しの下端位置はEMSのコア下端位置乃至コア下端から最大150mmまでの位置としておくことが好ましい。
 また、鋳型の大きさは、鋳造する鋳片(スラブ)の大きさに応じて種々変更できるが、例えば、厚み(対向する長辺壁の間隔)が100~150mm程度、幅(対向する短辺壁の間隔)が1000~2000mm程度のスラブを鋳造可能な大きさである。
 また、本実施形態に係る連続鋳造用設備により、凝固の均一化が図れることから、鋳造速度の高速化が可能となるため、本実施形態に係る連続鋳造用設備を、鋳造速度が3m/分以上の鋳造に適用することが好ましい。なお、上限値については規定していないが、現状可能な上限値としては、例えば、6m/分程度である。
 以上述べたように、湯面近傍で旋回流を形成するように攪拌流を付与した条件、即ち、湯面がコーナーで盛り上がり、厚み中央で凹む条件であっても、本実施形態に係る連続鋳造用設備の鋳型を用いることで、短辺厚み中央部の凝固遅れを防止することができ、均一に凝固が進行する。
 更に、攪拌流の影響がなくなった下方では、通常のテーパーにより、厚み方向一様に絞りこむことで、凝固の均一化が図れる。その結果、短辺壁の形状を直線状とすることができ、短辺厚み中央部の凝固遅れを解消することができる。
 加えて、短辺壁の内面形状を曲線状とする場合、コーナーに旋回流が衝突する際の圧力が緩和される効果も得ることができる。そのため、短辺壁側の湯面形状の凹凸を低減する効果も有する。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
 転炉での精錬と還流式真空脱ガス装置での処理、並びに合金添加により、0.1%C鋼(亜包晶鋼)を溶製した。そして、この溶鋼を、幅1800mm、厚み150mmのスラブに鋳造した。
 まず、メニスカス部で攪拌流を形成するための条件について検討した。そのために、長辺壁の背面側にEMSを搭載した連続鋳造用設備を用いて、EMSによってメニスカス近傍で水平断面内で旋回するように攪拌流を形成する条件で行った。鋳型銅板材質はES40A、鋳型銅板厚みDCuは25mmとし、電磁攪拌装置に通電する交流磁場の周波数fを変化させた条件で通電し、鋳造した。溶鋼の電気伝導度σ=6.5×105S/m、銅板電気伝導度σCu=1.9×107S/m、真空の透磁率μ=4π×10-7N/A2である。鋳片のC断面凝固組織を採取し、幅中央部のデンドライト傾角を測定し、その傾角から非特許文献2に記載の岡野らの式を用いて攪拌流速を推定した。(1)-a式の右辺を鋳型表皮深さ、(1)-b式の左辺を電磁力の表皮深さとした。その結果を表1に示した。
 鋳片の長辺幅方向中央の縦割れの評価については、鋳片表面を目視にて観察し、鋳造方向にほぼ平行なへこみを伴った割れ、あるいはへこみがないか調査した。さらに、へこみが観察された部位については、サンプルをきりだし、研磨後、ピクリン酸にて凝固組織を現出し、表皮下にP等の偏析を伴った割れがないか調査した。表皮下にP等の偏析を伴った割れが見出されたときは縦割れ「あり」と評価し、そうでないときは「なし」と評価した。その結果、表1の発明例A2~発明例A5については、長辺幅方向中央の縦割れが観察されなかった。一方、比較例A1、比較例A6については、EMSを印加しない条件よりも改善されたものの詳細に観察すると長辺幅方向中央の縦割れがみられた。
 表1の発明例A2~発明例A5のように、鋳型表皮深さが鋳型銅板厚みよりも大きく((1)-a式を満足)、かつ、電磁力の表皮深さが鋳片厚みよりも小さくするような周波数とする((1)-b式を満足)ことで、溶鋼流速は20cm/秒以上となり、湯面レベルにおいて効率よく旋回流が形成していることがわかった。そのため、溶鋼流速の最低値については、表1の比較例A1、比較例A6については、鋳片の長辺幅方向中央の縦割れが観察されたこと、20cm/秒以上の溶鋼流速が付与できた発明例A2~発明例A5の条件では割れが観察されなかったことから、20cm/秒以上の流速が付与されていること、さらに好ましくは30cm/秒程度の溶鋼流速が付与されていることで長辺面において凝固均一化が図れた。
Figure JPOXMLDOC01-appb-T000001
 
 次に、前述した条件において、短辺壁の形状(湾曲形状)が異なる鋳型を幾つか準備し、同じく長辺壁の背面側にEMSを搭載した連続鋳造用設備を用いて、EMSによってメニスカス近傍で水平断面内において攪拌流速が30cm/秒程度で旋回するように攪拌流を形成する条件で行った。なお、EMSの設置は、コアの上端がメニスカス位置P1と一致するように行った。また、EMSのコア厚は200mmであり、電磁攪拌装置の下端16はメニスカス位置P1から200mmである。鋳型内の湯面の位置がメニスカス位置P1と一致するように鋳造を行った。そして、浸漬ノズルの浸漬深さ17(メニスカス位置P1からの距離)は250mmであり、鋳造速度は4m/分であった。
 また、短辺壁のテーパーは、1.4%/mとした。ここで短辺壁のテーパーは、図10に示すように、短辺壁を平面視した際に、両側の短辺壁の内面(鋳片接触面)(凹部があるときは凹部の最も深い部分)の間の距離について、鋳型上端における距離Aと鋳型下端における距離Bの差を、短辺壁の鉛直方向(鋳造方向)の長さLで除して%で示した値である。即ち、テーパー(%)=(A-B)/L×100である。
 上記条件で鋳造したスラブについて、鋳片のC断面の凝固組織を調査した。
 前記した図6と同様、凝固組織をエッチングにて現出し観察されるホワイトバンド21(図5参照)について、鋳片の長辺23側でコーナー部26から幅中央に向かった領域において、表面からホワイトバンドまでの厚みが、略一定となった部位の厚みAと、短辺厚み中央の最も薄い部位の厚みBとの比、即ちB/Aを、凝固均一度とした。なお、凝固均一度については、0.7以上を良好として、評価した。
 更に、凝固遅れ部に表皮下割れが見られるか否かを調査した。表皮下割れの評価方法は前述のとおりである。
 併せて、鋳型抵抗についても調べた。なお、鋳型抵抗については、オシレーション電流を測定し、スティッキング性ブレークアウトが生じた際のオシレーション電流値よりも小さい場合を「小」とし、スティッキング性ブレークアウトが生じた際のオシレーション電流値以上の場合を「大」として、評価した。
 表2に、試験条件と結果を示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示す発明例2~4にはそれぞれ、短辺壁の湾曲形状の形成範囲の下端をメニスカスの位置P1から200mm(=電磁攪拌装置の下端と同じ位置)に統一して、δ/Tを好適範囲(0.01~0.1)内の0.012、0.05、0.093とした場合の結果を示しているが、鋳型抵抗が増大することなく、凝固均一度がいずれも0.7以上の値が得られ、大幅に改善した。また、凝固均一度が改善したため、凝固遅れ部も見られず、表皮下割れもみられなかった。一方、発明例1は、張り出しを設けない条件であるが、凝固均一度は発明例2~4に対比して低値を示した。しかし、後述する電磁攪拌を行わなかった比較例1での凝固均一度に比べれば、大幅に改善されていて、表皮下割れは散見されたものの製品化に支障が生じるレベルでは無かった。また、発明例1~4のいずれも鋳片の長辺面中央には縦割れ発生が見られなかった。
 また、発明例5は、張り出しを設けたものの、δ/Tを好適範囲の上限値超である0.12とした条件である。この場合、凝固均一度は比較的良好であったものの、抵抗値が局部的に大きくなり、一部拘束されたような表面性状があった。また、発明例6は、張り出しを設けたものの、δ/Tを好適範囲の下限未満である0.007とした条件である。この場合、凝固均一度は0.66と、湾曲なしの発明例1よりは良好であったが小さな表皮下割れが散在していた。
 そして、発明例7については、張り出しを設けて、δ/Tを好適範囲内の0.03としたものの、張り出しの形成範囲が、EMSのコア厚と比較して短かったため、凝固均一度が発明例2~4に対比して低値であった。発明例8は、張り出しを設けて、δ/Tを好適範囲内の0.03とし、張り出しの形成範囲を、EMSのコア厚以上、かつ、浸漬ノズルの浸漬深さ以上の0.4mとした結果である。この場合、凝固均一度の改善効果が発明例2~4に対比して小さかった。また、凝固遅れ部による表皮下割れも観察された。発明例9は、張り出しを設けて、δ/Tを好適範囲内の0.04としたものの、張り出しの形成範囲を浸漬ノズルの浸漬深さ以上の0.5mとしたため、凝固均一度の改善効果が発明例2~4に対比して小さかった。また、凝固遅れ部による表皮下割れも観察された。発明例10は、張り出しを設け、δ/Tを好適範囲内の0.013としたものの、張り出しの形成範囲を浸漬ノズルの浸漬深さ以上の0.4mとしたため、凝固均一度の改善効果が発明例2~4に対比して小さかった。また、凝固遅れ部による表皮下割れも観察された。発明例7~10のいずれも鋳片の長辺面中央には縦割れ発生が見られなかった。
 これに対して比較例1は、鋳型内で電磁攪拌を実施しておらず、短辺壁の湾曲形状も有していない。凝固均一度は0.2しかなく、鋳造中断(ブレークアウト)の危険があるレベルであった。また、旋回流が形成されていないので、鋳片の長辺の幅中央に大きな縦割れが発生した。
 以上のことから、本発明の鋼の連続鋳造用設備を用いることで、鋳型内の溶鋼のメニスカス近傍に水平断面内に旋回流を付与することができ、さらに好適条件では、旋回流を付与するにあたり、鋳型の短辺壁側の凝固を均一化できることを確認できた。
 以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の鋼の連続鋳造用設備を構成する場合も本発明の権利範囲に含まれる。
 前記実施の形態においては、張り出し量δの最大値が、短辺壁の厚み中央部となるように設定したが、例えば、鋳型の大きさや構成に応じて、厚み中央部からコーナー側へずらすこともできる。
 また、湾曲形状の張り出しを、短辺壁の上端から、EMSの下端以下であって浸漬ノズルの浸漬深さよりも上方の位置P2までの範囲に形成しているが、少なくともメニスカスの位置P1から鋳造方向に形成していれば、特に限定されるものではない。
 本発明によれば、鋳型内の湯面近傍で旋回流を付与しつつ凝固の均一化が図ることができる。
 1 電磁攪拌装置
 2 浸漬ノズル
 3 吐出孔
 4 ノズル吐出流
 5 鋳造空間
 6 溶鋼
 7 溶鋼表面
 8 推力
 9 旋回流
10、11 短辺壁
12 鋳型
14 凹部
15 長辺壁
16 電磁攪拌装置の下端
17 浸漬ノズルの浸漬深さ
18 パウダー層
19 凝固シェル
20 凝固遅れ部
21 ホワイトバンド
22 鋳片
23 長辺
24 短辺
25 表面
26 コーナー部
27 厚み中央
P1 メニスカス位置
P2 湾曲形状下端位置
 δ 張り出し量
 T 鋳型内の鋳片厚み

Claims (3)

  1.  鋳型内の鋳片厚みが150mm以下、鋳造幅が2m以下の鋼の薄スラブ鋳造に用いる連続鋳造用設備であって、
     それぞれ銅板から構成されると共に対向配置された、一対の長辺壁と一対の短辺壁とを備えた溶鋼鋳造用の鋳型と、
     前記鋳型内に溶鋼を供給する浸漬ノズルと、
     前記一対の長辺壁の裏面側に前記長辺壁に沿って配置され、前記鋳型内の溶鋼表面で旋回流を付与することのできる電磁攪拌装置と、
    を有し、
     下記(1)-a式、(1)-b式を満足するように、前記長辺壁の前記銅板の厚みDCu(mm)、前記鋳片の厚みT(mm)、前記電磁攪拌装置の周波数f(Hz)、前記溶鋼の電気伝導度σ(S/m)、及び、前記長辺壁の前記銅板の電気伝導度σCu(S/m)が調整されることを特徴とする鋼の連続鋳造用設備。
      DCu<√(2/σCuωμ)    (1)-a
      √(1/2σωμ)<T     (1)-b
    ここで、ω=2πf:角速度(rad/sec)、μ=4π×10-7:真空の透磁率(N/A2)である。
  2.  前記短辺壁の内面の平断面形状が、前記鋳型の上端から100mm下方の位置であるメニスカス位置で前記鋳型の外側に張り出す湾曲形状であり、前記湾曲形状の張り出し量が鋳造方向の下方に向けて順次減少し、前記鋳型内の下部で平坦形状であり、
     前記湾曲形状の形成範囲が、前記メニスカス位置から、前記電磁攪拌装置の下端と同等またはそれよりも下方であって前記浸漬ノズルの浸漬深さよりも上方の位置までの範囲であり、
     前記湾曲形状の前記メニスカス位置での張り出し量δ(mm)と、前記鋳型で鋳造する前記鋳片の厚みT(mm)とが、下記(2)式の関係を満足する
    ことを特徴とする請求項1に記載の鋼の連続鋳造用設備。
      0.01≦δ/T≦0.1     (2)
  3.  請求項1又は2に記載の鋼の連続鋳造用設備を用いた鋼の連続鋳造方法であって、
    下記(1)-a式、(1)-b式を満足するように、前記銅板の厚みDCu(mm)、前記鋳片の厚みT(mm)、前記電磁攪拌装置の周波数f(Hz)、前記溶鋼の電気伝導度σ(S/m)、及び、前記銅板の電気伝導度σCu(S/m)を調整する
    ことを特徴とする鋼の連続鋳造方法。
      DCu<√(2/σCuωμ)    (1)-a
      √(1/2σωμ)<T     (1)-b
    ここで、ω=2πf:角速度(rad/sec)、μ:真空の透磁率(N/A2)である。
PCT/JP2019/022730 2018-06-07 2019-06-07 鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法 WO2019235615A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/734,351 US11400513B2 (en) 2018-06-07 2019-06-07 Continuous casting facility and continuous casting method used for thin slab casting for steel
BR112020023468A BR112020023468B8 (pt) 2018-06-07 2019-06-07 Instalação de lingotamento contínuo e método de lingotamento contínuo usado para lingotamento de placa fina para aço
JP2020523204A JP7040613B2 (ja) 2018-06-07 2019-06-07 鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法
CN201980037801.6A CN112236249B (zh) 2018-06-07 2019-06-07 钢的薄板坯铸造中使用的连续铸造用设备及连续铸造方法
KR1020207034686A KR102448621B1 (ko) 2018-06-07 2019-06-07 강의 박형 슬래브 주조에 사용하는 연속 주조용 설비 및 연속 주조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109469 2018-06-07
JP2018-109469 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235615A1 true WO2019235615A1 (ja) 2019-12-12

Family

ID=68770404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022730 WO2019235615A1 (ja) 2018-06-07 2019-06-07 鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法

Country Status (7)

Country Link
US (1) US11400513B2 (ja)
JP (1) JP7040613B2 (ja)
KR (1) KR102448621B1 (ja)
CN (1) CN112236249B (ja)
BR (1) BR112020023468B8 (ja)
TW (1) TW202003134A (ja)
WO (1) WO2019235615A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115194107A (zh) * 2022-07-13 2022-10-18 沈阳工程学院 控制金属液流动的多段位独立可调复合磁场装置及方法
CN115194113A (zh) * 2022-06-21 2022-10-18 首钢集团有限公司 一种板坯结晶器的调整方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080792A (ja) * 2013-10-22 2015-04-27 新日鐵住金株式会社 鋼の連続鋳造方法
JP2018069324A (ja) * 2016-11-04 2018-05-10 新日鐵住金株式会社 鋼の連続鋳造用鋳型装置及びそれを用いた表層改質鋳片の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139317B2 (ja) * 1995-01-06 2001-02-26 日本鋼管株式会社 電磁力を応用した連続鋳造用鋳型及び連続鋳造方法
EP0776714B1 (en) * 1995-06-21 2002-09-11 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces
JP3310884B2 (ja) * 1996-09-30 2002-08-05 株式会社神戸製鋼所 鋼の電磁界鋳造方法
JP3583954B2 (ja) 1999-08-12 2004-11-04 新日本製鐵株式会社 連続鋳造方法
JP3360657B2 (ja) 1999-08-16 2002-12-24 住友金属工業株式会社 広幅薄鋳片の連続鋳造方法
SE523881C2 (sv) * 2001-09-27 2004-05-25 Abb Ab Anordning samt förfarande för kontinuerlig gjutning
JP4669367B2 (ja) * 2005-09-30 2011-04-13 新日本製鐵株式会社 溶鋼流動制御装置
JP5076330B2 (ja) * 2006-02-20 2012-11-21 Jfeスチール株式会社 鋼の連続鋳造方法
CN201313158Y (zh) * 2008-08-07 2009-09-23 东北大学 一种电磁制动薄板坯漏斗形结晶器连铸设备
JP4505530B2 (ja) * 2008-11-04 2010-07-21 新日本製鐵株式会社 鋼の連続鋳造用装置
JP5321528B2 (ja) * 2010-04-22 2013-10-23 新日鐵住金株式会社 鋼の連続鋳造用装置
CA2844450C (en) * 2011-11-09 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Continuous casting apparatus for steel
IN2014DN09141A (ja) 2012-06-18 2015-05-22 Jfe Steel Corp
JP6331757B2 (ja) * 2014-06-25 2018-05-30 新日鐵住金株式会社 鋼の連続鋳造用設備

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080792A (ja) * 2013-10-22 2015-04-27 新日鐵住金株式会社 鋼の連続鋳造方法
JP2018069324A (ja) * 2016-11-04 2018-05-10 新日鐵住金株式会社 鋼の連続鋳造用鋳型装置及びそれを用いた表層改質鋳片の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115194113A (zh) * 2022-06-21 2022-10-18 首钢集团有限公司 一种板坯结晶器的调整方法
CN115194113B (zh) * 2022-06-21 2023-10-13 首钢集团有限公司 一种板坯结晶器的调整方法
CN115194107A (zh) * 2022-07-13 2022-10-18 沈阳工程学院 控制金属液流动的多段位独立可调复合磁场装置及方法
CN115194107B (zh) * 2022-07-13 2023-05-16 沈阳工程学院 控制金属液流动的多段位独立可调复合磁场装置及方法

Also Published As

Publication number Publication date
US20210220907A1 (en) 2021-07-22
JP7040613B2 (ja) 2022-03-23
KR20210005234A (ko) 2021-01-13
US11400513B2 (en) 2022-08-02
JPWO2019235615A1 (ja) 2021-05-13
BR112020023468B1 (pt) 2023-09-05
KR102448621B1 (ko) 2022-09-28
CN112236249B (zh) 2022-08-02
CN112236249A (zh) 2021-01-15
BR112020023468B8 (pt) 2023-10-10
BR112020023468A2 (pt) 2021-03-30
TW202003134A (zh) 2020-01-16

Similar Documents

Publication Publication Date Title
EP2500120A1 (en) Method of continuous casting of steel
US10512970B2 (en) Method for continuously casting steel
WO2019235615A1 (ja) 鋼の薄スラブ鋳造に用いる連続鋳造用設備および連続鋳造方法
JP5321528B2 (ja) 鋼の連続鋳造用装置
RU2520891C2 (ru) Способ непрерывной разливки стали и способ производства стального листа
JP6164040B2 (ja) 鋼の連続鋳造方法
JP2015027687A (ja) 連鋳鋳片の製造方法
CN108025354B (zh) 板坯的连续铸造方法
TWI690377B (zh) 鋼之連續鑄造方法
KR20210005238A (ko) 박슬래브 주조에 있어서의 주형 내 유동 제어 장치 및 주형 내 유동 제어 방법
JP6331757B2 (ja) 鋼の連続鋳造用設備
JP5772767B2 (ja) 鋼の連続鋳造方法
JP7332885B2 (ja) 溶融金属の連続鋳造方法及び連続鋳造装置
JP2020078814A (ja) 連続鋳造方法
JP7247777B2 (ja) 鋼の連続鋳造方法
JP6484856B2 (ja) 連続鋳造用鋳型
JP4569320B2 (ja) 極低炭素鋼スラブ鋳片の連続鋳造方法
CN116669880A (zh) 钢的连铸方法
JP2019177409A (ja) 鋳塊、その製造方法および鋼板の製造方法
JPH08309495A (ja) 表面性状の優れた鋳片の製造方法及び装置
JP2014233751A (ja) 鋼の連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523204

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023468

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207034686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020023468

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201117

122 Ep: pct application non-entry in european phase

Ref document number: 19814699

Country of ref document: EP

Kind code of ref document: A1