KR20200004295A - 유기 광전변환 소자 - Google Patents

유기 광전변환 소자 Download PDF

Info

Publication number
KR20200004295A
KR20200004295A KR1020197031447A KR20197031447A KR20200004295A KR 20200004295 A KR20200004295 A KR 20200004295A KR 1020197031447 A KR1020197031447 A KR 1020197031447A KR 20197031447 A KR20197031447 A KR 20197031447A KR 20200004295 A KR20200004295 A KR 20200004295A
Authority
KR
South Korea
Prior art keywords
group
formula
photoelectric conversion
conversion layer
type molecule
Prior art date
Application number
KR1020197031447A
Other languages
English (en)
Other versions
KR102531207B1 (ko
Inventor
요스케 사이토
이치로 타케무라
오사무 에노키
유키 네기시
유타 하세가와
히데아키 모기
야스하루 우지이에
Original Assignee
소니 주식회사
소니 세미컨덕터 솔루션즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 주식회사, 소니 세미컨덕터 솔루션즈 가부시키가이샤 filed Critical 소니 주식회사
Priority to KR1020237014753A priority Critical patent/KR20230069246A/ko
Publication of KR20200004295A publication Critical patent/KR20200004295A/ko
Application granted granted Critical
Publication of KR102531207B1 publication Critical patent/KR102531207B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • H01L27/307
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L51/0046
    • H01L51/0074
    • H01L51/008
    • H01L51/42
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

유기 재료를 사용한 광전변환 소자에서 양자 효율과 응답 속도를 향상시킨다. 유기 광전변환 소자는, 식 1로 표시하는 p형 분자를 광전변환층에 포함한다. 식 1에서, A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R1 내지 R4의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, R1 내지 R4의 나머지는 수소 원자를 나타내고, R5 내지 R8의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, R5 내지 R8의 나머지는 수소 원자를 나타낸다.

Description

유기 광전변환 소자
본 기술은, 유기 광전변환 소자에 관한 것이다. 상세하게는 유기 재료를 사용한 유기 광전변환 소자에 관한 것이다.
종래로부터, 고체 촬상 소자나 광센서 등에서, 광을 검출하기 위해 광전변환 소자가 사용되고 있다. 이 고체 촬상 소자나 광센서의 감도를 높게 하려면, 광전변환 소자의 양자 효율을 향상시킬 필요가 있다. 여기서, 양자 효율은, 광자를 전자로 변환하는 효율이다. 또한, 고체 촬상 소자나 광센서의 동작 속도를 높게 하려면, 광전변환 소자의 응답 속도를 향상시킬 필요가 있다. 여기서, 응답 속도란, 광조사의 상태에서 관측되는 명전류치가, 광조사를 멈추고 나서, 하강하는 속도인 것이다. 양자 효율을 향상시키려면, 벌크 헤테로 구조를 소자에 갖게 하는 방법과, 캐리어 이동도를 높게 하는 방법이 유효하고, 한편, 응답 속도를 향상시키려면, 캐리어 이동도를 높게 하는 방법이 유효하다. 예를 들면, 2종류의 유기 재료를 혼합한 벌크 헤테로 구조의 광전변환막이 제안되어 있다(예를 들면, 특허 문헌 1 참조.).
특허 문헌 1 : 일본 특개2002-076391호 공보
그렇지만, 상술한 종래 기술에서는, 벌크 헤테로 구조에서 결정화가 저해되어 어모퍼스화 또는 고용화되어 있기 때문에, 광전변환막의 캐리어 이동도를 충분히 높게할 수가 없다. 이 때문에, 양자 효율과 응답 속도의 향상이 곤란하다는 문제가 있다.
본 기술은 이와 같은 상황을 감안하여 생겨진 것이고, 유기 재료를 사용한 광전변환 소자에서 양자 효율과 응답 속도를 향상시키는 것을 목적으로 한다.
본 기술은, 상술한 문제점을 해소하기 위해 이루어진 것으로서, 그 제1의 측면은 식 1로 표시하는 p형 분자를 광전변환층에 포함하고,
[화학식 1]
Figure pct00001
상기 식 1에서, A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R1 내지 R4의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R1 내지 R4의 나머지는 수소 원자를 나타내고, R5 내지 R8의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R5 내지 R8의 나머지는 수소 원자를 나타내는 유기 광전변환 소자이다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, n형 분자를 또한 포함하고, 상기 n형 분자는, 풀러렌 또는 풀러렌 유도체를 포함하여도 좋다. 이에 의해, 벌크 헤테로 구조가 형성되어 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층에 대한 상기 n형 분자의 체적분률은, 10 내지 50퍼센트라도 좋다. 이에 의해, 벌크 헤테로 구조가 형성되어 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서 상기 n형 분자는, 식 2 및 식 3 중 어느 하나로 표시하는 상기 풀러렌 유도체를 포함하고,
[화학식 2]
Figure pct00002
[화학식 3]
Figure pct00003
상기 식 2 및 식 3에서, R의 각각은 독립하여 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타내고, n 및 m은 정수라도 좋다. 이에 의해, 벌크 헤테로 구조가 형성되어 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, 색재(色材)를 또한 포함하고, 가시광의 파장역에서의 상기 색재의 극대 흡수계수는, 50000cm-1 보다 작지 않은 것이도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층에 대한 상기 색재의 체적분률은, 20 내지 80퍼센트라도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 색재는, 서브프탈로시아닌 유도체라도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 색재는, 식 4로 표시하는 상기 서브프탈로시아닌 유도체를 포함하고,
[화학식 4]
Figure pct00004
상기 식 4에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택되고, M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기라도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층에 대한 상기 p형 분자의 체적분률은, 10 내지 70퍼센트라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 1로 표시하는 상기 화합물 중 식 9로 표시하는 화합물을 상기 p형 분자로서 포함하여도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
[화학식 5]
Figure pct00005
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 9로 표시하는 상기 화합물 중 식 10으로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 6]
Figure pct00006
상기 식 10에서, R2-1 및 R6-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 10으로 표시하는 상기 화합물 중 식 11로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 7]
Figure pct00007
식 11에서, R2-2 및 R6-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 10으로 표시하는 상기 화합물 중 식 12로 표시하는 화합물을 상기 p형 분자로서 포함하여도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
[화학식 8]
Figure pct00008
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 12로 표시하는 상기 화합물 중 식 13으로 표시하는 화합물을 상기 p형 분자로서 포함하여도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
[화학식 9]
Figure pct00009
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 1로 표시하는 상기 화합물 중 식 15로 표시하는 화합물을 상기 p형 분자로서 포함하여도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
[화학식 10]
Figure pct00010
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 15로 표시하는 상기 화합물 중 식 16으로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 11]
Figure pct00011
상기 식 16에서, R3-1 및 R7-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 16으로 표시하는 상기 화합물 중 식 17로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 12]
Figure pct00012
식 17에서, R3-2 및 R7-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 16으로 표시하는 상기 화합물 중 식 18로 표시하는 화합물을 상기 p형 분자로서 포함하여도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
[화학식 13]
Figure pct00013
또한, 이 제1의 측면에서, 상기 광전변환층은, 식 18로 표시하는 상기 화합물 중 식 19로 표시하는 화합물을 상기 p형 분자로서 포함하여도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
[화학식 14]
Figure pct00014
또한, 본 기술의 제2의 측면은, 식 20으로 표시하는 p형 분자를 광전변환층에 포함하고,
[화학식 15]
Figure pct00015
상기 식 20에서 A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R21 내지 R25의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R21 내지 R25의 나머지는 수소 원자를 나타내고, R26 내지 R30의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R26 내지 R30의 나머지는 수소 원자를 나타내는 것이라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 광전변환층은, n형 분자를 또한 포함하고, 상기 n형 분자는, 풀러렌 또는 풀러렌 유도체를 포함하여도 좋다. 이에 의해, 벌크 헤테로 구조가 형성되어 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 광전변환층에 대한 상기 n형 분자의 체적분률은, 10 내지 50퍼센트라도 좋다. 이에 의해, 벌크 헤테로 구조가 형성되어 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 n형 분자는, 식 2 및 식 3 중 어느 하나로 표시하는 상기 풀러렌 유도체를 포함하고,
[화학식 16]
Figure pct00016
[화학식 17]
Figure pct00017
상기 식 2 및 식 3에서, R의 각각은 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타내고, n 및 m은 정수라도 좋다. 이에 의해, 벌크 헤테로 구조가 형성되어 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 광전변환층은, 색재를 또한 포함하고, 가시광의 파장역에서의 상기 색재의 극대 흡수계수는, 50000cm-1 보다 작지 않은 것이도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 광전변환층에 대한 상기 색재의 체적분률은, 20 내지 80퍼센트라도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 색재는, 서브프탈로시아닌 유도체라도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 색재는, 식 4로 표시하는 상기 서브프탈로시아닌 유도체를 포함하고,
[화학식 18]
Figure pct00018
상기 식 4에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택되고, M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기라도 좋다. 이에 의해, 유기 광전변환 소자의 가시광의 감도가 향상한다는 작용을 가져온다.
또한, 이 제2의 측면에서, 상기 광전변환층에 대한 상기 p형 분자의 체적분률은, 10 내지 70퍼센트라도 좋다. 이에 의해, 유기 광전변환 소자의 양자 효율과 응답 속도가 향상한다는 작용을 가져온다.
본 기술에 의하면, 유기 재료를 사용한 광전변환 소자에서 양자 효율과 응답 속도를 향상시킬 수 있다는 우수한 효과를 이룰 수 있다. 또한, 여기에 기재된 효과는 반드시 한정되는 것이 아니고, 본 개시 중에 기재된 어느 하나의 효과라도 좋다.
도 1은 본 기술의 제1의 실시의 형태에서의 고체 촬상 소자의 한 구성례를 도시하는 블록도.
도 2는 본 기술의 제1의 실시의 형태에서의 화소의 한 구성례를 도시하는 회로도.
도 3은 본 기술의 제1의 실시의 형태에서의 유기 광전변환 소자의 한 구성례를 도시하는 도면.
도 4는 본 기술의 제1의 실시의 형태에서의 정공 이동도 평가 소자의 한 구성례를 도시하는 도면.
도 5는 본 기술의 제1의 실시의 형태에서의 실시례 1의 p형 분자 단층막의 X선 회절 측정의 결과의 한 예를 도시하는 그래프.
도 6은 본 기술의 제1의 실시의 형태에서의 실시례 1의 광전변환층의 X선 회절 측정의 결과의 한 예를 도시하는 그래프.
도 7은 본 기술의 제1의 실시의 형태에서의 실시례 2의 p형 분자 단층막의 X선 회절 측정의 결과의 한 예를 도시하는 그래프.
도 8은 본 기술의 제1의 실시의 형태에서의 실시례 2의 광전변환층의 X선 회절 측정의 결과의 한 예를 도시하는 그래프.
도 9는 본 기술의 제2의 실시의 형태에서의 p형 분자 단층막의 X선 회절 결과의 한 예를 도시하는 그래프.
도 10은 본 기술의 제2의 실시의 형태에서의 광전변환층의 X선 회절 측정의 결과의 한 예를 도시하는 그래프.
이하, 본 기술을 실시하기 위한 형태(이하, 실시의 형태라고 칭하다)에 관해 설명한다. 설명은 이하의 순서에 의해 행한다.
1. 제1의 실시의 형태(식 1로 표시하는 p형 분자를 광전변환층에 포함하는 예)
2. 제2의 실시의 형태(식 9로 표시하는 p형 분자를 광전변환층에 포함하는 예)
<1.제1의 실시의 형태>
[고체 촬상 소자의 구성례]
도 1은, 본 기술의 제1의 실시의 형태에서의 고체 촬상 소자(200)의 한 구성례를 도시하는 블록도이다. 이 고체 촬상 소자(200)는, 촬상 기능을 갖는 전자 기기(퍼스널 컴퓨터나 스마트 폰, 또는, 디지털 카메라 등)에 마련된다. 고체 촬상 소자(200)는, 행 주사 회로(210), 화소 어레이부(220), DAC(Digital to Analog Converter)(250), 신호 처리부(260), 타이밍 제어부(270) 및 열 주사 회로(280)를 구비한다.
또한, 화소 어레이부(220)에는, 2차원 격자형상으로 복수의 화소(230)가 마련된다.
행 주사 회로(210)는, 화소(230)를 구동하여 화소 신호를 출력시키는 것이다. 타이밍 제어부(270)는, 행 주사 회로(210), 신호 처리부(260) 및열 주사 회로(280)의 각각이 동작하는 타이밍을 제어하는 것이다. DAC(250)는, DA(Digital to Analog) 변환에 의해, 램프 신호를 생성하여 신호 처리부(260)에 공급하는 것이다.
신호 처리부(260)는, 화소 신호에 대해 AD(Analog to Digital) 변환 등의 신호 처리를 행하여 화소 데이터를 생성하는 것이다. 열 주사 회로(280)는, 신호 처리부(260)를 제어하여 화소 데이터를 출력시키는 것이다.
[화소의 구성례]
도 2는, 본 기술의 제1의 실시의 형태에서의 화소(230)의 한 구성례를 도시하는 회로도이다. 이 화소(230)는, 유기 광전변환 소자(240), 전송 트랜지스터(231), 부유 확산층(232), 증폭 트랜지스터(233) 및 선택 트랜지스터(234)를 구비한다.
유기 광전변환 소자(240)는, 입사광을 광전변환하여 전하를 생성하는 것이다. 전송 트랜지스터(231)는, 행 주사 회로(210)로부터의 전송 신호에 따라, 유기 광전변환 소자(240)로부터 부유 확산층(232)에 전하를 전송하는 것이다.
부유 확산층(232)은, 전하를 축적하여 축적한 전하량에 응한 전압을 생성하는 것이다. 증폭 트랜지스터(233)는, 부유 확산층(232)의 전압을 증폭하여 아날로그의 화소 신호를 생성하는 것이다. 선택 트랜지스터(234)는, 행 주사 회로(210)로부터의 선택 신호에 따라, 화소 신호를 신호 처리부(260)에 출력하는 것이다.
또한, 유기 광전변환 소자(240)를 고체 촬상 소자(200) 내에 마련하고 있지만, 고체 촬상 소자(200) 이외의 회로나 장치에 마련하여도 좋다. 예를 들면, ToF(Time of Flight) 센서나, 위상차를 검출하기 위한 라인 센서에 유기 광전변환 소자(240)를 마련할 수 있다.
[유기 광전변환 소자의 구성례]
도 3은, 본 기술의 제1의 실시의 형태에서의 유기 광전변환 소자(240)의 한 구성례를 도시하는 도면이다. 이 유기 광전변환 소자(240)는, 상부 전극(241), 전하 수송층(242), 광전변환층(243), 하부 전극(244) 및 기판(245)을 구비한다.
기판(245)의 재료로서, 예를 들면, 석영 유리가 사용된다. 기판(245)부터 상부 전극(241)으로의 방향을 상방향으로 하여, 기판(245)의 상부에 하부 전극(244)이 형성된다. 이 하부 전극(244)의 재료로서, 예를 들면, 산화인듐주석(ITO : Indium Tin Oxide)이 사용된다.
하부 전극(244)의 상부에 광전변환층(243)이 형성된다. 이 광전변환층(243)은, 식 1로 표시하는 p형 분자와, n형 분자와, 색재를 포함한다.
[화학식 19]
Figure pct00019
윗식에서, A는, 산소 원자(O), 유황 원자(S) 및 셀렌 원자(Se)의 어느 하나를 나타낸다. 또한, R1 내지 R4의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 그들의 나머지는 수소 원자(H)를 나타낸다. R5 내지 R8의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 그들의 나머지는 수소 원자(H)를 나타낸다.
여기서, 「치환 또는 미치환」은, 화합물이, 그 화합물 중의 수소 원자 대신에 여러가지의 임의의 치환기를 갖고 있어도 좋고, 그들 치환기를 갖지 않아도 좋은 것을 의미한다.
또한, 식 1에서, 아릴기 또는 헤테로아릴기의 치환 위치는, R2 및 R6의 조합이나, R3 및 R7의 조합이 바람직하다. 이것은, 식 1과 같은 직선형상으로 평면성이 높은 축환 분자는, 헤링본형의 결정 구조를 취함으로써, 2차원성의 캐리어 수송 패스가 형성되는 것이 알려저 있고, 그와 같은 결정 구조를 취하려면, 분자 형상이 직선형인 쪽이 바람직하기 때문이다. R2 및 R6과, R3 및 R7의 어느 하나를 아릴기 또는 헤테로아릴기로 함에 의해, 치환 위치를 직선형상으로 할 수 있다.
마찬가지 이유로, 아릴기가 단일하지 않고, 비페닐기나 터페닐기와 연결하고 있는 경우에서도, 각각의 환(環)이 파라위(位)에서 결합하고 있는 쪽이, 직선성을 갖게 하는 관점에서 바람직하다. 또한, 비티엔일기나 터티엔일기와 같은 5원환이 아릴기 또는 헤테로아릴기에 결합하고 있는 경우는, 티오펜환(環)의 알파위치의 탄소로 결합하고 있는 쪽이 직선성이 높아지기 때문에, 바람직하다. 그 밖에, 아릴기 또는 헤테로아릴기가, 나프탈렌환, 벤조티오펜환이나 인돌과 같은 다축환기를 포함하는 경우도, 직선성이 높도록 연결하고 있는 것이 바람직하다.
또한, R1 내지 R4과, R5 내지 R8과의 치환기는, 동일한 것이 바람직하고, 또한 치환 위치의 대칭성이 2회 대칭성인 것이 바람직하다. 이것은, 결정 구조를 취한 경우, 대칭성이 높은 쪽이, 이방성이 작아지고, 밴드 분산의 폭이 작아지기 때문이다.
여기서, 유기 광전변환 소자에서 높은 양자 효율과 응답 속도를 실현하려면, 벌크 헤테로 구조를 취하는 것과, 각각의 유기 재료의 캐리어 이동도를 높사람 것이 유효하다. 이 벌크 헤테로 구조는, 도너성(性)의 유기 반도체 재료와 억셉터성의 유기 반도체 재료가 나노미터 스케일로 상분리(相分離)하고 있는 것을 의미한다. 이와 같은 벌크 헤테로 구조에 의해, 광조사에 의해 발생한 여기자(勵起子)가 도너/억셉터 계면까지 이동하는 거리를 단축할 수 있고, 여기자가 정공과 전자로 분리하는 효율을 높인다. 또한, 캐리어 이동도의 향상에 의해, 생긴 정공과 전자가 전극까지 재결합하는 일 없이 도달하는 효율을 높일 수 있다. 이 캐리어 이동도를 높게 하려면, 유기 반도체가 결정성인 것이 바람직하다. 왜냐하면, 구조가 규칙적으로 정돈됨으로써, 이웃하는 분자 궤도의 겹침이 많아저서, 호핑의 확률이 증가하고, 캐리어 전송이 고속으로 되기 때문이다. 따라서 양자 효율과 응답 속도가 높은 유기 광전변환 소자를 실현하려면, 벌크 헤테로 구조에서, 나노미터 스케일로 상분리하면서, 결정화에 의해 높은 캐리어 이동도를 나타내는 재료가 요구된다. 식 1의 화합물은, 이 조건을 충족시키는 p형 재료이다.
또한, n형 분자는, 예를 들면, 풀러렌 또는 풀러렌 유도체를 1종류 이상 포함한다. 풀러렌 유도체로서, 예를 들면, 식 2 또는 식 3으로 표시하는 화합물이 사용된다.
[화학식 20]
Figure pct00020
[화학식 21]
Figure pct00021
식 2 및 식 3에서, R의 각각은 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타낸다. 또한, n 및 m은 정수이다.
또한, 가시광의 파장역(예를 들면, 400 내지 750나노미터)에서의 색재의 극대 흡수계수는, 50000㎝-1 이상이다. 이 색재로서, 예를 들면, 식 4로 표시하는 서브프탈로시아닌 유도체가 사용된다.
[화학식 22]
Figure pct00022
윗식에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택된다. M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기이다. 이 아니온성 기로서는, 할로겐 원자, 시아노기, 알콕시기(알킬화합물, 다환 방향족 탄화수소, 함(含)헤테로환 화합물의 알콕시기 등을 포함한), 페녹시기 등을 들 수 있다.
또한, 식 4에서, 인접하는 임의의 R9 내지 R20은, 축합 지방족환 또는 축합 방향환의 일부라도 좋다. 또한, 그 축합 지방족환 또는 축합 방향환은, 탄소 이외의 1 또는 복수의 원자를 포함하고 있어도 좋다.
또한, 광전변환층(243)에 대한 p형 분자의 체적의 비율인 체적분률은, 10 내지 70퍼센트(%)이다. 한편, 광전변환층(243)에 대한 색재의 체적분률은, 20 내지 80퍼센트(%)이고, 광전변환층(243)에 대한 n형 분자의 체적분률은, 10 내지 50퍼센트(%)이다. 이들의 조건을 충족시키도록, 예를 들면, p형 분자, 색재 및 n형 분자의 비율은, 3 : 3 : 2로 설정된다.
광전변환층(243)의 상부에는, 전하 수송층(242)이 형성된다. 이 전하 수송층(242)의 재료로서, 예를 들면, 비스-3, 6-(3, 5-지-4-피리딜 페닐)-2-메틸 피리미딘(이하, 「B4PyMPM」라고 생략한다.)이 사용된다.
전하 수송층(242)의 상부에는, 상부 전극(241)이 형성된다. 이 상부 전극(241)의 재료로서, 투명 도전성의 금속 산화물 반도체인 산화인듐주석(ITO)이나 산화인듐아연(IZO) 등의 전극 재료가 바람직하다. 또는, Al, Al-Si-Cu 합금, Cu, Ag, Au 등의 금속 전극을 사용하여도 좋다.
[유기 광전변환 소자의 제조 방법]
다음에 유기 광전변환 소자(240)의 제조 방법에 관해 개략적으로 설명한다. 우선, 하부 전극(244) 부착의 기판(245)을 UV(Ultra Violet)/오존 처리로 세정하고, 그 기판(245)을 진공증착기에 옮겼다. 그리고, 진공증착기 내가 1×10-5파스칼(㎩) 이하로 감압된 상태에서, 기판 홀더를 회전시키면서, 식 1의 p형 분자와, 식 4의 색재와, n형 분자(풀러렌 등)를 포함하는 광전변환층(243)을 200나노미터(㎚)가 될 때 까지 성막하였다. p형 분자, 색재 및 n형 분자 각각의 성막 레이트는, 예를 들면, 0.75옹스트롬/초, 0.75옹스트롬/초 및 0.50옹스트롬/초이다.
계속해서, B4PyMPM을 0.3옹스트롬/초의 성막 레이트로 5나노미터(㎚)까지 성막하여 전하 수송층(242)을 형성하였다. 최후로, Al-Si-Cu 합금을 100나노미터의 두께로 증착 성막하여, 상부 전극(241)을 형성하였다. 이들의 순서에 의해, 1밀리미터(㎜)사방의 수광 영역을 갖는 유기 광전변환 소자(240)를 작성하였다.
[실시례 1]
다음에 제1의 실시의 형태에서의 실시례 1에 관해 설명한다. 실시례 1에서는 다음의 반응식에 의해, p형 분자가 작성된다.
[화학식 23]
Figure pct00023
식 5에서, 미국 특허출원 공개 제2013/0228752의 명세서의 0145 단락을 참고로 하여, 화합물(b)의 합성이 행하여진다. 상세하게는, 아르곤(Ar) 분위기하에서, 4구 프라스코를 이용하여 5-브로모-2-플루오로아닐린, 4-비페닐붕소산, 탄산칼륨 및 Pd(PPh34)를, 증류수 및 톨루엔의 혼합 용액 중에서 가열 환류하였다. 여기서, 5-브로모-2-플루오로아닐린, 4-비페닐붕소산, 탄산칼륨 및 Pd(PPh34) 각각의 화학 당량은, 「1」, 「1」, 「2.6」 및 「0.0180」이다. 방냉 후, 석출한 고체를 여과하고, 클로로포름에 용해시켜서, 실리카 겔로 여과하였다. 이에 의해, 수율 약 62퍼센트(%)로 백색 고체의 화합물(b)이 얻어졌다.
다음에, 「Qiu D, et al., Synthesis of pinacol arylboronates from aromatic amines : a metal-free transformation, J Org Chem. 2013, 78, 1923-1933」의 「Scheme 4」를 참고로 하여 화합물(c)의 합성이 행하여진다. 상세하게는, 아르곤(Ar) 분위기하에서, 슐렝크관(管)에서, 화합물(b), 비스피나콜라토디보론 및 아질산tert-부틸을 아세토니트릴 중에 80℃에서 2시간에 걸처서 교반하였다. 여기서, 화합물(b), 비스피나콜라토디보론 및 아질산tert-부틸 각각의 화학 당량은, 「1」, 「1.2」 및 「2.4」이다. 그리고, 방냉 후, 석출한 고체를 여별하여, 얻어진 고체를 디클로로메탄으로 용해시켜서, 실리카 겔로 여과하고, 여과액을 농축하였다. 이에 의해, 수율 약 40퍼센트(%)로 살색(肌色) 고체의 화합물(c)이 얻어졌다.
다음에, 「Toyoshi Shimada, et al., Nickel-Catalyzed Asy㎜etric Grignard Cross-Coupling of Dinaphthothiophene Giving Axially Chiral 1,1'-Binaphthyls, J Org Chem. J. Am. Chem. Soc., 2002, 124, 13396-13397」의 「Scheme 3」을 참고로 하여, 화합물(e)의 합성이 행하여진다. 상세하게는, 아르곤(Ar) 분위기하에서, 4구 프라스코를 이용하여 1,5-디메르캅토나프탈렌, 탄산칼륨 및 요오드화메틸을 아세톤 중에서 실온에서 하룻밤에 걸처서 교반하였다. 여기서, 1,5-디메르캅토나프탈렌, 탄산칼륨 및 요오드화메틸 각각의 화학 당량은, 「1」, 「6」 및 「2」이다. 그 후, 반응 현탁액에 증류수를 500밀리리터(㎖) 가하여, 석출한 고체를 여과 및 정제하였다. 이에 의해, 수율 약 79%로 담황색 고체의 화합물(e)이 얻어졌다.
그리고, 브로모화 반응에 의해, 화합물(e)로부터 화합물(f)이 합성된다. 또한, 스즈키·미야우라 커플링 반응에 의해, 화합물(f)로부터 화합물(g)이 합성되고, 환화(環化) 반응에 의해, 화합물(g)로부터 화합물(h)이 합성된다. 이 화합물(h)이 p형 분자로서 사용된다. 식 5의 화합물(h)은, 식 1의 화합물의 한 예이다.
또한, 실시례 1에서, 프론티어카본주식회사제의 나놈파풀SUH를 n형 분자의 풀러렌으로서 사용하였다. 이 풀러렌의 HPLC(High Performance Liquid Chromatography) 순도는 99.9퍼센트(%)보다 높고, 승화 정제품이다.
또한, 색재는, 특원2014-099816(일본 특개2015-233117호 공보)의 제0084 내지 0088 단락을 참조하여, 다음의 반응식에 의해 합성되고, 얻어진 생성물에 대해 승화 정제가 행하여졌다.
[화학식 24]
Figure pct00024
또한, B4PyMPM으로서, 다음의 식으로 표시하는 화합물이 사용된다.
[화학식 25]
Figure pct00025
[비교례 1]
다음에 제1의 실시의 형태에서의 비교례 1에 관해 설명한다. 비교례 1에서는, 퀴나크리돈 유도체의 식 8로 표시되는 부틸퀴나크리돈(이하, 「BQD」로 생략한다.)이, p형 분자로서 사용된다.
[화학식 26]
Figure pct00026
비교례 1에서, p형 분자 이외의 부분의 제조 방법은, 실시례 1과 마찬가지이다.
[광전변환 소자의 특성]
다음에, 실시례 1에 관한 유기 광전변환 소자와, 비교례 1에 관한 유기 광전변환 소자 각각의 특성의 평가 방법에 관해 설명한다. 실시례 1 및 비교례 1 각각의 광전변환 소자 또는 광전변환층에 관해, 외부 양자 효율, 암전류, 응답 속도, 결정성, 및, 정공 이동도가 평가된다. 또한, 실시례 1 및 비교례 1에서 사용한 p형 재료의 단층막에 관한 결정성, 및, 정공 이동도가 평가된다.
암전류의 평가는 다음과 같이 행하였다. 암 상태에서, 유기 광전변환 소자의 전극 사이에 인가하는 바이어스 전압을, 반도체 파라미터 애널라이저를 이용하여 제어하였다. 하부 전극에 대한 상부 전극의 전압은, 「-2.6」볼트(V)로 하고, 암전류치를 측정하였다.
외부 양자 효율의 평가에서, 필터를 통하여 광원으로부터 유기 광전변환 소자에 광을 조사하였다. 그 광의 파장은, 565나노미터(㎚)이고, 광량은, 1.62마이크로와트/평방센티미터(㎼/㎠)이다. 또한, 유기 광전변환 소자의 전극 사이에 인가하는 바이어스 전압을, 반도체 파라미터 애널라이저를 이용하여 제어하였다. 하부 전극에 대한 상부 전극의 전압은, 「-2.6」볼트(V)이다. 이 조건하에서, 명전류치 및 암전류치를 측정하고, 그들의 차분과, 수광량으로부터 외부 양자 효율을 산출하였다.
응답 속도의 평가에서, 반도체 파라미터 애널라이저를 이용하여 광조사시에 관측되는 명전류치가, 광조사를 멈추고 나서 하강하는 속도를 측정함에 의해 행하였다. 구체적으로는, 필터를 통하여 광원으로부터 광전변환 소자에 조사되는 광의 광량을 1.62㎼/㎠로 하고, 전극 사이에 인가되는 바이어스 전압을 -2.6V로 하였다. 이 상태에서 정상 전류를 관측한 후, 광조사를 멈추고 전류가 감쇠하고 가는 속도를 응답성의 지표로 하였다. 이후에는, 실시례 1의 응답 속도를 1로 한 규격화 응답 속도로 비교를 행한다.
결정성의 평가에서, 실시례 1 및 비교례 1에서 사용한 p형 재료의 단층막과, 실시례 1 및 비교례 1에서 사용한 광전변환층에 관해, 실시하였다. 단층막은, 이하와 같이 제작하였다. 유리 기판을 UV/오존 처리로 세정하고, 그 기판을 진공증착기에 옮기고, 그리고, 진공증착기 내가 1×10-5㎩ 이하로 감압된 상태에서, 기판 홀더를 회전시키면서, 식 1의 p형 분자, 또는, 식 8의 p형 분자를 40㎚가 될 때 까지 성막함에 의해, 단층막을 얻었다. 실시례 1 및 비교례 1에서 사용한 광전변환층(243)에 관해, X선 회절 장치에 의해 X선 회절을 행하였다. X선으로서는, 예를 들면, 구리의 K알파선이 사용된다. 그리고, 얻어진 회절 패턴의 해석에 의해, 광전변환층(243)의 결정성의 유무를 판정하였다.
또한, 정공 이동도의 평가에서는, 유기 광전변환 소자(240)와 별도로, 실시례 1 및 비교례 1 각각의 광전변환층에 관해 정공 이동도 평가 소자가 작성된다. 또한, 실시례 1 및 비교례 1에서 사용한 p형 재료의 단층막 각각에 관해 정공 이동도 평가 소자가 작성된다.
도 4는, 본 기술의 제1의 실시의 형태에서의 정공 이동도 평가 소자(310)의 한 구성례를 도시하는 도면이다. 우선, 두께 50나노미터(㎚)의 백금(Pt)의 하부 전극(315)이 마련된 유리의 기판(316)에서, 3산화몰리브덴(MoO3) 등의 산화몰리브덴층(314)을 0.8나노미터(㎚)의 두께로 성막하였다. 계속해서, 유기 광전변환 소자(240)의 작성과 마찬가지로, p형 분자, 색재 및 n형 분자(풀러렌 등)를, 그들 혼합층(광전변환층(313))의 두께가 150나노미터(㎚)가 될 때 까지 성막하였다. 여기서, p형 분자, 색재 및 n형 분자 각각의 성막 레이트는, 예를 들면, 0.75옹스트롬/초, 0.75옹스트롬/초 및 0.50옹스트롬/초이다.
다음에, 3산화몰리브덴(MoO3) 등의 산화몰리브덴층(312)을 3나노미터(㎚)의 두께로 성막한 후, 금(Au)의 상부 전극(311)을 막두께 100나노미터(㎚)로 성막하였다. 이에 의해, 1밀리미터(㎜) 사방의 수광 영역을 갖는 정공 이동도 평가 소자(310)가 얻어졌다. 광전변환층(313)에서, 예를 들면, p형 분자, 색재 및 n형 분자의 비율은, 4 : 4 : 2로 설정된다.
단층막의 정공 이동도 평가 소자는, 광전변환층 대신에, p형 분자만을, 예를 들면, 1.00옹스트롬/초로 막두께는 150나노미터(㎚)가 될 때 까지 성막한 단층막으로 치환한 소자로 구성된다.
정공 이동도의 평가에서, 반도체 파라미터 애널라이저를 이용하여, 전극 사이에 인가되는 바이어스 전압을 0볼트(V)부터 10볼트(V)까지 소인(掃引)하고, 전류-전압 곡선을 취득하였다. 이 곡선을, 공간전하 제한전류 모델에 따라 피팅함에 의해, 정공 이동도와 전압 사이의 관계식을 구하고, 1볼트(V)에서의 정공 이동도의 값을 산출하였다.
도 5, 도 6은, 본 기술의 제1의 실시의 형태에서의 실시례 1의 X선 회절 결과의 한 예를 도시하는 그래프이다. 동 도면에서의 종축은, X선 회절 강도를 나타내고, 횡축은 회절각을 나타낸다. 도 5는, p형 분자 단층막의 X선 회절 측정의 결과, 도 6은 광전변환층의 X선 회절 측정의 결과이다. 또한, 실선의 궤적은, 실시례 1의 회절 결과를 나타내고, 점선의 궤적은, 비교례 1의 회절 결과를 나타낸다. 도 5에 예시하는 바와 같이, 실시례 1, 및, 비교례 1에서 사용한 p형 분자 단층막은, 각각, X선 회절 강도에 피크가 생겨 있고, 결정성이다. 한편, 도 6에 예시하는 바와 같이, 실시례 1의 광전변환층에서는, X선 회절 강도에 피크가 생김에 대해, 비교례 1의 광전변환층에서는 피크가 생기지 않는다. 이 때문에, 실시례 1의 광전변환층은 결정성이 있고, 비교례 1의 광전변환층은 결정성이 없다고 판정할 수 있다. 여기서, 결정성의 유무의 판단은, 피크 강도가 베이스 라인의 노이즈 레벨에 대해 5배 이상이고, 또한, 반치폭이 1°미만의 형상의 피크가 있는 경우, 결정이라고 판단하였다.
실시례 1 및 비교례 1 각각의 특성의 평가 결과를 다음의 표에 표시한다.
[표 1]
Figure pct00027
실시례 1에 관한 광전변환 소자의 외부 양자 효율은 80퍼센트(%), 암전류는 1.0E-10암페어/평방센티미터(A/㎠), 규격화 응답 속도는 1이였다. 실시례 1에서 사용한 p형 분자의 단층막은 결정성이 있고, SCLC(Space-Charge-Limited Current) 이동도(환언하면, 정공 이동도)는, 1.4E-6평방센티미터/볼트·초(㎠/V·s)였다. 실시례 1의 광전변환 소자 내의 광전변환층은 결정성이 있고, 광전변환층의 SCLC(정공 이동도)는, 1.9E-5평방센티미터/볼트·초(㎠/V·s)였다.
한편, 비교례 1에 관한 광전변환 소자의 외부 양자 효율은 77퍼센트(%), 암전류는 3.0E-10암페어/평방센티미터(A/㎠), 규격화 응답 속도는 10이였다. 비교례 1에서 사용한 p형 분자의 단층막은 결정성이 있고, SCLC 이동도(정공 이동도)는, 8.1E-8평방센티미터/볼트·초(㎠/V·s)였다. 비교례 1의 광전변환 소자 내의 광전변환층은 비결정성이고, 광전변환층의 SCLC 이동도(정공 이동도)는, 1.5E-9평방센티미터/볼트·초(㎠/V·s)였다.
이와 같이, 실시례 1에 관한 유기 광전변환 소자의 양자 효율과 규격화 응답 속도는, 비교례 1보다도 높다. 이것은, 식 1의 p형 분자를 사용한 광전변환층은, 단층막이고 결정성이기 때문에 높은 정공 이동도를 가질 뿐만 아니라, 혼합막인 광전변환층에서도 결정성이기 때문에 높은 정공 이동도를 갖고 있고, 그 결과, 광전변환층부터 전극까지의 캐리어 포집 속도가 빨라지는 이유에 의한 것이라고 추측된다. 한편, 비교례 1에서는, 단층막에서는 결정성이기는 하지만 정공 이동도가 낮고, 혼합 막인 광전변환층에서는 비결정성이기 때문에 정공 이동도가 단층막보다도 낮아지고, 캐리어 포집 속도가 늦어져 버린다. 이에 의해, 비교례 1의 양자 효율과 규격화 응답 속도는 실시례 1보다도 낮아진다.
또한, 도 5, 도 6에 도시한 X선 회절 결과로부터, 실시례 1의 p형 분자는, 광전변환층에서, 색재나 풀러렌이라는 이종(異種) 원자와 공증착한 때라도, 높은 결정성을 유지하고 있다. 이것은, π공역이 확장되고, 또한, 치환기에서 비페닐체(體)와 환(環)이 확장된 실시례 1에서는, 헤링본형의 결정 구조를 형성하는 분자 사이 상호작용인 π-π 상호작용과 CH-π 상호작용이 강하기 때문이라고 추측된다.
상술한 실시례 1에서는, 식 1로 예시한 화합물 중 식 5에서의 화합물(h)을 p형 분자로서 사용하고 있지만, 식 1로 예시한 p형 분자 중 다음의 식으로 표시하는 화합물을 사용하여도 좋다.
[화학식 27]
Figure pct00028
식 9로 예시한 화합물은, 특히, R3 및 R7 대신에 R2 및 R6을 치환 또는 미치환의 아릴기 또는 헤테로아릴기로 하고 있는 점에 있어서 실시례 1과 다르다. 이 식 9의 화합물 중, 다음의 식으로 표시하는 화합물을 p형 분자로서 사용할 수 있다.
[화학식 28]
Figure pct00029
윗식에서, R2-1 및 R6-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기이다.
또한, 식 10으로 예시한 화합물 중, 다음의 식으로 표시하는 화합물을 p형 분자로서 사용할 수 있다.
[화학식 29]
Figure pct00030
윗식에서, R2-2 및 R6-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기이다.
또한, 식 10으로 예시한 화합물 중, 다음의 식으로 표시하는 화합물을 p형 분자로서 사용하는 것도 가능하다.
[화학식 30]
Figure pct00031
또한, 식 12로 예시한 화합물 중, 다음의 식으로 표시하는 화합물을 p형 분자로서 사용할 수 있다.
[화학식 31]
Figure pct00032
이 식 13으로 예시한 화합물을 제1의 실시의 형태에서의 실시례 2로 한다. 이 실시례 2에 관한 화합물은, 예를 들면, 식 5에 유사한 다음의 반응식에 의해 합성할 수 있다.
[화학식 32]
Figure pct00033
식 14에서, 우선, 아르곤(Ar) 분위기하에서 4구 프라스코를 이용하여, 1-브로모-2-플루오로-4-요오드벤젠, 4-비페닐붕소산, 탄산수소나트륨, PdCl2(PPh3)2를 증류수 및 1-프로판올의 혼합 용액 중에서 가열 환류하였다. 여기서, 1-브로모-2-플루오로-4-요오드벤젠, 4-비페닐 붕소산, 탄산수소나트륨, PdCl2(PPh3)2 각각의 화학 당량은, 「1」, 「1」, 「3」, 「0.003」이다. 방냉 후, 석출한 고체를 여과하고, 디클로로메탄에 용해시켜서, 실리카 겔로 여과하였다. 이에 의해, 수율 약 91퍼센트(%)로 박오렌지색 고체(즉, 식 14에서의 b의 중간체(1))를 얻었다.
다음에, 아르곤(Ar) 분위기하에서 4구 프라스코에 중간체(1), 디에틸에테르를 가하고, 드라이아이스/아세톤욕을 이용하여 -72℃까지 냉각하였다. 그 후, n-부틸리튬의 1.6M 헥산 용액을 40분 걸려서 적하하고, 150분 교반하였다. 계속해서 B(OMe)3를 가하고, 실온까지 되돌리고, 철야 교반을 행하였다. 여기서, 중간체(1), n-부틸 리튬, B(OMe)3 각각의 화학 당량은, 「1」, 「2.5」, 「3.7」이다. 그 후, 2N 염산을 가하여, 반응을 정지하고, 여과하였다. 이에 의해, 수율 약 33퍼센트(%)로 회색 고체(식 14에서의 c의 중간체(2))를 얻었다.
계속해서 아르곤(Ar) 분위기하, 4구 프라스코에 원료(3), 디클로로메탄을 가하고, 0℃로 냉각하였다. 계속해서, 요오드, 브롬을 가하고, 실온까지 승온하고, 철야 교반을 행하였다. 여기서, 원료(3), 요오드, 브롬 각각의 화학 당량은, 「1」, 「0.03」, 「2.4」이다. 그 후, 10% 티오황산나트륨 수용액을 가하여, 반응을 정지시키고, 클로로포름으로 분액하여, 유기층을 무수 황산마그네슘으로 건조하였다. 계속해서, 여과하고, 칼럼 크로마토그래피로 정제를 행하였다. 이에 의해, 수율 약 80퍼센트(%)로 황색 결정(식 14에서의 e의 중간체(3))를 얻었다.
그리고, 아르곤(Ar) 분위기하, 4구 프라스코에, 중간체(2), 중간체(3), 톨루엔, 에탄올, 탄산나트륨, PdCl2(PPh3)2, 증류수를 가하고, 가열 환류하였다. 여기서, 중간체(3), 중간체(2), 탄산나트륨, PdCl2(PPh3)2 각각의 화학 당량은, 「1」, 「3」, 「5」, 「0.009」이다. 방냉 후, 석출한 고체를 여과하였다. 그 후, 모노클로로벤젠에 용해 후, 셀라이트와 실리카 겔을 이용하여, 여과하고, 여과액에 헵탄을 가하여, 슬러리형상으로 하고 이것을 여과하였다. 이에 의해, 수율 95퍼센트(%)로 박 황색 고체(식 14에서의 f의, 불순물을 포함하는 중간체(4))를 얻었다.
계속해서 아르곤(Ar) 분위기하, 4구 프라스코에 중간체(4), NaOt-Bu, NMP를 가하고, 160 내지 170℃로 철야 교반을 행하였다. 그 후, 가열을 정지하고, 방냉하였다. 계속해서, 반응액을 여과하고, 메탄올로 세정하였다. 이에 의해, 조수율(粗收率) 93퍼센트(%)로 박회색 고체(실시례 2의 조체(粗體))를 얻었다. 그 후에, 승화 정제를 행하고, 식 13으로 표시한 실시례 2의 화합물을 얻었다.
도 7 및 도 8은, 본 기술의 제1의 실시의 형태에서의 실시례 2의 X선 회절 결과의 한 예를 도시하는 그래프이다. 동 도면에서의 종축은, X선 회절 강도를 나타내고, 횡축은 회절각을 나타낸다. 도 7은, p형 분자 단층막의 X선 회절 측정의 결과, 도 8은 광전변환층의 X선 회절 측정의 결과이다. 또한, 실선의 궤적은, 실시례 1의 회절 결과를 나타내고, 세밀한 점선의 궤적은, 비교례 1의 회절 결과를 나타내고, 굵은 점선의 궤적은 실시례 2의 회절 결과를 나타낸다.
실시례 1, 실시례 2 및 비교례 1 각각의 특성의 평가 결과를 다음의 표에 표시한다. 또한, 이들의 디바이스 구조는, 모두 벌크 헤테로 구조이다.
[표 2]
Figure pct00034
실시례 2와 비교례 1을 비교하면, 실시례 2는, 광전변환층(벌크 헤테로층)이라도 단층 중의 결정성이 유지되어 있음을 알 수 있다. 이 현상은, 식 5에서의 화합물(h)(실시례 1)의 결과와 같은 경향이다. 또한, 실시례 1과 실시례 2를 비교하면, 광전변환층의 결정성 유지률이 높은 실시례 2의 쪽이 외부 양자 효율, 응답성이 우수하고, 소자 특성의 향상에는, 광전변환층 중의 결정성을 유지하는 것이 중요함을 나타내고 있다. 그를 위해서는, p형 분자 사이의 상호작용이 커지도록 분자 설계하는 것이 소자 특성 향상에는 필수이고, 치환기의 위치는, 식 1에서의 R3과 R7의 조합이 바람직하고, R2과 R6의 조합이 더욱 바람직하다. IUPAC(International Union of Pure and Applied Chemistry) 명명법에 따라 표시한 경우에는, 모골격 중의 치환 위치는 2위(位)와 9위가 바람직하고, 더욱 바람직하게는, 3위와 10위이다.
또한, 식 1로 예시한 화합물 중 다음의 식으로 표시하는 화합물을 사용할 수 있다.
[화학식 33]
Figure pct00035
상술한 실시례 1은, 식 15로 예시한 화합물의 일종이다. 또한, 식 15의 화합물 중, 실시례 1 외에, 다음의 식으로 표시하는 화합물을 p형 분자로서 사용할 수 있다.
[화학식 34]
Figure pct00036
윗식에서, R3-1 및 R7-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기이다.
식 16으로 예시한 화합물 중 다음의 식으로 표시하는 화합물을 사용할 수 있다.
[화학식 35]
Figure pct00037
윗식에서, R3-2 및 R7-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기이다.
식 16으로 예시한 화합물 중, 식 17 외에, 다음의 식으로 표시하는 화합물도 사용할 수 있다.
[화학식 36]
Figure pct00038
식 18로 예시한 화합물 중 다음의 식으로 표시하는 화합물을 사용할 수 있다.
[화학식 37]
Figure pct00039
이와 같이 본 기술의 제1의 실시의 형태에 의하면, 유기 광전변환 소자(240)에서, 식 1로 표시하는 p형 분자를 포함하는 광전변환층(243)을 형성하였기 때문에, 유기 광전변환 소자(240)의 양자 효율과 규격화 응답 속도를 향상시킬 수 있다.
<2. 제2의 실시의 형태>
상술한 제1의 실시의 형태에서는, 식 1로 표시하는 화합물을 p형 분자로서 사용하여 양자 효율과 응답 속도를 향상시켰지만, 식 1 이외의 화합물을 p형 분자로서 사용함에 의해, 양자 효율과 응답 속도를 향상시킬 수도 있다. 이 제2의 실시의 형태의 유기 광전변환 소자(240)는, 식 1 이외의 화합물을 포함하는 점에서 제1의 실시의 형태와 다르다.
제2의 실시의 형태의 유기 광전변환 소자(240)는, 식 1로 표시하는 p형 분자 대신에 식 9로 표시하는 p형 분자를 광전변환층(243)을 포함하는 점에서 제1의 실시의 형태와 다르다.
[화학식 38]
Figure pct00040
윗식에서 A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타낸다. R21 내지 R25의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 그들의 나머지는 수소 원자를 나타낸다. R26 내지 R30의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 그들의 나머지는 수소 원자를 나타낸다.
또한, 식 20에서, 아릴기 또는 헤테로아릴기의 치환 위치는, R23 및 R28의 조합이 가장 바람직하다. 이것은, 식 9와 같은 직선형상이며 평면성이 높은 축환 분자는, 헤링본형의 결정 구조를 취함으로써, 2차원성의 캐리어 수송 패스가 형성되는 것이 알려저 있고, 그와 같은 결정 구조를 취하려면, 분자 형상이 직선형인 쪽이 바람직하기 때문이다. R23 및 R28을 아릴기 또는 헤테로아릴기로 함에 의해, 치환 위치를 직선형상으로 할 수 있다.
마찬가지 이유로, 아릴기가 단일하지 않고, 비페닐기나 터페닐기와 연결하고 있는 경우에서도, 각각의 환이 파라위에서 결합하고 있는 쪽이, 직선성을 갖게 하는 관점에서 바람직하다. 또한, 비티엔일기나 터티엔일기와 같은 5원환이 아릴기에 결합하고 있는 경우는, 티오펜환의 알파위의 탄소로 결합하고 있는 쪽이 직선성이 높아지기 때문에, 바람직하다. 또한, 마찬가지 이유로, 페닐기와 티엔일기가 연결하는 경우는, 페닐기의 파라위와 티엔일기의 알파위로 결합하고 있는 쪽이 바람직하다. 그 밖에, 아릴기 또는 헤테로아릴기가, 나프탈렌환, 벤조티오펜환이나 인돌과 같은 다축환기를 포함하는 경우도, 직선성이 높도록 연결하고 있는 것이 바람직하다.
또한, R21 내지 R25과, R26 내지 과의 치환기는 동일한 것이 바람직하고, 또한 치환 위치의 대칭성이 2회 대칭성인 것이 바람직하다. 이것은, 결정 구조를 취한 경우, 대칭성이 높은 쪽이, 이방성이 작아지고, 밴드 분산의 폭이 작아지기 때문이다.
[실시례 1]
다음에 제2의 실시의 형태에서의 실시례 1에 관해 설명한다. 실시례 1에서는, 「Shoji Shinamura, et al., Linear- and Angular-Shaped Naphthodithiophenes : Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors, J. Am. Chem. Soc. 2011, 133, 5024-5035」의 「Scheme 2」를 참고로 하여 다음의 반응식에 의해, p형 분자가 합성되고, 얻어진 생성물에 대해 승화 정제가 행하여졌다.
[화학식 39]
Figure pct00041
식 21의 화합물(d)은, 식 20의 화합물의 한 예이다. 또한, 실시례 1에서, p형 분자 이외의 부분의 제조 방법은, 실시례 1과 마찬가지이다.
[비교례 1]
다음에, 비교례 1에 관해 설명한다. 비교례 1에 관한 p형 분자는, 「Shoji Shinamura, et al., Linear- and Angular-Shaped Naphthodithiophenes : Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors, J. Am. Chem. Soc. 2011, 133, 5024-5035」의 『Scheme 2」를 참고로 하여, 다음의 반응식에 의해 합성되고, 얻어진 생성물에 대해 승화 정제가 행하여졌다. 식 22의 화합물(d)은, 실시례 1의 식 21의 화합물(d)에 비하여, 양단의 페닐 치환기가 각각1개 적은 화합물이다.
[화학식 40]
Figure pct00042
[비교례 2]
다음에 제1의 실시의 형태에서의 비교례에 관해 설명한다. 비교례 2에서는, 퀴나크리돈 유도의 식 8로 표시되는 BQD가, p형 분자로서 사용된다.
[광전변환 소자의 특성]
실시례 1에 관한 유기 광전변환 소자와, 비교례 1, 비교례 2에 관한 유기 광전변환 소자 각각의 특성의 평가 방법은, 제1의 실시의 형태와 마찬가지이다.
도 9, 도 10은, 본 기술의 제2의 실시의 형태에서의 X선 회절 결과의 한 예를 도시하는 그래프이다. 동 도면에서의 종축은, X선 회절 강도를 나타내고, 횡축은 회절각을 나타낸다. 도 9는, p형 분자 단층막의 X선 회절 측정의 결과, 도 10은 광전변환층의 X선 회절 측정의 결과이다. 또한, 실선의 궤적은, 실시례 1의 회절 결과를 나타내고, 점선의 궤적은, 비교례 1의 회절 결과를 나타내고, 파선의 궤적은, 비교례 2의 회절 결과를 나타낸다. 도 9에 예시하는 바와 같이, 제2의 실시의 형태에서의 실시례 1, 비교례 1, 및, 비교례 2에서 사용한 p형 분자 단층막은, 각각, X선 회절 강도에 피크가 생겨 있고, 결정성이다. 한편, 도 10에 예시하는 바와 같이, 제2의 실시의 형태에서의 실시례 1의 광전변환층에서는, X선 회절 강도에 피크가 생김에 대해, 비교례 1, 비교례 2의 광전변환층에서는 피크가 생겨 있지 않다. 이 때문에, 실시례 1의 광전변환층은 결정성이 있고, 비교례 1, 비교례 2의 광전변환층은 결정성이 없다고 판정할 수 있다. 여기서, 결정성의 유무의 판단은, 피크 강도가 베이스 라인의 노이즈 레벨에 대해 5배 이상이고, 또한, 반치폭이 1°미만 형상의 피크가 있는 경우, 결정이라고 판단하였다.
실시례 1 및 비교례 각각의 특성의 평가 결과를 다음의 표에 표시한다.
[표 3]
Figure pct00043
실시례 1에 관한 광전변환 소자의 외부 양자 효율은 81퍼센트(%) 암전류는 2.0E-10암페어/평방센티미터(A/㎠), 규격화 응답 속도는 2이였다. 실시례 1에서 사용한 p형 분자의 단층막은 결정성이 있고, SCLC(Space-Charge-Limited Current) 이동도(환언하면, 정공 이동도)는, 3.1E-5평방센티미터/볼트·초(㎠/V·s)였다. 실시례 1의 광전변환 소자 내의 광전변환층은 결정성이 있고, 광전변환층의 SCLC 이동도(정공 이동도)는, 7.1E-5평방센티미터/볼트·초(㎠/V·s)였다.
비교례 1에 관한 광전변환 소자의 외부 양자 효율은 22퍼센트(%) 암전류는 8.0E-10암페어/평방센티미터(A/㎠), 규격화 응답 속도는 >300 이상이였다. 비교례 1에서 사용한 p형 분자의 단층막은 결정성이 있고, SCLC 이동도(정공 이동도)는, 3.9E-4평방센티미터/볼트·초(㎠/V·s)였다. 비교례의 광전변환 소자 내의 광전변환층은 비결정성이고, 광전변환층의 SCLC(정공 이동도)는, 2.0E-8평방센티미터/볼트·초(㎠/V·s)였다. 한편, 비교례 2에 관한 광전변환 소자의 특성은 전술한 바와 같다.
이와 같이, 실시례 1에 관한 유기 광전변환 소자의 양자 효율과 규격화 응답 속도는, 비교례 1, 비교례 2보다도 높다. 이것은, 식 20의 p형 분자를 사용한 광전변환층은, 결정성이기 때문에 높은 정공 이동도를 갖이며, 그 결과, 광전변환층부터 전극까지의 캐리어 포집 효율이 높아지는 이유에 의한 것이라고 추측된다. 한편, 비교례 1, 비교례 2에서는, 광전변환층이 비결정성이기 때문에 정공 이동도가 낮아지고, 캐리어 포집 효율이 낮아져 버린다. 이에 의해, 비교례의 양자 효율과 규격화 응답 속도는 실시례 1보다도 낮아진다.
또한, X선 회절 결과로부터, 실시례 1의 p형 분자는, 광전변환층에서, 색재나 풀러렌이라는 이종 원자와 공증착한 때라도, 높은 결정성을 유지하고 있다. 이것은, 실시례 1의 비페닐 치환체는, 헤링본형의 결정 구조를 형성하는 분자 사이 상호작용인 CH-π 상호작용이, 비교례 1의 단독의 페닐 치환체보다도 강하기 때문이라고 추측된다.
실시례 1의 비페닐 치환체가, 비교례 1의 페닐 치환체보다도 높은 양자 효율을 나타낸 이유는, 비교례 2의 BQD와의 비교보다, 광전변환층의 결정성뿐만 아니라, 광전변환층 중의 상분리가 가속하고, 도메인 사이즈가 비대화된 것도 이유로서 들 수 있다. 도메인 사이즈가 커지면, 색재에서 생긴 여기자가 계면까지 확산하고, 전하 분리하기 전에 실활(失活)하여 버리는 것이 생각된다. 본 발명의 광전변환층에서, 비페닐 치환체는, 페닐 치환체에 비하여, 증착에 의하면 성막시에, 색재와 n형 분자와의 상분리 사이즈가 여기자 확산 길이 이하의 적절한 사이즈가 되는 분자 사이 상호작용을 갖는다고 추측된다.
이와 같이 본 기술의 제2의 실시의 형태에 의하면, 유기 광전변환 소자(240)에서, 식 9로 표시하는 p형 분자를 포함하는 광전변환층(243)을 형성하였기 때문에, 유기 광전변환 소자(240)의 양자 효율과 응답 속도를 향상시킬 수 있다.
또한, 상술한 실시의 형태는 본 기술을 구현화하기 위한 한 예를 나타낸 것이고, 실시의 형태에서의 사항과, 특허청구의 범위에서의 발명 특정 사항은 각각 대응 관계를 갖는다. 마찬가지로, 특허청구의 범위에서의 발명 특정 사항과, 이것과 동일 명칭을 붙인 본 기술의 실시의 형태에서의 사항은 각각 대응 관계를 갖는다. 단, 본 기술은 실시의 형태로 한정되는 것이 아니고, 그 요지를 일탈하지 않는 범위에서 실시의 형태에 여러가지의 변형을 시행함에 의해 구현화할 수 있다.
또한, 본 명세서에 기재된 효과는 어디까지나 예시이고, 한정되는 것이 아니고, 또한, 다른 효과가 있어도 좋다.
또한, 본 기술은 이하와 같은 구성도 취할 수 있다.
(1) 식 1로 표시하는 p형 분자를 광전변환층에 포함하고,
[화학식 41]
Figure pct00044
상기 식 1에서, A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R1 내지 R4의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R1 내지 R4의 나머지는 수소 원자를 나타내고, R5 내지 R8의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R5 내지 R8의 나머지는 수소 원자를 나타내는 유기 광전변환 소자.
(2) 상기 광전변환층은, n형 분자를 또한 포함하고, 상기 n형 분자는, 풀러렌 또는 풀러렌 유도체를 포함하는 상기 (1) 기재의 유기 광전변환 소자.
(3) 상기 광전변환층에 대한 상기 n형 분자의 체적분률은, 10 내지 50퍼센트인 상기 (2) 기재의 유기 광전변환 소자.
(4) 상기 n형 분자는, 식 2 및 식 3 중 어느 하나로 표시하는 상기 풀러렌 유도체를 포함하고,
[화학식 42]
Figure pct00045
[화학식 43]
Figure pct00046
상기 식 2 및 식 3에서, R의 각각은 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타내고, n 및 m은 정수인 상기 (2) 또는 (3)에 기재의 유기 광전변환 소자.
(5) 상기 광전변환층은, 색재를 또한 포함하고, 가시광의 파장역에서의 상기 색재의 극대 흡수계수는, 50000cm-1 보다 작지 않은 상기 (1)부터 (4)의 어느 하나에 기재의 유기 광전변환 소자.
(6) 상기 광전변환층에 대한 상기 색재의 체적분률은, 20 내지 80퍼센트인 상기 (5) 기재의 유기 광전변환 소자.
(7) 상기 색재는, 서브프탈로시아닌 유도체인 상기 (5) 또는 (6)에 기재의 유기 광전변환 소자.
(8) 상기 색재는, 식 4로 표시하는 상기 서브프탈로시아닌 유도체를 포함하고,
[화학식 44]
Figure pct00047
상기 식 4에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택되고, M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기인 상기 (7) 기재의 유기 광전변환 소자.
(9) 상기 광전변환층에 대한 상기 p형 분자의 체적분률은, 10 내지 70퍼센트인 상기 (1)부터 (8)의 어느 하나에 기재의 유기 광전변환 소자.
(10) 상기 광전변환층은, 식 1로 표시하는 상기 화합물 중 식 9로 표시하는 화합물을 상기 p형 분자로서 포함하는 상기 (1)부터 의 어느 하나(9)에 기재의 유기 광전변환 소자.
[화학식 45]
Figure pct00048
(11) 상기 광전변환층은, 식 9로 표시하는 상기 화합물 중 식 10으로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 46]
Figure pct00049
상기 식 10에서, R2-1 및 R6-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 상기 (10) 기재의 유기 광전변환 소자.
(12) 상기 광전변환층은, 식 10으로 표시하는 상기 화합물 중 식 11로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 47]
Figure pct00050
식 11에서, R2-2 및 R6-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 상기 (11) 기재의 유기 광전변환 소자.
(13) 상기 광전변환층은, 식 10으로 표시하는 상기 화합물 중 식 12로 표시하는 화합물을 상기 p형 분자로서 포함하는 상기 (11) 기재의 유기 광전변환 소자.
[화학식 48]
Figure pct00051
(14) 상기 광전변환층은, 식 12로 표시하는 상기 화합물 중 식 13으로 표시하는 화합물을 상기 p형 분자로서 포함하는 상기 (13) 기재의 유기 광전변환 소자.
[화학식 49]
Figure pct00052
(15) 상기 광전변환층은, 식 1로 표시하는 상기 화합물 중 식 15로 표시하는 화합물을 상기 p형 분자로서 포함하는 상기 (1)부터 (9)의 어느 하나에 기재의 유기 광전변환 소자.
[화학식 50]
Figure pct00053
(16) 상기 광전변환층은, 식 15로 표시하는 상기 화합물 중 식 16으로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 51]
Figure pct00054
상기 식 16에서, R3-1 및 R7-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 상기 (15) 기재의 유기 광전변환 소자.
(17) 상기 광전변환층은, 식 16으로 표시하는 상기 화합물 중 식 17로 표시하는 화합물을 상기 p형 분자로서 포함하고,
[화학식 52]
Figure pct00055
식 17에서, R3-2 및 R7-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 상기 (16) 기재의 유기 광전변환 소자.
(18) 상기 광전변환층은, 식 16으로 표시하는 상기 화합물 중 식 18로 표시하는 화합물을 상기 p형 분자로서 포함하는 상기 (16) 기재의 유기 광전변환 소자.
[화학식 53]
Figure pct00056
(19) 상기 광전변환층은, 식 18로 표시하는 상기 화합물 중 식 19로 표시하는 화합물을 상기 p형 분자로서 포함하는 상기 (18)에 기재의 유기 광전변환 소자.
[화학식 54]
Figure pct00057
(20) 식 20으로 표시하는 p형 분자를 광전변환층에 포함하고,
[화학식 55]
Figure pct00058
상기 식 20에서 A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R21 내지 R25의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R21 내지 R25의 나머지는 수소 원자를 나타내고, R26 내지 R30의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R26 내지 R30의 나머지는 수소 원자를 나타내는 유기 광전변환 소자.
(21) 상기 광전변환층은, n형 분자를 또한 포함하고, 상기 n형 분자는, 풀러렌 또는 풀러렌 유도체를 포함하는 상기 (20) 기재의 유기 광전변환 소자.
(22) 상기 광전변환층에 대한 상기 n형 분자의 체적분률은, 10 내지 50퍼센트인 상기 (21) 기재의 유기 광전변환 소자.
(23) 상기 n형 분자는, 식 2 및 식 3 중 어느 하나로 표시하는 상기 풀러렌 유도체를 포함하고,
[화학식 56]
Figure pct00059
[화학식 57]
Figure pct00060
상기 식 2 및 식 3에서, R의 각각은 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타내고, n 및 m은 정수인 상기 (21) 또는 (22)에 기재의 유기 광전변환 소자.
(24) 상기 광전변환층은, 색재를 또한 포함하고, 가시광의 파장역에서의 상기 색재의 극대 흡수계수는, 50000cm-1 보다 작지 않은 상기 (20) 기재의 유기 광전변환 소자.
(25) 상기 광전변환층에 대한 상기 색재의 체적분률은, 20 내지 80퍼센트인
상기 (24) 기재의 유기 광전변환 소자.
(26) 상기 색재는, 서브프탈로시아닌 유도체인 상기 (24) 또는 (25) 기재의 유기 광전변환 소자.
(27) 상기 색재는, 식 4로 표시하는 상기 서브프탈로시아닌 유도체를 포함하고,
[화학식 58]
Figure pct00061
상기 식 4에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택되고, M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기인 상기 (26) 기재의 유기 광전변환 소자.
(28) 상기 광전변환층에 대한 상기 p형 분자의 체적분률은, 10 내지 70퍼센트인 상기 (20)부터 (27)의 어느 하나에 기재의 유기 광전변환 소자.
200 : 고체 촬상 소자 210 : 행 주사 회로
220 : 화소 어레이부 230 : 화소
231 : 전송 트랜지스터 232 : 부유 확산층
233 : 증폭 트랜지스터 234 : 선택 트랜지스터
240 : 유기 광전변환 소자 241, 311 : 상부 전극
242 : 전하 수송층 243, 313 : 광전변환층
244, 315 : 하부 전극 245, 316 : 기판
250 : DAC 260 : 신호 처리부
270 : 타이밍 제어부 280 : 열 주사 회로
310 : 정공 이동도 평가 소자 312, 314 : 산화몰리브덴층

Claims (28)

  1. 식 1로 표시하는 p형 분자를 광전변환층에 포함하고,
    [화학식 1]
    Figure pct00062

    상기 식 1에서, A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R1 내지 R4의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R1 내지 R4의 나머지는 수소 원자를 나타내고, R5 내지 R8의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R5 내지 R8의 나머지는 수소 원자를 나타내는 것을 특징으로 하는 유기 광전변환 소자.
  2. 제1항에 있어서,
    상기 광전변환층은, n형 분자를 또한 포함하고,
    상기 n형 분자는, 풀러렌 또는 풀러렌 유도체를 포함하는 것을 특징으로 하는 유기 광전변환 소자.
  3. 제2항에 있어서,
    상기 광전변환층에 대한 상기 n형 분자의 체적분률은, 10 내지 50퍼센트인 것을 특징으로 하는 유기 광전변환 소자.
  4. 제2항에 있어서,
    상기 n형 분자는, 식 2 및 식 3 중 어느 하나로 표시하는 상기 풀러렌 유도체를 포함하고,
    [화학식 2]
    Figure pct00063

    [화학식 3]
    Figure pct00064

    상기 식 2 및 식 3에서, R의 각각은 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타내고, n 및 m은 정수인 것을 특징으로 하는 유기 광전변환 소자.
  5. 제1항에 있어서,
    상기 광전변환층은, 색재를 또한 포함하고,
    가시광의 파장역에서의 상기 색재의 극대 흡수계수는, 50000cm-1 보다 작지 않은 것을 특징으로 하는 유기 광전변환 소자.
  6. 제5항에 있어서,
    상기 광전변환층에 대한 상기 색재의 체적분률은, 20 내지 80퍼센트인 것을 특징으로 하는 유기 광전변환 소자.
  7. 제5항에 있어서,
    상기 색재는, 서브프탈로시아닌 유도체인 것을 특징으로 하는 유기 광전변환 소자.
  8. 제7항에 있어서,
    상기 색재는, 식 4로 표시하는 상기 서브프탈로시아닌 유도체를 포함하고,
    [화학식 4]
    Figure pct00065

    상기 식 4에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택되고, M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기인 것을 특징으로 하는 유기 광전변환 소자.
  9. 제1항에 있어서,
    상기 광전변환층에 대한 상기 p형 분자의 체적분률은, 10 내지 70퍼센트인 것을 특징으로 하는 유기 광전변환 소자.
  10. 제1항에 있어서,
    상기 광전변환층은, 식 1로 표시하는 상기 화합물 중 식 9로 표시하는 화합물을 상기 p형 분자로서 포함하는 것을 특징으로 하는 유기 광전변환 소자.
    [화학식 5]
    Figure pct00066
  11. 제10항에 있어서,
    상기 광전변환층은, 식 9로 표시하는 상기 화합물 중 식 10으로 표시하는 화합물을 상기 p형 분자로서 포함하고,
    [화학식 6]
    Figure pct00067

    상기 식 10에서, R2-1 및 R6-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 것을 특징으로 하는 유기 광전변환 소자.
  12. 제11항에 있어서,
    상기 광전변환층은, 식 10으로 표시하는 상기 화합물 중 식 11로 표시하는 화합물을 상기 p형 분자로서 포함하고,
    [화학식 7]
    Figure pct00068

    식 11에서, R2-2 및 R6-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 것을 특징으로 하는 유기 광전변환 소자.
  13. 제11항에 있어서,
    상기 광전변환층은, 식 10으로 표시하는 상기 화합물 중 식 12로 표시하는 화합물을 상기 p형 분자로서 포함하는 것을 특징으로 하는 유기 광전변환 소자.
    [화학식 8]
    Figure pct00069
  14. 제13항에 있어서,
    상기 광전변환층은, 식 12로 표시하는 상기 화합물 중 식 13으로 표시하는 화합물을 상기 p형 분자로서 포함하는 것을 특징으로 하는 유기 광전변환 소자.
    [화학식 9]
    Figure pct00070
  15. 제1항에 있어서,
    상기 광전변환층은, 식 1로 표시하는 상기 화합물 중 식 15로 표시하는 화합물을 상기 p형 분자로서 포함하는 것을 특징으로 하는 유기 광전변환 소자.
    [화학식 10]
    Figure pct00071
  16. 제15항에 있어서,
    상기 광전변환층은, 식 15로 표시하는 상기 화합물 중 식 16으로 표시하는 화합물을 상기 p형 분자로서 포함하고,
    [화학식 11]
    Figure pct00072

    상기 식 16에서, R3-1 및 R7-1은, 탄소수 4 내지 24의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 것을 특징으로 하는 유기 광전변환 소자.
  17. 제16항에 있어서,
    상기 광전변환층은, 식 16으로 표시하는 상기 화합물 중 식 17로 표시하는 화합물을 상기 p형 분자로서 포함하고,
    [화학식 12]
    Figure pct00073

    식 17에서, R3-2 및 R7-2은, 탄소수 4 내지 18의 치환 또는 미치환의 아릴기 또는 헤테로아릴기인 것을 특징으로 하는 유기 광전변환 소자.
  18. 제16항에 있어서,
    상기 광전변환층은, 식 16으로 표시하는 상기 화합물 중 식 18로 표시하는 화합물을 상기 p형 분자로서 포함하는 것을 특징으로 하는 유기 광전변환 소자.
    [화학식 13]
    Figure pct00074

  19. 제18항에 있어서,
    상기 광전변환층은, 식 18로 표시하는 상기 화합물 중 식 19로 표시하는 화합물을 상기 p형 분자로서 포함하는 것을 특징으로 하는 유기 광전변환 소자.
    [화학식 14]
    Figure pct00075

  20. 식 20으로 표시하는 p형 분자를 광전변환층에 포함하고,
    [화학식 15]
    Figure pct00076

    상기 식 20에서 A는, 산소 원자, 유황 원자 및 셀렌 원자의 어느 하나를 나타내고, R21 내지 R25의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R21 내지 R25의 나머지는 수소 원자를 나타내고, R26 내지 R30의 어느 하나는 탄소수 4 내지 30의 치환 또는 미치환의 아릴기 또는 헤테로아릴기를 나타내고, 상기 R26 내지 R30의 나머지는 수소 원자를 나타내는 것을 특징으로 하는 유기 광전변환 소자.
  21. 제20항에 있어서,
    상기 광전변환층은, n형 분자를 또한 포함하고,
    상기 n형 분자는, 풀러렌 또는 풀러렌 유도체를 포함하는 것을 특징으로 하는 유기 광전변환 소자.
  22. 제21항에 있어서,
    상기 광전변환층에 대한 상기 n형 분자의 체적분률은, 10 내지 50퍼센트인 것을 특징으로 하는 유기 광전변환 소자.
  23. 제21항에 있어서,
    상기 n형 분자는, 식 2 및 식 3 중 어느 하나로 표시하는 상기 풀러렌 유도체를 포함하고,
    [화학식 16]
    Figure pct00077

    [화학식 17]
    Figure pct00078

    상기 식 2 및 식 3에서, R의 각각은 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상의 알킬기, 페닐기, 직쇄 또는 축환한 방향족 화합물을 갖는 기, 할로겐화물을 갖는 기, 파셜플루오로알킬기, 퍼플루오로알킬기, 실릴알킬기, 실릴알콕시기, 아릴실릴기, 아릴술파닐기, 알킬술파닐기, 아릴술포닐기, 알킬술포닐기, 아릴술피드기, 알킬술피드기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 카르보닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 니트로기, 칼코겐화물을 갖는 기, 포스핀기, 포스폰기, 또는, 그들의 유도체를 나타내고, n 및 m은 정수인 것을 특징으로 하는 유기 광전변환 소자.
  24. 제20항에 있어서,
    상기 광전변환층은, 색재를 또한 포함하고,
    가시광의 파장역에서의 상기 색재의 극대 흡수계수는, 50000cm-1 보다 작지 않은 것을 특징으로 하는 유기 광전변환 소자.
  25. 제24항에 있어서,
    상기 광전변환층에 대한 상기 색재의 체적분률은, 20 내지 80퍼센트인 것을 특징으로 하는 유기 광전변환 소자.
  26. 제24항에 있어서,
    상기 색재는, 서브프탈로시아닌 유도체인 것을 특징으로 하는 유기 광전변환 소자.
  27. 제26항에 있어서,
    상기 색재는, 식 4로 표시하는 상기 서브프탈로시아닌 유도체를 포함하고,
    [화학식 18]
    Figure pct00079

    상기 식 4에서의 R9 내지 R20은, 각각 독립하여, 수소 원자, 할로겐 원자, 직쇄, 분기 또는 환상 알킬기, 티오알킬기, 티오아릴기, 아릴술포닐기, 알킬술포닐기, 아미노기, 알킬아미노기, 아릴아미노기, 히드록시기, 알콕시기, 아실아미노기, 아실옥시기, 페닐기, 카르복시기, 카르복소아미드기, 카르보알콕시기, 아실기, 술포닐기, 시아노기, 및, 니트로기로 이루어지는 군에서 선택되고, M은 붕소, 또는, 2가 또는 3가의 금속이고, X는 아니온성 기인 것을 특징으로 하는 유기 광전변환 소자.
  28. 제20항에 있어서,
    상기 광전변환층에 대한 상기 p형 분자의 체적분률은, 10 내지 70퍼센트인 것을 특징으로 하는 유기 광전변환 소자.
KR1020197031447A 2017-05-08 2018-05-07 유기 광전변환 소자 KR102531207B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237014753A KR20230069246A (ko) 2017-05-08 2018-05-07 유기 광전변환 소자

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017092150 2017-05-08
JPJP-P-2017-092150 2017-05-08
PCT/JP2018/004854 WO2018207420A1 (ja) 2017-05-08 2018-02-13 有機光電変換素子
JPPCT/JP2018/004854 2018-02-13
PCT/JP2018/017595 WO2018207722A1 (ja) 2017-05-08 2018-05-07 有機光電変換素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237014753A Division KR20230069246A (ko) 2017-05-08 2018-05-07 유기 광전변환 소자

Publications (2)

Publication Number Publication Date
KR20200004295A true KR20200004295A (ko) 2020-01-13
KR102531207B1 KR102531207B1 (ko) 2023-05-25

Family

ID=64104703

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237014753A KR20230069246A (ko) 2017-05-08 2018-05-07 유기 광전변환 소자
KR1020197031447A KR102531207B1 (ko) 2017-05-08 2018-05-07 유기 광전변환 소자

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020237014753A KR20230069246A (ko) 2017-05-08 2018-05-07 유기 광전변환 소자

Country Status (5)

Country Link
US (2) US11335861B2 (ko)
JP (3) JP7065838B2 (ko)
KR (2) KR20230069246A (ko)
CN (1) CN110603656B (ko)
WO (2) WO2018207420A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128584B2 (ja) * 2017-10-26 2022-08-31 日本化薬株式会社 光電変換素子用材料及び光電変換素子
EP4306526A3 (en) 2018-07-13 2024-03-20 FUJIFILM Corporation Compound for photoelectric conversion element
WO2020203355A1 (ja) * 2019-03-29 2020-10-08 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、光電変換素子用材料、撮像素子用材料、光センサ用材料
JP7215970B2 (ja) * 2019-06-28 2023-01-31 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、光電変換素子用材料、化合物
EP4089752A4 (en) 2020-01-10 2023-07-05 FUJIFILM Corporation PHOTOELECTRIC CONVERSION ELEMENT, IMAGING ELEMENT AND OPTICAL SENSOR
JP7454655B2 (ja) 2020-04-30 2024-03-22 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
WO2022014721A1 (ja) 2020-07-17 2022-01-20 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、及び化合物
KR20230110560A (ko) 2020-12-24 2023-07-24 후지필름 가부시키가이샤 광전 변환 소자, 촬상 소자, 광 센서, 화합물
EP4290596A1 (en) 2021-02-05 2023-12-13 FUJIFILM Corporation Photoelectric conversion element, imaging element, photosensor, and compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076391A (ja) 2000-09-01 2002-03-15 Japan Science & Technology Corp 有機半導体薄膜太陽電池
KR20150135792A (ko) * 2013-03-29 2015-12-03 신닛테츠 수미킨 가가쿠 가부시키가이샤 방향족 복소환 화합물, 그 제조방법, 유기 반도체 재료 및 유기 반도체 디바이스
JP2016032047A (ja) * 2014-07-29 2016-03-07 富士フイルム株式会社 有機半導体膜形成用の組成物、非発光性有機半導体デバイス用有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機膜トランジスタの製造方法および有機膜トランジスタ。
WO2017014146A1 (ja) * 2015-07-17 2017-01-26 ソニー株式会社 光電変換素子、撮像素子、積層型撮像素子、及び、固体撮像装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358660A (en) 1988-01-14 1994-10-25 Showa Denko Kabushiki Kaisha Magnetic particles for perpendicular magnetic recording
JP5284677B2 (ja) * 2008-04-25 2013-09-11 山本化成株式会社 有機トランジスタ
JP5544650B2 (ja) * 2008-11-21 2014-07-09 国立大学法人広島大学 新規化合物の製造方法
JP5288640B2 (ja) * 2010-03-31 2013-09-11 富士フイルム株式会社 撮像素子及びその製造方法
US9035004B2 (en) * 2011-08-01 2015-05-19 Polyera Corporation Semiconducting compounds and devices incorporating same
JP5435508B2 (ja) * 2011-08-25 2014-03-05 独立行政法人科学技術振興機構 光電変換素子およびその素子を用いた太陽電池
CN103664995B (zh) * 2012-08-31 2016-10-19 昆山维信诺显示技术有限公司 萘并二噻吩类衍生物有机电致发光材料及其应用
JP5975834B2 (ja) 2012-10-15 2016-08-23 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP2014172865A (ja) * 2013-03-08 2014-09-22 Toho Univ Foundation フラーレン誘導体製造用臭素化フラーレン、フラーレン誘導体及びその製造方法、並びにその利用
JP2014197595A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 光電変換素子、撮像素子、光センサ
JP6567276B2 (ja) * 2014-05-13 2019-08-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および電子機器
EP3432377A4 (en) * 2016-03-18 2019-11-20 Toray Industries, Inc. PHOTOVOLTAIC MODULE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076391A (ja) 2000-09-01 2002-03-15 Japan Science & Technology Corp 有機半導体薄膜太陽電池
KR20150135792A (ko) * 2013-03-29 2015-12-03 신닛테츠 수미킨 가가쿠 가부시키가이샤 방향족 복소환 화합물, 그 제조방법, 유기 반도체 재료 및 유기 반도체 디바이스
JP2016032047A (ja) * 2014-07-29 2016-03-07 富士フイルム株式会社 有機半導体膜形成用の組成物、非発光性有機半導体デバイス用有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機膜トランジスタの製造方法および有機膜トランジスタ。
WO2017014146A1 (ja) * 2015-07-17 2017-01-26 ソニー株式会社 光電変換素子、撮像素子、積層型撮像素子、及び、固体撮像装置

Also Published As

Publication number Publication date
US11335861B2 (en) 2022-05-17
CN110603656A (zh) 2019-12-20
JP2023134468A (ja) 2023-09-27
KR102531207B1 (ko) 2023-05-25
WO2018207722A1 (ja) 2018-11-15
US20220285630A1 (en) 2022-09-08
WO2018207420A1 (ja) 2018-11-15
JP7065838B2 (ja) 2022-05-12
CN110603656B (zh) 2023-10-24
US20200168815A1 (en) 2020-05-28
JP2022101621A (ja) 2022-07-06
JPWO2018207722A1 (ja) 2020-03-26
KR20230069246A (ko) 2023-05-18

Similar Documents

Publication Publication Date Title
KR20200004295A (ko) 유기 광전변환 소자
TWI605105B (zh) Organic semiconductor materials
TWI535726B (zh) 苯并噻吩苯并噻吩衍生物、有機半導體材料及有機電晶體
JP2018170487A (ja) 撮像素子用光電変換素子
JP6618785B2 (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP2018014474A (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
KR102389030B1 (ko) 촬상 소자용 광전 변환 소자용 재료 및 그것을 포함하는 광전 변환 소자, 촬상 소자 및 광 센서
JP6862277B2 (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP6864561B2 (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP6906357B2 (ja) 撮像素子用光電変換素子
JP5291303B2 (ja) ポリアセン化合物及び有機半導体薄膜
JP6890469B2 (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP6906388B2 (ja) 撮像素子用光電変換素子
JP6784639B2 (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP6759075B2 (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP2018046267A (ja) 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
Loi Highly sensitive photodetectors based on dimensionally and compositionally modulated perovskites

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant