KR20190133110A - 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체 - Google Patents

전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체 Download PDF

Info

Publication number
KR20190133110A
KR20190133110A KR1020190059459A KR20190059459A KR20190133110A KR 20190133110 A KR20190133110 A KR 20190133110A KR 1020190059459 A KR1020190059459 A KR 1020190059459A KR 20190059459 A KR20190059459 A KR 20190059459A KR 20190133110 A KR20190133110 A KR 20190133110A
Authority
KR
South Korea
Prior art keywords
pattern
electron beam
irradiation
charge
distribution
Prior art date
Application number
KR1020190059459A
Other languages
English (en)
Other versions
KR102238893B1 (ko
Inventor
노리아키 나카야마다
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 뉴플레어 테크놀로지 filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20190133110A publication Critical patent/KR20190133110A/ko
Application granted granted Critical
Publication of KR102238893B1 publication Critical patent/KR102238893B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • H01J37/3026Patterning strategy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31769Proximity effect correction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

본 발명은, 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체에 관한 것이다. 본 발명의 일 태양의 전자 빔 조사 방법은, 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하고, 얻어진 대전량 분포를 이용하여, 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하고, 위치 이탈량을 이용하여, 조사 위치를 보정하고, 보정된 조사 위치에 전자 빔을 조사한다.

Description

전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체 {ELECTRON BEAM IRRADIATION METHOD, ELECTRON BEAM IRRADIATION APPARATUS AND NON-TRANSITORY COMPUTER READABLE MEDIUM RECORIDNG PROGRAM}
본 발명은, 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체에 관한 것이며, 예를 들면, 전자 빔을 이용하여 시료에 패턴을 묘화하는 전자 빔 묘화 장치 및 방법에 관한 것이다.
반도체 디바이스의 미세화의 진전을 담당하는 리소그래피 기술은 반도체 제조 프로세스 중에서도 유일 패턴을 생성하는 매우 중요한 프로세스이다. 최근, LSI의 고집적화에 수반하여, 반도체 디바이스에 요구되는 회로 선 폭은 해마다 미세화되고 있다. 이들 반도체 디바이스에 원하는 회로 패턴을 형성하기 위해서는, 고정밀도의 원화 패턴(레티클 혹은 마스크라고도 함)이 필요해진다. 여기서, 전자 선(EB:Electron beam) 묘화 기술은 본질적으로 우수한 해상성을 가지고 있어, 고정밀도의 원화 패턴의 생산에 이용된다.
도 13은, 가변 성형형 전자 선 묘화 장치의 동작을 설명하기 위한 개념도이다. 가변 성형형 전자 선 묘화 장치는, 이하와 같이 동작한다. 제1 애퍼쳐(410)에는, 전자 선(330)을 성형하기 위한 직사각형의 개구(411)가 형성되어 있다. 또한, 제2 애퍼쳐(420)에는, 제1 애퍼쳐(410)의 개구(411)를 통과한 전자 선(330)을 원하는 직사각형 형상으로 성형하기 위한 가변 성형 개구(421)가 형성되어 있다. 하전 입자 소스(430)로부터 조사되어, 제1 애퍼쳐(410)의 개구(411)를 통과한 전자 선(330)은, 편향기에 의해 편향되어, 제2 애퍼쳐(420)의 가변 성형 개구(421)의 일부를 통과하고, 소정의 한 방향(예를 들면, X 방향이라고 함)으로 연속적으로 이동하는 스테이지 상에 탑재된 시료 (340)에 조사된다. 즉, 제1 애퍼쳐(410)의 개구(411)와 제2 애퍼쳐(420)의 가변 성형 개구(421)의 양방을 통과할 수 있는 직사각형 형상이, X 방향으로 연속적으로 이동하는 스테이지 상에 탑재된 시료 (340)의 묘화 영역에 묘화된다. 제1 애퍼쳐(410)의 개구(411)와 제2 애퍼쳐(420)의 가변 성형 개구(421)의 양방을 통과시켜, 임의 형상을 작성하는 방식을 가변 성형 방식(VSB 방식)이라고 한다.
마스크 등의 기판에 전자 빔을 조사하는 경우에, 과거에 조사한 전자 빔에 의해 조사 위치 또는 그 주위가 대전되어 버린다. 종래, 이 빔 조사 위치 이탈을 보정하는 방법의 하나로서, 기판 상에 대전 방지막(CDL:Charge Dissipation Layer)을 형성하여, 기판 표면의 대전을 방지하는 방법이 알려져 있다. 그러나, 이 대전 방지막은, 기본적으로 산의 특성을 가지고 있으므로, 기판 상에 화학 증폭형 레지스터가 도포되어 있는 경우 등에 있어서 상성이 좋지 않다. 또한, 대전 방지막을 형성하기 위해 새로운 설비를 설치할 필요가 있고, 예를 들면, 포토마스크를 제조하는 경우 등에, 그 제조 코스트가 더욱 증대되어 버린다. 이 때문에, 대전 방지막을 이용하지 않고, 대전 효과 보정(CEC:charging effect correction)을 행하는 것이 바람직한 것으로 되어 있다. 또한, 대전 현상에 기인한 조사 위치의 위치 이탈은, 전자 빔 묘화 장치에 한정되는 것은 아니며, 전자 빔 등의 하전 입자 빔으로 패턴을 검사하는 검사 장치 등, 목표로 한 위치에 하전 입자 빔을 조사함으로써 얻어지는 결과를 이용하는 하전 입자 빔 조사 장치에 있어서 마찬가지로 생길 수 있다.
이에, 이러한 대전 현상에 기인한 위치 이탈에 대하여, 출원인은, 대전량 분포를 구하여 빔 조사 위치의 보정량을 산출하고, 해당 보정량에 기초하여 보정된 위치에 빔을 조사하는 대전 효과 보정의 수법을 이용한 묘화 장치에 대하여 제안했다(예를 들면, 일본 특허 제5525936호 공보, 일본 특허 공개 공보 2015년 제138882호 참조). 그러나, 최근의 미세화에 따른 더 높은 치수 정밀도가 요구되는 중, 이러한 대전 효과 보정으로는, 보정이 충분치 않은 경우가 있다고 하는 문제가 생기고 있다.
본 발명은, 전자 빔을 조사하는 경우에, 종래보다 대전 효과 보정의 정밀도를 향상 가능한 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체를 제공한다.
본 발명의 일 태양의 전자 빔 조사 방법은, 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하고, 얻어진 대전량 분포를 이용하여, 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하고, 위치 이탈량을 이용하여, 조사 위치를 보정하고, 보정된 조사 위치에 전자 빔을 조사한다.
본 발명의 일 태양의 전자 빔 조사 장치는, 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하는 대전량 분포 연산 회로와, 얻어진 대전량 분포를 이용하여, 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하는 위치 이탈량 연산 회로와, 위치 이탈량을 이용하여, 조사 위치를 보정하는 보정 회로와, 보정된 조사 위치에 전자 빔을 조사하는 전자 빔 조사 기구를 구비한다.
본 발명의 일 태양의 컴퓨터로 판독 가능한 비일시적인 기록 매체는, 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 기억하는 기억 장치로부터 상기 지표를 읽어내고, 읽어내어진 상기 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하는 처리와, 얻어진 상기 대전량 분포를 이용하여, 상기 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하는 처리를 전자 빔을 조사하는 전자 빔 조사 장치를 제어하는 컴퓨터에 실행시키기 위한 프로그램을 기록한다.
도 1은, 실시 형태 1에 있어서의 묘화 장치의 주요부 구성의 일예를 나타내는 개념도이다.
도 2는, 실시 형태 1에 있어서의 스테이지 이동의 모습을 설명하기 위한 도면이다.
도 3(a) 및 도 3(b)는, 실시 형태 1의 비교예에 있어서의 평가 기판의 패턴 영역의 일예와 제품에 사용되는 기판의 실 패턴 영역의 일예를 나타내는 도면이다.
도 4(a) 내지 도 4(c)는, 실시 형태 1의 비교예에 있어서의 평가 패턴의 대전량의 일예와 제품 기판의 실(實) 패턴으로 진단한 모의 패턴의 대전에 의한 위치 이탈량의 일예를 나타내는 도면이다.
도 5(a) 내지 도 5(c)는, 실시 형태 1의 비교예에 있어서의 평가 패턴의 일예와 제품 기판의 실 패턴으로 진단한 모의 패턴의 일예를 나타내는 도면이다.
도 6은, 실시 형태 1에 있어서의 평가 기판에 묘화되는 평가 패턴의 레이아웃의 일예를 나타내는 도면이다.
도 7은, 실시 형태 1에 있어서의 패턴의 복잡도에 기인하는 대전량의 측정 결과를 나타내는 도면이다.
도 8은, 실시 형태 1에 있어서의 패턴의 복잡도에 기인하는 대전 감쇠 강도의 측정 결과를 나타내는 도면이다.
도 9는, 실시 형태 1에 있어서의 묘화 방법의 주요부 공정의 일예를 나타내는 플로우차트도이다.
도 10은, 실시 형태 1에 있어서의 묘화 방법의 주요부 공정의 다른 일예를 나타내는 플로우차트도이다.
도 11은, 실시 형태 1의 비교예에 있어서의 대전 효과 보정을 행한 결과의 위치 이탈량의 일예를 나타내는 도면이다.
도 12는, 실시 형태 1에 있어서의 대전 효과 보정을 행한 결과의 위치 이탈량의 일예를 나타내는 도면이다.
도 13은, 가변 성형형 전자 선 묘화 장치의 동작을 설명하기 위한 개념도이다.
이하, 실시 형태 1에서는, 전자 빔을 조사하는 경우에, 종래보다 대전 효과 보정의 정밀도를 향상 가능한 방법 및 장치에 대하여 설명한다.
실시 형태 1.
도 1은, 실시 형태 1에 있어서의 묘화 장치의 주요부 구성의 일예를 나타내는 개념도이다. 도 1에서, 묘화 장치(100)는, 묘화 기구(150) 및 제어계 회로(160)를 구비하고 있다. 묘화 장치(100)는, 전자 빔 묘화 장치의 일예이다. 또한, 묘화 장치(100)는, 전자 빔 조사 장치의 일예이다. 묘화 기구(150)는, 전자 경통(1)과 묘화실(14)을 가지고 있다. 전자 경통(1) 내에는, 전자 총(5), 조명 렌즈(7), 제1 성형 애퍼쳐 기판(8), 투영 렌즈(9), 편향기(10), 제2 성형 애퍼쳐 기판(11), 대물 렌즈(12), 편향기(13), 및 정전 렌즈(15)가 배치된다. 또한, 묘화실(14) 내에는, XY 스테이지(3)가 배치된다. XY 스테이지(3) 상에는, 묘화 대상이 되는 시료(2)가 배치된다. 시료(2)에는, 반도체 제조의 노광에 이용하는 포토마스크 또는 반도체 장치를 형성하는 반도체 웨이퍼 등의 기판이 포함된다. 또한, 묘화되는 포토마스크에는, 아직 아무것도 묘화되어 있지 않은 마스크 블랭크스가 포함된다. 묘화될 때에는, 시료 상에는 전자 빔에 의해 감광하는 레지스터막이 형성되어 있음은 말할 필요도 없다. 또한, XY 스테이지(3) 상에는, 시료(2)가 배치되는 위치와는 상이한 위치에 스테이지 위치 측정용의 미러(4)가 배치된다.
제어계 회로(160)는, 제어 계산기(110, 120), 스테이지 위치 검출 기구(45), 스테이지 제어 기구(46), 편향 제어 회로(130), 메모리(142), 자기 디스크 장치 등의 기억 장치(140, 143, 144), 및 외부 인터페이스(I/F) 회로(146)를 가지고 있다. 제어 계산기(110, 120), 스테이지 위치 검출 기구(45), 스테이지 제어 기구(46), 편향 제어 회로(130), 메모리(142), 기억 장치(140, 143, 144), 및 외부 I/F 회로(146)는, 도시하지 않은 버스에 의해 서로 접속되어 있다. 편향 제어 회로(130)는, 편향기(10, 13)에 접속된다.
제어 계산기(110) 내에는, 묘화 제어부(30), 패턴 밀도 분포 산출부(31), 도스량 분포 산출부(32), 조사량 분포 산출부(33), 포깅 전자량 분포 산출부(34), 대전량 분포 산출부(35), 묘화 경과 시간 연산부(37), 누적 시간 연산부(38), 위치 이탈량 분포 산출부(36), 및 외주 거리 취득부(39)라고 하는 기능이 배치된다. 묘화 제어부(30), 패턴 밀도 분포 산출부(31), 도스량 분포 산출부(32), 조사량 분포 산출부(33), 포깅 전자량 분포 산출부(34), 대전량 분포 산출부(35), 묘화 경과 시간 연산부(37), 누적 시간 연산부(38), 위치 이탈량 분포 산출부(36), 및 외주 거리 취득부(39)라고 하는 각 「~부」는, 처리 회로를 포함하고, 그 처리 회로에는, 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로, 혹은, 반도체 장치 등이 포함된다. 또한, 각 「~부」는, 공통되는 처리 회로(동일한 처리 회로)를 이용해도 된다. 혹은, 상이한 처리 회로(다른 처리 회로)를 이용해도 된다. 묘화 제어부(30), 패턴 밀도 분포 산출부(31), 도스량 분포 산출부(32), 조사량 분포 산출부(33), 포깅 전자량 분포 산출부(34), 대전량 분포 산출부(35), 묘화 경과 시간 연산부(37), 누적 시간 연산부(38), 위치 이탈량 분포 산출부(36), 및 외주 거리 취득부(39) 내에 필요한 입력 데이터 혹은 연산된 결과는 그때마다 메모리(142)에 기억된다.
제어 계산기(120) 내에는, 샷 데이터 생성부(41) 및 위치 이탈 보정부(42)라고 하는 기능이 배치된다. 샷 데이터 생성부(41) 및 위치 이탈 보정부(42)라고 하는 각 「~부」는, 처리 회로를 포함하고, 그 처리 회로에는, 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로, 혹은, 반도체 장치 등이 포함된다. 또한, 각 「~부」는, 공통되는 처리 회로(동일한 처리 회로)를 이용해도 된다. 혹은, 상이한 처리 회로(다른 처리 회로)를 이용해도 된다. 샷 데이터 생성부(41) 및 위치 이탈 보정부(42) 내에 필요한 입력 데이터 혹은 연산된 결과는 그때마다 도시하지 않은 메모리에 기억된다.
편향 제어 회로(130) 내에는, 성형 편향기 제어부(43) 및 대물 편향기 제어부(44)라고 하는 기능이 배치된다. 성형 편향기 제어부(43) 및 대물 편향기 제어부(44)라고 하는 각 「~부」는, 처리 회로를 포함하고, 그 처리 회로에는, 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로, 혹은, 반도체 장치 등이 포함된다. 또한, 각 「~부」는, 공통되는 처리 회로(동일한 처리 회로)를 이용해도 된다. 혹은, 상이한 처리 회로(다른 처리 회로)를 이용해도 된다. 성형 편향기 제어부(43) 및 대물 편향기 제어부(44) 내에 필요한 입력 데이터 혹은 연산된 결과는 그때마다 도시하지 않은 메모리에 기억된다.
또한, 묘화되기 위한 복수의 도형 패턴이 정의되는 묘화 데이터(레이아웃 데이터)가 묘화 장치(100)의 외부로부터 입력되어, 기억 장치(140)에 저장된다.
도 1에서는, 본 실시 형태 1를 설명하는데 있어서 필요한 구성 부분 이외에 대하여 기재를 생략하고 있다. 묘화 장치(100)에 있어서, 통상, 필요한 그 밖의 구성이 포함됨은 말할 필요도 없다.
전자 총(5)으로부터 방출된 전자 빔(6)은, 조명 렌즈(7)에 의해 직사각형의 홀을 가지는 제1 성형 애퍼쳐 기판(8) 전체를 조명한다. 여기서, 전자 빔(6)을 우선 직사각형으로 성형한다. 그리고, 제1 성형 애퍼쳐 기판(8)을 통과한 제1 애퍼쳐상의 전자 빔(6)은, 투영 렌즈(9)에 의해 제2 성형 애퍼쳐 기판(11) 상에 투영된다. 이러한 제2 성형 애퍼쳐 기판(11) 상에서의 제1 애퍼쳐상의 위치는, 성형 편향기 제어부(43)에 의해 제어된 편향기(10)에 의해 편향 제어되어, 빔 형상과 치수를 변화시킬 수 있다(가변 성형). 그리고, 제2 성형 애퍼쳐 기판(11)을 통과한 제2 애퍼쳐상의 전자 빔(6)은, 대물 렌즈(12)에 의해 초점을 조정하여, 대물 편향기 제어부(44)에 제어된, 예를 들면, 정전형의 편향기(13)에 의해 편향되어, 이동 가능하게 배치된 XY 스테이지(3) 상의 시료(2)의 원하는 위치에 조사된다. XY 스테이지(3)는 스테이지 제어 기구(46)에 의해 구동 제어된다. 그리고, XY 스테이지(3)의 위치는, 스테이지 위치 검출 기구(45)에 의해 검출된다. 스테이지 위치 검출 기구(45)에는, 예를 들면, 미러(4)에 레이저를 조사하고, 입사광과 반사광의 간섭에 기초하여 위치를 측정하는 레이저 측장 장치가 포함된다. 정전 렌즈(15)는, 시료(2)면의 요철에 대응하여, 동적으로 전자 빔(6)의 초점 위치를 보정한다(다이나믹 포커스).
도 2는, 실시 형태 1에 있어서의 스테이지 이동의 모습을 설명하기 위한 도면이다. 시료(2)에 묘화하는 경우에는, XY 스테이지(3)를, 예를 들면, X 방향으로 연속 이동시키면서, 묘화(노광)면을 전자 빔(6)이 편향 가능한 직사각형 형상의 복수의 스트라이프 영역(SR)에 묘화 영역(R)이 가상 분할된 시료(2)의 한개의 스트라이프 영역 상을 전자 빔(6)이 조사한다. XY 스테이지(3)의 X 방향의 이동은, 예를 들면, 연속 이동으로 하고, 동시에 전자 빔(6)의 샷 위치도 스테이지 이동에 추종시킨다. 연속 이동시킴으로써 묘화 시간을 단축시킬 수 있다. 그리고, 1 개의 스트라이프 영역을 묘화 완료하면, XY 스테이지(3)를 Y 방향으로 계단 이송하여 X 방향(이번에는 역방향)으로 다음의 스트라이프 영역의 묘화 동작을 행한다. 각 스트라이프 영역의 묘화 동작을 사행(蛇行)시키도록 진행함으로써 XY 스테이지(3)의 이동 시간을 단축할 수 있다. 또한, 묘화 장치(100)에서는, 레이아웃 데이터(묘화 데이터)를 처리함에 있어서는, 묘화 영역을 직사각형 형상의 복수의 프레임 영역으로 가상 분할하여, 프레임 영역마다 데이터 처리가 행해진다. 그리고, 예를 들면, 다중 노광을 행하지 않은 경우에는, 통상, 프레임 영역과 상술한 스트라이프 영역이 같은 영역이 된다. 다중 노광을 행하는 경우에는, 다중도에 따라 프레임 영역과, 상술한 스트라이프 영역이 어긋나게 된다. 혹은, 다중도에 따른 스트라이프 영역과 같은 영역이 되는 복수의 프레임 영역에 묘화 영역이 가상 분할되어, 프레임 영역마다 데이터 처리가 행해진다. 이와 같이, 시료(2)의 묘화 영역은, 복수의 묘화 단위 영역이 되는 프레임 영역(스트라이프 영역)으로 가상 분할되고, 묘화 기구(150)는, 이러한 프레임 영역(스트라이프 영역)마다 묘화한다.
도 3(a) 및 도 3(b)는, 실시 형태 1의 비교예에 있어서의 평가 기판의 패턴 영역의 일예와 제품에 사용되는 기판의 실 패턴 영역의 일예를 나타내는 도면이다. 도 3(a)에서는, 비교예에 있어서의 평가 기판의 패턴 영역의 일예를 나타낸다. 평가 기판의 패턴 영역에는, 복수의 평가 패턴(20)이 배치된다. 각 평가 패턴(20)은, 예를 들면, 패턴 밀도를 달리 하는 심플 패턴이 배치된다. 예를 들면, 컨택트 홀 패턴(직사각형 패턴)이 패턴 밀도에 따라 사이즈를 바꾸어 배치된다. 이에 대하여, 도 3(b)에서는, 비교예에 있어서의 제품에 사용되는 기판의 실 패턴 영역의 일예를 나타낸다. 제품 기판의 실 패턴 영역에는, 평가 패턴(20)과 같은 심플 패턴이 아닌, 복잡한 회로 레이아웃의 실 패턴(21)이 배치된다. 이들을 종래의 대전량 보정의 수법을 이용하여 실제로 묘화하면, 양 패턴의 위치 이탈량에 차이가 생김을 알 수 있었다. 이러한 대전량에 대한 이들의 차이가, 패턴의 복잡도에 기인하는 것으로 상정하여, 이들의 평가를 행했다.
도 4(a) 내지 도 4(c)는, 실시 형태 1의 비교예에 있어서의 평가 패턴의 대전량의 일예와 제품 기판의 실 패턴으로 진단한 모의 패턴의 대전에 의한 위치 이탈량의 일예를 나타내는 도면이다.
도 5(a) 내지 도 5(c)는, 실시 형태 1의 비교예에 있어서의 평가 패턴의 일예와 제품 기판의 실 패턴으로 진단한 모의 패턴의 일예를 나타내는 도면이다. 도 5(a)에서는, 평가 패턴(20)으로서, 패턴 밀도(U)가 25%인 심플 패턴을 최대 샷 사이즈 0.25μm인 샷 도형을 서로 연결하여 묘화한 경우의 직사각형 패턴에 의해 나타내고 있다. 도 4(a)에서는, 평가 패턴(20)으로서, 패턴 밀도(U)가 25%인 심플 패턴을 최대 샷 사이즈 0.25μm인 샷 도형을 직사각형 형상으로 서로 연결함으로써 묘화한 경우의 평가 패턴(20) 및 그 주변의 대전에 의한 위치 이탈량의 일예를 나타내고 있다. 이에 대하여, 도 5(b)에서는, 평가 패턴(20)으로서, 패턴 밀도(U)가 25%인 심플 패턴을 최대 샷 사이즈 0.25μm인 샷 도형을 서로 연결하여 묘화한 경우의 직사각형 패턴보다 복잡한 형상으로 샷 도형을 서로 연결함으로써 묘화되는, 실 패턴을 대용하는 밀도(U)가 25%인 모의 패턴을 나타내고 있다. 도 4(b)에서는, 평가 패턴(20)으로서, 실 패턴(21)으로 진단한, 패턴 밀도(U)가 25%인 모의 패턴(복잡 패턴)을 최대 샷 사이즈 0.25μm인 샷 도형을 복잡한 형상으로 서로 연결하여 묘화한 경우의 모의 패턴에 대용된 실 패턴(21) 및 그 주변의 대전에 의한 위치 이탈량의 일예를 나타내고 있다. 도 4(a)의 예 및 도 4(b)의 예에서는, 모두 패턴 밀도(U)가 25%로 묘화하고 있으므로, 양 패턴에서 생기는 대전량은 동일해진다고 생각되는 바, 도 4(a) 및 도 4(b)에 도시한 바와 같이, 그 대전량 분포에 차이를 생김을 알 수 있었다. 이러한 차이에 대하여, 샷 사이즈의 영향을 검토했다. 도 5(c)에서는, 평가 패턴(20)으로서, 패턴 밀도(U)가 25%인 심플 패턴을 최대 샷 사이즈 0.1μm인 샷 도형을 서로 연결하여 묘화한 경우의 직사각형 패턴에 의해 나타내고 있다. 이러한 샷 사이즈를 바꾸어 묘화한 대전 결과를 도 4(c)에 나타내고 있다. 도 4(c)에서는, 평가 패턴(20)으로서, 패턴 밀도(U)가 25%인 심플 패턴을 최대 샷 사이즈 0.1μm인 샷 도형을 직사각형 형상으로 서로 연결함으로써 묘화한 경우의 평가 패턴(20) 및 그 주변의 대전에 의한 위치 이탈량의 일예를 나타내고 있다. 그러나, 도 4(a) 및 도 4(c)에 도시한 바와 같이, 그 대전량 분포에 실질적인 차이가 생기지 않았다. 따라서, 이러한 점으로부터, 대전량에 대한 이들 차이가, 패턴의 복잡도에 기인하는 것임을 찾아냈다.
도 6은, 실시 형태 1에 있어서의 평가 기판에 묘화되는 평가 패턴의 레이아웃의 일예를 나타내는 도면이다. 도 6에서, 평가 기판에는, 패턴 밀도와, 패턴의 복잡도를 가변으로 한 복수의 평가 패턴이 배치된다. 실시 형태 1에서는, 패턴의 복잡도를 나타내는 지표로서, 단위 면적당 패턴의 외주 거리(W)를 이용한다. 단위 면적 내에 복수의 패턴이 배치되는 경우에는, 단위 면적당 패턴의 외주 거리의 합계(W)를 이용한다. 이에, 도 6의 예에서는, 복수의 패턴 밀도(U)에 대하여, 단위 면적당 패턴의 외주 거리(W)를 가변으로 하도록, 복수의 패턴 레이아웃을 구성한다.
도 6의 예에서는, 패턴 밀도 5%에 대하여, 단순한 직사각형 패턴(5%)과, 선 폭 0.4μm인 라인 앤드 스페이스 패턴(C5-2)과, 사이즈 0.45μm인 컨택트 홀 패턴(C5-3)과, 사이즈 0.25μm인 컨택트 홀 패턴(C5-4)과, 선 폭 0.1μm인 라인 앤드 스페이스 패턴(C5-5)과, 사이즈 0.1μm인 컨택트 홀 패턴(C5-6)을 배치한다.
마찬가지로, 패턴 밀도 15%에 대하여, 단순한 직사각형 패턴(15%)과, 선 폭 0.4μm인 라인 앤드 스페이스 패턴(C15-2)과, 사이즈 0.45μm인 컨택트 홀 패턴(C15-3)과, 사이즈 0.25μm인 컨택트 홀 패턴(C15-4)과, 선 폭 0.1μm인 라인 앤드 스페이스 패턴(C15-5)과, 사이즈 0.1μm인 컨택트 홀 패턴(C15-6)을 배치한다.
마찬가지로, 패턴 밀도 25%에 대하여, 단순한 직사각형 패턴(25%)과, 선 폭 0.4μm인 라인 앤드 스페이스 패턴(C25-2)과, 사이즈 0.45μm인 컨택트 홀 패턴(C25-3)과, 사이즈 0.25μm인 컨택트 홀 패턴(C25-4)과, 선 폭 0.1μm인 라인 앤드 스페이스 패턴(C25-5)과, 사이즈 0.1μm인 컨택트 홀 패턴(C25-6)을 배치한다.
마찬가지로, 패턴 밀도 35%에 대하여, 단순한 직사각형 패턴(35%)과, 선 폭 0.4μm인 라인 앤드 스페이스 패턴(C35-2)과, 사이즈 0.45μm인 컨택트 홀 패턴(C35-3)과, 사이즈 0.25μm인 컨택트 홀 패턴(C35-4)과, 선 폭 0.1μm인 라인 앤드 스페이스 패턴(C35-5)과, 사이즈 0.1μm인 컨택트 홀 패턴(C35-6)을 배치한다.
마찬가지로, 패턴 밀도 50%에 대하여, 단순한 직사각형 패턴(50%)과, 선 폭 0.4μm인 라인 앤드 스페이스 패턴(C50-2)과, 사이즈 0.45μm인 컨택트 홀 패턴(C50-3)과, 사이즈 0.25μm인 컨택트 홀 패턴(C50-4)과, 선 폭 0.1μm인 라인 앤드 스페이스 패턴(C50-5)과, 사이즈 0.1μm인 컨택트 홀 패턴(C50-6)을 배치한다.
마찬가지로, 패턴 밀도 75%에 대하여, 단순한 직사각형 패턴(75%)과, 선 폭 0.4μm인 라인 앤드 스페이스 패턴(C75-2)과, 사이즈 0.45μm인 컨택트 홀 패턴(C75-3)과, 사이즈 0.25μm인 컨택트 홀 패턴(C75-4)과, 선 폭 0.1μm인 라인 앤드 스페이스 패턴(C75-5)과, 사이즈 0.1μm인 컨택트 홀 패턴(C75-6)을 배치한다.
도 7은, 실시 형태 1에 있어서의 패턴의 복잡도에 기인하는 대전량의 측정 결과를 나타내는 도면이다. 도 7에서, 세로 축에 정적 대전량(단위는 a.u.)을 나타내고, 가로 축에 단위 면적당 외주 거리(W)(단위는 a.u.)를 나타낸다. 도 7에서는, 도 6에 도시한 평가 기판에 묘화되는 평가 패턴을 묘화하는 경우에 있어서의 대전량의 측정 결과를 나타내고 있다. 도 7에 도시한 바와 같이, 단위 면적당 외주 거리(W)가 커짐에 따라, 어느 패턴 밀도(U)에 대해서도, 일단, 대전량이 감소(양 대전이 감소)하고, 또한 단위 면적당 외주 거리(W)가 커지면 대전량이 느슨한 상승으로 변하는 경향이 있음을 알 수 있다. 이러한 도 7의 결과를 다항식으로 피팅하면, 패턴의 복잡도에 기인하는 대전량(Cw)은, 이하의 식 (1)으로 근사할 수 있다.
(1) Cw(U, W)=a(U)·W/U+b(U){1-exp(-c·W/U)}
함수(a(U))는, 패턴 밀도(U)에 의존한 함수를 나타낸다. 함수(b(U))는, 함수(a(U))와는 상이한 패턴 밀도(U)에 의존한 함수를 나타낸다. c는, 계수를 나타낸다. 이와 같이, 패턴의 복잡도에 기인하는 대전량(Cw)은, 패턴의 면적 밀도(U)와, 단위 면적당 패턴의 외주 거리(W)와, 패턴의 면적 밀도(U)에 의존하는 함수(a(U))와, 함수(a(U))와는 상이한 패턴의 면적 밀도(U)에 의존하는 함수(b(U))와, 계수(c)를 이용한 모델식 (1)을 적용하여 연산함으로써 구할 수 있다.
여기서, 시료(2)에 생기는 대전량은, 패턴의 복잡도에 기인하는 대전량(Cw) 외에, 조사 전자가 기여하는 변수(CE(E))와, 포깅 전자가 기여하는 변수(CF(F))와, 경과 시간이 기여하는 대전 감쇠분(CT(T, t))로 분해할 수 있다. 이들 중, 대전 감쇠분(CT)에 대하여, 패턴의 복잡도에 기인하는 성분을 검증한다.
도 8은, 실시 형태 1에 있어서의 패턴의 복잡도에 기인하는 대전 감쇠 강도의 측정 결과를 나타내는 도면이다. 도 8에서, 세로 축에 대전 감쇠 강도(단위는 a.u.)를 나타내고, 가로 축에 단위 면적당 외주 거리(W)(단위는 a.u.)를 나타낸다. 도 8에서는, 도 6에 도시한 평가 기판에 묘화되는 평가 패턴을 묘화하는 경우에 있어서의 대전 감쇠 강도의 측정 결과를 나타내고 있다. 도 8에 도시한 바와 같이, 단위 면적당 외주 거리(W)가 커짐에 따라, 어느 패턴 밀도(U)에 대해서도, 대전 감쇠 강도가 커져(감쇠가 진행되어) 수속(포화)하는 경향이 있음을 알 수 있다. 이러한 도 8의 결과를 다항식으로 피팅하면, 패턴의 복잡도에 기인하는 대전 감쇠 강도(kw)는, 이하의 식 (2)으로 근사할 수 있다.
(2) kw=kw1(U)·W/U+kw2(U)·{1-exp(-kw3·W/U)}
함수(kw1(U))는, 패턴 밀도(U)에 의존한 함수를 나타낸다. 함수(kw2(U))는, 함수(kw1(U))와는 상이한 패턴 밀도(U)에 의존한 함수를 나타낸다. kw3는, 계수를 나타낸다. 이와 같이, 패턴의 복잡도에 기인하는 대전 감쇠 강도(kw(U, W))는, 패턴의 면적 밀도(U)와, 단위 면적당 패턴의 외주 거리(W)와, 패턴의 면적 밀도(U)에 의존하는 함수(kw1(U))와, 함수(kw1(U))와는 상이한 패턴의 면적 밀도(U)에 의존하는 함수(kw2(U))와, 계수(kw3)를 이용한 모델 식 (2)를 적용하여 연산함으로써 구할 수 있다.
식 (2)은, kw1(U)를 함수(a(U))로, kw2(U)를 함수(b(U))로, 계수(kw3)를 계수(c)로 치환하면, 상술한 모델 식 (1)과 같아진다. 환언하면, 패턴의 복잡도에 기인하는 대전량과 패턴의 복잡도에 기인하는 대전 감쇠 강도란, 동일한 모델 식 (1)으로 표현할 수 있다. 이상에 기초하여, 실시 형태 1에서는, 이러한 패턴의 복잡도에 기인하는 대전량을 고려하여 대전량 분포(C)를 구한다. 마찬가지로, 실시 형태 1에서는, 이러한 패턴의 복잡도에 기인하는 대전 감쇠 강도를 고려하여 대전량 분포(C)를 구한다.
도 9는, 실시 형태 1에 있어서의 묘화 방법의 주요부 공정의 일예를 나타내는 플로우차트도이다. 도 9에서, 실시 형태 1에 있어서의 묘화 방법은, 패턴 밀도 분포(U(x, y)) 연산 공정(S100)과, 도스량 분포(D(x, y)) 산출 공정(S102)과, 조사량 분포(E(x, y)) 산출 공정(S104)과, 포깅 전자량 분포(F(x, y, U)) 산출 공정(S106)과, 묘화 경과 시간(T(x, y)) 연산 공정(S107)과, 누적 시간(t) 연산 공정(S108)과, 대전량 분포(C(x, y)) 산출 공정(S109)과, 위치 이탈량 분포(P(x, y)) 연산 공정(S110)과, 편향 위치 보정 공정(S112)과, 묘화 공정(S114)이라고 하는 일련의 공정을 실시한다.
패턴 면적 밀도 분포(U(x, y)) 연산 공정(S100)으로서, 패턴 밀도 분포 산출부(31)는, 기억 장치(140)로부터 묘화 데이터를 읽어내어, 묘화 영역(혹은 프레임 영역)이 소정 치수(그리드 치수)로 메쉬 형상으로 가상 분할된 복수의 메쉬 영역의 메쉬 영역마다, 묘화 데이터로 정의되는 도형 패턴의 배치 비율을 나타내는 패턴 밀도(U(x, y))를 연산한다. 그리고, 메쉬 영역마다의 패턴 밀도의 분포(U(x, y))를 작성한다.
도스량 분포(D(x, y)) 산출 공정(S102)으로서, 도스량 분포 산출부(32)는, 패턴 밀도 분포(U(x, y))를 이용하여, 메쉬 영역마다의 도스량의 분포(D(x, y))를 산출한다. 도스량의 연산에는, 후방 산란 전자에 의한 근접 효과 보정을 행하면 바람직하다. 도스량(D)은, 이하의 식 (3)으로 정의할 수 있다.
(3) D=D0×{(1+2×η)/(1+2×η×U)}
식 (3)에서, D0는 기준 도스량이며, η는 후방 산란율이다.
이러한 기준 도스량(D0) 및 후방 산란율(η)은, 해당 묘화 장치(100)의 유저에 의해 설정된다. 후방 산란율(η)은, 전자 빔(6)의 가속 전압, 시료(2)의 레지스터 막 두께 또는 하지 기판의 종류, 프로세스 조건(예를 들면, PEB 조건 또는 현상 조건) 등을 고려하여 설정할 수 있다.
조사량 분포(E(x, y)) 산출 공정(S104)으로서, 조사량 분포 산출부(33)는, 패턴 밀도 분포(U(x, y))의 각 메쉬값과 도스량 분포(D(x, y))의 대응 메쉬값을 곱함으로써, 메쉬 영역마다의 조사량 분포(E(x, y))(「조사 강도 분포」라고도 함)를 연산한다.
포깅 전자량 분포(F(x, y, U)) 산출 공정(S106)으로서, 포깅 전자량 분포 산출부(34)(포깅 하전 입자량 분포 연산부)는, 포깅 전자의 분포 함수(g(x, y))와, 상술한 조사량 분포(E(x, y)) 산출 공정에 의해 산출된 조사량 분포(E(x, y))를 합성곱 적분함으로써, 포깅 전자량 분포(F(x, y, U))(포깅 하전 입자량 분포)(=E·g)를 연산한다. 이하, 구체적으로 설명한다.
우선, 포깅 전자의 확대 분포를 나타내는 분포 함수(g(x, y))는, 포깅 효과의 영향 반경(σ)을 이용하여, 이하의 식 (4-1)으로 정의할 수 있다. 여기에서는, 일예로서 가우스 분포를 이용하고 있다.
(4-1) g(x, y)=(1/πσ2)×exp{-(x2+y2)/σ2
포깅 전자량 분포(F(x, y,σ))는, 이하의 식 (4-2)으로 정의할 수 있다.
(4-2) F(x, y,σ)
=∫∫g(x-x', y-y') E(x', y') dx'dy'
묘화 경과 시간(T(x, y)) 연산 공정(S107)으로서, 묘화 경과 시간 연산부(37)는, 시료(2) 상의 각 위치에 대하여 묘화 개시 시각(레이아웃 선두 혹은 선두 프레임의 묘화를 개시하는 시각)으로부터 실제로 묘화하는 시각까지의 경과 시간(T(x, y))을 연산한다. 예를 들면, 해당하는 프레임 영역(스트라이프 영역)이 i 번째의 제i 프레임 영역인 경우에는, 묘화 개시 위치의 묘화를 개시하는 묘화 개시시각으로부터 한개 전의 제i-1 프레임 영역(스트라이프 영역)까지의 각 위치(x, y)를 묘화할 때까지의 예상 시간을 경과 시간(T(x, y))으로서 연산한다.
누적 시간(t) 연산 공정(S108)으로서, 누적 시간 연산부(38)는, 이미 묘화가 종료된 묘화 단위 영역이 되는, 예를 들면, 프레임 영역(스트라이프 영역)의 묘화에 걸린 묘화 시간을 누적한 누적 시간(t)을 연산한다. 예를 들면, 현재, 해당하는 프레임 영역이 i 번째의 제i 프레임 영역인 경우에는, 제1 프레임 영역을 묘화하기 위한 시간(t(1)), 제2 프레임 영역을 묘화하기 위한 시간(t(2)), ···제i 프레임 영역을 묘화하기 위한 시간(t(i))까지를 누적 가산한 가산값을 산출한다. 이에 의하여, 해당하는 프레임 영역까지의 누적 시간(t)을 얻을 수 있다.
여기서, 현재, 처리를 행하고 있는 해당 프레임 영역 내를 실제로 묘화하는 경우, 한개 전의 프레임 영역까지는 묘화가 이미 완료되어 있으므로, 한개 전까지의 프레임 영역 내에서 전자 빔(6)이 조사된 개소는 대전 부분이 된다. 따라서, 해당 프레임 영역의 누적 시간(t)으로부터 대전 부분이 있는 한개 전까지의 프레임 영역 내의 각 위치(x, y)의 묘화 경과 시간(T(x, y))을 뺀 차분값(t-T)이 대전 부분을 묘화한 후의 경과 시간이 된다.
대전량 분포(C(x, y)) 산출 공정(S109)으로서, 대전량 분포 산출부(35)는, 조사량 분포(E(x, y))와, 포깅 전자량 분포(F(x, y,σ))와, 시간의 경과에 수반하는 대전 감쇠량과, 상술한 패턴의 복잡도가 기여하는 대전량을 이용하여, 대전량 분포(C(x, y))를 산출한다.
우선, 내부 공정이 되는 외주 거리 취득 공정으로서, 외주 거리 취득부(39)는, 기억 장치(144)로부터 단위 면적당 패턴의 외주 거리(W)를 취득한다. 기억 장치(140)에 저장되는 묘화 데이터로 정의되는 복수의 도형 패턴에 대하여, 소정의 단위 면적마다, 단위 면적당 패턴의 외주 거리(W)를 오프라인으로 연산해 두고, 이러한 단위 면적당 패턴의 외주 거리(W) 데이터를 기억 장치(144)에 저장해 둔다. 혹은, 외주 거리 취득부(39)가, 기억 장치(140)에 저장되는 묘화 데이터를 읽어내고, 소정의 단위 면적마다, 단위 면적당 패턴의 외주 거리(W)를 연산해도 상관없다. 묘화 장치(100) 내부에서 연산하는 경우에는, 패턴 밀도 분포(U(x, y)) 연산 공정(S100)과 병렬로 연산 처리를 행하면 바람직하다. 이에 의하여, 단위 면적당 패턴의 외주 거리(W)를 연산하기 위한 처리 시간에 의하여, 대전량 분포(C(x, y))의 산출 처리가 대기당하는 것을 회피할 수 있다. 또한, 단위 면적당 패턴의 외주 거리(W)를 연산하기 위한 단위 면적의 영역으로서, 패턴 밀도(U)를 연산하는 경우에 이용한 메쉬 영역을 이용하면 바람직하다.
여기서, 대전량 분포(C(x, y))를 구하기 위한 함수(C(E, F, T, t, U, W))를 가정하였다. 구체적으로는, 조사 전자가 기여하는 변수(CE(E))와, 포깅 전자가 기여하는 변수(CF(F))와, 경과 시간이 기여하는 대전 감쇠분(CT(T, t, U, W))과, 상술한 패턴의 복잡도가 기여하는 대전량 성분(Cw(U, W))으로 분리했다. 또한, 대전 감쇠분(CT(T, t, U, W))에 대해서도, 패턴 밀도(U), 및 단위 면적당 패턴의 외주 거리(W)에 의존하는 것으로부터 알 수 있듯이, 상술한 패턴의 복잡도가 기여하는 성분을 고려한다. 함수(C(E, F, T, t, U, W))는, 이하의 식 (5)로 정의한다.
(5) C(x, y)=C(E, F, T, t, U, W)
=CE(E)+CFe(F)+CF(F)+CT(T, t, U, W)
+Cw(U, W)
=(d0+d1×U+d2×D
+d3×(UD)+d4×(1-exp(d5×(UD)))
+d6×(UD)·exp(d7×(UD))
+(e1×F+e2×F2+e3×F3)
+(f1×F+f2×F2+f3×F3)
+κ(U)·exp{-(t-T)/λ(U)}
+kw(U, W)·exp{-(t-T)/λ(U)}
+a(U)·W/U+b(U){1-exp(-c·W/U)}
=(d0+d1×U+d2×D
+d3×(UD)+d4×(1-exp(d5×(UD)))
+d6×(UD)·exp(d7×(UD))
+(e1×F+e2×F2+e3×F3)
+κ(U)·exp{-(t-T)/λ(U)}
+{kw1(U)·W/U+kw2(U)
·{1-exp(-kw3·W/U)}}
·exp{-(t-T)/λ(U)}
+a(U)·W/U+b(U){1-exp(-c·W/U)}
상술한 바와 같이, 실시 형태 1에서, 대전량 분포 산출부(35)는, 시료(2) 상에 전자 빔이 조사된 경우의 조사역의 대전량 분포(C(x, y))를, 패턴의 복잡도를 나타내는 지표를 이용하여 연산한다. 환언하면, 대전량 분포(C(x, y))를, 패턴의 면적 밀도(U)와, 단위 면적당 패턴의 외주 거리(W)와, 패턴의 면적 밀도(U)에 의존하는 함수를 이용하여 연산한다. 이에 의하여, 패턴의 복잡도에 기인하여 위치 이탈이 생길 수 있는 개소의 근사 정밀도를 높일 수 있다.
또한, 식 (5)에 이용되는, 패턴 면적 밀도(U)에 의존한 대전 감쇠량(κ(U))은, 예를 들면, 이하의 식 (6)으로 근사할 수 있다. 여기에서는, 식 (6)이 2 차 함수로 되어 있으나, 이에 한정되는 것은 아니며, 더욱 고차의 함수여도 되고, 저차의 함수여도 된다.
(6) κ(U)=κ0+κ1U+κ2U2
그리고, 식 (5)에 이용되는, 패턴 면적 밀도(U)에 의존한 대전 감쇠 시 정수(λ(U))는, 예를 들면, 다음의 식 (7)으로 근사할 수 있다. 여기에서는, 식 (7)이 2 차 함수로 되어 있으나, 이에 한정되는 것은 아니며, 더욱 고차의 함수여도 되고, 저차의 함수여도 된다.
(7) λ(U)=λ0+λ1U+λ2U2
또한, 식 (5) 내지 식 (7)의 각 계수(d0, d1, d2, d3, d4, d5, d6, d7, e1, e2, e3, f1, f2, f3, κ0, κ1, κ2, λ0, λ1, λ2, kw3, c), 및 함수((kw1(U)), kw2(U), a(U), b(U))에 대해서는, 상술한 일본 특허 제5525936호 공보, 일본 특허 공개 공보 2015년 제138882호와 마찬가지로, 실험 결과 및/혹은 시뮬레이션 결과를 피팅(근사)하여 구하면 된다.
실시 형태 1에서는, 종래의 조사 전자가 기여하는 변수(CE(E))와, 포깅 전자가 기여하는 변수(CF(F))와, 경과 시간이 기여하는 대전 감쇠분(CT(T, t))에, 추가로 상술한 패턴의 복잡도가 기여하는 대전량 성분(Cw(U, W))을 추가함으로써 보정하였다. 또한, 대전 감쇠분(CT(T, t))에, 상술한 패턴의 복잡도가 기여하는 성분을 추가함으로써 보정하였다. 따라서, 종래의 조사 전자가 기여하는 변수(CE(E))와, 포깅 전자가 기여하는 변수(CF(F))와, 경과 시간이 기여하는 대전 감쇠분(CT(T, t))에 대해서는, 종래와 같이 구하면 된다. 예를 들면, 이하와 같이 하여 구할 수 있다.
우선, 대전 감쇠량(κ)과 대전 감쇠 시 정수(λ)와 묘화 경과 시간(t)을 이용하여, 각 패턴 면적 밀도(U)의 대전량(C)의 감쇠 곡선은, 지수 함수로 나타낸 다음의 식 (8)로 근사할 수 있다.
(8) C=κ·exp(-t/λ)
또한, 패턴 면적 밀도(U)(패턴 면적율(U))가, 25%, 50%, 75% 및 100%인 각 경우에 대하여, 소정의 대전용 패턴의 묘화 직후의 측정 위치와 묘화로부터 50 분 후의 측정 위치와의 차를 피팅함으로써, 식 (5)에서 근사한 패턴 면적 밀도(U)에 의존한 대전 감쇠량(κ(U))을 얻을 수 있다. 대전용 패턴은, 상술한 바와 같이, 심플 패턴을 이용하면 된다.
또한, 패턴 면적 밀도(U)(패턴 면적율(U))가, 25%, 50%, 75% 및 100%인 각 경우에 대하여, 소정의 대전용 패턴의 묘화 직후부터 50 분 후까지의 복수의 타이밍에서의 측정 위치와 묘화로부터 50 분 후의 측정 위치와의 각 차를 피팅 함으로써, 식 (7)에서 근사한 패턴 면적 밀도(U)에 의존한 대전 감쇠 시 정수(λ(U))를 얻을 수 있다.
이상의 결과로부터, 이러한 소정의 대전용 패턴이 묘화된 조사부의 각 위치(좌표(x, y))에 있어서의 대전량(C(x, y))은, 다음의 식 (9)로 근사할 수 있다.
(9) C(x, y)=κ(U)·exp(-t/λ(U))
그리고, 상술한 바와 같이, 차분값(t-T)이 대전 부분을 묘화한 후의 경과 시간이 되므로, 식 (9)를 이용한 CT(T, t)는, 다음의 식 (10)으로 변형할 수 있다.
(10) CT(T, t)=κ(U)·exp{-(t-T)/λ(U)}
또한, 식 (10)에서는, 대전용의 평가 패턴(20) 내의 대전 감쇠량(κ(U))이 모든 위치에서 같다고 하는 가정 하에서 추측되어 있다. 패턴 면적 밀도(U)가 25%으로부터 75%로 증가함에 따라 음의 전하 감쇠(κ(U))의 크기는 증가하지만, 100%의 패턴 면적 밀도(U)에서 음의 전하 감쇠(κ(U))는 다시 감소한다. 실제로는, 복수의 프레임 영역에 걸치는 듯한 소정의 사이즈의 대전용 패턴을 묘화하는 경우에, 최초로 묘화된 개소와 최후로 묘화되는 개소에서는 상당한 시간이 경과하고 있다. 관측되는 위치 이탈량(Y)으로부터 균일 분포를 가정하여 구한 대전 감쇠량(κ(U))에 대하여, 대전이 감쇠하는 대전 감쇠 시 정수(λ)를 적용하여 설정된 보정 후의 대전 감쇠량(κ"(U))으로부터 위치 이탈량(Y")을 구하면, Y"쪽이 Y보다 작아진다. 이에, 위치 이탈량(Y")이 원래의 위치 이탈량(Y)과 동일해지는 듯한 보정식(κ"=L(λ)·κ)을 이용하여, 대전 감쇠량(κ(U))을 보정해도 된다.
예를 들면, 복수의 대전 감쇠 시 정수(λ)를 이용하여, 각 대전 감쇠 시 정수(λ)에서의 κ"/κ를 플롯한 결과를 피팅함으로써, 보정식 κ"=L(λ)·κ을 얻을 수 있다. 예를 들면, κ"=(1+3.1082·λ-1.0312)·κ을 얻을 수 있다.
예를 들면, 패턴 면적 밀도(U)가, 75%인 경우와 100%인 경우에서 대전 감쇠량이 역전하는 경우가 있으나, 이러한 보정에 의하여, 이러한 역전 현상은 해소되고, 보정 후의 대전 감쇠량(κ"(U))은, 패턴 면적 밀도(U)가 25%, 50%, 75%, 100%로 순서대로 작아져 간다.
또한, 실시 형태 1에 있어서의 모델에서는, 우선은, 대전 감쇠분(CT(T, t))을 무시하고, 조사역의 함수는, 변수 CF(F)=0, 즉, C(E, F, T, t)=CE(E)로 가정하였다. 한편, 비조사역의 함수는, 변수(CE(E))=0, 즉, C(E, F)=CF(F)로 가정하였다. 또한, 조사역 내는 균일하게 대전하는 것으로 가정하였다. 즉, CE(E)=co로 가정하였다. 이 co는, 정수이며, 예를 들면, 1이다.
이에, 먼저, 비조사역의 대전량 분포(CF(F))와 포깅 전자량 강도(F)의 관계를, 다음 식 (11)과 같은 다항식 함수에 의해 나타내었다. 다음 식 (11)에서, f1, f2, f3은 정수이다.
(11) CF(F)=f1×F+f2×F2+f3×F3
이어서, 각 패턴 밀도에 대하여 y=0에 있어서의 대전량 분포(C(x, 0))를 산출한다. 또한, y=0으로 한정하지 않고, 2 차원에서 대전량 분포(C(x, y))를 산출함으로써, 이하에 행하는 피팅의 정밀도를 향상시킬 수 있다.
그리고, 비조사역의 대전량 분포(C(x, 0))와, 상기 식 (11)의 CF(F)이 매우 적합한듯한 최적의 포깅 반경(σ)을 구한다. 포깅 반경(σ)이 과소인 경우 또는 포깅 반경(σ)이 과대인 경우에는, 양호한 피팅 결과를 얻을 수 없다. 즉, 포깅 반경(σ)이 과소 혹은 과대가 되면, 각 패턴 밀도의 데이터가 서로 떨어져 버리므로, 상기 파라미터(f1, f2, f3)를 구할 수 없다. 이에 대하여, 최적의 포깅 반경(σ)이 구해지면, 양호한 피팅 결과가 얻어져, 상기 파라미터(f1, f2, f3)를 구할 수 있다.
이어서, 상기 구한 최적의 포깅 반경(σ)을 이용하여, 조사역의 포깅 전자량 분포(F)를 구한다. 그리고, 조사역의 대전량 분포(C(E, F))를 조사량 분포(E)와 포깅 전자량 분포(F)를 이용하여, 다음 식 (12)과 같은 다항식 함수에 의해 나타내었다. 다음 식 (12)에서는, 포깅 전자가 기여하는 대전량 분포(CFe(F))가 고려되어 있다.
(12) C(E, F)=CE(E)+CFe(F)
=(d0+d1×U+d2×D+d3×E)
+d4×(1-exp(d5×E))
+d6×E·exp(d7×E)
+(e1×F+e2×F2+e3×F3)
그리고, 조사역의 대전량 분포(C(x, 0))와, 상기 식 (12)의 대전량 분포(C(E, F))가 가장 적합한듯한 파라미터(d0, d1, d2, d3, d4, d5, d6, d7, e1, e2, e3)를 구한다.
이어서, 상기 식 (12)으로 나타낸 조사역의 대전량 분포(C(E, F))에, 추가로, 대전 감쇠에 기인한 대전량 분포를 가산한 대전량 분포(C(x, y))를 사용하여, 상술한 패턴의 복잡도에 따른 평가를 행한다. 그리고, 얻어진 측정 결과를 피팅하여, 패턴의 복잡도가 기여하는 대전량 성분(Cw(U, W))의 파라미터를 구한다. 또한, 대전 감쇠분에 대해서도, 상술한 패턴의 복잡도에 따른 평가를 행한다. 그리고, 패턴의 복잡도를 고려하지 않은 경우와의 어긋남을 피팅하고, 패턴의 복잡도가 기여하는 대전 감쇠 강도(kw(U, W))의 파라미터를 구한다. 그리고, 조사역의 대전량 분포(C(E, F))에, 추가로, 대전 감쇠에 기인한 대전량 분포를 가산한 대전량 분포(C(x, y))에, 추가로, 얻어진 대전량 성분(Cw(U, W))과, 대전 감쇠 강도(kw(U, W))에 exp{-(t-T)/λ(U)}를 곱한 성분을 가산함으로써, 상술한 식 (5)이 얻어진다. 이에 의하여, 대전 감쇠분을 보정할 수 있다.
이들 계수, 함수, 및 후술하는 응답 함수(r(x, y))는, 미리, 기억 장치(143)에 저장해 둔다.
위치 이탈량 분포(P(x, y)) 연산 공정(S110)으로서, 위치 이탈량 분포 산출부(36)(위치 이탈량 연산부)는, 얻어진 대전량 분포(C(x, y))를 이용하여, 전자 빔(6)의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산한다. 구체적으로는, 위치 이탈량 분포 산출부(36)는, 대전량 분포(C(x, y))의 각 대전량(C)에 응답 함수(r(x, y))를 합성곱 적분함으로써, 대전량 분포(C(x, y))의 각 위치(x, y)의 대전량에 기인한 묘화 위치(x, y)의 위치 이탈량(P)을 연산한다. 이 대전량 분포(C(x, y))를 위치 이탈량 분포(P(x, y))로 변환하는 응답 함수(r(x, y))를 가정한다. 여기에서는, 대전량 분포(C(x, y))의 각 위치에서 표시되는 대전 위치를 (x', y')로 나타내고, 현재, 데이터 처리를 행하고 있는 해당하는 프레임 영역(예를 들면, 제i 프레임 영역)의 빔 조사 위치를 (x, y)로 나타낸다. 여기서, 빔의 위치 이탈은, 빔 조사 위치(x, y)로부터 대전 위치(x', y')까지의 거리의 함수로서 나타낼 수 있으므로, 응답 함수를 r(x-x', y-y')와 같이 기술할 수 있다. 응답 함수 r(x-x', y-y')는, 미리 실험을 행하여, 실험 결과와 적합하도록 미리 구해두면 된다. 이하, 실시 형태 1에서, (x, y)는, 현재, 데이터 처리를 행하고 있는 해당하는 프레임 영역의 빔 조사 위치를 나타낸다.
그리고, 위치 이탈량 분포 산출부(36)는, 해당하는 프레임 영역의 묘화하고자 하는 각 위치(x, y)의 위치 이탈량(P)으로부터 위치 이탈량 분포(Pi(x, y))(혹은, 위치 이탈량 맵(Pi(x, y))이라고도 함)을 작성한다. 연산된 위치 이탈량 맵(Pi(x, y))은, 예를 들면, 기억 장치(143)에 저장됨과 동시에, 제어 계산기(120)로 출력된다.
한편, 제어 계산기(120) 내에서는, 샷 데이터 생성부(41)가, 기억 장치(140)로부터 묘화 데이터를 읽어내어, 복수 단의 데이터 변환 처리를 행하고, 묘화 장치(100) 고유의 포맷의 샷 데이터를 생성한다. 묘화 데이터로 정의되는 도형 패턴의 사이즈는, 통상, 묘화 장치(100)가 1 회의 샷으로 형성할 수 있는 샷 사이즈보다 크다. 그 때문에, 묘화 장치(100) 내에서는, 묘화 장치(100)가 1 회의 샷으로 형성 가능한 사이즈가 되도록, 각 도형 패턴을 복수의 샷 도형으로 분할한다(샷 분할). 그리고, 샷 도형마다, 도형종을 나타내는 도형 코드, 좌표, 및 사이즈라고 하는 데이터를 샷 데이터로서 정의한다.
편향 위치 보정 공정(S112)(위치 이탈 보정 공정)으로서, 위치 이탈 보정부(42)(보정부)는, 위치 이탈량을 이용하여, 조사 위치를 보정한다. 여기에서는, 각 위치의 샷 데이터를 보정한다. 구체적으로는, 샷 데이터의 각 위치(x, y)에 위치 이탈량 맵(Pi(x, y))이 나타내는 위치 이탈량을 보정하는 보정값을 가산한다. 보정값은, 예를 들면, 위치 이탈량 맵(Pi(x, y))이 나타내는 위치 이탈량의 양음의 부호를 반대로 한 값을 이용하면 바람직하다. 이에 의하여, 전자 빔(6)이 조사되는 경우에, 그 조사처의 좌표가 보정되므로, 대물 편향기(13)에 의해 편향되는 편향 위치가 보정되게 된다. 샷 데이터는 샷 순으로 배열되도록 데이터 파일로 정의된다.
묘화 공정(S114)으로서, 편향 제어 회로(130) 내에서는, 샷 순으로, 성형 편향기 제어부(43)가, 샷 도형마다, 샷 데이터로 정의된 도형종 및 사이즈로부터 전자 빔(6)을 가변 성형하기 위한 성형 편향기(10)의 편향량을 연산한다. 동일한 시기에, 대물 편향기 제어부(44)가, 해당 샷 도형을 조사하는 시료(2) 상의 위치로 편향하기 위한 편향기(13)의 편향량을 연산한다. 환언하면, 대물 편향기 제어부(44)(편향량 연산부)가, 보정된 조사 위치로 전자 빔을 편향하는 편향량을 연산한다. 그리고, 전자 경통(1)(컬럼)은, 보정된 조사 위치로 전자 빔을 조사한다. 구체적으로는, 전자 경통(1)(컬럼) 내에 배치된 편향기(13)가, 연산된 편향량에 따라 전자 빔을 편향함으로써, 보정된 조사 위치로 전자 빔을 조사한다. 이에 의하여, 묘화 기구(150)는, 시료(2)의 대전 보정된 위치에 패턴을 묘화한다.
도 10은, 실시 형태 1에 있어서의 묘화 방법의 주요부 공정의 다른 일예를 나타내는 플로우차트도이다. 도 10에서, 도 9의 도스량 분포(D(x, y)) 산출 공정(S102) 대신에, 패턴 밀도 분포(U(x, y))에 관계없이 고정의 도스량 분포(D(x, y))를 이용하는 점 이외에는, 도 9와 같다.
도 11은, 실시 형태 1의 비교예에 있어서의 대전 효과 보정을 행한 결과의 위치 이탈량의 일예를 나타내는 도면이다.
도 12는, 실시 형태 1에 있어서의 대전 효과 보정을 행한 결과의 위치 이탈량의 일예를 나타내는 도면이다.
도 11에서, 비교예에서는, 대전량 분포(C(x, y))의 연산에, 상술한 패턴의 복잡도가 기여하는 대전량 성분(Cw(U, W))을 고려하고 있지 않은 결과를 나타낸다. 또한, 동시에 대전 감쇠분(CT(T, t))에, 상술한 패턴의 복잡도가 기여하는 성분을 고려하여 하지 않는 결과를 나타낸다. 도 11의 예에서는, 도 6에 나타낸 평가 패턴 중 패턴 밀도(U)가 5%, 15%인 패턴의 측정 결과를 나타내고 있다. 도 11에 도시한 바와 같이, x 방향의 위치 이탈량(Xresidual)과 y 방향의 위치 이탈량(Yresidual)이, 단위 면적당 외주 거리(W)가 커짐에 따라 커지는 것을 알 수 있다. 이에 대하여, 실시 형태 1에 있어서의 대전 효과 보정과 같이, 상술한 패턴의 복잡도가 기여하는 대전량 성분(Cw(U, W))을 고려함과 동시에, 대전 감쇠분(CT(T, t))에, 상술한 패턴의 복잡도가 기여하는 성분을 고려한 결과, 도 12에 도시한 바와 같이, x 방향의 위치 이탈량(Xresidual)과 y 방향의 위치 이탈량(Yresidual)이, 단위 면적당 외주 거리(W)에 상관없이, 동일한 정도로 보정할 수 있다. 따라서, 패턴의 복잡도에 의해 생기는 보정 정밀도의 차이를 없애거나, 혹은 저감할 수 있다.
이상과 같이, 실시 형태 1에 의하면, 전자 빔을 조사하는 경우에, 종래보다 대전 효과 보정의 정밀도를 향상할 수 있다. 그 결과, 고정밀도의 조사 위치에 빔을 조사할 수 있다.
이상, 구체적인 예를 참조하면서 실시 형태에 대하여 설명했다. 그러나, 본 발명은, 이러한 구체적인 예로 한정되는 것은 아니다. 대전 현상에 기인한 조사 위치의 위치 이탈은, 전자 빔 묘화 장치에 한정되는 것은 아니다. 본 발명은, 전자 빔으로 패턴을 검사하는 검사 장치 등, 목표한 위치에 전자 빔을 조사함으로써 얻어지는 결과를 이용하는 전자 빔 장치에 적응할 수 있다.
또한, 장치 구성이나 제어 수법 등, 본 발명의 설명에 직접 필요하지 않은 부분 등에 대해서는 기재를 생략했으나, 필요하게 여겨지는 장치 구성이나 제어 수법을 적절히 선택하여 이용할 수 있다. 예를 들면, 묘화 장치(100)를 제어하는 제어부 구성에 대해서는 기재를 생략했으나, 필요하게 여겨지는 제어부 구성을 적절히 선택하여 이용하는 것은 말할 필요도 없다. 예를 들면, 도 1 등에 있어서의 제어 계산기(110, 120)는, 추가로, 도시하고 있지 않은 버스를 통해, 기억 장치의 일예가 되는 RAM(랜덤 액세스 메모리), ROM, 자기 디스크(HD) 장치, 입력 수단의 일예가 되는 키보드(K/B), 마우스, 출력 수단의 일예가 되는 모니터, 프린터, 혹은 입력 출력 수단의 일예가 되는 FD, DVD, CD 등에 접속되어 있어도 상관없다.
그 밖에, 본 발명의 요소를 구비하여, 당업자가 적절히 설계 변경할 수 있는 모든 전자 빔 조사 방법 및 전자 빔 조사 장치는, 본 발명의 범위에 포함된다.

Claims (10)

  1. 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하고,
    얻어진 대전량 분포를 이용하여, 상기 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하고,
    상기 위치 이탈량을 이용하여, 조사 위치를 보정하고,
    보정된 조사 위치에 전자 빔을 조사하는 전자 빔 조사 방법.
  2. 제1항에 있어서,
    상기 패턴의 복잡도를 나타내는 지표로서, 단위 면적당 패턴의 외주 거리를 이용하는 것을 특징으로 하는 전자 빔 조사 방법.
  3. 제2항에 있어서,
    패턴의 면적 밀도(U)와, 상기 단위 면적당 패턴의 외주 거리(W)와, 상기 패턴의 면적 밀도(U)에 의존하는 함수를 이용하여 상기 대전량 분포가 연산되는 것을 특징으로 하는 전자 빔 조사 방법.
  4. 제2항에 있어서,
    패턴의 면적 밀도(U)와, 상기 단위 면적당 패턴의 외주 거리(W)와, 상기 패턴의 면적 밀도(U)에 의존하는 함수(a(U))와, 상기 함수(a(U))와는 상이한 상기 패턴의 면적 밀도(U)에 의존하는 함수(b(U))와, 계수(c)를 이용한, a(U)·W/U+b(U){1-exp(-c·W/U)}로 나타내는 모델식을 연산함으로써 상기 대전량 분포가 연산되는 것을 특징으로 하는 전자 빔 조사 방법.
  5. 제2항에 있어서,
    상기 대전량 분포는, 상기 복잡도를 나타내는 지표 외에, 추가로, 조사량 분포와, 포깅 전자량 분포와, 시간의 경과에 수반하는 대전 감쇠량을 이용하여 연산되는 것을 특징으로 하는 전자 빔 조사 방법.
  6. 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하는 대전량 분포 연산 회로와,
    얻어진 상기 대전량 분포를 이용하여, 상기 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하는 위치 이탈량 연산 회로와,
    상기 위치 이탈량을 이용하여, 조사 위치를 보정하는 보정 회로와,
    전자 빔을 방출하는 방출원과, 상기 전자 빔을 편향하는 편향기를 가지고, 보정된 조사 위치에 전자 빔을 조사하는 전자 빔 조사 기구
    를 구비하는 전자 빔 조사 장치.
  7. 제6항에 있어서,
    상기 대전량 분포 연산 회로는, 상기 패턴의 복잡도를 나타내는 지표로서, 단위 면적당 패턴의 외주 거리를 이용하는 것을 특징으로 하는 전자 빔 조사 장치.
  8. 제7항에 있어서,
    상기 대전량 분포 연산 회로는, 패턴의 면적 밀도(U)와, 상기 단위 면적당 패턴의 외주 거리(W)와, 상기 패턴의 면적 밀도(U)에 의존하는 함수를 이용하여 상기 대전량 분포를 연산하는 것을 특징으로 하는 전자 빔 조사 장치.
  9. 제7항에 있어서,
    상기 대전량 분포 연산 회로는, 패턴의 면적 밀도(U)와, 상기 단위 면적당 패턴의 외주 거리(W)와, 상기 패턴의 면적 밀도(U)에 의존하는 함수(a(U))와, 상기 함수(a(U))와는 상이한 상기 패턴의 면적 밀도(U)에 의존하는 함수(b(U))와, 계수(c)를 이용한, a(U)·W/U+b(U){1-exp(-c·W/U)}로 나타내는 모델식을 연산함으로써 상기 대전량 분포를 연산하는 것을 특징으로 하는 전자 빔 조사 장치.
  10. 기판에 형성되는 패턴의 복잡도를 나타내는 지표를 기억하는 기억 장치로부터 상기 지표를 읽어내고, 읽어내어진 상기 지표를 이용하여, 기판 상에 전자 빔이 조사된 경우의 대전량 분포를 연산하는 처리와,
    얻어진 상기 대전량 분포를 이용하여, 상기 전자 빔의 조사에 기인하여 형성되는 조사 패턴의 위치 이탈량을 연산하는 처리를,
    전자 빔을 조사하는 전자 빔 조사 장치를 제어하는 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체.
KR1020190059459A 2018-05-22 2019-05-21 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체 KR102238893B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-098298 2018-05-22
JP2018098298A JP7026575B2 (ja) 2018-05-22 2018-05-22 電子ビーム照射方法、電子ビーム照射装置、及びプログラム

Publications (2)

Publication Number Publication Date
KR20190133110A true KR20190133110A (ko) 2019-12-02
KR102238893B1 KR102238893B1 (ko) 2021-04-12

Family

ID=68614055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190059459A KR102238893B1 (ko) 2018-05-22 2019-05-21 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체

Country Status (5)

Country Link
US (1) US10950413B2 (ko)
JP (1) JP7026575B2 (ko)
KR (1) KR102238893B1 (ko)
CN (1) CN110517954B (ko)
TW (1) TWI754145B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159970B2 (ja) * 2019-05-08 2022-10-25 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
US11804361B2 (en) 2021-05-18 2023-10-31 Nuflare Technology, Inc. Charged particle beam writing method, charged particle beam writing apparatus, and computer-readable recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040450A (ja) * 2009-08-07 2011-02-24 Nuflare Technology Inc 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2011210509A (ja) * 2010-03-30 2011-10-20 Hitachi High-Technologies Corp 電子ビーム照射方法、及び走査電子顕微鏡
KR20180035178A (ko) * 2016-09-28 2018-04-05 가부시키가이샤 뉴플레어 테크놀로지 전자 빔 장치 및 전자 빔의 위치 이탈 보정 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2109093A5 (ko) * 1970-09-30 1972-05-26 Cit Alcatel
US3751404A (en) 1971-02-12 1973-08-07 Morton Norwich Products Inc L-prolyl-l-arginyl-l-volyl-l-tyrosyl-l-volyl-l-histidyl-l-prolyl-glycine
JPS5223551A (en) 1975-08-18 1977-02-22 Hitachi Shipbuilding Eng Co Kinetic pressure support container structure for static water pressure extruding machine
JPS51126183A (en) 1976-02-19 1976-11-04 Sony Corp Electric clock
JPS5440837A (en) 1977-09-06 1979-03-31 Nippon Steel Corp Manufacturing of steel pipe having resin-lined inner surface
GB2076841B (en) 1980-06-03 1985-06-19 Gen Electric Process for regulating the cure of silicone rubber products
JP4439038B2 (ja) 1999-06-17 2010-03-24 株式会社アドバンテスト 電子ビーム露光方法及び装置
JP2002158167A (ja) 2000-09-05 2002-05-31 Sony Corp 露光方法及び露光装置
DE10319370B4 (de) 2003-04-29 2007-09-13 Infineon Technologies Ag Verfahren zum Erfassen und Kompensieren von Lageverschiebungen bei photolithographischen Maskeneinheiten
JP5063071B2 (ja) * 2006-02-14 2012-10-31 株式会社ニューフレアテクノロジー パタン作成方法及び荷電粒子ビーム描画装置
JP5063035B2 (ja) 2006-05-30 2012-10-31 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP5480496B2 (ja) 2008-03-25 2014-04-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP2010250286A (ja) 2009-03-23 2010-11-04 Toshiba Corp フォトマスク、半導体装置、荷電ビーム描画装置
JP5414103B2 (ja) 2009-05-18 2014-02-12 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置およびその描画データ処理方法
JP5525798B2 (ja) 2009-11-20 2014-06-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置およびその帯電効果補正方法
JP5525936B2 (ja) 2010-06-30 2014-06-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5667848B2 (ja) 2010-11-19 2015-02-12 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5617947B2 (ja) * 2013-03-18 2014-11-05 大日本印刷株式会社 荷電粒子線照射位置の補正プログラム、荷電粒子線照射位置の補正量演算装置、荷電粒子線照射システム、荷電粒子線照射位置の補正方法
JP2014225428A (ja) 2013-04-24 2014-12-04 キヤノン株式会社 荷電粒子線照射装置、荷電粒子線の照射方法及び物品の製造方法
DE112014003984B4 (de) 2013-09-26 2020-08-06 Hitachi High-Technologies Corporation Mit einem Strahl geladener Teilchen arbeitende Vorrichtung
JP6353229B2 (ja) 2014-01-22 2018-07-04 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6951922B2 (ja) 2016-09-28 2021-10-20 株式会社ニューフレアテクノロジー 荷電粒子ビーム装置及び荷電粒子ビームの位置ずれ補正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040450A (ja) * 2009-08-07 2011-02-24 Nuflare Technology Inc 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2011210509A (ja) * 2010-03-30 2011-10-20 Hitachi High-Technologies Corp 電子ビーム照射方法、及び走査電子顕微鏡
KR20180035178A (ko) * 2016-09-28 2018-04-05 가부시키가이샤 뉴플레어 테크놀로지 전자 빔 장치 및 전자 빔의 위치 이탈 보정 방법

Also Published As

Publication number Publication date
KR102238893B1 (ko) 2021-04-12
US20190362937A1 (en) 2019-11-28
CN110517954B (zh) 2023-05-30
CN110517954A (zh) 2019-11-29
TWI754145B (zh) 2022-02-01
TW202004846A (zh) 2020-01-16
US10950413B2 (en) 2021-03-16
JP2019204857A (ja) 2019-11-28
JP7026575B2 (ja) 2022-02-28

Similar Documents

Publication Publication Date Title
JP5480555B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP4976071B2 (ja) 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
KR102027206B1 (ko) 하전 입자 빔 장치 및 하전 입자 빔의 위치 이탈 보정 방법
KR100878970B1 (ko) 하전 입자빔 묘화 장치
KR102027208B1 (ko) 전자 빔 장치 및 전자 빔의 위치 이탈 보정 방법
JP4476975B2 (ja) 荷電粒子ビーム照射量演算方法、荷電粒子ビーム描画方法、プログラム及び荷電粒子ビーム描画装置
US10114290B2 (en) Method for acquiring parameter for dose correction of charged particle beam, charged particle beam writing method, and charged particle beam writing apparatus
TWI611250B (zh) 帶電粒子束描繪裝置及帶電粒子束描繪方法
JP2007188950A (ja) 偏向収差補正電圧の演算方法及び荷電粒子ビーム描画方法
JP2017175079A (ja) 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
KR102238893B1 (ko) 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체
KR20220101689A (ko) 하전 입자 빔 묘화 방법 및 하전 입자 빔 묘화 장치
CN112840437B (zh) 带电粒子束描绘装置、带电粒子束描绘方法以及程序
KR102366045B1 (ko) 하전 입자 빔 묘화 방법 및 하전 입자 빔 묘화 장치
TWI831208B (zh) 帶電粒子束描繪方法、帶電粒子束描繪裝置及電腦可讀取記錄媒體
JP7031516B2 (ja) 照射量補正量の取得方法、荷電粒子ビーム描画方法、及び荷電粒子ビーム描画装置
US20230029715A1 (en) Charged particle beam writing method and charged particle beam writing apparatus
KR20230133771A (ko) 하전 입자 빔 묘화 방법, 하전 입자 빔 묘화 장치 및 컴퓨터 판독 가능한 기록 매체
JP2022177801A (ja) 荷電粒子ビーム描画方法、荷電粒子ビーム描画装置及びプログラム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant