KR20190106793A - 기판 제조 방법 - Google Patents

기판 제조 방법 Download PDF

Info

Publication number
KR20190106793A
KR20190106793A KR1020190026431A KR20190026431A KR20190106793A KR 20190106793 A KR20190106793 A KR 20190106793A KR 1020190026431 A KR1020190026431 A KR 1020190026431A KR 20190026431 A KR20190026431 A KR 20190026431A KR 20190106793 A KR20190106793 A KR 20190106793A
Authority
KR
South Korea
Prior art keywords
single crystal
laser light
substrate
laser
crystal substrate
Prior art date
Application number
KR1020190026431A
Other languages
English (en)
Other versions
KR102195946B1 (ko
Inventor
준이치 이케노
요헤이 야마다
히데키 스즈키
히토시 노구치
Original Assignee
신에츠 폴리머 가부시키가이샤
고쿠리츠다이가쿠호진 사이타마 다이가쿠
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에츠 폴리머 가부시키가이샤, 고쿠리츠다이가쿠호진 사이타마 다이가쿠, 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에츠 폴리머 가부시키가이샤
Publication of KR20190106793A publication Critical patent/KR20190106793A/ko
Application granted granted Critical
Publication of KR102195946B1 publication Critical patent/KR102195946B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

얇은 두께의 산화마그네슘 단결정 기판을 용이하게 얻을 수 있는 기판 제조 방법을 제공하는 것을 과제로 한다.
레이저 광을 집광하는 레이저 집광 수단을, 산화마그네슘 단결정 기판(20)의 피조사면 상에 비접촉으로 배치하는 제1 공정을 행한다. 그리고, 소정 조사 조건으로 단결정 기판 표면에 레이저 광을 조사하여 단결정 기판 내부에 레이저 광을 집광하면서 레이저 집광 수단과 단결정 기판(20)을 2차원 형상으로 상대적으로 이동시킴으로써 가공 흔적 열을 병렬로 형성해 가는 제2 공정을 행한다. 나아가 소정 조사 조건으로 단결정 기판 표면에 레이저 광을 조사하여 단결정 기판 내부에 레이저 광을 집광하면서 레이저 집광 수단과 단결정 기판(20)을 2차원 형상으로 상대적으로 이동시킴으로써, 제2 공정에서 조사하였을 때의 인접하는 조사 라인(L1)의 사이에 새로 가공 흔적 열을 형성해 감으로써 면상 박리를 발생시키는 제3 공정을 행한다.

Description

기판 제조 방법{Substrate Manufacturing method}
본 발명은, 얇은 두께의 산화마그네슘 단결정 기판을 제조하는 데에 최적인 기판 제조 방법에 관한 것이다.
반도체 분야, 디스플레이 분야, 에너지 분야 등에서 산화마그네슘 단결정 기판이 사용되고 있다. 이 산화마그네슘 단결정 기판을 제조하려면, 벌크 형상으로 결정 성장시켜 기판 형상으로 절단하는 것 외에 박막 형상으로 에피택셜 성장시키는 것이 알려져있다(예를 들어, 특허문헌 1 참조).
한편, 다이아몬드는 고주파·고출력 전자 디바이스에 적합한 반도체라고 생각되며, 그 합성 방법 중 하나인 기상 합성법에서는 산화마그네슘 기판이나 실리콘 기판이 베이스 기판으로서 이용되고 있다(예를 들어, 특허문헌 2).
특허문헌 1: 일본공개특허 2001-080996호 공보 특허문헌 2: 일본공개특허 2015-59069호 공보
최근에 반도체 장치의 고성능화에 따라, 격자 결함이 적고 박형의 산화마그네슘 단결정 기판이 더욱 필요해지고 있다.
상기 다이아몬드 기판의 제조에 있어서 베이스 기판인 산화마그네슘 기판(MgO 기판)은 고가이고, 예를 들어 단결정 다이아몬드를 기상 합성한 후에 베이스 기판으로서 필요한 두께를 남기면서 산화마그네슘 기판을 박리하여 분리함으로써 산화마그네슘 기판을 베이스 기판으로서 재이용 가능해진다. 구체적으로는 예를 들어 두께 200μm의 산화마그네슘의 베이스 기판으로부터 두께 180μm의 산화마그네슘 기판을 얻어 재이용하면 다이아몬드 기판 제조 프로세스에서 대폭적인 비용 저감을 달성할 수 있고, 다이아몬드 기판의 비용 저감에 크게 공헌하는 것을 기대할 수 있다.
본 발명은, 상기 과제를 감안하여, 얇은 두께의 산화마그네슘 단결정 기판을 용이하게 얻을 수 있는 기판 제조 방법을 제공하는 것을 과제로 한다.
그런데, 단결정 실리콘 기판을 얻는 제조 방법이 여러 가지 제안되어 있지만, 본 발명자는 면밀히 검토한 결과, 본 발명에서는 산화마그네슘 기판을 대상으로 한 단결정 실리콘과는 다른 새로운 가공 원리에 기초한 제조 방법을 발견하였다.
상기 과제를 해결하기 위한 본 발명의 일 태양에 의하면, 레이저 광을 집광하는 레이저 집광 수단을, 산화마그네슘의 단결정 부재의 피조사면 상에 비접촉으로 배치하는 제1 공정과, 상기 레이저 집광 수단을 이용하여 소정의 조사 조건으로, 상기 단결정 부재 표면에 레이저 광을 조사하여 상기 단결정 부재 내부에 레이저 광을 집광하면서 상기 레이저 집광 수단과 상기 단결정 부재를 2차원 형상으로 상대적으로 이동시킴으로써 가공 흔적 열을 병렬로 형성해 가는 제2 공정과, 상기 레이저 집광 수단을 이용하여 소정의 조사 조건으로, 상기 단결정 부재 표면에 레이저 광을 조사하여 상기 단결정 부재 내부에 레이저 광을 집광하면서 상기 레이저 집광 수단과 상기 단결정 부재를 2차원 형상으로 상대적으로 이동시킴으로써, 상기 제2 공정의 조사에 의해 형성된 인접하는 상기 가공 흔적 열의 사이에 새로 가공 흔적 열을 형성해 감으로써 면상 박리를 발생시키는 제3 공정을 구비하는 것을 특징으로 하는 기판 제조 방법이 제공된다.
본 발명에 의하면, 얇은 두께의 산화마그네슘 단결정 기판을 용이하게 얻을 수 있는 기판 제조 방법을 제공할 수 있다.
도 1의 (a)는, 본 발명의 일 실시형태에서 이용하는 박리 기판 제조 장치의 모식적인 사시도이고, (b)는, 본 발명의 일 실시형태에서 이용하는 박리 기판 제조 장치의 부분 확대 측면도이다.
도 2의 (a)는, 본 발명의 일 실시형태에서 레이저 광의 조사 순서를 설명하는 모식적인 평면도이고, (b)는, 본 발명의 일 실시형태에서, 레이저 광의 조사 후의 산화마그네슘 단결정 기판을 설명하는 모식적인 부분 측면 단면도이다.
도 3은, 실험예 1에서, 단결정 산화마그네슘 웨이퍼의 박리 전의 사진도이다.
도 4는, 실험예 1에서, (a)는 레이저 광을 조사해 가는 것을 설명하는 모식도이고, (b)는 레이저 광의 조사 조건을 설명하는 설명도이다.
도 5는, 실험예 1에서, 테스트 피스를 박리시켜 노출한 박리면의 사진도이다.
도 6은, 실험예 1에서, 테스트 피스 박리면에서 P1~P5를 설명하기 위한 사진도이다.
도 7은, 실험예 1에서, 테스트 피스 박리면에서 P1~P5를 설명하기 위한 사진도이다.
도 8은, 실험예 1에서, 테스트 피스의 박리면에서 촬영 위치를 순차적으로 어긋나게 하여 촬영한 사진도이다.
도 9는, 실험예 1에서, 상부 테스트 피스의 박리면 및 하부 테스트 피스의 박리면을 촬영한 사진도이다.
도 10은, 실험예 1에서, 상부 테스트 피스의 박리면 및 하부 테스트 피스의 박리면을 촬영한 사진도이다.
도 11은, 실험예 2에서, 상부 테스트 피스의 박리면 및 하부 테스트 피스의 박리면의 표면 거칠기의 측정 결과를 나타내는 차트이다.
도 12는, 실험예 3에서, (a)는 상부 테스트 피스의 박리면의 사진도이고, (b)는 상부 테스트 피스의 단면의 사진도이다.
도 13은, 실험예 3에서, (a)는 상부 테스트 피스의 박리면의 사진도이고, (b)는 상부 테스트 피스의 단면의 사진도이다.
도 14는, 실험예 3에서, (a)는 상부 테스트 피스의 박리면의 사진도이고, (b)는 상부 테스트 피스의 단면의 사진도이다.
도 15는, 실험예 3에서, (a)는 하부 테스트 피스의 박리면의 사진도이고, (b)는 하부 테스트 피스의 단면의 사진도이다.
도 16은, 실험예 3에서, (a)는 하부 테스트 피스의 박리면의 사진도이고, (b)는 하부 테스트 피스의 단면의 사진도이다.
도 17은, 실험예 3에서, (a)는 하부 테스트 피스의 박리면의 사진도이고, (b)는 하부 테스트 피스의 단면의 사진도이다.
도 18은, 실험예 3에서, 상부 테스트 피스와 하부 테스트 피스의 상대 위치를 검토한 사진도이다.
도 19는, 실험예 3에서, 상부 테스트 피스와 하부 테스트 피스의 상대 위치를 검토한 사진도이다.
도 20은, 실험예 3에서, 상부 테스트 피스와 하부 테스트 피스의 상대 위치를 검토한 사진도이다.
도 21은, 실험예 3에서, 상부 테스트 피스와 하부 테스트 피스의 상대 위치를 검토한 사진도이다.
이하, 첨부 도면을 참조하여 본 발명의 실시형태에 대해 설명한다. 이하의 설명에서는, 이미 설명한 것과 동일 또는 유사한 구성요소에는 동일 또는 유사한 부호를 부여하고, 그 상세한 설명을 적절히 생략한다. 또한, 이하에 나타내는 실시형태는, 본 발명의 기술적 사상을 구체화하기 위한 예시로서, 본 발명의 실시형태는 구성 부품의 재질, 형상, 구조, 배치 등을 하기의 것으로 특정하는 것이 아니다. 본 발명의 실시형태는, 요지를 벗어나지 않는 범위 내에서 여러 가지 변경하여 실시할 수 있다.
도 1에서, (a)는, 본 발명의 일 실시형태(이하, 본 실시형태라고 함)에서 이용하는 기판 제조 장치의 모식적인 사시도이고, (b)는, 본 실시형태에서 이용하는 기판 제조 장치의 부분 확대 측면도이다. 도 2에서, (a)는, 본 실시형태에서 레이저 광의 조사 순서를 설명하는 모식적인 평면도이고, (b)는, 본 실시형태에서, 레이저 광의 조사 후의 산화마그네슘 단결정 기판을 설명하는 모식적인 부분 측면 단면도이다.
본 실시형태에서는, 기판 제조 장치(10)(도 1 참조)를 이용하여 산화마그네슘 단결정 기판(MgO 기판)으로부터 박리 기판을 얻는다.
기판 제조 장치(10)는, XY 스테이지(11)와, XY 스테이지(11)의 스테이지면(11f) 상에 보유지지된 기판 안착용 부재(12)(예를 들어 실리콘 기판)와, 기판 안착용 부재(12)에 놓인 산화마그네슘 단결정 기판(20)을 향하여 레이저 광(B)을 집광하는 레이저 집광 수단(14)(예를 들어 집광기)을 구비하고 있다. 또, 도 1의 (a)에서는 산화마그네슘 단결정 기판(20)을 평면에서 볼 때 직사각형상으로 그리고 있지만, 물론 웨이퍼 형상이어도 되고, 형상을 자유롭게 선정할 수 있다.
XY 스테이지(11)는, 스테이지면(11f)의 높이 위치(Z축 방향 위치)를 조정할 수 있게 되어 있고, 스테이지면(11f)과 레이저 집광 수단(14)의 거리가 조정 가능, 즉 스테이지면(11f) 상의 단결정 기판과 레이저 집광 수단(14)의 거리가 조정 가능하게 되어 있다.
본 실시형태에서는, 레이저 집광 수단(14)은, 보정환(13)과, 보정환(13) 내에 보유지지된 집광 렌즈(15)를 구비하고, 산화마그네슘의 단결정 기판(20)의 굴절률에 기인하는 수차를 보정하는 기능, 즉 수차 보정환으로서의 기능을 가지고 있다. 구체적으로는, 도 1의 (b)에 도시된 바와 같이, 집광 렌즈(15)는, 공기 중에서 집광하였을 때에, 집광 렌즈(15)의 외주부(E)에 도달한 레이저 광(B)이 집광 렌즈(15)의 중앙부(M)에 도달한 레이저 광(B)보다 집광 렌즈 측에서 집광하도록 보정한다. 즉, 집광하였을 때, 집광 렌즈(15)의 외주부(E)에 도달한 레이저 광(B)의 집광점(EP)이, 집광 렌즈(15)의 중앙부(M)에 도달한 레이저 광(B)의 집광점(MP)에 비해, 집광 렌즈(15)에 가까운 위치가 되도록 보정한다.
이 집광 렌즈(15)는, 공기 중에서 집광하는 제1 렌즈(16)와, 이 제1 렌즈(16)와 단결정 기판(20)의 사이에 배치되는 제2 렌즈(18)로 구성된다. 본 실시형태에서는, 제1 렌즈(16) 및 제2 렌즈(18)는, 모두 레이저 광(B)을 원뿔형으로 집광할 수 있는 렌즈로 되어 있다. 그리고, 보정환(13)의 회전 위치를 조정함, 즉 제1 렌즈(16)와 제2 렌즈(18)의 간격을 조정함으로써, 집광점(EP)과 집광점(MP)의 간격을 조정할 수 있게 되어 있고, 레이저 집광 수단(14)은 보정환 부착된 렌즈로서의 기능을 가지고 있다.
제1 렌즈(16)로서는, 구면 또는 비구면의 단렌즈 외에, 각종 수차 보정이나 작동 거리를 확보하기 위해 번들렌즈를 이용하는 것이 가능하다.
(기판 제조 방법)
이하, 산화마그네슘 단결정 기판으로부터 얇은 두께의 산화마그네슘 단결정 기판을 제조하는 예를 첨부 도면을 참조하면서 설명한다.
본 실시형태에서는, 레이저 집광 수단(14)을, 격자 결함이 적은 산화마그네슘 단결정 기판(20)(이하, 단지 단결정 기판(20)이라고 함)의 피조사면(20r) 상에 비접촉으로 배치하는 제1 공정을 행한다. 또, 도시하지 않았지만 산화마그네슘 기판을 베이스 기판으로서 형성된 다이아몬드 기판에 있어서 산화마그네슘 기판의 얇은 기판을 남기고 산화마그네슘 기판을 박리하는 경우에는 산화마그네슘 기판 측으로부터 레이저 광을 조사하면 된다.
제1 공정 후, 제2 공정을 행한다. 이 제2 공정에서는, 레이저 집광 수단(14)을 이용하여 소정 조사 조건으로 단결정 기판(20)의 표면에, 1회차 조사 라인(L1) 상에 레이저 광(B)을 조사하여 단결정 기판(20) 내부에 레이저 광(B)을 집광하면서 레이저 집광 수단(14)과 단결정 기판(20)을 2차원 형상으로 상대적으로 이동시킴으로써, 가공 흔적(K1)을 단결정 부재 내부에 일렬로 형성하여 이루어지는 가공 흔적 열(LK1)을 병렬로 형성해 간다(예를 들어 도 2의 (a)나 도 4의 (a) 참조). 본 실시형태에서는, 가공 흔적(K1) 및 후술하는 가공 흔적(K2)(모두 예를 들어 도 4의 (a) 참조)은 주로 열 가공에 의해 형성된다.
여기서, 본 명세서에서 가공 흔적이란, 레이저 광의 집광에 의해 집광 위치로부터 단결정 기판 성분이 비산된 범위까지 포함하는 개념이다. 또한, 본 명세서에서 면상 박리란, 실제로 박리하지 않아도 약간의 힘을 가함으로써 박리하는 상태도 포함하는 개념이다.
제2 공정 후, 제3 공정을 행한다. 이 제3 공정에서는, 레이저 집광 수단(14)을 이용하여 소정 조사 조건으로, 단결정 기판(20)의 표면에 레이저 광(B)을 조사하여 단결정 기판(20) 내부에 레이저 광을 집광하면서 레이저 집광 수단(14)과 단결정 기판(20)을 2차원 형상으로 상대적으로 이동시킴으로써, 제2 공정에서 조사하였을 때의 인접하는 조사 라인(L1)의 사이(즉, 인접하는 가공 흔적 열(LK1)의 사이)에 가공 흔적 열(LK2)을 형성해 감으로써 면상 박리를 발생시킨다.
즉, 제2 공정에서는 1회차 조사 라인(L1) 상에 가공 흔적 열(LK1)을 형성하고, 제3 공정에서는 인접하는 1회차 조사 라인(L1)의 사이에 가공 흔적 열(LK2)을 형성한다. 이 가공 흔적 열(LK2)은 2회차 조사 라인(L2) 상에 형성되어 간다. 그리고, 제3 공정에서 가공 흔적 열(LK2)을 형성함으로써 면상 박리가 자연스럽게 발생하여 피조사면 측에 박리 기판(20p)이 형성된다.
제2 공정 및 제3 공정에서는, 상기 면상 박리에 의해 제조되는 박리 기판(20p)(도 2 참조)의 두께를 고려하여, 소정 높이 위치에 초점을 맺도록, 즉 단결정 기판(20)의 피조사면(20r)으로부터의 소정 깊이 위치에 초점을 맺도록, 레이저 집광 수단(14)과 단결정 기판(20)의 상대 거리를 미리 설정해 둔다.
본 실시형태에서는, 제2 공정에 의한 가공 흔적은, 면상 박리에 의해 분리된 두 기판 부분(상측 기판 부분 및 하측 기판 부분)에 각각 형성되어 있다. 그리고, 본 실시형태에서는, 제2 공정에 의해, 제3 공정에서 조사한 레이저 광이 박리면에 의해 반사되는 구조가 형성되어 있다. 예를 들어, 제2 공정에서 가공 흔적 주위에 형성된 가공층에 의해 제3 공정의 조사 레이저 광이 반사되는 구조가 형성되어 있고, 바꾸어 말하면, 제2 공정에 의해 레이저 광의 반사층(예를 들어 후술하는 도 9에 도시된 반사층(R))을 형성하고 있다.
또한, 제3 공정에서의 조사 위치는, 제2 공정에서 형성된 가공층이 존재하는 부분의 위치에 조사하면 된다. 이 경우, 도 4에 도시된 바와 같이, 오프셋 사이에서 정밀도 높게 배열하는 것이 바람직하다.
그리고, 제3 공정에서의 레이저 광(B)이 반사층에서 반사되어 면상 박리가 자연스럽게 발생하도록, 제2 공정 및 제3 공정에서 레이저 광(B)의 소정 조사 조건을 미리 설정해 둔다. 이 소정 조사 조건의 설정에서는, 단결정 기판(20)의 성질(결정 구조 등), 형성하는 박리 기판(20p)의 두께(t)(도 2의 (b) 참조), 초점에서의 레이저 광(B)의 에너지 밀도 등을 고려하여, 조사하는 레이저 광(B)의 파장, 집광 렌즈(15)의 수차 보정량(디포커스량), 레이저 출력, 가공 흔적(K1, K2)의 도트 피치(dp)(예를 들어 도 4의 (a) 참조. 동일 가공 흔적 열에서 인접하는 가공 흔적의 간격), 라인 피치(lp1, lp2)(도 2의 (a)나 도 4의 (a) 참조. 오프셋 피치. 각 공정에서 인접하는 가공 흔적 열끼리의 간격) 등의 여러 가지 값을 설정한다. 얻어진 박리 기판(20p)에는, 그 후, 필요에 따라 박리면의 연마 등의 후처리를 행한다.
본 실시형태에 의해, 얇은 두께의 산화마그네슘 단결정 기판을 용이하게 얻을 수 있다. 또한, 격자 결함이 적은 단결정 기판(20)으로부터 박리하여 얇은 두께의 산화마그네슘 단결정 기판을 얻고 있으므로, 얻어진 얇은 두께의 산화마그네슘 단결정 기판에서는 격자 결함이 적다.
또, 인접하는 조사 라인 사이에서는 가공 흔적(K1)의 반사층끼리 일부 겹쳐 있어도 된다. 이에 의해, 제3 공정에서의 레이저 광의 조사 위치의 자유도가 넓어진다.
나아가 레이저 광의 주사 방향으로 인접하는 가공 흔적(K1)의 반사층끼리 일부 겹쳐 있어도 된다(예를 들어 도 9 참조). 이에 의해, 제2 공정에서 형성하는 인접하는 조사 라인 사이에서 거의 전면에 걸쳐 반사층을 형성하는 것이 용이해진다.
또한, 산화마그네슘의 단결정 부재로서 단결정 기판(20)을 이용하고, 동일 치수의 박리 기판(20p)을 순차적으로 박리하여 얻을 수 있어, 산화마그네슘 단결정 부재의 사용 효율을 충분히 올리는 것(즉, 산화마그네슘의 부스러기 발생을 충분히 억제하는 것)이 가능해진다.
또한, 레이저 광의 주사 방향을 단결정 기판(20)의 결정 방위에 따른 방향으로 하고 있으므로, 면상 박리가 자연스럽게 발생해 가는 레이저 조사로 하기 쉽다.
또한, 본 실시형태에서는, 레이저 광(B)은 고휘도 레이저 광을 이용하는 것이 바람직하다. 본 발명에서 고휘도 레이저 광이란, 피크 파워(펄스 에너지를 펄스폭으로 나눈 값) 및 파워 밀도(단위시간당 에너지의 단위면적당 값)로 특정된다. 일반적으로 파워 밀도를 높이기 위해서는 고출력 레이저를 이용할 수 있다. 한편, 본 실시형태에서는 예를 들어 1kW를 초과하는 높은 출력으로 레이저 광(B)을 조사하면 가공 기판에 손상을 주기 쉬워지고, 목표로 하는 얇은 두께의 가공 흔적을 형성하는 것이 그다지 용이하지 않다. 즉, 본 실시형태에서 이용하는 고휘도 레이저 광은, 펄스폭이 짧은 레이저 광을 이용하여 낮은 레이저 출력으로 레이저 광(B)을 조사하여 가공 기판에 손상을 주지 않는 레이저 광인 것이 바람직하다.
더욱 파워 밀도를 높이기 위해서는 펄스폭이 짧은 레이저 광(예를 들어 펄스폭이 10ns 이하, 바람직하게는 100ps 이하, 더욱 바람직하게는 15ps 이하의 레이저 광)이 바람직하다. 이와 같이 펄스폭이 짧은 레이저 광을 조사함으로써, 고휘도 레이저 광의 파워 밀도를 매우 높이기 쉽다.
또한, 본 실시형태에서는, 보정환(13) 및 집광 렌즈(15)에 의해 수차 보정이 조정 가능하고, 제2 공정에서는, 수차 보정의 조정에 의해 디포커스량을 설정할 수 있다. 이에 의해, 상기 소정 조사 조건의 범위를 크게 넓힐 수 있다. 이 디포커스량은 가공 기판의 두께나 박리하는 기판의 두께에 의해 가공 흔적의 형성 깊이를 조정하는 수단 및 가공 흔적을 얇은 두께로 형성하는 조건을 선정하는 것이 가능하고, 가공 대상이 되는 산화마그네슘 기판의 두께가 200~300μm인 경우에서는 디포커스량을 30~120μm의 범위로 함으로써, 상기 범위를 효과적으로 넓힐 수 있다.
또한, 본 실시형태에서는, 상기 제2 공정과 제3 공정에서 레이저를 조사함으로써, 각 공정에서 형성되는 가공 흔적 열로부터 벗어나는 큰 벽개의 발생을 억제하는 것이 가능하다. 게다가 인접하는 가공 흔적 열만을 확실히 연결시킴으로써 기판을 박리시키는 것이 용이해지고, 표면 상태가 우수한 박리면을 얻을 수 있다.
또한, 면상 박리한 박리 기판(20p)을 단결정 기판(20)으로부터 취출할 때, 박리 기판(20p)에 면 접촉하는 접촉 부재를 박리 기판(20p)에 면 접촉시켜 취출해도 된다. 이에 의해, 박리 기판(20p)을 붙이고자 하는 부재를 이 접촉 부재로 함으로써 첩부 공정을 단축화하는 것이 가능해지고, 또한, 박리 기판(20p)의 끝테두리가 단결정 기판(20)으로부터 완전히 벗겨지지 않은 경우에는, 박리 기판(20p)에 균열이 발생하는 것을 억제하면서 이 끝테두리로부터 박리 기판(20p)을 벗겨 취출하는 것도 가능해진다. 또, 레이저 광의 조사 후에 아무것도 하지 않아도 자연 박리를 하기 쉽게 하는 관점에서, 이 때의 박리 강도가 2MPa 이하, 더욱이 1.0MPa를 밑도는 상태를 형성하는 것이 바람직하다.
또한, 상기 실시형태에서는, XY 스테이지(11)에 기판 안착용 부재(12)를 보유지지시키고, 그 위에 단결정 기판(20)을 올려놓고 레이저 광(B)을 조사하는 예로 설명하였지만, XY 스테이지(11)에 단결정 기판(20)을 직접 올려놓고 보유지지시키고, 레이저 광(B)에 의해 가공 흔적(K1, K2)을 형성해 가는 것도 가능하다.
또한, 본 실시형태에서는, 단결정 기판(20)(산화마그네슘 단결정 기판)으로부터 박리 기판(20p)을 얻는 예로 설명하였지만, 단결정 기판(20)에 한정하지 않고, 산화마그네슘의 단결정 부재로부터 피조사면(20r) 측을 면상 박리시켜 박리 기판(20p)을 얻어도 된다.
<실험예 1>
본 발명자는, 도 3에 도시된 바와 같이, 직경이 2인치이고 두께가 300μm인 단결정 산화마그네슘 웨이퍼(도 3 참조. 이하, 테스트 피스(J1)라고 함)를 이용하였다.
(1) 조사 조건
본 실험예에서는, 상기 실시형태에서 설명한 기판 제조 장치(10)를 이용하여 상기 제1~제3 공정을 행하였다. 제2 공정에서는, 도 4의 (a)에 도시된 바와 같이, 테스트 피스(J1)에 가공 흔적(K1)을 소정의 도트 피치(dp), 라인 피치(lp1)로 형성해 갔다. 제3 공정에서는, 마찬가지로 도 4의 (a)에 도시된 바와 같이, 테스트 피스(J1)에 가공 흔적(K2)을 소정의 도트 피치(dp), 라인 피치(lp2)로 형성해 갔다. 이 결과, 가공 흔적 열(LK1) 및 가공 흔적 열(LK2)이 배열되어 있는 개질층이 형성되었다. 이 레이저 광 조사에서는, 집광 렌즈(15)에의 입사시의 레이저 광(B)의 지름을 3000μm, 집광 렌즈(15)의 초점 거리를 1200μm, 초점의 기판 표면으로부터의 깊이를 150μm±10μm 이내로 하였다. 레이저 광의 그 밖의 조사 조건을 도 4의 (b)에 나타낸다.
(2) 박리면
도 3은, 제3 공정을 종료한, 박리 전의 테스트 피스(J1)의 평면도이다. 가공 상태를 판별하기 쉽게 하기 위해, 지면 상부에는 가공이 불충분한 부분을 의도적으로 남겼다. 그 이외의 부분에서는 가공 얼룩은 억제되었다.
제3 공정의 레이저 광의 조사 후, 테스트 피스(J1)의 피조사면측(상측)을 알루미늄제의 받침대로 접착제를 개재하여 끼웠다. 받침대는 모두 알루미늄제이다. 접착제로서는 에폭시 접착제를 이용하여, 테스트 피스(J1)의 피조사면측(상측)에 한쪽의 받침대를 접착시키고, 테스트 피스(J1)의 바닥면측(하측)에 다른 한쪽의 받침대를 접착시켰다.
그리고, 두 받침대를 상하 방향으로 잡아당김으로써, 개질층(가공 흔적 열(LK1, LK2)이 형성된 층)으로부터 당겨 벗기는 힘을 측정하고, 개질층으로부터, 테스트 피스(J1)의 피조사면측(상측)을 가지고 있는 상부 테스트 피스(J1u)와, 테스트 피스(J1)의 바닥면측(하측)을 가지고 있는 하부 테스트 피스(J1b)를 분리시키는 데에 필요한 인장 파단 응력을 산출하였다. 이 결과, 6MPa의 인장 응력으로 분리시킬 수 있었다. 따라서, 단결정 실리콘 기판의 인장 파단 응력인 12MPa에 비해, 대폭으로 작은 인장 파단 응력으로 개질층으로부터 분리시킬 수 있었다. 또, 상술한 바와 같이 지면 상부에 가공이 불충분한 부분을 의도적으로 남긴 테스트 피스(J1)에서의 인장 파단 응력(6MPa)으로 분리시킬 수 있었으므로, 이러한 가공이 불충분한 부분을 형성하지 않은 경우에는 인장 파단 응력은 더욱 내려간다.
그리고, 상부 테스트 피스(J1u)의 박리면(J1us)(도 6 참조)을 상방으로부터(평면으로부터) SEM(주사형 전자 현미경)으로 기판 중심 P1점부터 P5점까지 촬상 위치를 500μm씩 동일 직선 상에서 순차적으로 어긋나게 하여 5 영역을 촬영하였다. 마찬가지로 하부 테스트 피스(J1b)의 박리면(J1bs)(도 7 참조)을 상방으로부터(평면으로부터) SEM(주사형 전자 현미경)으로 기판 중심 P1점부터 P5점까지 촬상 위치를 동일 직선 상에서 500μm씩 순차적으로 어긋나게 하여 5 영역을 촬영하였다. 촬영 결과를 도 8에 나타낸다.
또, 도 8에서 가로선은 SEM의 차지 업(charge up)을 나타내는 선으로, 박리면에 형성된 것이 아니다. 또한, 본 명세서에 첨부하는 촬상도에서는 적절히 결정 방위도 함께 나타낸다.
나아가 본 발명자는, SEM의 촬영 배율을 들어 기판 중심 P1점에서, 상부 테스트 피스(J1u)의 박리면(J1us)과 하부 테스트 피스(J1b)의 박리면(J1bs)을 상방으로부터(평면으로부터) 촬영하였다. 촬영 결과를 도 9에 나타낸다. 도 9에서는, F9u1은 상부 테스트 피스(J1u)의 박리면의 사진도, F9u2는 F9u1의 부분 확대도, F9b1은 하부 테스트 피스(J1b)의 박리면의 사진도, F9b2는 F9b1의 부분 확대도를 각각 나타낸다.
F9u1에서는, 1회차 레이저 조사(제2 공정)에 의한 가공 흔적 상반부(Ku1)가 형성되고, F9b1에서는, 가공 흔적 상반부(Ku1)에 대응하는 위치에, 1회차 레이저 조사(제2 공정)에 의한 가공 흔적 하반부(Kb1)가 형성되어 있었다. 가공 흔적 상반부(Ku1)와 가공 흔적 하반부(Kb1)는 거의 동등한 치수이며, 가공 흔적 상반부 (Ku1)와 가공 흔적 하반부(Kb1)로 구성되는 가공 흔적(K1)은, 기판 두께 방향으로 가늘고 긴 형상이라고 생각된다.
그리고, F9b1에서는, 2회차 레이저 조사(제3 공정)에 의한 가공 흔적 하반부(Kb2)가 배열되어 형성되고, F9u1에서는, 가공 흔적 하반부(Kb2)에 대응하는 위치에, 2회차 레이저 조사(제3 공정)에 의한 가공 흔적 상반부(Ku2)가 배열되어 형성되어 있었다. 가공 흔적 상반부(Ku2)는, 반사한 레이저 광에 의해 굵은 지름의 구멍이 열린 형상으로 되어 있었다. 한편, 가공 흔적 하반부(Kb2)는, 가공 흔적 상반부(Ku2)로부터의 용융 분사물이 접시 형상으로 움푹 패인 형상으로 형성되어 있었다. 따라서, 가공 흔적 하반부(Kb2)의 박리면은, 상부로부터의 분사에 의해 물리적으로 형성되었을 가능성이 높다고 생각된다.
또한, 본 발명자는, 마찬가지로 하여 P1점에서 상부 테스트 피스(J1u)의 박리면(J1us)과 하부 테스트 피스(J1b)의 박리면(J1bs)을 기울기 45°로부터 촬영하였다. 촬영 결과를 도 10에 나타낸다. 도 10에서는, F10u1은 상부 테스트 피스(J1u)의 박리면의 사진도, F10u2는 F10u1의 부분 확대도, F10b1은 하부 테스트 피스(J1b)의 박리면의 사진도, F10b2는 F10b1의 부분 확대도를 각각 나타낸다. 도 9로부터 얻어진 지견과 동일한 지견을 얻을 수 있었다.
(3) 정리
본 실험예의 조사 조건으로 레이저 광을 조사한 후, 상부 테스트 피스(J1u)와 하부 테스트 피스(J1b)를 분리함으로써, 격자 결함이 적은 얇은 두께의 산화마그네슘 단결정 기판을 용이하게 얻을 수 있었다.
또한, 이 분리를 행할 때에, 상술한 바와 같이 단결정 실리콘 기판에 비해 대폭으로 작은 인장 파단 응력으로 개질층으로부터 분리시킬 수 있었다. 따라서, 개질층에는 면상 박리가 발생하였다고 생각된다.
<실험예 2>
본 발명자는, 상부 테스트 피스(J1u)의 박리면(J1us)에서, P1점부터 P5점까지 표면 조도계(프로브 반경은 12.5μm)를 이용하여 단차 측정을 행하였다. 측정 결과를 도 11에 나타낸다. 또한, 본 발명자는, 마찬가지로 하여 하부 테스트 피스(J1b)의 박리면(J1bs)을, P1점부터 P5점까지 표면 조도계를 이용하여 단차 측정을 행하였다. 측정 결과를 도 11에 함께 나타낸다. Ra가 0.46μm라는 측정 결과가 되었다.
<실험예 3>
본 발명자는, 상부 테스트 피스(J1u)의 가공 흔적 상반부(Ku1)(1회차 레이저 조사에 의한 가공 흔적)를 통과하는 단면(Su1)을 SEM으로 관찰하였다(도 12 참조). 상부 테스트 피스(J1u)의 가공 흔적 상반부(Ku1)에서는, 지름이 0.9μmφ, 깊이가 5.0μm이었다.
또한, 본 발명자는, 상부 테스트 피스(J1u)의 가공 흔적 상반부(Ku2)(2회차 레이저 조사에 의한 가공 흔적)를 통과하는 단면(Su2)을 SEM으로 관찰하였다(도 13 참조). 가공 흔적 상반부(Ku2)에서는, 지름이 2.2~2.8μmφ, 깊이가 6.5μm이었다.
나아가 본 발명자는, 상부 테스트 피스(J1u)의 다른 가공 흔적 상반부(Ku2)(2회차 레이저 조사에 의한 가공 흔적)를 통과하는 단면을 SEM으로 관찰하였다(도 14 참조). 다른 가공 흔적 상반부(Ku2)에서는, 지름이 4.2μmφ, 깊이가 6.5μm이었다.
또한, 본 발명자는, 하부 테스트 피스(J1b)의 가공 흔적 하반부(Kb1)(1회차 레이저 조사에 의한 가공 흔적)를 통과하는 단면(Sb1)을 SEM으로 관찰하였다(도 15 참조). 가공 흔적 하반부(Kb1)에서는, 지름이 0.8μmφ, 깊이가 12.7μm이었다.
나아가 본 발명자는, 하부 테스트 피스(J1b)의 다른 가공 흔적 하반부(Kb1)(1회차 레이저 조사에 의한 가공 흔적)를 통과하는 단면을 SEM으로 관찰하였다(도 16 참조). 다른 가공 흔적 하반부(Kb1)에서는, 지름이 0.8μmφ, 깊이가 12.0μm이었다.
또한, 본 발명자는, 하부 테스트 피스(J1b)의 가공 흔적 하반부(Kb2)(2회차 레이저 조사에 의한 가공 흔적)를 통과하는 단면(Sb2)을 SEM으로 관찰하였다(도 17 참조). 하부 테스트 피스(J1b)의 가공 흔적 하반부에서는, 지름이 3.7μmφ, 깊이가 0.4μm이었다.
그리고, 본 발명자는, 상부 테스트 피스(J1u)의 박리면과 하부 테스트 피스(J1b)의 박리면을 겹쳐맞추어, 각 가공 흔적 상반부(Ku1)와 각 가공 흔적 하반부(Kb1)의 위치맞춤을 하는 것을 시도하였다. 이 결과, 각 가공 흔적 상반부(Ku1)와 각 가공 흔적 하반부(Kb1)의 위치가 합치되고(도 18, 도 19 참조), 각 가공 흔적 상반부(Ku2)와 각 가공 흔적 하반부(Kb2)의 위치가 합치되었다(도 20, 도 21 참조).
본 발명에 의해 박리된 산화마그네슘 단결정 기판을 효율적으로 형성할 수 있는 점에서, 산화마그네슘 단결정 기판으로부터 얻어진 박리 기판은, 고온 초전도막, 강유전체막 등으로 유용하고, 반도체 분야, 디스플레이 분야, 에너지 분야 등의 폭넓은 분야에서 적용 가능하다.
10 기판 제조 장치
11 XY 스테이지
11f 스테이지면
12 기판 안착용 부재
13 보정환
14 레이저 집광 수단
15 집광 렌즈
16 제1 렌즈
18 제2 렌즈
20 산화마그네슘 단결정 기판(단결정 부재)
20p 박리 기판
20r 피조사면
B 레이저 광
E 외주부
EP 집광점
K1 가공 흔적
K2 가공 흔적
L1 조사 라인
L2 조사 라인
LK1 가공 흔적 열
LK2 가공 흔적 열
M 중앙부
MP 집광점
dp 도트 피치
lp1 라인 피치
lp2 라인 피치

Claims (7)

  1. 레이저 광을 집광하는 레이저 집광 수단을, 산화마그네슘의 단결정 부재의 피조사면 상에 비접촉으로 배치하는 제1 공정과,
    상기 레이저 집광 수단을 이용하여 소정의 조사 조건으로, 상기 단결정 부재 표면에 레이저 광을 조사하여 상기 단결정 부재 내부에 레이저 광을 집광하면서 상기 레이저 집광 수단과 상기 단결정 부재를 2차원 형상으로 상대적으로 이동시킴으로써 가공 흔적 열을 병렬로 형성해 가는 제2 공정과,
    상기 레이저 집광 수단을 이용하여 소정의 조사 조건으로, 상기 단결정 부재 표면에 레이저 광을 조사하여 상기 단결정 부재 내부에 레이저 광을 집광하면서 상기 레이저 집광 수단과 상기 단결정 부재를 2차원 형상으로 상대적으로 이동시킴으로써, 상기 제2 공정의 조사에 의해 형성된 인접하는 상기 가공 흔적 열의 사이에 새로 가공 흔적 열을 형성해 감으로써 면상 박리를 발생시키는 제3 공정을 구비하는 것을 특징으로 하는 기판 제조 방법.
  2. 청구항 1에 있어서,
    상기 제2 공정에서는, 레이저 광의 집광에 의해 레이저 광을 반사하는 반사층을 형성하고,
    상기 제3 공정에서는, 상기 반사층에 의해 레이저 광이 반사되는 것을 특징으로 하는 기판 제조 방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 단결정 부재로서 단결정 기판을 이용하는 것을 특징으로 하는 기판 제조 방법.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    레이저 광으로서 고휘도 레이저 광을 조사하는 것을 특징으로 하는 기판 제조 방법.
  5. 청구항 4에 있어서,
    레이저 광으로서 펄스폭이 10ns 이하의 레이저 광을 조사하는 것을 특징으로 하는 기판 제조 방법.
  6. 청구항 5에 있어서,
    레이저 광으로서 펄스폭이 100ps 이하의 레이저 광을 조사하는 것을 특징으로 하는 기판 제조 방법.
  7. 청구항 6에 있어서,
    레이저 광으로서 펄스폭이 15ps 이하의 레이저 광을 조사하는 것을 특징으로 하는 기판 제조 방법.
KR1020190026431A 2018-03-09 2019-03-07 기판 제조 방법 KR102195946B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-043006 2018-03-09
JP2018043006A JP7121941B2 (ja) 2018-03-09 2018-03-09 基板製造方法

Publications (2)

Publication Number Publication Date
KR20190106793A true KR20190106793A (ko) 2019-09-18
KR102195946B1 KR102195946B1 (ko) 2020-12-28

Family

ID=65724261

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190026431A KR102195946B1 (ko) 2018-03-09 2019-03-07 기판 제조 방법

Country Status (6)

Country Link
US (1) US10971358B2 (ko)
EP (1) EP3536437B1 (ko)
JP (1) JP7121941B2 (ko)
KR (1) KR102195946B1 (ko)
CN (1) CN110246758B (ko)
TW (1) TWI700402B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795811B2 (ja) * 2017-02-16 2020-12-02 国立大学法人埼玉大学 剥離基板製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080996A (ja) 1999-09-09 2001-03-27 Fuji Xerox Co Ltd 薄膜構造体
JP2008044807A (ja) * 2006-08-11 2008-02-28 Kyoto Univ 単結晶内部に形成される誘起構造の作製方法およびその装置ならびに単結晶内部に形成された誘起構造を備える光学素子
JP4100953B2 (ja) * 2002-04-18 2008-06-11 キヤノン株式会社 Si基板上に単結晶酸化物導電体を有する積層体及びそれを用いたアクチュエーター及びインクジェットヘッドとその製造方法
US20090056513A1 (en) * 2006-01-24 2009-03-05 Baer Stephen C Cleaving Wafers from Silicon Crystals
JP2010225730A (ja) * 2009-03-23 2010-10-07 Sumco Corp シリコンウェーハの製造方法、エピタキシャルウェーハの製造方法、および固体撮像素子の製造方法
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置
JP2013049161A (ja) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2015059069A (ja) 2013-09-19 2015-03-30 独立行政法人産業技術総合研究所 単結晶ダイヤモンドの製造方法
KR20160142232A (ko) * 2015-06-02 2016-12-12 가부시기가이샤 디스코 웨이퍼의 생성 방법
JP2016213502A (ja) * 2016-08-30 2016-12-15 国立大学法人埼玉大学 単結晶基板製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625520B2 (ja) 2010-06-16 2014-11-19 豊田合成株式会社 レーザ加工方法
JP6121901B2 (ja) * 2010-07-12 2017-04-26 ロフィン−シナー テクノロジーズ インコーポレーテッド レーザーフィラメント形成による材料加工方法
JP6044919B2 (ja) * 2012-02-01 2016-12-14 信越ポリマー株式会社 基板加工方法
LT3206829T (lt) * 2014-10-13 2019-03-12 Evana Technologies, Uab Lazerinio apdorojimo būdas perskelti arba perpjauti ruošinį, formuojant "adatos" formos pažeidimus
JP6472347B2 (ja) 2015-07-21 2019-02-20 株式会社ディスコ ウエーハの薄化方法
WO2017199784A1 (ja) 2016-05-17 2017-11-23 エルシード株式会社 加工対象材料の切断方法
JP6669594B2 (ja) 2016-06-02 2020-03-18 株式会社ディスコ ウエーハ生成方法
JP6923877B2 (ja) * 2017-04-26 2021-08-25 国立大学法人埼玉大学 基板製造方法
JP6943388B2 (ja) * 2017-10-06 2021-09-29 国立大学法人埼玉大学 基板製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080996A (ja) 1999-09-09 2001-03-27 Fuji Xerox Co Ltd 薄膜構造体
JP4100953B2 (ja) * 2002-04-18 2008-06-11 キヤノン株式会社 Si基板上に単結晶酸化物導電体を有する積層体及びそれを用いたアクチュエーター及びインクジェットヘッドとその製造方法
US20090056513A1 (en) * 2006-01-24 2009-03-05 Baer Stephen C Cleaving Wafers from Silicon Crystals
JP2008044807A (ja) * 2006-08-11 2008-02-28 Kyoto Univ 単結晶内部に形成される誘起構造の作製方法およびその装置ならびに単結晶内部に形成された誘起構造を備える光学素子
JP2010225730A (ja) * 2009-03-23 2010-10-07 Sumco Corp シリコンウェーハの製造方法、エピタキシャルウェーハの製造方法、および固体撮像素子の製造方法
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置
JP2013049161A (ja) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2015059069A (ja) 2013-09-19 2015-03-30 独立行政法人産業技術総合研究所 単結晶ダイヤモンドの製造方法
KR20160142232A (ko) * 2015-06-02 2016-12-12 가부시기가이샤 디스코 웨이퍼의 생성 방법
JP2016213502A (ja) * 2016-08-30 2016-12-15 国立大学法人埼玉大学 単結晶基板製造方法

Also Published As

Publication number Publication date
CN110246758A (zh) 2019-09-17
TW201945603A (zh) 2019-12-01
KR102195946B1 (ko) 2020-12-28
EP3536437A1 (en) 2019-09-11
CN110246758B (zh) 2023-11-24
EP3536437B1 (en) 2021-09-29
JP2019160915A (ja) 2019-09-19
TWI700402B (zh) 2020-08-01
JP7121941B2 (ja) 2022-08-19
US10971358B2 (en) 2021-04-06
US20190279867A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
TWI798216B (zh) 基板製造方法
TWI649145B (zh) Laser processing device and laser processing method
TWI657884B (zh) Laser processing device and laser processing method
TWI647043B (zh) Laser processing device and laser processing method
JP6044919B2 (ja) 基板加工方法
TWI648119B (zh) Laser processing device and laser processing method
KR20190106793A (ko) 기판 제조 방법
JP6664686B2 (ja) 基板加工方法及び剥離基板製造方法
US11383328B2 (en) Method for manufacturing peeled substrate
KR102128501B1 (ko) 기판 제조 방법
JP6542630B2 (ja) レーザ加工方法及びレーザ加工装置
JP2020074468A (ja) 基板加工方法
JP2023028581A (ja) 酸化マグネシウム基板の製造方法
JP2023028583A (ja) 酸化マグネシウム基板の製造方法
TW202034391A (zh) 元件晶片之形成方法
JP2016189498A (ja) 基板加工方法及び基板加工装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant