KR20180116120A - 건설 기계 - Google Patents
건설 기계 Download PDFInfo
- Publication number
- KR20180116120A KR20180116120A KR1020177022635A KR20177022635A KR20180116120A KR 20180116120 A KR20180116120 A KR 20180116120A KR 1020177022635 A KR1020177022635 A KR 1020177022635A KR 20177022635 A KR20177022635 A KR 20177022635A KR 20180116120 A KR20180116120 A KR 20180116120A
- Authority
- KR
- South Korea
- Prior art keywords
- operation mode
- meter
- hydraulic
- flow rate
- control valve
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims description 13
- 239000010720 hydraulic oil Substances 0.000 claims abstract description 25
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 42
- 239000003921 oil Substances 0.000 claims description 42
- 230000005856 abnormality Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 32
- 238000012937 correction Methods 0.000 description 15
- 230000000740 bleeding effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000009395 breeding Methods 0.000 description 4
- 230000001488 breeding effect Effects 0.000 description 4
- 238000013016 damping Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/044—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2232—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
- E02F9/2235—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2264—Arrangements or adaptations of elements for hydraulic drives
- E02F9/2267—Valves or distributors
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/028—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20507—Type of prime mover
- F15B2211/20523—Internal combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/355—Pilot pressure control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/46—Control of flow in the return line, i.e. meter-out control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/575—Pilot pressure control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6309—Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6316—Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/633—Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6343—Electronic controllers using input signals representing a temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6346—Electronic controllers using input signals representing a state of input means, e.g. joystick position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6652—Control of the pressure source, e.g. control of the swash plate angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6658—Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/76—Control of force or torque of the output member
- F15B2211/761—Control of a negative load, i.e. of a load generating hydraulic energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/80—Other types of control related to particular problems or conditions
- F15B2211/86—Control during or prevention of abnormal conditions
- F15B2211/8609—Control during or prevention of abnormal conditions the abnormal condition being cavitation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/80—Other types of control related to particular problems or conditions
- F15B2211/875—Control measures for coping with failures
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
유압 펌프(23)로부터의 작동유에 의해 구동되는 아암 실린더(34)와, 아암 실린더로부터 배출되는 작동유가 흐르는 미터아웃 유로(L4)와, 미터아웃 유로의 작동유 유량을 제어하는 제어 밸브(41)와, 아암 실린더에 작용하는 부하를 검출하는 압력 센서(SE5)와, 아암 실린더를 조작하는 조작 장치(42)의 조작량을 검출하는 압력 센서(SE3)와, 컨트롤러(44)를 유압 셔블에 구비한다. 컨트롤러는, 액추에이터 부하와 조작량을 기초로 제어 밸브의 개구 면적을 제어하는 통상 동작 모드와, 조작량을 기초로 제어 밸브의 개구 면적을 제어하는 대체 동작 모드를 택일적으로 선택하고, 대체 동작 모드의 선택시에는 통상 동작 모드의 선택시보다 유압 펌프의 토출 유량을 증가시킨다.
Description
본 발명은 유압 액추에이터를 구비하는 건설 기계에 관한 것이다.
유압 셔블 등의 건설 기계는, 일반적으로 원동기에 의해 구동되는 유압 펌프와, 유압 액추에이터와, 유압 액추에이터에 대한 작동유의 급배를 제어하는 유량 제어 밸브를 구비한다. 각 유량 제어 밸브는 미터인 스로틀과 미터아웃 스로틀을 갖고, 미터인 스로틀에 의해 펌프로부터 유압 액추에이터로 유입되는 작동유의 유량을 제어하고, 미터아웃 스로틀에 의해 유압 액추에이터로부터 작동유 탱크로 배출되는 작동유의 유량을 제어하고 있다. 유압 셔블에 있어서의 유압 액추에이터로서는, 부움을 구동하는 부움 실린더, 아암을 구동하는 아암 실린더 등이 있다.
이와 같은 유압 액추에이터를 구비하는 건설 기계에서는, 유압 액추에이터의 지지 대상물(예를 들면, 아암 실린더라면 아암 및 버킷(어태치먼트)을 포함함)의 자중(自重)이, 당해 유압 액추에이터의 동작 방향과 동일 방향의 부하(이하, 「음의 부하」라고 칭하는 경우가 있음)로서 작용하는 경우가 있다. 이 경우, 당해 유압 액추에이터의 동작 속도가 증가함과 함께, 미터인측의 작동유의 유량이 부족하여, 브리딩(breathing) 현상(캐비테이션)이 발생할 우려가 있다. 브리딩 현상은 건설 기계의 조작성의 악화와 유압 기기의 손상의 원인이 될 우려가 있다.
이와 같은 문제를 해결하기 위하여, 유압 액추에이터로부터 작동유 탱크에 이르는 미터아웃 통로에 미터아웃 제어 밸브를 설치하고, 그 미터아웃 제어 밸브의 개구 면적을 실린더압에 따라서 조정함으로써, 실린더 속도를 억제함과 함께 브리딩을 방지하는 구성이 알려져 있다(예를 들면, 일본 공개특허 특개2010-14244호 공보).
그런데, 동계나 한랭지에서 외기온이 낮고 충분히 난기가 되어 있지 않은 상태에서는, 작동유의 점도가 커져, 밸브 전환에 이용하는 파일럿압의 상승이나 그 전달에 시간이 걸린다. 이에 의해, 미터아웃 제어 밸브의 개구 면적을 파일럿압에 의해 제어하는 경우, 작동유온 저온시에서는 미터아웃 제어 밸브의 제어성이 현저하게 악화되기 때문에, 미터아웃 제어 밸브의 개구 면적 제어를 보류하는 편이 바람직하다.
미터아웃 제어 밸브의 개구 면적 제어를 하지 않는 경우에는, 미터아웃 제어 밸브는 노멀 위치(비제어 상태에서 스풀/포핏 밸브를 누르는 스프링력에 의해서 결정되는 위치)에 고정된다. 이 때, 상기 문헌과 같이, 미터아웃 제어 밸브가 노멀 오픈 특성(노멀 위치에서 최대 개구를 취하는 특성)의 구조를 갖는 경우에는, 미터아웃측의 작동유의 스로틀이 넓어진다. 따라서, 유압 실린더를 자중 낙하 방향으로 동작시킨 경우에, 충분한 미터아웃압이 일어나게 되지 않게 되고, 실린더 속도가 상승하여, 브리딩 현상이 생길 우려가 있다.
본 발명은 상술한 사항에 기초하여 발명된 것으로, 그 목적은, 낮은 작동유온을 이유로 미터아웃 제어 밸브의 개구 면적 제어를 보류한 경우에 있어서도, 유압 액추에이터의 브리딩 현상을 방지할 수 있는 건설 기계를 제공하는 것이다.
본 발명은, 상기 목적을 달성하기 위하여, 탱크 내의 작동유를 퍼올려 토출하는 유압 펌프와, 상기 유압 펌프로부터 토출되는 작동유에 의해 구동되는 유압 액추에이터와, 상기 유압 액추에이터로부터 배출되는 작동유가 흐르는 미터아웃 유로와, 상기 미터아웃 유로에 설치되고, 개구 면적을 변경함으로써 상기 미터아웃 유로의 작동유 유량을 제어하는 미터아웃 제어 밸브와, 상기 유압 액추에이터에 작용하는 부하를 검출하는 부하 검출기와, 상기 유압 액추에이터를 조작하는 조작 장치와, 상기 조작 장치의 조작량을 검출하는 조작량 검출기를 구비하는 건설 기계에 있어서, 상기 부하와 상기 조작량을 기초로 상기 미터아웃 제어 밸브의 개구 면적을 제어하는 통상 동작 모드와, 상기 조작량을 기초로 상기 미터아웃 제어 밸브의 개구 면적을 제어하는 대체 동작 모드를 택일적으로 선택하도록 구성된 제어 장치를 구비하고, 상기 제어 장치는, 상기 대체 동작 모드의 선택시에는, 상기 통상 동작 모드의 선택시보다 상기 유압 펌프의 토출 유량을 증가시키도록 구성되어 있는 것으로 한다.
본 발명에 의하면, 미터아웃 제어 밸브의 개구 면적 제어를 행하지 않은 경우에 있어서도, 펌프 유량을 통상시보다 증가시킴으로써, 유압 액추에이터의 브리딩 현상을 방지할 수 있다.
도 1은 본 발명에 관련된 건설 기계의 전체도.
도 2는 본 발명의 제 1 실시 형태에 관련된 유압 회로와 기기의 구성을 나타내는 개념도.
도 3은 본 발명의 제 1 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 4는 본 발명의 제 1 실시 형태에 관련된 유압 펌프와 미터아웃 개구 제한 연산의 제어 블록 선도.
도 5는 본 발명의 제 1 실시 형태에 관련된 전자 비례 밸브 전류 지시값 연산의 제어 블록 선도.
도 6은 본 발명의 제 1 실시 형태에 관련된 미터아웃 개구 제한값 연산 테이블.
도 7은 본 발명의 제 1 실시 형태에 관련된 펌프 유량 보정값의 결정 방법.
도 8은 본 발명의 제 2 실시 형태에 관련된 유압 회로와 기기의 구성을 나타내는 개념도.
도 9는 본 발명의 제 2 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 10은 본 발명의 제 3 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 11은 본 발명의 제 3 실시 형태에 관련된 유압 펌프와 미터아웃 개구 제한 연산의 제어 블록 선도.
도 12는 본 발명에 관련된 컨트롤러의 하드웨어 구성도.
도 13은 본 발명의 제 2 실시 형태에 관련된 유압 회로와 기기의 구성을 나타내는 개념도.
도 14는 본 발명의 제 4 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 2는 본 발명의 제 1 실시 형태에 관련된 유압 회로와 기기의 구성을 나타내는 개념도.
도 3은 본 발명의 제 1 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 4는 본 발명의 제 1 실시 형태에 관련된 유압 펌프와 미터아웃 개구 제한 연산의 제어 블록 선도.
도 5는 본 발명의 제 1 실시 형태에 관련된 전자 비례 밸브 전류 지시값 연산의 제어 블록 선도.
도 6은 본 발명의 제 1 실시 형태에 관련된 미터아웃 개구 제한값 연산 테이블.
도 7은 본 발명의 제 1 실시 형태에 관련된 펌프 유량 보정값의 결정 방법.
도 8은 본 발명의 제 2 실시 형태에 관련된 유압 회로와 기기의 구성을 나타내는 개념도.
도 9는 본 발명의 제 2 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 10은 본 발명의 제 3 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
도 11은 본 발명의 제 3 실시 형태에 관련된 유압 펌프와 미터아웃 개구 제한 연산의 제어 블록 선도.
도 12는 본 발명에 관련된 컨트롤러의 하드웨어 구성도.
도 13은 본 발명의 제 2 실시 형태에 관련된 유압 회로와 기기의 구성을 나타내는 개념도.
도 14는 본 발명의 제 4 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트.
이하에, 건설 기계로서 유압 셔블을 예로 들어 본 발명의 실시 형태에 대하여 도면을 이용하여 설명한다.
< 제 1 실시 형태 >
본 실시 형태에서는, 작동유온이 저온에서 미터아웃 개구 면적을 액추에이터 부하에 따라서 조정하는 기구의 응답성이 악화되는 경우의 브리딩 현상 방지책을 설명한다.
도 1에 있어서, 유압 셔블은 주행체(10)와, 주행체(10) 상에 선회 가능하게 설치한 선회체(20) 및 선회체(20)에 설치한 프론트 작업 장치(30)를 구비하고 있다.
주행체(10)는, 한 쌍의 크롤러(11a, 11b) 및 크롤러 프레임(12a, 12b)(도 1에서는 편측만을 나타냄), 각 크롤러(11a, 11b)를 독립적으로 구동 제어하는 한 쌍의 주행용 유압 모터(13a, 13b) 및 그 감속 기구 등에 의해 구성되어 있다.
선회체(20)는, 선회 프레임(21)과, 선회 프레임(21) 상에 설치된, 원동기로서의 엔진(22)과, 엔진(22)에 의해 회전 구동되고, 작동유 탱크(40)(도 2 참조) 내의 작동유를 퍼올려 토출하는 유압 펌프(23)와, 유압 펌프(23)로부터 토출되는 작동유에 의해 구동되는 유압 액추에이터(예를 들면, 유압 실린더(32, 34, 36))와, 유압 펌프(23)로부터 토출되는 작동유를 각 유압 액추에이터로 배분하는, 복수의 유량 제어 밸브(예를 들면, 도 2의 유량 제어 밸브(41))를 구비한 컨트롤 밸브 유닛(24)을 구비하고 있다. 또, 선회체(20)에는 선회 유압 모터(25) 및 그 감속 기구가 구비되어 있고, 선회 유압 모터(25)는 하부 주행체(10)에 대하여 상부 선회체(20)(선회 프레임(21))를 선회 구동시킨다.
또한, 선회체(20)에는 프론트 작업 장치(30)가 탑재되어 있다. 프론트 작업 장치(30)는, 기단부(基端部)에서 자유롭게 회전하도록 선회체(20)에 축 지지된 부움(31)과, 부움(31)을 구동하기 위한 부움 실린더(32)와, 부움(31)의 선단부 근방에 자유롭게 회전하도록 축 지지된 아암(33)과, 아암(33)을 구동하기 위한 아암 실린더(34)와, 아암(33)의 선단에 회전 가능하게 축 지지된 버킷(35)과, 버킷(35)을 구동하기 위한 버킷 실린더(36) 등에 의해 구성되어 있다.
도 2는 본 발명의 건설 기계의 유압 제어 장치에 관련된 제 1 실시 형태에 있어서, 아암 실린더(34)에 관한 유압 회로와 기기의 구성을 나타내는 개념도이다. 이하에서는 유압 액추에이터로서 아암 실린더(34)를 예로 들어 설명하지만, 유압 액추에이터의 구동 대상의 자중에 의한 동작 방향과 당해 유압 액추에이터에 의한 당해 구동 대상물의 동작 방향이 일치할 수 있는 유압 액추에이터라면, 버킷 실린더(36)를 비롯한 그 외의 유압 액추에이터에도 본 실시 형태는 적용 가능하다.
도 2에 있어서, 본 발명에 관련된 유압 제어 장치는, 엔진(22)과, 엔진(22)에 의해 회전 구동되는 유압 펌프(23)와, 유압 펌프(23)로의 작동유 공급원인 작동유 탱크(40)와, 유압 펌프(23)의 토출 라인(L1)에 접속되고, 아암 실린더(34)에 공급되는 작동유의 유량 및 방향을 제어하는 아암용의 조작 장치인 파일럿 밸브(42)를 구비하고 있다.
엔진(22)의 회전수는 픽업 센서(SE1)에 의해 검출되어 컨트롤러(44)에 입력된다.
유압 펌프(23)는, 가변용량형이며, 컨트롤러(44)로부터의 지령을 기초로 유압 펌프(23)의 변위 용적(토출 유량)을 변화시키는 레귤레이터(펌프 토출 유량 제어 장치)(23a)를 구비하고 있다. 또, 유압 펌프(23)의 토출압은 펌프 토출압 센서(SE2)에 의해서 검지되어 컨트롤러(44)에 입력된다.
제어 밸브(41)는 센터 바이패스형이며, 센터 바이패스부(41a)는 중립 위치 A에서 센터 바이패스 라인(L2)에 접속된다. 센터 바이패스 라인(L2)의 하류측은 작동유 탱크(40)에 접속되어 있다. 또, 제어 밸브(41)는 펌프 포트(41b), 탱크 포트(41c) 및 액추에이터 포트(41d, 41e)를 갖는다. 펌프 포트(41b)는 토출 라인(L1)에 접속된다. 탱크 포트(41c)는 탱크(40)에 접속된다. 액추에이터 포트(41d, 41e)는 액추에이터 라인(L3 또는 L4)을 개재하여 아암 실린더(34)의 보텀측 유실(油室) 또는 로드측 유실에 접속된다.
파일럿 밸브(42)는, 조작 레버(42a)와, 한 쌍의 감압 밸브(도시 생략)를 내장한 파일럿압 발생부(42b)를 갖고, 파일럿압 발생부(42b)는 파일럿 라인(L5, L6)을 개재하여 제어 밸브(41)의 파일럿압 수압부(41f, 41g)에 접속한다. 조작 레버(42a)가 조작되면 조작 파일럿압 발생부(42b)는 그 조작 방향에 따라서 한 쌍의 감압 밸브의 일방(一方)을 작동시키고, 그 조작량에 따른 파일럿압을 파일럿 라인(L5, L6)의 일방에 출력한다. L5, L6에 발생하는 조작 파일럿압은 파일럿압 센서(SE3, SE4)에 의해 검지되어 컨트롤러(44)에 출력된다.
제어 밸브(41)는, 그 전환 위치로서, 중립 위치 A, 전환 위치 B 및 전환 위치 C를 갖는다. 파일럿 라인(L5)에 의해 수압부(41f)에 파일럿압이 부여되면, 도면에서의 좌측의 전환 위치 B로 전환된다. 이 때, 액추에이터 라인(L3)이 미터인측, L4가 미터아웃측이 되고, 아암 실린더(34)의 보텀측 유실에 작동유가 공급되어, 아암 실린더(34)의 피스톤 로드가 신장한다. 한편, 파일럿 라인(L6)에 의해 수압부(41g)에 파일럿압이 부여되면, 도면에서의 우측의 C 위치로 전환된다. 이 때, 액추에이터 라인 L4가 미터인측, L3이 미터아웃측이 되고, 아암 실린더(34)의 로드측 유실에 작동유가 공급되어 아암 실린더(34)의 피스톤 로드가 수축한다. 아암 실린더(34)의 피스톤 로드의 신장은 아암을 끌어들이는 동작, 즉 크라우드 동작에 대응하고, 아암 실린더(34)의 피스톤 로드의 수축은 아암을 밀어내는 작업, 즉 댐프 동작에 대응한다.
보텀측 유실의 압력(이하, 보텀압)은 압력 센서(SE5), 로드측 유실의 압력(이하, 로드압)은 압력 센서(SE6)에 의해 각각 검출 가능하고, 압력 센서(SE5, SE6)의 검출 압력은 컨트롤러(44)에 입력된다. 본 실시 형태에서는, 압력 센서(SE5)를, 아암 실린더(34)에 작용하는 부하를 검출하는 부하 검출기로서 이용하고 있다.
또, 제어 밸브(41)는 미터인 스로틀(41h, 41i) 및 미터아웃 스로틀(41j, 41k)을 갖고 있다. 이들 스로틀(41h, 41i, 41j, 41k)은 제어 밸브(41)의 전환 위치에 따라서 개구 면적이 변화되는 가변 스로틀로서 기능한다. 미터아웃 스로틀(41j, 41k)은, 미터아웃 유로(액추에이터 라인(L4 또는 L3))의 작동유 유량을 제어하는 미터아웃 제어 밸브로서 제어 밸브(41)를 기능시킨다. 제어 밸브(41)가 전환 위치 B에 있을 때에는 미터인 스로틀(41h)에 의해 아암 실린더(34)에 공급되는 작동유를 제어하고, 미터아웃 스로틀(41j)에 의해 아암 실린더(34)로부터의 리턴 유량을 제어한다. 한편, 제어 밸브가 전환 위치 C에 있을 때에는, 미터인 스로틀(41i)에 의해 아암 실린더(34)에 공급되는 작동유를 제어하고, 미터아웃 스로틀(41k)에 의해 아암 실린더(34)로부터의 리턴 유량을 제어한다.
또, 본 실시 형태에 관련된 건설 기계의 유압 제어 장치는, 파일럿 라인(L5) 상에 설치된 전자 비례 밸브(43)를 구비하고 있다. 전자 비례 밸브(43)는, 컨트롤러(44)로부터 입력되는 전자 밸브 전류(제어 신호)를 기초로 구동되고, 제어 밸브(41)의 미터아웃 스로틀(41j)의 개구 면적을 제어하는 제어 장치(미터아웃 제어 밸브 제어 장치)로서 기능하고 있다. 전자 비례 밸브(43)에 입력되는 전자 밸브 전류값은 제로 이상인 전자 비례 밸브 최소 전류 IMIN(예를 들면, 100 mA)과 전자 비례 밸브 최대 전류 IMAX(예를 들면, 600 mA) 사이의 값을 취하고, 전자 밸브 전류값이 IMIN일 때에는 전자 밸브 스풀(43a)은 전환 위치 D에 있고, 유로(43b)의 개구는 최대로 한다. 이 때, 조작 파일럿압 발생부(42b)에서 발생한 파일럿압을 직접 수압부(41f)로 유도한다. 전자 밸브 전류값이 IMAX일 때에는 전자 밸브 스풀(a)은 전환 위치 F에 있고, 유로(43b)를 차단함으로써 파일럿 라인(L5)에 생기는 파일럿압이 수압부(41f)에 유도되는 것을 막음과 함께, 유로(43c)의 개구는 최대로 하고, 수압부(41f)의 작동유를 드레인 회로 L7로 배출한다. 전자 밸브 전류값이 IMIN과 IMAX의 사이의 제어 영역을 취하는 경우, 전자 비례 밸브(43)는 전환 위치 D와 전환 위치 E의 사이에서 스풀(43a)을 제어함으로써, 조작 파일럿압 발생부(42b)로부터 수압부(41f)로의 유로(43b)를 좁힘과 함께, 수압부(41f)의 작동유를 유로(43c)를 통해 일부 드레인 회로 L7로 배출한다. 이렇게 함으로써, 조작 파일럿압 발생부(42b)에서 발생한 파일럿압 이하의 임의의 압력을 파일럿압으로 하여 수압부(41f)로 유도할 수 있다.
작동유 탱크(40)에는 작동유온 센서(온도 검출기)(SE7)가 구비되어 있고, 작동유 탱크(40) 내의 작동유온을 검출하여 컨트롤러(44)에 출력하고 있다.
또, 본 실시 형태에 관련된 건설 기계의 유압 제어 장치는, 컨트롤러(44)를 구비하고 있다. 컨트롤러(44)는, 컴퓨터에 의해 구성되어 있고, 각 센서(SE1-SE7)의 값을 취득함과 함께, 펌프 레귤레이터(23a) 및 전자 비례 밸브(43)의 제어를 행한다.
도 12에 컨트롤러(44)의 하드웨어 구성을 나타낸다. 컨트롤러(44)는, 입력부(91)와, 프로세서인 중앙 처리 장치(CPU)(92)와, 기억 장치인 리드 온리 메모리(ROM)(93) 및 랜덤 액세스 메모리(RAM)(94)와, 출력부(95)를 갖고 있다. 입력부(91)는 각 센서(SE1∼SE7)로부터의 신호를 입력하고, A/D 변환을 행한다. ROM(93)은, 후술하는 도 3 등의 플로우차트를 실행하기 위한 제어 프로그램과, 당해 플로우차트의 실행에 필요한 각종 정보 등이 기억된 기록 매체이며, CPU(92)는, ROM(93)에 기억된 제어 프로그램을 따라서 입력부(91) 및 메모리(93, 94)로부터 받아들인 신호에 대하여 소정의 연산 처리를 행한다. 출력부(95)는, CPU(92)에서의 연산 결과에 따른 출력용의 신호를 작성하고, 그 신호를 전자 비례 밸브(43)나 펌프 레귤레이터(23a)에 출력함으로써, 제어 밸브(41)의 미터아웃 스로틀(41j)의 개구 면적의 제어나, 유압 펌프(23)의 토출 유량의 제어가 가능하게 구성되어 있다. 또한, 도 12의 컨트롤러(44)는, 기억 장치로서 ROM(93) 및 RAM(94)라는 반도체 메모리를 구비하고 있지만, 기억 장치라면 특히 대체 가능하며, 예를 들면, 하드디스크 드라이브 등의 자기 기억 장치를 구비해도 된다.
도 3에 제 1 실시 형태에 있어서의 동작 모드 전환 제어의 플로우차트를 나타낸다. 플로우차트의 개시시에는, 키 스위치는 OFF 위치에 있고, 차체의 동작 모드로서 통상 동작 모드가 선택되어 있는 것으로 한다.
단계 S1에서는, 오퍼레이터에 의해 키 스위치가 ON 위치(키 ON)로 전환되었는지 여부를 판정하고, 키 ON이라고 판정되면 컨트롤러(44)를 기동시켜 단계 S2로 진행된다. 단계 S2에서는 키 스위치가 ON 위치로부터 스타트 위치로 전환되었는지 여부를 판정하고, 스타트 위치라고 판정되면 엔진(22)을 시동하여 단계 S20으로 진행된다. 다음으로, 단계 S20에서, 컨트롤러(44)는 작동유온 센서(SE7)에 의해 검출한 작동유온 T0을 취득하고, 단계 S21로 진행된다.
단계 S21에서는, 컨트롤러(44)는, 작동유온 T0과 미터아웃 개구 제한 무효 온도 역치 T1과 미터아웃 개구 제한 유효 온도 역치 T2를 비교한다. 미터아웃 개구 제한 무효 온도 역치 T1, 미터아웃 개구 제한 유효 온도 역치 T2에는 T1 < T2라는 관계가 성립한다. 예를 들면, 작동유의 점도가 높고, 미터아웃 개구 제한 제어가 곤란해지는 온도 범위의 최고값을 미터아웃 개구 제한 무효 온도 역치 T1로서 설정할 수 있고, 당해 온도 범위보다 높은 값을 미터아웃 개구 제한 무효 온도 역치 T2로서 설정할 수 있다. 또, T1과 T2의 차는 작동유온의 단기간 변화량에 대하여 충분히 큰 값이 되도록 한다(예를 들면, T1 = 0℃, T2 = 5℃).
단계 S21에서 T0 < T1인 경우에는 단계 S22로 진행되고, T1 ≤ T0 < T2인 경우에는 단계 S23으로 진행되고, T2 ≤ T0인 경우에는 단계 S24로 진행된다. 단계 S22에서는 차체의 동작 모드(초기값은 통상 동작 모드)를 대체 동작 모드(후술)로 전환하고, 단계 S20으로 되돌아간다. 단계 S23에서는 그 시점의 동작 모드를 유지하여 단계 S21로 되돌아간다. 단계 S24에서는 동작 모드를 통상 동작 모드(후술)로 전환하여 단계 S20으로 되돌아간다.
다음으로, 도 4, 5를 이용하여, 통상 동작 모드와 대체 동작 모드에 있어서의, 유압 펌프(23)의 토출 유량과 전자 비례 밸브(43)의 컨트롤러(44)에 의한 제어에 대하여 설명한다.
도 4에 있어서, 먼저, 파일럿압 센서(SE3)에 의해서 검출한 아암 크라우드 조작 파일럿압(아암 크라우드 조작량)으로부터 테이블 T1을 이용하여 펌프(23)의 유량 기준값 Q1을 정한다. 또, 엔진 회전수가 러그 다운(lug-down)하지 않도록 설정된 펌프 출력 기준값과 아암 크라우드 조작량으로부터 아암 크라우드 파워 요구값 POW1을 연산하고, 이것을 펌프 토출압 센서(SE2)로부터 검출한 펌프 토출압으로 나눔으로써, 마력에 의한 펌프 유량 제한값 Qlim을 연산한다. 유량 기준값 Q1과 마력에 의한 펌프 유량 제한값 Qlim의 최소값을 펌프 유량 요구값 Q2로 한다.
또, 아암 크라우드 조작 파일럿압(아암 크라우드 조작량)과 압력 센서(SE5)에 의해 검출한 아암 보텀압(아암 실린더 부하)으로부터, 테이블 T2를 이용하여 미터아웃 스로틀(41j)의 개구 면적값(이하, 미터아웃 개구 제한값이라고 칭하는 경우가 있음)을 연산한다. 테이블 T2는 아암 크라우드 조작 파일럿압이 클수록(아암 속도가 클수록) 미터아웃 개구 제한값을 크게 하는 것과 같은 특성으로 한다. 또, 테이블 T2 중의 화살표는 아암 보텀압의 크기를 나타내고, 테이블 T2는 아암 보텀압이 작을수록(아암 실린더(34)에 브리딩이 발생할 가능성이 클 때), 미터아웃 개구 제한값을 작게 하는 것과 같은 특성으로 한다. 아암 보텀압이 가장 높은 레벨에 있을 때의 그래프는 제어 밸브(41)의 미터아웃 개구 특성 A0(후술의 도 6 참조)과 일치한다.
스위치 SW1의 전환 위치는, 도 3의 플로우차트에 의해 결정된 동작 모드에 따라서 택일적으로 전환된다. 통상 동작 모드에서는, 스위치 SW1은 위치 Ps1로 전환되고, 테이블 T2를 이용하여 계산한 개구 면적값을 도 5의 테이블 T4에 출력한다. 한편, 대체 동작 모드에서는, 스위치 SW1은 위치 Ps2로 전환되고, 아암 보텀압은 고려하지 않고, 제어 밸브(41)가 미터아웃 개구 특성 A0을 취할 때의 최대값 Amax(후술의 도 6 참조)를 도 5의 테이블 T4에 출력한다.
도 5에서는 미터아웃 개구 제한값을 기초로 전자 비례 밸브(43)로의 제어 신호(전자 비례 밸브 전류 지시값)를 결정하는 연산 방법을 설명한다. 먼저, T2의 미터아웃 개구 제한값으로부터 테이블 T4를 이용하여 전자 비례 밸브 2차압 목표값(파일럿압)을 연산한다. 여기서 테이블 T4는 수압부(41f)의 압력에 대한 미터아웃 스로틀(41j)의 개구 특성의 세로축과 가로축을 바꿔 넣은 것이다. T4에 Amax가 입력된 경우(대체 동작 모드에서 SW1이 Ps2에 있을 때)에는, 전자 비례 밸브 2차압 목표값은 최대값을 취한다.
다음으로, 테이블 T5를 이용하여, T4의 전자 비례 밸브 2차압 목표값으로부터 전자 밸브 전류 지시값을 연산한다. 여기서 테이블 T5는 전자 비례 밸브(43)의 전류-2차압 특성(I-P 특성)의 세로축과 가로축을 바꿔 넣은 것이다. 전자 비례 밸브 2차압 목표값이 최대값인 경우(대체 동작 모드에서 SW1이 Ps2에 있을 때)에는 전류값은 제로가 되므로, 제어 밸브(41)는 조작 파일럿압 발생부(42b)에서 발생한 파일럿압에 의해 구동된다. 또한, 여기서는 대체 동작 모드 선택시에 테이블 T5에 의해 산출되는 전류 지시값은 제로로 하였지만, 전자 비례 밸브(43)가 노멀 위치에 유지되는 전류값의 범위 내라면 제로를 초과하는 값이어도 상관없다.
이상의 테이블 T4, T5를 이용한 연산에 의해, 컨트롤러(44)는 T5의 전자 밸브 전류 지시값을 전자 비례 밸브(43)에 출력하고, 미터아웃 스로틀(41j)의 개구 면적이 목표값이 되도록 전자 비례 밸브(43)를 제어한다.
다음으로, 도 4로 되돌아와서, 펌프 유량 보정값 ΔQ의 연산 방법을 설명한다. 아암 크라우드 조작 파일럿압과 아암 보텀압으로부터, 테이블 T3을 이용하여 펌프 유량 보정값을 계산한다. 테이블 T3은 조작 파일럿압이 클수록 펌프 유량 보정값 ΔQ가 증가하는 특성으로 한다. 그리고, 테이블 T3 중의 화살표는 아암 보텀압의 크기를 나타내고, 테이블 T3은 보텀압(액추에이터 부하)이 작을(아암 실린더에 브리딩이 발생할 가능성이 클 때)수록, 펌프 유량 보정값 ΔQ가 증가하는 특성으로 한다. 또, 보텀압이 큰 경우(아암 실린더에 브리딩이 발생할 가능성이 적을 때)는 보텀압이 작은 경우에 비하여 펌프 유량 보정값 ΔQ가 감소하는 특성으로 한다. 테이블 T3에 의해 산출된 펌프 유량 보정값 ΔQ는 스위치 SW2에 출력된다.
스위치 SW2의 전환 위치는, 도 3의 플로우차트에 의해 결정된 동작 모드에 따라서 택일적으로 전환된다. 통상 동작 모드에서는, 스위치 SW2는 위치 Ps1로 전환되고, 펌프 유량 보정값 ΔQ로서 제로를 출력한다. 한편, 대체 동작 모드에서는, 스위치 SW2는 위치 Ps2로 전환되고, 펌프 유량 보정값 ΔQ로서 테이블 T3에 의해 산출된 값을 출력한다.
스위치 SW2로부터 출력된 펌프 유량 보정값 ΔQ는, 펌프 유량 요구값 Q2에 가산되어, 최종적인 펌프 유량 목표값 Q3이 결정된다. 펌프 유량 목표값 Q3을 기초로 펌프 레귤레이터(23a)로의 전류 지시값이 생성된다. 컨트롤러(44)는, 그 전류 지시값을 펌프 레귤레이터(23a)에 출력하고, 유압 펌프(23)의 토출 유량이 목표값(Q2, 또는 Q2 + ΔQ)이 되도록 펌프 레귤레이터(23a)를 제어한다. 이에 의해 대체 동작 모드의 선택시에는 제로보다 큰 펌프 유량 보정값 ΔQ가 Q2에 가산되므로, 항상 Q2가 유지되는 통상 동작 모드의 선택시보다 유압 펌프(23)의 토출 유량이 증가되어, 미터인측의 유량 부족이 완화/해소된다.
다음으로, 도 6을 이용하여 테이블 T2의 역할을 설명한다. 도 6은 테이블 T2의 모식도이다. 테이블 T2는 아암 보텀압의 레벨이 가장 높을 때, 즉, 아암 실린더에 브리딩 현상이 생기기 어려울 때에는, 미터아웃 개구 제한값은 제어 밸브(41)의 미터아웃 개구 특성(도면 중 A0)을 취한다. 이 때, 아암 크라우드 조작 파일럿압과 전자 밸브 2차압이 일치하기 때문에, 파일럿압의 감압을 행하지 않는다. 아암 보텀압이 낮아 브리딩 현상이 발생할 가능성이 있는 경우에는, 도면 중 A1과 같이, A0으로부터 일정 정도 개구를 줄인 특성을 미터아웃 개구 제한값으로 한다. 이 때, 미터아웃 스로틀(41j)가 조여지기 때문에, 아암 실린더 로드압이 상승하고, 실린더 속도가 저하됨으로써 브리딩을 방지한다. 아암 보텀압이 더 저하된 경우에는, A1로부터 개구를 더 줄인 특성을 미터아웃 개구 제한값으로 한다. 아암 보텀압에 대하여 어느 정도 개구를 감소시킬지는, 실험에 의해 도출한다.
다음으로, 도 7의 수식을 이용하여 테이블 T3의 도출 방법을 설명한다. 현재, 실험에 의해 테이블 T2가 결정되었다고 하면, 브리딩 현상을 방지하는데에 필요한 미터아웃압 pMO(여기서는 아암 실린더 로드압에 일치) 는 (1)식과 같이 유도된다. 여기서 Q(PI)는 조작 파일럿압 PI에 대응한 펌프 기준 유량, c는 유량 계수, A1(PI)는 도 5의 A1의 특성에 대응한다. 대체 동작 모드에서는 미터아웃 개구를 제한하지 않기 때문에, 미터아웃 스로틀 개구의 특성은 제어 밸브(41)의 미터아웃 개구 특성 A0이 된다. 브리딩 현상 방지를 위해서는, 대체 운작 모드에 있어서도 통상 운작 모드와 동등한 미터아웃압을 유지할 필요가 있다. 여기서, A1은 A0보다 작기 때문에, (2)식과 같이, 펌프 기준 유량 Q에 양의 값의 펌프 보정 유량 ΔQ를 가산하면 된다. (1), (2)식으로부터 펌프 보정 유량 ΔQ는 (3)식과 같이 일의적으로 결정된다.
또한, 상기의 설명에서는 도 3의 플로우차트, 즉 작동유온을 기초로 하나의 동작 모드가 자동적으로 선택되었지만, 동작 모드의 전환 스위치(도시 생략)를 설치하고, 당해 스위치에 의해 오퍼레이터가 원하는 동작 모드에 맞추어 스위치 SW1 및 스위치 SW2의 전환 위치를 변경 가능하게 구성해도 된다.
이상과 같이, 본 실시 형태에서는, 작동유 탱크(40) 내의 작동유를 퍼올려 토출하는 유압 펌프(23)와, 유압 펌프(23)로부터 토출되는 작동유에 의해 구동되는 아암 실린더(34)와, 아암 실린더(34)로부터 배출되는 작동유가 흐르는 미터아웃 유로 L4와, 미터아웃 유로 L4에 설치되고, 스로틀(41j)의 개구 면적을 변경함으로써 미터아웃 유로 L4의 작동유 유량을 제어하는 제어 밸브(41)와, 아암 실린더(34)에 작용하는 부하(액추에이터 부하)를 검출하는 압력 센서(SE5)와, 아암 실린더(34)를 조작하는 조작 장치(42)와, 조작 장치(42)의 조작량을 검출하는 압력 센서(SE3)를 구비하는 유압 셔블에 있어서, 센서(SE5)에 의한 액추에이터 부하와 센서(SE3)에 의한 조작량을 기초로 스로틀(41j)의 개구 면적을 제어하는 통상 동작 모드와, 액추에이터 부하는 고려하지 않고, 센서(SE3)에 의한 조작량만을 기초로 스로틀(41j)의 개구 면적을 제어하는 대체 동작 모드를 택일적으로 선택하여 스로틀(41j)의 개구 면적을 제어하도록 구성된 컨트롤러(44)를 구비하였다. 또한, 컨트롤러(44)는, 대체 동작 모드의 선택시에는, 통상 동작 모드의 선택시에 동일한 조작량일 때보다 유압 펌프(23)의 토출 유량을 증가시키도록 구성하였다.
이와 같이 구성한 유압 셔블에 의하면, 제어 밸브(41)의 스로틀(41j)의 개구 면적을 제어함으로써 미터아웃 유로(L4)의 작동유 유량을 액추에이터 부하에 따라서 제어하지 않는 경우(즉, 대체 동작 모드가 선택된 경우)에는, 통상 동작 모드의 선택시보다 유압 펌프(23)의 토출 유량이 증가하여 미터인 유로(L3)의 작동유 유량 부족을 회피할 수 있으므로, 아암 실린더(유압 액추에이터)(34)에서의 브리딩 현상의 발생을 방지할 수 있다. 이에 의해 유압 셔블의 조작성의 악화와 유압 기기의 손상을 방지할 수 있다.
또, 본 실시 형태에서는 테이블 T3을 구비함으로써, 컨트롤러(44)가, 대체 동작 모드의 선택시에, 액추에이터 부하가 작을수록 유압 펌프(23)의 토출 유량이 증가하고, 조작량이 클수록 유압 펌프(23)의 토출 유량이 증가하도록 구성되어 있다.
이와 같이 구성한 유압 셔블에 의하면, 액추에이터 부하가 작고 브리딩 현상의 발생 가능성이 높을 때일수록 유압 펌프(23)의 토출 유량이 증가하므로, 브리딩 현상의 발생 방지의 확실성을 향상할 수 있다.
또, 본 실시 형태에서는, 작동유 탱크(40) 내의 작동유온을 검출하는 온도 센서(SE7)를 더 구비하고, 컨트롤러(44)가, 온도 센서(SE7)가 취득한 작동유온 T0이 역치 T1을 하회하는 경우에 대체 동작 모드를 선택하고, 작동유온이 역치 T1 이상의 값(T2)에 도달하였을 경우에 통상 동작 모드를 선택하도록 구성되어 있다.
이와 같이 구성한 유압 셔블에 의하면, 외기온 등에 의해 작동유온이 저하되고, 미터아웃 개구 제한 제어(제어 밸브(41)의 스로틀(41j)의 개구 면적을 제어함으로써 미터아웃 유로(L4)의 작동유 유량을 액추에이터 부하에 따라서 제어하는 것)가 곤란해지는 정도까지 작동유의 점도가 높아진 경우에는, 자동적으로 대체 동작 모드가 선택되고, 미터아웃 개구 제한 제어의 실행이 회피됨과 함께 유압 펌프(23)의 토출 유량이 증가한다. 이에 의해 부하에 따른 미터아웃 유량 제어의 실행/부실행이 작동유온에 따라서 자동적으로 선택됨과 함께, 미터아웃 유량 제어가 실행되지 않는 경우에도 아암 실린더(유압 액추에이터)(34)에서의 브리딩 현상의 발생을 방지할 수 있으므로, 유압 셔블의 조작성의 악화와 유압 기기의 손상을 방지할 수 있다.
< 제 2 실시 형태 >
다음으로, 본 발명의 제 2 실시 형태에 대하여 설명한다. 도 8은 본 실시 형태의 유압 회로와 기기의 구성도이다. 본 실시 형태의 유압 회로와 기기의 구성은, 작동유온 센서(SE7)를 제거한 점에서 제 1 실시 형태의 구성과 다르지만, 그 외의 구성에 대해서는 동일하므로 설명은 생략한다.
도 13은 본 실시 형태에 관련된 유압 펌프와 미터아웃 개구 제한 연산의 제어 블록 선도이다. 도 13 중의 T2는 도 4 중의 테이블 T2를 나타내고, T4, T5는 도 5 중의 테이블 T4, T5를 나타낸다. 도 4, 5의 제어 블록도와 다른 점은 스위치 SW1 대신에 스위치 SW3을 구비하는 점이다. 스위치 SW3의 전환 위치는, 후술하는 도 9의 플로우차트에 의해 결정된 동작 모드에 따라서 택일적으로 전환된다. 통상 동작 모드에서는, 스위치 SW3은 위치 Ps1로 전환되고, 테이블 T2, T4, T5를 이용하여 계산한 전류 지시값을 전자 비례 밸브(43)에 출력한다. 한편, 대체 동작 모드에서는, 스위치 SW3은 위치 Ps2로 전환되고, 컨트롤러(44)와 전자 비례 밸브(43)의 전기적 접속을 절단한다. 이에 의해 전자 비례 밸브(43)로의 전류 출력이 행해지지 않고(즉, 전류 지시값은 제로), 전자 비례 밸브(43)는 노멀 위치에서 최대 개구를 취한다. 그 결과, 제어 밸브(41)는, 액추에이터 부하에 관계 없이, 조작 파일럿압 발생부(42b)에서 발생한 파일럿압에 의해 구동된다.
도 9에 제 1 실시 형태에 있어서의 동작 모드 전환 제어의 플로우차트를 나타낸다. 앞서의 플로우차트와 동일한 처리에는 동일한 부호를 붙이고 설명을 생략하는 경우가 있다.
단계 S1에서 키 스위치가 ON 위치인 것이 확인되면, 컨트롤러(44)를 기동시켜, 단계 S30으로 진행된다.
S30에서는, 컨트롤러(44)는, 전회 키 OFF시의 동작 모드가 대체 동작 모드인지 여부의 판정을 행한다. 전회 키 OFF시의 동작 모드는 컨트롤러(44)의 ROM(93)에 기억되어 있고, 컨트롤러(44)는 그 정보에 기초하여 S30의 판정을 행한다. S30에서 대체 동작 모드라고 판정된 경우에는, S34에서 통상 동작 모드로 전환하여 S2로 진행된다. 한편, S30에서 통상 동작 모드라고 판정된 경우에는 S2로 진행된다.
단계 S3에서는 컨트롤러(44)가 도 13에 나타낸 제어에 의해 결정되는 전자 비례 밸브 전류 지시값 I를 출력한다. 단계 S4에서는 컨트롤러(44)가 전자 비례 밸브(43)에 출력되는 전류(피드백 전류값) IFB를 컨트롤러(44) 내의 전류 센서에 의해 검출하고 단계 S5로 진행된다. 또한, 단계 S3에서 전자 비례 밸브 전류 지시값 I의 출력 요구의 유무를 검출하고, 출력 있음인 경우에 단계 S4로 진행되고, 출력 없음인 경우에 단계 S3으로 되돌아가도록 구성해도 된다(후술의 도 14의 단계 S40 참조).
단계 S5에서는, S4의 전자 비례 밸브 피드백 전류값 IFB가 피드백 전류 상한 역치 Ith1(예를 들면, 900 mA)을 상회하는지, 또는 피드백 전류 하한 역치 Ith2(예를 들면, 50 mA)를 하회하는지를 판단한다. 여기서, Ith1은 전자 비례 밸브 최대 전류 IMAX보다 큰 값이며, 전자 비례 밸브(43)의 솔레노이드 또는 와이어 하니스가 단락되어 있는지 여부를 판단 가능한 전류값으로 한다. 또, Ith2는 전자 비례 밸브 최소 전류 IMIN보다 작은 제로 이상의 값이며, 전자 비례 밸브(43)의 솔레노이드 또는 와이어 하니스가 단선되어 있는지 여부를 판단 가능한 전류값으로 한다. 즉, 단계 S5에서는 전자 비례 밸브(43)의 단락·단선에 따른 고장을 판정한다. 단계 S5에서 전자 비례 밸브 피드백 전류값 IFB가, 피드백 전류 상한 역치 Ith1을 상회하거나, 또는 피드백 전류 하한 역치 Ith2를 하회하는 경우(즉, 단락·단선의 우려가 있는 경우)에는 단계 S6으로 진행된다.
단계 S6에서는 타이머(Ta)(초기값은 제로)에 컨트롤러(44)의 연산 주기(예를 들면, 0.01 sec)를 가산하고, 단계 S8로 진행된다.
한편, S5에서 전자 비례 밸브 피드백 전류값 IFB가, 피드백 전류 상한 역치 Ith1 이하인 경우와, 피드백 전류 하한 역치 Ith2 이상인 경우에는, 단계 S7로 진행된다. 단계 S7에서는 타이머(Ta)를 제로로 하여 단계 S8로 진행된다.
단계 S8에서는 타이머(Ta)와 타이머 역치 Tth(예를 들면, 5 sec)를 비교하여, 타이머(Ta)가 타이머 역치 Tth 이하일 때에는 단계 S9, 타이머(Ta)가 타이머 역치 Tth보다 클 때에는, 전자 비례 밸브(43)(미터아웃 제어 밸브 제어 장치)에 이상이 발생했다고 판단하여, 단계 S10으로 진행된다.
단계 S9에서는 차체의 동작 모드를 통상 동작 모드로 하고, 키 스위치가 OFF 위치에 있는지 여부를 판정한다(S36). S36에서, 키 OFF인 경우에는 엔진(22) 및 컨트롤러(44)를 정지하여 처리를 종료하고, 키 ON인 경우에는 단계 S3으로 되돌아간다.
단계 S10에서는 컨트롤러(44)는 차체의 동작 모드를 대체 동작 모드로 전환하고, 스위치 SW3가 위치 Ps2로 전환된다. 그 결과, 단계 S11에서 전자 비례 밸브 전류 지시값 I가 제로로 설정되고(즉, 제어 밸브(41)는 조작 파일럿압 발생부(42b)에서 발생한 파일럿압에 의해 구동됨), 처리를 종료한다. 이에 의해 대체 동작 모드로 전환된 경우에는 다음 회 키 OFF, 키 ON이 행해지지 않는 한, 통상 동작 모드로 전환되지 않게 된다.
또한, 상기에서는 전회 키 OFF시의 동작 모드를 기억해 두고, 그것을 S30에서 확인하는 경우에 대하여 설명하였지만, 동작 모드의 기억과 S30, 34를 생략하고, 도 9의 플로우의 개시시의 동작 모드는 항상 통상 동작 모드로 하는 구성을 채용해도 된다.
그런데, 전자 비례 밸브(43)에 문제나 고장이 발생하면, 전자 비례 밸브(43)에 의해 적절한 2차압을 출력하는 것이 어렵게 되므로, 액추에이터 부하에 따른 적절한 미터아웃 유량 제어가 불가능하게 된다.
그래서 상기한 바와 같이 구성한 본 실시 형태에서는, 컨트롤러(44)로부터 입력되는 전자 비례 밸브 전류 지시값 I(제어 신호)를 기초로 구동되고, 제어 밸브(41)의 스로틀(41j)의 개구 면적을 제어하는 미터아웃 제어 밸브 제어 장치로서 기능하는 전자 비례 밸브(43)의 이상을 컨트롤러(44)가 검지한 경우에는, 전자 비례 밸브(43)로의 전류 출력을 중지하고, 동작 모드로서 대체 동작 모드를 선택하도록 유압 셔블을 구성하였다.
이와 같이 유압 셔블을 구성하면, 전자 비례 밸브(43)의 고장에 의해 미터아웃 유량 제어가 불가능한 경우에는 자동적으로 대체 동작 모드로 전환되고, 펌프 유량이 증가하므로 브리딩 현상을 방지할 수 있다.
또한, 상기에서는, 전자 비례 밸브(43) 및 그 주변 설비의 고장에 의해 전자 비례 밸브(43)에 잘못된 전류가 출력되는 것을 방지하기 위하여 대체 동작 모드에서는 SW3에 의해 전자 비례 밸브(43)와 컨트롤러(44)의 접속을 차단하였지만, 도 13의 전자 비례 밸브(43)의 제어 대신에 제 1 실시 형태와 마찬가지로 도 4, 5를 기초로 행해도 된다.
< 제 3 실시 형태 >
다음으로, 본 발명의 제 3 실시 형태에 대하여 설명한다. 제 3 실시 형태에서는, 미터아웃 개구 제한 연산에 이용하는 센서가 고장난 경우에도 브리딩 현상을 방지한다. 이하에, 미터아웃 개구 제한 연산에 이용하는 센서로서 아암 실린더 보텀압 센서(SE5)를 예로 들어 설명한다. 본 발명의 유압 회로와 기기의 구성은 제 2 실시 형태와 동일하다.
도 11에 본 실시 형태에서의 통상 동작 모드와 대체 동작 모드에 있어서의, 유압 펌프(23)의 토출 유량과 전자 비례 밸브(43)의 제어 방법을 나타낸다. 유압 펌프(23)의 토출 유량과 전자 비례 밸브(43)의 제어 방법은 제 1 실시 형태와 거의 동일하지만, 아암 보텀압을 이용하지 않고, 조작 파일럿압으로부터만 펌프 보정 유량 ΔQ를 연산하는(테이블 T3a) 것만 다르다. 이 예의 테이블 T3a에서는 도 4의 테이블 T3에서 아암 보텀압이 최소일 때의 특성을 이용하고 있다.
도 10에 본 실시 형태에 있어서의 동작 모드 전환 제어의 플로우차트를 나타낸다. 단계 S1, S2는 제 1 실시 형태와 동일하다. 다음으로, 단계 S12에서 아암 보텀압 센서(SE5)의 출력 전압 V0을 검출하고, 단계 S13으로 진행된다. 단계 S13에서는 실린더압 센서 전압 V0이 실린더압 센서 전압 최소값 VMIN을 하회하는지, 또는 실린더압 센서 전압 최대값 VMAX를 상회하는지를 판단한다. 실린더압 센서 최소값 VMIN은 실린더압 센서가 단락한 경우를 검출할 수 있는 값으로 한다. 또, 실린더압 센서 최대값 VMAX는 실린더압 센서가 단선한 경우를 검출할 수 있는 값으로 한다. 실린더압 센서 전압 V0이 실린더압 센서 전압 최소값 VMIN을 하회하거나, 또는 실린더압 센서 전압 최대값 VMAX를 상회하는 경우에는 단계 S14로 진행되고, 그렇지 않은 경우, 단계 S15로 진행된다.
단계 S14에서는 타이머(Ta)(초기값은 제로)에 컨트롤러(44)의 연산 주기를 가산하고, 단계 S16으로 진행된다.
단계 S15에서는 타이머(Ta)를 제로로 하여 단계 S16으로 진행된다.
단계 S16에서는 타이머(Ta)와 타이머 역치 Tth(예를 들면, 5 sec)를 비교하여, 타이머(Ta)가 타이머 역치 Tth 이하일 때에는 단계 S17로, 타이머(Ta)가 타이머 역치 Tth보다 클 때에는 단계 S18로 진행된다.
단계 S17에서는 차체의 동작 모드를 통상 동작 모드로 하고(초기 상태는 정상 모드), 단계 S36으로 진행된다.
한편, 단계 S18에서는 차체의 동작 모드를 대체 동작 모드로 전환하여 단계 S19로 진행된다. 단계 S19에서는 전자 밸브(43)의 전류 지시값을 최소값(전자 밸브(43)가 노멀 위치에 유지되는 전류값이며, 예를 들면 제로를 선택 가능)으로 하여 처리를 종료한다.
그런데, 실린더압 센서(SE5) 등 제어 밸브(41)의 동작을 제어하는데에 이용하는 센서가 고장난 경우에는, 브리딩 현상을 방지하기 위하여 필요한 미터아웃 스로틀 개구를 적절하게 조정하기가 어렵다. 따라서, 이 경우에는, 적어도 종래의 방법에 의해 미터아웃 유량 제어를 행해서는 안된다.
그래서, 본 실시 형태에서는, 컨트롤러(44)가 센서(SE5)의 이상을 검지한 경우에는, 대체 동작 모드를 선택하도록 유압 셔블을 구성하였다.
이와 같이 유압 셔블을 구성하면, 미터아웃 유량 제어에 이용하는 센서가 고장나고, 제어 밸브(41)를 종래의 방법에 의해 제어할 수 없는 경우에 있어서도, 펌프 유량을 증가시킴으로써, 브리딩 현상을 방지할 수 있다.
특히 도 11의 테이블 T3a에서는 도 4의 테이블 T3에서 아암 보텀압이 최소일 때의 특성(즉, 브리딩이 발생할 가능성이 가장 큰 경우의 특성)을 이용하고 있다. 이와 같이 펌프 보정 유량 ΔQ를 연산하면, 보텀압 센서(SE5)에 이상이 생긴 경우에도 미터인측의 작동유가 최대한으로 확보되므로 브리딩 현상의 발생을 방지할 수 있다.
< 제 4 실시 형태 >
다음으로, 본 발명의 제 4 실시 형태에 대하여 설명한다. 제 4 실시 형태에서는, 미터아웃 제어 밸브 제어 장치의 이상이 회복되고, 대체 동작 모드로부터 통상 동작 모드로의 변경을 허가하는 허가 신호가 입력되었을 때, 대체 동작 모드로부터 통상 동작 모드로 전환하고 있다.
도 14는 본 발명의 제 4 실시 형태에 관련된 동작 모드 전환 제어의 플로우차트이다. 그 외의 구성은 제 2 실시 형태와 동일하고, 이미 서술한 구성의 설명은 생략한다.
단계 S8에서 타이머(Ta)와 타이머 역치 Tth(예를 들면, 5 sec)를 비교하여, 타이머(Ta)가 타이머 역치 Tth 이하일 때에는 단계 S42로 진행된다.
단계 42에서는, 컨트롤러(44)는 현재의 동작 모드가 통상 동작 모드인지 여부를 판정한다. 통상 동작 모드인 경우에는 단계 S9로 진행되고, 대체 동작 모드인 경우에는 단계 S44로 진행된다.
단계 S44에서는, 전자 비례 밸브(43)의 고장이 회복되었는지 여부를 판정하기 위한 플래그(정상 플래그라고 칭함)를 1로 설정하고, 단계 S36으로 진행된다. 정상 플래그가 0일 때에는 전자 비례 밸브(43)에 이상이 발생하였음을 나타내고, 정상 플래그가 1일 때에는 전자 비례 밸브(43)의 이상이 회복되었음을 나타낸다.
단계 S36에서 키 스위치가 OFF 위치에 있다고 판정되고, 프론트 작업 장치(30)의 비조작이 담보된 경우에는, 단계 S48에서 정상 플래그가 1인지 여부를 판정한다. 정상 플래그가 1일 때에는, 동작 모드를 대체 동작 모드로부터 통상 동작 모드로 변경하여 처리를 종료한다. 정상 플래그가 0일 때에는 통상 동작 모드인 채로 처리를 종료한다. 단계 S36에 있어서, 키 스위치가 OFF 위치에 있는지 여부는, 키 스위치를 OFF 위치로 전환한 경우에 컨트롤러(44)에 입력되는 신호(「허가 신호」라고 칭함)를 기초로 판정한다. 허가 신호는 대체 동작 모드로부터 통상 동작 모드로의 변경을 허가하는 신호이다.
그런데, 전자 비례 밸브(43)의 이상이 회복된 것만을 트리거로 하여 동작 모드를 대체 동작 모드로부터 통상 동작 모드로 복귀시키면, 프론트 작업 장치(30)의 조작 중에 동작 모드가 변경되어, 오퍼레이터의 조작감을 손상시킬 가능성이 있다.
그러나, 상기와 같이 구성한 유압 셔블에서는, 전자 비례 밸브(43)에 발생한 이상이 회복된 것과, 키 스위치가 OFF 위치로 전환되어 프론트 작업 장치(30)의 비조작이 보증되어 있는 것을 트리거로 하여 동작 모드를 통상 동작 모드로 복귀하는 것으로 하였다. 그 때문에, 프론트 작업 장치(30)의 조작 중에 동작 모드가 변경되는 것이 회피되어, 오퍼레이터의 조작감을 양호하게 유지할 수 있다. 또한, 전자 비례 밸브(43)의 이상이 회복된 경우에는 신속하게 통상 동작 모드로 복귀하는 것이 가능하게 된다.
또한, 상기에서는, 키 스위치를 OFF 위치로 전환한 경우에 허가 신호가 컨트롤러(44)에 출력된다고 설명하였지만, 프론트 작업 장치(30)의 비조작이 보증되어 있는 상황이라면, 그 외의 경우에 허가 신호를 출력해도 된다. 예를 들면, 키 스위치를 ON 위치 또는 스타트 위치로 전환한 경우, 파일럿 밸브(42)로부터 제어 밸브(41)로의 파일럿압의 출력의 유무를 제어하는 게이트 록 레버(도시 생략)를 세운 경우(파일럿압의 차단 위치로 전환한 경우), 엔진(22)의 오토 아이들 제어가 개시된 경우, 소정 시간 조작 레버(42a)의 조작이 없었던 경우 등에 허가 신호를 출력할 수 있다. 또한, 허가 신호 출력용의 전용 스위치를 운전실 내에 설치하고, 오퍼레이터가 원하는 타이밍에 허가 신호를 출력해도 된다. 이 경우, 본 실시 형태의 제어는 제 1 실시 형태에도 적용 가능하게 된다.
본 실시 형태는, 제 3 실시 형태에 관련된 센서(예를 들면, 센서(SE5))의 이상이 회복된 경우에도 적용 가능하다.
< 부기 >
상기에서는, 아암 실린더(34)의 보텀압을 검출하는 압력 센서(SE5)를 아암 실린더(34)의 부하 검출기로서 이용하였지만, 압력 센서(SE5)에 추가하여 압력 센서(SE6)를 부하 검출기로서 이용해도 된다. 이 경우, 압력 센서 SE5와 SE6의 차압으로부터 아암 실린더(34)의 부하를 검출할 수 있다. 또, 압력 센서(SE5) 대신에, 펌프 토출압을 검출하는 압력 센서(SE2)를 부하 검출기로서 이용해도 된다.
제 1 실시 형태에서는, 역치 T1 근처에서 작동유온이 단기간에 빈번하게 변동하여 동작 모드도 빈번하게 변경되는 것을 방지하는 관점에서, 작동유온 T0이 역치 T1을 하회하는 경우에 대체 동작 모드를 선택하고, 작동유온 T0이 역치 T0 이상의 값(T2) 이상에 도달한 경우에 통상 동작 모드를 선택하도록 구성하였다. 즉, T1 및 T2의 2개의 역치를 사용하였지만, 작동유온 변화가 단조롭게 증가 또는 감소하는 경향이 있는 환경에서의 사용 등이라면, 하나의 역치만을 사용해도 된다. 또, 미터아웃 개구 제한 제어가 곤란해지는 온도 범위의 최고값을 T1으로 하는 예를 들었지만, 이것에 한정하지 않고 작동유 점도에 따라서 원하는 값을 T1로서 설정할 수 있다.
상기의 각 실시 형태의 플로우차트에서는, 키 스위치가 스타트 위치로 전환된 타이밍(S1, S2)을 실질적인 처리의 개시 타이밍으로 하고 있지만, S1, S2를 생략하여 컨트롤러 기동 후 또한 엔진 시동 후의 적절한 타이밍에 처리를 개시해도 된다. 또, 각 플로우차트의 처리의 순서는 얻어지는 결과가 동일하면 적절히 변경해도 상관없다.
상기의 설명에서는, 미터아웃 유로(액추에이터 라인)(L4)의 유량 제어를 제어 밸브(41) 내의 스로틀(41j)에 의해서 행하였지만, 미터아웃 유량의 제어 시스템은 이것에만 한정되지 않고 여러 가지 변경이 가능하다. 예를 들면, 액추에이터 라인(L4)에 기타의 유로를 접속하여 당해 기타의 유로에 구비한 가변 스로틀의 개구 면적을 제어해도 된다. 또, 당해 가변 스로틀과 스로틀(41j)의 개구 면적의 합계값에 의해 미터아웃 유량을 제어해도 된다.
10: 주행체, 11: 크롤러, 12: 크롤러 프레임, 13: 주행용 유압 모터, 20: 선회체, 21: 선회 프레임, 22: 엔진, 23: 유압 펌프, 23a: 펌프 레귤레이터, 24: 컨트롤 밸브 유닛, 25: 선회 유압 모터, 30: 프론트 작업 장치, 31: 부움, 32: 부움 실린더, 33: 아암, 34: 아암 실린더(유압 액추에이터), 35: 버킷, 36: 버킷 실린더, 40: 작동유 탱크, 41: 제어 밸브(미터아웃 제어 밸브), 42: 파일럿 밸브(조작 장치), 43: 전자 비례 밸브, 44: 컨트롤러(제어 장치), SE1: 엔진 회전수 픽업 센서, SE2: 펌프 토출압 센서, SE3: 조작 파일럿압 센서(아암 크라우드 조작), SE4: 조작 파일럿압 센서(아암 댐프 조작), SE5: 아암 보텀압 센서, SE6: 아암 로드압 센서, SE7: 작동유온 센서, SW1: 스위치, SW2: 스위치, SW3: 스위치, L1: 토출 라인, L2: 센터 바이패스 라인, L3: 액추에이터 라인(아암 보텀측), L4: 액추에이터 라인(아암 로드측·미터아웃 유로), L5: 파일럿 라인(아암 크라우드), L6: 파일럿 라인(아암 댐프), L7: 드레인 유로
Claims (6)
- 탱크 내의 작동유를 퍼올려 토출하는 유압 펌프와,
상기 유압 펌프로부터 토출되는 작동유에 의해 구동되는 유압 액추에이터와,
상기 유압 액추에이터로부터 배출되는 작동유가 흐르는 미터아웃 유로와,
상기 미터아웃 유로에 설치되고, 개구 면적을 변경함으로써 상기 미터아웃 유로의 작동유 유량을 제어하는 미터아웃 제어 밸브와,
상기 유압 액추에이터에 작용하는 부하를 검출하는 부하 검출기와,
상기 유압 액추에이터를 조작하는 조작 장치와,
상기 조작 장치의 조작량을 검출하는 조작량 검출기를 구비하는 건설 기계에 있어서,
상기 부하와 상기 조작량을 기초로 상기 미터아웃 제어 밸브의 개구 면적을 제어하는 통상 동작 모드와, 상기 조작량을 기초로 상기 미터아웃 제어 밸브의 개구 면적을 제어하는 대체 동작 모드를 택일적으로 선택하도록 구성된 제어 장치를 구비하고,
상기 제어 장치는, 상기 대체 동작 모드의 선택시에는, 상기 통상 동작 모드의 선택시보다 상기 유압 펌프의 토출 유량을 증가시키도록 구성되어 있는 것을 특징으로 하는 건설 기계. - 제 1 항에 있어서,
상기 제어 장치는, 상기 대체 동작 모드의 선택시에, 상기 부하가 작을수록 상기 유압 펌프의 토출 유량이 증가하고, 상기 조작량이 클수록 상기 유압 펌프의 토출 유량이 증가하도록 구성되어 있는 것을 특징으로 하는 건설 기계. - 제 1 항에 있어서,
상기 탱크 내의 작동유온을 검출하는 온도 검출기를 더 구비하고,
상기 제어 장치는, 상기 작동유온이 역치를 하회하는 경우에 상기 대체 동작 모드를 선택하고, 상기 작동유온이 상기 역치 이상의 값에 도달한 경우에 상기 통상 동작 모드를 선택하도록 구성되어 있는 것을 특징으로 하는 건설 기계. - 제 1 항에 있어서,
상기 제어 장치로부터 입력되는 제어 신호를 기초로 구동되고, 상기 미터아웃 제어 밸브의 개구 면적을 제어하는 미터아웃 제어 밸브 제어 장치를 더 구비하고,
상기 제어 장치는, 상기 미터아웃 제어 밸브 제어 장치의 이상을 검지한 경우에는, 상기 대체 동작 모드를 선택하도록 구성되어 있는 것을 특징으로 하는 건설 기계. - 제 1 항에 있어서,
상기 제어 장치는, 상기 부하 검출기의 이상을 검지한 경우에는, 상기 대체 동작 모드를 선택하도록 구성되어 있는 것을 특징으로 하는 건설 기계. - 제 4 항에 있어서,
상기 제어 장치는, 상기 대체 동작 모드가 일단 선택된 이후에 상기 이상이 회복되었을 때, 또한, 상기 대체 동작 모드로부터 상기 통상 동작 모드로의 변경을 허가하는 허가 신호가 입력되었을 때, 상기 대체 동작 모드 대신에 상기 통상 동작 모드를 선택하도록 구성되어 있는 것을 특징으로 하는 건설 기계.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/057680 WO2017154186A1 (ja) | 2016-03-10 | 2016-03-10 | 建設機械 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180116120A true KR20180116120A (ko) | 2018-10-24 |
KR101952820B1 KR101952820B1 (ko) | 2019-02-27 |
Family
ID=59789207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177022635A KR101952820B1 (ko) | 2016-03-10 | 2016-03-10 | 건설 기계 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10316866B2 (ko) |
EP (1) | EP3428457B1 (ko) |
JP (1) | JP6467517B2 (ko) |
KR (1) | KR101952820B1 (ko) |
CN (1) | CN107407300B (ko) |
WO (1) | WO2017154186A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190034226A (ko) * | 2017-09-13 | 2019-04-01 | 히다찌 겐끼 가부시키가이샤 | 작업 기계 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020184606A1 (ja) * | 2019-03-11 | 2020-09-17 | 住友建機株式会社 | ショベル及びショベルの制御方法 |
KR102517099B1 (ko) * | 2019-03-27 | 2023-04-04 | 히다찌 겐끼 가부시키가이샤 | 작업 기계 |
JP7330263B2 (ja) * | 2019-03-29 | 2023-08-21 | 住友建機株式会社 | ショベル |
CN114207296A (zh) * | 2019-07-08 | 2022-03-18 | 丹佛斯动力系统Ii技术有限公司 | 液压系统架构和可用于系统架构中的双向比例阀 |
CN110607819B (zh) * | 2019-09-29 | 2022-07-15 | 潍柴动力股份有限公司 | 一种动力机械烟度控制方法、装置及动力机械 |
JP7473337B2 (ja) * | 2019-12-27 | 2024-04-23 | 株式会社小松製作所 | 作業機械の制御システム、作業機械、及び作業機械の制御方法 |
JP7374762B2 (ja) * | 2019-12-27 | 2023-11-07 | 株式会社小松製作所 | 作業機械、計量方法、および作業機械を含むシステム |
CN111733919A (zh) * | 2020-06-29 | 2020-10-02 | 潍柴动力股份有限公司 | 挖掘机液压系统的防吸空控制方法、控制装置和挖掘机 |
CN111997137A (zh) * | 2020-08-25 | 2020-11-27 | 上海华兴数字科技有限公司 | 一种挖掘机控制方法、装置、存储介质及挖掘机 |
DE102020213784A1 (de) | 2020-11-03 | 2022-05-05 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Recheneinheit zum Betrieb einer mobilen Arbeitsmaschine mit variablem Automatisierungsgrad |
GB2604608A (en) * | 2021-03-08 | 2022-09-14 | Bamford Excavators Ltd | Hydraulic system |
CN113417332A (zh) * | 2021-07-12 | 2021-09-21 | 上海华兴数字科技有限公司 | 工程机械的控制方法、控制装置、工程机械以及存储介质 |
CN114809173A (zh) * | 2022-03-23 | 2022-07-29 | 中联重科股份有限公司 | 正流量挖掘机及其控制方法及装置、控制器和存储介质 |
CN115110596B (zh) * | 2022-07-26 | 2023-12-19 | 山河智能装备股份有限公司 | 一种液压控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264905A (ja) * | 1993-03-08 | 1994-09-20 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置 |
JPH11256622A (ja) * | 1998-03-13 | 1999-09-21 | Komatsu Ltd | 建設機械の油圧制御装置およびその油圧制御方法 |
JP2010014244A (ja) | 2008-07-04 | 2010-01-21 | Sumitomo (Shi) Construction Machinery Co Ltd | 建設機械 |
JP2016001022A (ja) * | 2014-06-11 | 2016-01-07 | 株式会社神戸製鋼所 | 作業機械の油圧駆動装置 |
KR20160019895A (ko) * | 2013-06-26 | 2016-02-22 | 볼보 컨스트럭션 이큅먼트 에이비 | 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3901058B2 (ja) * | 2002-08-21 | 2007-04-04 | コベルコ建機株式会社 | 建設機械の油圧シリンダ制御装置 |
JP4209705B2 (ja) * | 2003-03-17 | 2009-01-14 | 日立建機株式会社 | 作業機の油圧回路 |
JP2005076683A (ja) * | 2003-08-28 | 2005-03-24 | Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd | 建設機械の油圧ポンプ出力制御回路 |
DE102005013823A1 (de) * | 2004-03-25 | 2005-11-10 | Husco International Inc., Waukesha | Verfahren zum Steuern eines Hydrauliksystems unter Verwendung eines differenzdruckkompensierten Durchflusskoeffizienten |
JP5669264B2 (ja) * | 2011-05-13 | 2015-02-12 | 株式会社神戸製鋼所 | 作業用油圧制御装置 |
JP5920952B2 (ja) * | 2011-07-12 | 2016-05-24 | ボルボ コンストラクション イクイップメント アーベー | 建設機械用油圧アクチュエータのダンピング制御システム |
CN104093993A (zh) * | 2012-01-31 | 2014-10-08 | 伊顿公司 | 用于在液压系统中维持恒定负载的系统和方法 |
JP2014029180A (ja) * | 2012-07-31 | 2014-02-13 | Hitachi Constr Mach Co Ltd | 作業機械の油圧制御装置 |
JP5886976B2 (ja) * | 2012-10-18 | 2016-03-16 | 日立建機株式会社 | 作業機械 |
JP5661085B2 (ja) * | 2012-11-13 | 2015-01-28 | 株式会社神戸製鋼所 | 作業機械の油圧駆動装置 |
-
2016
- 2016-03-10 EP EP16891892.8A patent/EP3428457B1/en active Active
- 2016-03-10 CN CN201680010348.6A patent/CN107407300B/zh active Active
- 2016-03-10 WO PCT/JP2016/057680 patent/WO2017154186A1/ja active Application Filing
- 2016-03-10 JP JP2017543403A patent/JP6467517B2/ja active Active
- 2016-03-10 KR KR1020177022635A patent/KR101952820B1/ko active IP Right Grant
- 2016-03-10 US US15/555,161 patent/US10316866B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264905A (ja) * | 1993-03-08 | 1994-09-20 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置 |
JPH11256622A (ja) * | 1998-03-13 | 1999-09-21 | Komatsu Ltd | 建設機械の油圧制御装置およびその油圧制御方法 |
JP2010014244A (ja) | 2008-07-04 | 2010-01-21 | Sumitomo (Shi) Construction Machinery Co Ltd | 建設機械 |
KR20160019895A (ko) * | 2013-06-26 | 2016-02-22 | 볼보 컨스트럭션 이큅먼트 에이비 | 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법 |
JP2016001022A (ja) * | 2014-06-11 | 2016-01-07 | 株式会社神戸製鋼所 | 作業機械の油圧駆動装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190034226A (ko) * | 2017-09-13 | 2019-04-01 | 히다찌 겐끼 가부시키가이샤 | 작업 기계 |
Also Published As
Publication number | Publication date |
---|---|
JP6467517B2 (ja) | 2019-02-13 |
US20180106278A1 (en) | 2018-04-19 |
CN107407300B (zh) | 2018-12-28 |
CN107407300A (zh) | 2017-11-28 |
EP3428457A1 (en) | 2019-01-16 |
US10316866B2 (en) | 2019-06-11 |
KR101952820B1 (ko) | 2019-02-27 |
EP3428457A4 (en) | 2019-12-04 |
EP3428457B1 (en) | 2021-05-05 |
JPWO2017154186A1 (ja) | 2018-03-22 |
WO2017154186A1 (ja) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101952820B1 (ko) | 건설 기계 | |
US10655647B2 (en) | Hydraulic drive system for construction machine | |
EP3306112B1 (en) | Construction-machine hydraulic control device | |
WO2013145528A1 (ja) | 制御装置及びこれを備えた建設機械 | |
KR101693129B1 (ko) | 작업 기계 | |
JP5249857B2 (ja) | 制御装置及びこれを備えた作業機械 | |
JP5965502B1 (ja) | 建設機械の油圧駆動システム | |
JP5927188B2 (ja) | 建設機械用の旋回流量制御システム及びその制御方法 | |
KR20180107189A (ko) | 건설 기계 | |
CN111989441B (zh) | 油压挖掘机驱动系统 | |
JP6629189B2 (ja) | ショベル及びその制御方法 | |
JP6646007B2 (ja) | 建設機械の油圧制御装置 | |
KR101164669B1 (ko) | 건설중장비의 선회제어장치 및 방법 | |
JP6619939B2 (ja) | 液圧駆動システム | |
JP6013015B2 (ja) | 建設機械の油圧制御装置及びその制御方法 | |
JP2012007656A (ja) | 作業機械の旋回用油圧制御装置 | |
JP2018028357A (ja) | 建設機械の油圧システム | |
JP6528677B2 (ja) | 建設機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |