KR20180116110A - Ltp 또는 latp 결정입자 제조 방법 - Google Patents

Ltp 또는 latp 결정입자 제조 방법 Download PDF

Info

Publication number
KR20180116110A
KR20180116110A KR1020177012949A KR20177012949A KR20180116110A KR 20180116110 A KR20180116110 A KR 20180116110A KR 1020177012949 A KR1020177012949 A KR 1020177012949A KR 20177012949 A KR20177012949 A KR 20177012949A KR 20180116110 A KR20180116110 A KR 20180116110A
Authority
KR
South Korea
Prior art keywords
latp
glass
ltp
latp crystal
zno
Prior art date
Application number
KR1020177012949A
Other languages
English (en)
Other versions
KR101945363B1 (ko
Inventor
타츠야 테즈카
다이 안자이
Original Assignee
가부시키가이샤 스미타코가쿠가라스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 스미타코가쿠가라스 filed Critical 가부시키가이샤 스미타코가쿠가라스
Publication of KR20180116110A publication Critical patent/KR20180116110A/ko
Application granted granted Critical
Publication of KR101945363B1 publication Critical patent/KR101945363B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 저감된 불순물 오염, 고 결정성, 및 우수한 분산성을 갖는 LTP 또는 LATP 결정입자 제조방법을 제공하는 데에 목적이 있다.
본 발명은 Li2O : 1 + x( 0 ≤ x ≤ 1), Al2O3 : x, TiO2 : 4 - 2x, P2O5 : 3 + y(1 ≤ y ≤ 4), 및 ZnO : y를 초과하고, 3y 미만인 몰비로 이루어진 유리(glass)를 제조하는 단계; 상기 유리를 제조한 후에 열처리하여 유리를 결정화시키는 단계; 및 상기 결정화 유리를 산처리하여 LTP 또는 LATP 결정 이외의 물질을 선택적으로 용출시키는 단계를 포함하는 LTP 또는 LATP 결정입자 제조방법관한 것이다.

Description

LTP 또는 LATP 결정입자 제조 방법{Method of Producing LTP or LATP Crystal Particle}
본 발명은 저감된 불순물 오염, 고 결정성(crystallinity) 및 우수한 분산성(dispersibility)을 갖는 LTP 또는 LATP 결정입자 제조 방법에 관한 것이다.
Na-초이온 전도체(Na-super ionic conductor; 'nasicon') 타입 결정구조를 갖는 리튬계 복합 산화물 결정(lithium-based composite oxide crystal)은 상온에서 화학적 안정성 및 높은 리튬 이온 전도성에 기인하여 리튬 이온 배터리의 고체 전해질 재료로서의 가능성을 나타내고 있다.
높은 배터리 성능을 달성하기 위하여, 고체 전해질 재료에는 불순물 저감, 고 결정화, 및 미립자화(microparticulation)가 요구되고 있다.
이와 관련하여, 하기 화학식 1로 표현되는 리튬계 복합 산화물 결정(이하, 결정을 “LTP 또는 LATP 결정”으로 명명한다.
상기 화학식 1에서 x = 0 일 때, 리튬계 복합 산화물 결정은 LTP 결정이고, 상기 화학식 1에서 x가 0 < x ≤ 1.0 일 때, 리튬계 복합 산화물 결정은 LATP 결정이다.)은 고체 전해질 재료에서 요구되는 화학적 안정성 및 높은 리튬 이온 전도성을 가지며, 희유 원소(rare element)를 포함하지 않으며, 비교적 제조가 용이하다.
[화학식 1]
Li1 + xAlxTi2 -x(PO4)3 (0 ≤ x ≤ 1.0) . . . (I)
그리하여, 리튬계 복합 산화물 결정들 가운데 LTP 또는 LATP 결정은 상술한 고체 전해질 재료로서 대단한 장래성을 보유하고 있다.
따라서, 특히 LTP 또는 LATP 결정에 대한 불순물 저감, 고 결정성, 및 미립자화는 강하게 요망되고 있다.
현재는 LTP 또는 LATP 결정을 제조하기 위한 방법으로서 고체-상 방법(solid-phase method), 졸-겔법(sol-gel method), 및 유리화방법(vitrification method)을 이용하고 있으며, 이들 중 어떤 방법들은 결정을 미립자화 하기 위해서 분쇄(milling)를 수반한다.
분쇄는 불순물 오염, 및 결정구조에서 발생하는 변형 등과 같은 리튬 이온 전도성 저하의 원인이 될 수 있는 문제점을 야기할 수 있다.
뿐만 아니라, 입도분포(particle size distribution)를 선명하게 하기 위해서는 고급 분쇄 기술이 필요로 하기 때문에, 분쇄를 수반하지 않은 미립자화 기술이 요구되고 있다.
따라서, LTP 또는 LATP 결정의 재료인 복수의 산화물을 Ca3(PO4)2와 함께 용해하고 유리화한 후 유리(glass)의 열처리 및 산처리 함으로써 LTP 또는 LATP 결정의 다공질체(porous body)를 제조하기 위한 방법이 제안되었다(특허문헌 1 참조).
JP 2656415 B2
그러나, 상기 특허문헌 1에 기재된 제조방법에 의해서 제조된 LTP 또는 LATP 결정의 다공질체는 불순물로서 다량의 Ca를 포함하고 있으며, 낮은 결정화를 가지며, 또한 우수한 분산성을 갖는 결정입자들을 얻기 위해서는 분쇄가 필요하다.
본 발명은 이러한 관점에 비추어 저감된 불순물 오염, 고 결정성 및 우수한 분산성을 갖는 LTP 또는 LATP 결정입자를 제조하는 방법을 제공하는 데에 있다.
본 발명의 발명자는 상기 문제점을 예의 주시한 결과, Li2O : 1+x, Al2O3 : x, TiO2 : 4 - 2x(0 ≤ x ≤ 1), P2O5 : 3 + y, ZnO : y를 초과하고 3y 미만(1 ≤ y ≤ 4)인 몰비를 포함하는 유리를 제조하고, 이어서 상기 제조된 유리를 열처리하여 결정화시키며, 상기 결정화 유리를 산처리함으로써 LTP 또는 LATP 결정 이외의 물질을 선택적으로 용출시킴으로써 분쇄할 필요가 없는 저감된 불순물 오염, 고 결정성 및 우수한 분산성을 갖는 LTP 또는 LATP 결정입자를 얻을 수 있음을 밝혀내어 본 발명의 발명자들은 발명을 완성하였다.
즉, 상기 과제의 해결 수단으로는 아래와 같다.
본 발명은 Li2O : 1 + x( 0 ≤ x ≤ 1), Al2O3 : x, TiO2 : 4 - 2x, P2O5 : 3 + y(1 ≤ y ≤ 4), 및 ZnO : y를 초과하고, 3y 미만인 몰비로 이루어진 유리(glass)를 제조하는 단계; 상기 유리를 제조한 후에 열처리하여 유리를 결정화시키는 단계; 및 상기 결정화 유리를 산처리하여 LTP 또는 LATP 결정 이외의 물질을 선택적으로 용출시키는 단계를 포함하는 LTP 또는 LATP 결정입자 제조방법을 제공한다.
상기 유리재료인 ZnO의 몰비는 y를 초과하고, 2y 이하일 수 있다.
본 발명에 따르면 저감된 불순물 오염, 고 결정성 및 우수한 분산성을 갖는 LTP 또는 LATP 결정입자를 제조하는 것을 가능하게 한다.
도 1은 실시예 1의 LATP 결정입자를 제조하는 과정에서 제조된 결정화 유리의 X선 회절 패턴(X-ray diffraction pattern)을 나타낸 도면;
도 2는 실시예 2의 LATP 결정입자를 제조하는 과정에서 제조된 결정화 유리의 X선 회절 패턴을 나타낸 도면;
도 3은 실시예 3의 LATP 결정입자를 제조하는 과정에서 제조된 결정화 유리의 X선 회절 패턴을 나타낸 도면;
도 4는 비교예 1의 LATP 결정입자를 제조하는 과정에서 제조된 결정화 유리의 X선 회절 패턴을 나타낸 도면;
도 5는 비교예 2의 LATP 결정입자를 제조하는 과정에서 제조된 결정화 유리의 X선 회절 패턴을 나타낸 도면;
도 6은 비교예 3의 LATP 결정입자를 제조하는 과정에서 제조된 결정화 유리의 X선 회절 패턴을 나타낸 도면;
도 7은 실시예 1에 따라 제조된 LATP 결정입자의 X선 회절 패턴을 나타낸 도면;
도 8은 실시예 2에 따라 제조된 LATP 결정입자의 X선 회절 패턴을 나타낸 도면;
도 9는 실시예 3에 따라 제조된 LATP 결정입자의 X선 회절 패턴을 나타낸 도면;
도 10은 비교예 1에 따라 제조된 LATP 결정입자의 X선 회절 패턴을 나타낸 도면;
도 11은 비교예 2에 따라 제조된 LATP 결정입자의 X선 회절 패턴을 나타낸 도면;
도 12는 비교예 3에 따라 제조된 LATP 결정입자의 X선 회절 패턴을 나타낸 도면;
도 13은 실시예 1에 따라 제조된 LATP 결정입자의 후방 산란 전자상(backscattered electron image)을 나타낸 도면;
도 14는 실시예 2에 따라 제조된 LATP 결정입자의 후방 산란 전자상을 나타낸 도면;
도 15는 실시예 3에 따라 제조된 LATP 결정입자의 후방 산란 전자상을 나타낸 도면;
도 16은 비교예 1에 따라 제조된 LATP 결정입자의 후방 산란 전자상을 나타낸 도면;
도 17은 비교예 2에 따라 제조된 LATP 결정입자의 후방 산란 전자상을 나타낸 도면;
도 18은 비교예 3에 따라 제조된 LATP 결정입자의 후방 산란 전자상을 나타낸 도면;
도 19는 실시예 1에 따라 제조된 LATP 결정입자의 에너지 분산형 분광분석(Energy Dispersive X-ray Spectroscopy; 이하 'EDS') 스펙트럼을 나타낸 도면;
도 20은 실시예 2에 따라 제조된 LATP 결정입자의 EDS 스펙트럼을 나타낸 도면;
도 21은 실시예 3에 따라 제조된 LATP 결정입자의 EDS 스펙트럼을 나타낸 도면;
도 22는 비교예 1에 따라 제조된 LATP 결정입자의 EDS 스펙트럼을 나타낸 도면;
도 23은 비교예 2에 따라 제조된 LATP 결정입자의 EDS 스펙트럼을 나타낸 도면; 및
도 24는 비교예 3에 따라 제조된 LATP 결정입자의 EDS 스펙트럼을 나타낸 도면이다.
이하, 본 발명의 실시예에 따라 LTP 또는 LATP 결정입자 제조방법을 상세하게 설명한다.
본 발명의 실시예에 따른 LTP 또는 LATP 결정입자 제조방법은 유리화하였을 때 Li2O, Al2O3, TiO2, P2O5, 및 ZnO 성분의 원료로서 산화물, 수산화물, 탄산염, 질산염, 및 인산염 등을 이용한다.
<Li2O>
Li2O는 LTP 또는 LATP 결정을 구성하는 성분이며, 유리화하였을 때 Li2O의 몰비는 1 + x이다. Al2O3와 TiO2의 관계에 기인하여, x는 0 이상 1 이하(0 ≤ x ≤ 1)이다. x가 1을 초과할 때, LATP 결정 구조가 붕괴될 수 있다.
가급적으로, x는 0.8 이하인 것이 바람직하다. 보다 가급적으로, x는 0.6 이하인 것이 더 바람직하다. Li2O 성분의 원료로서, 예를 들어 LiPO3과 같은 인산염, 및 Li2CO3와 같은 탄산염이 이용된다.
<Al2O3>
Al2O3는 LATP 결정을 구성하는 성분이며, 유리화하였을 때 Al2O3의 몰비는 x이다. Al2O3 성분의 원료로서, 예를 들어 Al(PO3)3과 같은 인산염, 및 Al(OH)3와 같은 수산화물이 이용된다.
<TiO2>
TiO2는 LTP 또는 LATP 결정을 구성하는 성분이며, 유리화하였을 때 TiO2의 몰비는 4 - 2x 이다. TiO2 성분의 원료로서, 예를 들어 TiP2O7과 같은 인산염, 및 TiO2와 같은 산화물이 이용된다.
<P2O5>
P2O5는 LTP 또는 LATP 결정을 구성하는 성분이며, 또한 유리화 이후 열처리 시 석출되는 피로인산아연(zinc pyrophosphate)을 구성하는 성분이다. 유리화하였을 때 P2O5의 몰비는 3 + y 이다.
Li2O, Al2O3, 및 TiO2의 관계에 기인하여, y는 1 이상 4 이하(1 ≤ y ≤ 4)이다. y가 1 미만일 경우 유리화하기 어려운 문제점이 있다.
또한, y가 4를 초과할 경우, 유리는 안정성을 상실하게 되며, 또한 유리화 이후 열처리를 통해 결정의 석출이 어려운 문제점이 있다.
가급적으로, y는 1.5 이상 3.5 이하인 것이 바람직하다. 보다 가급적으로, y는 2 이상 3 이하인 것이 더 바람직하다.
P2O5 성분의 원료로서, 앞서 언급한 인산염, H3PO4와 같은 산, 및 P2O5와 같은 산화물이 이용된다.
<ZnO>
ZnO는 유리화 이후 열처리하는 동안 석출되는 피로인산아연을 구성하는 성분이며, 유리화하였을 때 ZnO 의 몰비는 y를 초과하며, 3y 미만의 범위이다. ZnO의 몰비가 y 이하일 경우, LTP 또는 LATP 결정 이외에 산에서 용출되지 않은 피로인산티타늄(titanium pyrophosphate) 결정이 유리화 이후 열처리 시 석출된다.
또한, ZnO의 몰비가 3y 이상일 경우, 산에서 용출될 수 있는 인산아연 결정 및 피로인산아연 결정이 유리화 이후 열처리 시 석출됨에도 불구하고, Zn은 LTP 또는 LATP 결정 내로 도입될 수 있어 불순물로 잔존한다.
가급적으로, ZnO의 몰비는 y를 초과하며 2y 이하인 것이 바람직하다.
ZnO의 몰비가 2y 이하인 경우, 결정화 유리에 이르렀을 때, 피로인산아연 이외에 서브-상(sub-phase)이 감소되었고, LTP 또는 LATP 결정입자 내에 불순물이 잔존할 가능성이 적어진다.
ZnO 성분의 원료로서, Zn(PO3)2와 같은 인산염, 및 ZnO와 같은 산화물이 이용된다.
<유리의 제조>
성분에 대응하는 원료인 산화물, 수산화물, 탄산염, 질산염, 인산염 또는 그밖에 유사한 유리 성분을 소정의 비율로 칭량하고 충분히 혼합하였다.
그 후, 상기 혼합한 원료를 유리 원료 등과 반응성이 없는, 예를 들면 백금 도가니에 투입하고, 전기로에서 1200℃ 내지 1500℃로 가열하여 용융하면서 적절히 교반하였고, 교반한 후 용융액을 전기로에서 정화(clarified) 및 균질화(homogenized)하였다.
용융액을 정화 및 균질화 한 후 충분한 물이 채워진 수조 내로 용융액을 부은 후, 조립(granulated) 및 급랭함으로써 유리를 제작하였다.
<열처리>
이어, 상기 제조된 유리를 두 단계에 거쳐 각각 10 내지 30시간 열처리 하였고, 구체적으로, 제1단계 열처리는 400 내지 600℃에서 수행하였으며, 또한 제2단계 열처리는 700 내지 900℃에서 수행하였다.
LTP 또는 LATP 결정입자 및 주로 용출상으로 석출된 피로인산아연 결정 내부에 결정화 유리를 얻기 위해 열처리를 수행하였으며, 이후 후술하는 열처리하여 얻어진 결정화 유리를 산처리 함으로써 0.1 내지 10 ㎛의 직경을 갖는 LTP 또는 LATP 결정입자를 얻었다.
<산처리>
뿐만 아니라, 얻어진 결정화 유리를 1 내지 5N 질산 또는 1 내지 5N 염산에 30 내지 90℃에서 3 내지 24시간 동안 침지시켜 산처리하였다.
결정화 유리를 침지할 때, 교반기 또는 그밖에 유사한 것으로 교반을 수행하는 것이 바람직하다. 산처리 함으로써, LTP 또는 LATP 결정 이외에 주로 피로인산아연 결정으로 구성된 용출상이 용출되었다.
산처리 후, 여과지 또는 그밖에 유사한 것을 이용하여 산용액으로부터 LTP 또는 LATP 결정을 분리하여 0.1 내지 10 ㎛의 직경을 갖는 LTP 또는 LATP 결정 입자를 얻었다.
이상과 같은 구성의 본 실시 형태의 LTP또는 LATP결정입자 제조방법에 따르면, 유리화할 때 용출상으로서 주로 피로인산아연 결정이 석출되기 때문에, 산에 대한 용출상의 용해도가 종래 보다 높아 산 처리시 용출되는 잔존 성분을 막을 수 있다.
그러므로, 불순물 오염이 저감되며, 또한 고 결정성 및 우수한 분산성을 갖는 LTP 또는 LATP 결정입자의 제조가 가능하다.
또한, 본 실시 형태의 LTP 또는 LATP 결정입자 제조방법에 따르면, 유리 원료인 ZnO의 몰비가 y를 초과하고, 2y 이하의 범위일 때, LTP 또는 LATP 결정입자의 불순물의 잔류 가능성이 한층 더 저감된다.
실시예
이하, 실시예 및 비교예를 들어 본 발명의 LTP 또는 LATP 결정입자의 제조 방법을 구체적으로 설명한다. 다만, 본 발명은 이러한 실시예에 한정되는 것은 아니다.
<실시예 1>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiO2, 및 ZnO를 이용하여 Li2O : 1.2, Al2O3 : 0.2, TiO2 : 3.6, P2O5 : 6 및 ZnO : 6의 몰비로 구성된 유리를 제조하였다.
즉, 상술한 실시 형태에 있어서 x = 0.2, y = 3, 및 ZnO = 2y의 몰비를 갖는 유리를 제조하였다.
이후, 제조된 유리를 두 단계에 거쳐 열처리 하였다. 제1단계 열처리는 520℃에서 20시간 동안 수행하였으며, 또한 제2단계 열처리는 850℃에서 20시간 동안 수행하여 결정화 유리를 얻었다.
결정화 유리를 5N 질산에 60℃에서 12시간 동안 침지시켜 산처리 한 후, 실시예 1에 따른 LATP 결정입자들을 얻기 위해, 여과하여 입자들을 수집하였다.
<실시예 2>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiO2, 및 ZnO를 이용하여 Li2O : 1.3, Al2O3 : 0.3, TiO2 : 3.4, P2O5 : 5 및 ZnO : 4의 몰비로 구성된 유리를 제조하였다.
즉, 상술한 실시 형태에 있어서 x = 0.3, y = 2, 및 ZnO = 2y의 몰비를 갖는 유리를 제조하였다.
이후, 제조된 유리를 두 단계에 거쳐 열처리 하였다. 제1단계 열처리는 480℃에서 20시간 동안 수행하였으며, 또한 제2단계 열처리는 820℃에서 20시간 동안 수행하여 결정화 유리를 얻었다.
결정화 유리를 3N 염산에 60℃에서 12시간 동안 침지시켜 산처리 한 후, 실시예 2에 따른 LATP 결정입자들을 얻기 위해, 여과하여 입자들을 수집하였다.
<실시예 3>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiO2, 및 ZnO를 이용하여 Li2O : 1.4, Al2O3 : 0.4, TiO2 : 3.2, P2O5 : 6 및 ZnO : 7의 몰비로 구성된 유리를 제조하였다.
즉, 상술한 실시 형태에 있어서 x = 0.4, y = 3, 및 ZnO = 2.3y의 몰비를 갖는 유리를 제조하였다.
이후, 제조된 유리를 두 단계에 거쳐 열처리 하였다. 제1단계 열처리는 470℃에서 20시간 동안 수행하였으며, 또한 제2단계 열처리는 790℃에서 20시간 동안 수행하여 결정화 유리를 얻었다.
결정화 유리를 3N 염산에 60℃에서 12시간 동안 침지시켜 산처리 한 후, 실시예 3에 따른 LATP 결정입자들을 얻기 위해, 여과하여 입자들을 수집하였다.
<비교예 1>
원료로서 LiPO3, Al(PO3)3, Ca(PO3)2, TiO2, 및 CaCO3를 이용하여 Li2O : 1.3, Al2O3 : 0.3, TiO2 : 3.4, P2O5 : 5.2 및 CaO : 6.6의 몰비로 구성된 유리를 제조하였다.
이후, 제조된 유리를 두 단계에 거쳐 열처리 하였다.
제1단계 열처리는 580℃에서 20시간 동안 수행하였으며, 또한 제2단계 열처리는 700℃에서 12시간 동안 수행하여 결정화 유리를 얻었다.
결정화 유리를 5N 질산에 60℃에서 12시간 동안 침지시켜 산처리 한 후, 다공질체를 얻기 위해, 여과를 수행하였다.
얻어진 다공질체를 12시간 동안 볼 밀(ball mill)에서 분쇄하여 비교예 1의 LATP 결정입자들을 얻었다.
<비교예 2>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiO2, 및 ZnO를 이용하여 Li2O : 1.4, Al2O3 : 0.4, TiO2 : 3.2, P2O5 : 6 및 ZnO : 9의 몰비로 구성된 유리를 제조하였다.
즉, 상술한 실시 형태에 있어서 x = 0.4, y = 3, 및 ZnO = 3y의 몰비를 갖는 유리를 제조하였다.
이후, 제조된 유리를 두 단계에 거쳐 열처리 하였다. 제1단계 열처리는 460℃에서 20시간 동안 수행하였으며, 또한 제2단계 열처리는 810℃에서 20시간 동안 수행하여 결정화 유리를 얻었다.
결정화 유리를 5N 질산에 60℃에서 12시간 동안 침지시켜 산처리 한 후, 비교예 2에 따른 LATP 결정입자들을 얻기 위해, 여과하여 입자들을 수집하였다.
<비교예 3>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiP2O7, 및 TiO2를 이용하여 Li2O : 1.4, Al2O3 : 0.4, TiO2 : 3.2, P2O5 : 6 및 ZnO : 3의 몰비로 구성된 유리를 제조하였다.
즉, 상술한 실시 형태에 있어서 x = 0.4, y = 3, 및 ZnO = y의 몰비를 갖는 유리를 제조하였다.
이후, 제조된 유리를 두 단계에 거쳐 열처리 하였다. 제1단계 열처리는 440℃에서 20시간 동안 수행하였으며, 또한 제2단계 열처리는 790℃에서 20시간 동안 수행하여 결정화 유리를 얻었다.
결정화 유리를 5N 질산에 60℃에서 12시간 동안 침지시켜 산처리 한 후, 비교예 3에 따른 LATP 결정입자들을 얻기 위해, 여과하여 입자들을 수집하였다.
<비교예 4>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiO2, 및 ZnO를 이용하여 Li2O : 1.2, Al2O3 : 0.2, TiO2 : 3.6, P2O5 : 8 및 ZnO : 12의 몰비로 구성된 유리를 제조하였다.
즉, 상술한 실시 형태에 있어서 x = 0.2, y = 5, 및 ZnO = 2.4y의 몰비를 갖는 유리를 제조하였다.
제조된 유리는 녹는점 이하로 열처리하더라도 결정이 석출되지 않았다.
<비교예 5>
원료로서 LiPO3, Al(PO3)3, Zn(PO3)2, TiP2O7, 및 TiO2를 이용하여 Li2O : 1.1, Al2O3 : 0.1, TiO2 : 3.8, P2O5 : 3.5 및 ZnO : 1의 몰비로 구성된 용융물을 제조하였다.
준비된 용융물을 조립(granulated) 및 급랭하더라도 유리화되지 않았다.
즉, 상술한 실시 형태에 있어서 x = 0.1, y = 0.5, 및 ZnO = 2y의 몰비에서는 유리가 제조되지 않았다.
<결정화 유리의 X선 회절 스펙트럼>
X선 회절장치(Rigaku Co., Ltd., Ultima IV)를 이용하여 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따른 LATP 결정입자 제조과정에서 제조된 결정화 유리의 X선 회절 스펙트럼을 측정하였다.
도 1 내지 도 3 및 도 4 내지 도 6은 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3의 결정화 유리에 대한 X선 회절 스펙트럼을 각각 나타낸 도면이다.
도 1 및 도 2를 참조하면, 실시예 1 및 실시예 2에서는 LATP 결정 및 피로인산아연 결정이 석출되었음을 확인하였다.
도 3을 참조하면, 실시예 3에서는 LATP 결정, 피로인산아연 결정, 및 부분적으로 서브-상이 석출되었음을 확인하였다.
도 4를 참조하면, 비교예 1에서는 LATP 결정, 인산칼슘 결정, 및 서브-상이 석출되었음을 확인하였다.
도 5를 참조하면, 비교예 2에서는 LATP 결정, 인산아연 결정, 및 서브-상이 석출되었음을 확인하였다.
도 6을 참조하면, 비교예 3에서는 LATP 결정, 피로인산티타늄 결정, 및 서브-상이 석출되었음을 확인하였다.
<LATP 결정 입자들의 X선 회절 스펙트럼>
X선 회절장치(Rigaku Co., Ltd., Ultima IV)를 이용하여 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따른 LATP 결정입자들의 X선 회절 스펙트럼을 측정하였다.
도 7 내지 도 9 및 도 10 내지 도 12는 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3의 LATP 결정 입자들에 대한 X선 회절 스펙트럼을 각각 나타낸 도면이다.
도 7 내지 도 9를 참조하면, 실시예 1 내지 실시예 3의 LATP 결정입자들은 단일-상(single-phase) LATP 결정임을 확인하였다.
도 10 및 도 11을 참조하면, 비교예 1 내지 비교예 2의 LATP 결정입자들은 단일-상 LATP 결정이 아니며, LATP 결정입자들 내에서 서브-상 피크가 관찰되었음을 확인하였다.
도 12를 참조하면, 비교예 3의 LATP 결정입자들은 단일-상 LATP 결정이 아니며, LATP 결정입자들 내에서 피로인산티탄 피크 및 서브-상 피크가 관찰되었음을 확인하였다.
<LATP 결정 입자들의 후방 산란 전자상>
주사전자현미경(scanning electron microscope, Hitachi High Technologies Co., Ltd., S-3400N)을 이용하여 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3의 LATP 결정입자들의 후방 산란 전자상(backscattered electron image)을 분석하였다.
도 13 내지 도 15 및 도 16 내지 도 18은 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3의 LATP 결정 입자들에 대한 후방 산란 전자상을 각각 나타낸 도면이다.
도 13 내지 도 15를 참조하면, 실시예 1 내지 실시예 3의 LATP 결정입자들은 응집되지 않고 고 결정성을 갖는 사각형 프리즘(quadrangular prism) 형상을 나타내었다.
도 16을 참조하면, 비교예 1의 LATP 결정입자들은 부분적인 응집이 관찰되었으며, 낮은 결정성을 가지며, 날카로운 모서리가 없는 형상을 나타내었다.
도 17을 참조하면, 비교예 2의 LATP 결정입자들은 낮은 결정성을 가지며, 날카로운 모서리가 없는 형상을 나타내었다.
도 18을 참조하면, 비교예 3의 LATP 결정입자들은 부분적으로 고 결정성을 갖는 형상이 관찰되었음에도 불구하고, 비교예 3의 LATP 결정입자들은 일반적으로 낮은 결정성을 가지며, 날카로운 모서리가 없는 형상을 나타내었다.
<LATP 결정 입자들의 EDS 스펙트럼>
에너지 분산형 분광분석 장치(Oxford Instruments Plc, INCA Energy)를 이용하여 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3의 LATP 결정입자들의 EDS 스펙트럼을 측정하였다.
도 19 내지 도 21 및 도 22 내지 도 24는, 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3의 LATP 결정입자들에 대한 EDS 스펙트럼을 각각 나타낸 도면이다.
도 19 내지 도 21을 참조하면, 실시예 1 내지 실시예 3의 LATP 결정입자들에서, LATP 결정들을 구성하는 원소 이외의 다른 원소는 검출되지 않았다.
도 22를 참조하면, 비교예 1의 LATP 결정입자들에서, LATP 결정들을 구성하는 원소뿐만 아니라 Ca가 검출되었다.
도 23 및 도 24를 참조하면, 비교예 2 내지 비교예 3의 LATP 결정입자들에서, LATP 결정들을 구성하는 원소뿐만 아니라 Zn이 검출되었다.
본 발명을 여러 도면 및 실시예에 근거하여 설명하였으나, 통상의 기술자 입장에서 다양한 변형 및 수정이 용이함은 물론이다. 따라서, 이러한 변형 및 수정은 본 발명의 범위에 포함됨은 물론이다.

Claims (2)

  1. Li2O : 1 + x( 0 ≤ x ≤ 1),
    Al2O3 : x, TiO2 : 4 - 2x,
    P2O5 : 3 + y(1 ≤ y ≤ 4), 및
    ZnO : y를 초과하고, 3y 미만인 몰비
    로 이루어진 유리(glass)를 제조하는 단계;
    상기 유리를 제조한 후에 열처리하여 유리를 결정화시키는 단계; 및
    상기 결정화 유리를 산처리하여 LTP 또는 LATP 결정 이외의 물질을 선택적으로 용출시키는 단계를 포함하는 LTP 또는 LATP 결정입자 제조방법.
  2. 청구항 1에 있어서,
    상기 유리재료인 ZnO의 몰비는 y를 초과하고, 2y 이하인 것을 특징으로 하는 LTP 또는 LATP 결정입자 제조방법.
KR1020177012949A 2016-05-10 2016-05-10 Ltp 또는 latp 결정입자 제조 방법 KR101945363B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/002299 WO2017195232A1 (ja) 2016-05-10 2016-05-10 Ltpまたはlatp結晶粒子の製造方法

Publications (2)

Publication Number Publication Date
KR20180116110A true KR20180116110A (ko) 2018-10-24
KR101945363B1 KR101945363B1 (ko) 2019-02-07

Family

ID=60266430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177012949A KR101945363B1 (ko) 2016-05-10 2016-05-10 Ltp 또는 latp 결정입자 제조 방법

Country Status (5)

Country Link
US (1) US10611665B2 (ko)
EP (1) EP3456692B1 (ko)
KR (1) KR101945363B1 (ko)
CN (1) CN107592857B (ko)
WO (1) WO2017195232A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992966B2 (ja) 2017-08-24 2022-01-13 株式会社住田光学ガラス リチウムリン系複合酸化物の前駆体ガラス及びその製造方法、リチウムリン系複合酸化物の前駆体結晶化ガラスの製造方法、並びに、リチウムリン系複合酸化物粉末及びその製造方法
JP7424783B2 (ja) * 2019-07-31 2024-01-30 株式会社オハラ ガラスセラミックス固体電解質
CN114804051A (zh) * 2021-01-29 2022-07-29 贝特瑞新材料集团股份有限公司 Nasicon型固态电解质、其制备方法、应用和二次电池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639312A1 (de) * 1986-11-17 1988-05-26 Battelle Institut E V Festkoerperelektrode zur bestimmung von natriumionenkonzentrationen in loesungen
JPS63162545A (ja) * 1986-12-26 1988-07-06 Central Glass Co Ltd 透光性結晶質ガラス
US4874724A (en) * 1988-10-17 1989-10-17 Corning Incorporated Alkali zinc aluminophosphate glass-ceramics
JP2656415B2 (ja) * 1991-11-22 1997-09-24 科学技術振興事業団 リチウム系結晶化ガラス
US7211532B2 (en) * 1995-11-15 2007-05-01 Kabushiki Kaisha Ohara Alkali ion conductive glass-ceramics and electric cells and gas sensors using the same
US6667258B2 (en) * 2001-01-19 2003-12-23 Corning Incorporated Zinc phosphate glass compositions
US7435695B2 (en) * 2004-12-09 2008-10-14 B.G. Negev Technologies And Applications Ltd. Lead-free phosphate glasses
JP4921428B2 (ja) * 2008-06-30 2012-04-25 株式会社オハラ リチウムイオン伝導性固体電解質グリーンシートの製造方法
KR101028340B1 (ko) 2008-09-26 2011-04-11 한국세라믹기술원 저온 연화성 유리 조성물
JP5882592B2 (ja) * 2010-04-21 2016-03-09 株式会社オハラ ガラスセラミックス、その製造方法
US10411288B2 (en) * 2011-11-29 2019-09-10 Corning Incorporated Reactive sintering of ceramic lithium-ion solid electrolytes
DE102012100233B4 (de) * 2012-01-12 2014-05-15 Schott Ag Hochtransmittive Gläser mit hoher Solarisationsbeständigkeit, ihre Verwendung und Verfahren zu ihrer Herstellung
JP2013199386A (ja) 2012-03-23 2013-10-03 Nippon Electric Glass Co Ltd リチウムイオン伝導体前駆体ガラスおよびリチウムイオン伝導体
JP2013237578A (ja) * 2012-05-14 2013-11-28 Nippon Electric Glass Co Ltd リチウムイオン伝導性ガラスセラミックスの製造方法
US8821771B2 (en) * 2012-09-26 2014-09-02 Corning Incorporated Flame spray pyrolysis method for forming nanoscale lithium metal phosphate powders
JP6391926B2 (ja) * 2012-10-10 2018-09-19 株式会社オハラ 結晶化ガラス及びその製造方法
CN103825052B (zh) * 2014-02-24 2015-09-23 华中科技大学 一种nasicon型锂离子固体电解质的制备方法

Also Published As

Publication number Publication date
CN107592857A (zh) 2018-01-16
EP3456692A1 (en) 2019-03-20
CN107592857B (zh) 2020-08-28
EP3456692B1 (en) 2020-12-30
US20180105450A1 (en) 2018-04-19
KR101945363B1 (ko) 2019-02-07
US10611665B2 (en) 2020-04-07
EP3456692A4 (en) 2020-01-08
WO2017195232A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
EP3097060B1 (de) Ionenleitende glaskeramik mit granatartiger kristallstruktur
EP3499630B1 (de) Lithiumionenleitendes verbundmaterial, umfassend wenigstens ein polymer und lithiumionenleitende partikel, und verfahren zur herstellung eines lithiumionenleiters aus dem verbundmaterial
KR102028362B1 (ko) 가넷형 산화물 고체 전해질의 제조 방법
EP2488451B1 (de) Phasenreines lithiumaluminiumtitanphosphat und verfahren zur herstellung und dessen verwendung
KR101945363B1 (ko) Ltp 또는 latp 결정입자 제조 방법
EP2838836B1 (de) Verfahren zur herstellung li-ionenleitender lithiumaluminiumtitanphosphate und deren verwendung als festkörperelektrolyte
CN110785386B (zh) 锂磷系复合氧化物的前驱体玻璃及其制造方法、前驱体晶化玻璃以及粉末的制造方法
US20160293947A1 (en) Solid-electrolyte precursor, manufacturing method therefor, method for manufacturing solid electrolyte, and method for manufacturing solid-electrolyte/electrode-active-material complex
KR102535548B1 (ko) 가넷 구조에 기초한 알루미늄-도핑된 리튬 이온 전도체
JP6438798B2 (ja) Ltpまたはlatp結晶粒子の製造方法
TWI606019B (zh) Crystal particle production method
KR20230121102A (ko) 고체 상태 전해질의 합성 방법, 고체 상태 전해질 조성물,및 전기화학 전지
KR102021272B1 (ko) 황화물 고체 전해질의 제조 방법
KR102542111B1 (ko) 고체전해질의 제조방법, 이로부터 제조되는 고체전해질 및 이를 포함하는 전고체전지
KR20230064600A (ko) 고체전해질의 제조방법, 이로부터 제조되는 고체전해질 및 이를 포함하는 전고체전지
Stunda-Zujeva et al. Crystallization and microstructure of Na2O–CaO–Nb2O5–P2O5 glasses

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant