KR20180077274A - 가스 공급 장치 - Google Patents

가스 공급 장치 Download PDF

Info

Publication number
KR20180077274A
KR20180077274A KR1020187015815A KR20187015815A KR20180077274A KR 20180077274 A KR20180077274 A KR 20180077274A KR 1020187015815 A KR1020187015815 A KR 1020187015815A KR 20187015815 A KR20187015815 A KR 20187015815A KR 20180077274 A KR20180077274 A KR 20180077274A
Authority
KR
South Korea
Prior art keywords
gas
gas supply
diameter
processing chamber
restrictor
Prior art date
Application number
KR1020187015815A
Other languages
English (en)
Other versions
KR102112432B1 (ko
Inventor
신이치 니시무라
겐스케 와타나베
요이치로 다바타
Original Assignee
도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 filed Critical 도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Publication of KR20180077274A publication Critical patent/KR20180077274A/ko
Application granted granted Critical
Publication of KR102112432B1 publication Critical patent/KR102112432B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3323Problems associated with coating uniformity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은, 마하를 넘는 초고속으로 가스를 처리 대상 기판에 공급할 수 있는 가스 공급 장치를 제공하는 것을 목적으로 한다. 그리고 본 발명의 가스 공급 장치의 가스 분출기(1)는 노즐부(10)를 갖고 있다. 노즐부(10)를 구성하는 제1 단 제한 통(13)은, 개구부 단면 형상이 직경 r1의 원형을 띠고 있다. 제2 단 제한 통(14)은 Z 방향을 따라 제1 단 제한 통(13)과 연속적으로 형성되며, 개구부 단면 형상이 직경 r2의 원형을 띠고, 제1 단 제한 통(13)으로부터 공급되는 원료 가스(G1)를 하방의 저진공 처리 챔버(18)에 공급한다. 이때, 직경 r2는 「r2>r1」을 만족시키도록 설정된다.

Description

가스 공급 장치
본 발명은 성막 처리용의 가스 공급 장치에 관한 발명이다.
반도체 제조 분야에서는, 웨이퍼 등의 피처리체의 기판 표면에 절연막 등의 성막 처리나, 성막에 의하여 생긴 막 표면을 에칭, 세정하는 등의 처리를 행하는데, 이들 처리는 고속이면서 품질이 높은 기술이 요구되고 있다. 예를 들어 고절연 박막, 반도체 박막, 고유전체 박막, 발광 박막, 고자성체 박막, 초경 박막 등의 성막을 포함하는, 다방면에 걸친 고성능의 우수한 성막 처리와 함께, 고품질의 에칭 처리, 박리, 세정 처리가 추구되며, 대면적의 웨이퍼 표면(처리 대상 기판 표면)에 고품질이고 균일한 성막의 실현과 높은 처리 속도가 중요시되고 있다.
이와 같은 다방면에 걸친 박막 기술이나 에칭, 박리, 세정 처리는 반도체 소자뿐 아니라 다용도 분야에 응용되게 되었다.
그 중에서 특히 박막 성막 기술에 있어서는, 금속이나 절연물의 물질 표면에서의 화학 반응으로 질화·산화·수소 결합을 촉진시키는 기초 기술이 박막 형성에는 중요한 위치를 차지하며, 이 기초 기술을 베이스로 하여, 박막은, 다양한 열처리나 화학 반응 처리를 가하여 고품질의 박막 형성이 실현된다.
구체적으로는 반도체 장치의 제조에 있어서, 반도체 칩 내에서 회로 배선으로서 기능하는 저임피던스의 고도전막, 회로의 배선 코일 기능이나 자석 기능을 갖는 고자성막, 회로의 콘덴서 기능을 갖는 고유전체막, 및 전기적인 누설 전류가 적은 고절연 기능을 갖는, 산화나 질화에 의한 고절연막 등의 고기능막의 성막 방법이 있다. 이들 고기능막의 성막 방법을 실현하기 위하여 열 CVD(화학 기상 성장법: Chemical Vapor Deposition) 장치, 광 CVD 장치 또는 플라스마 CVD 장치나 열 ALD(원자층 퇴적법: Atomic Layer Deposition) 장치, 플라스마 ALD 장치가 사용되고 있다. 특히 플라스마 CVD·ALD 장치가 많이 사용되고 있으며, 예를 들어 열·광 CVD·ALD 장치보다도 플라스마 CVD·ALD 장치 쪽이, 성막 온도를 낮게 할 수 있고, 또한 성막 속도가 커서 단시간의 성막 처리가 가능하다는 등의 이점이 있다.
예를 들어 질화막(SiON, HfSiON 등)이나 산화막(SiO2, HfO2) 등의 게이트 절연막을 처리 대상 기판인 웨이퍼 상에 성막하는 경우에는, 플라스마 CVD·ALD 장치를 사용한 이하의 기술이 일반적으로 채용되고 있다.
열 CVD·ALD 장치는 웨이퍼나 용기 내를 고온으로 하여 공급 가스의 반응성을 높여 웨이퍼 상에 막을 성막하는데, 웨이퍼를 고온에 노출시키면 열 손상 등에 의하여 수율의 저하로 이어진다.
그래서, 현재로서는 열 CVD·ALD 대신, 플라스마를 사용한 플라스마 CVD·ALD에 의한 성막이 많이 사용되고 있다. (플라스마)CVD·ALD 기술은, 예를 들어 특허문헌 1 내지 특허문헌 3에 개시되어 있다.
특허문헌 1에 개시된 종래의 플라스마 CVD·ALD나 열 CVD·ALD 등의 성막 처리 장치에서는, 성막 처리 장치 내에 기체를 충만시키고, 충만한 가스를 플라스마의 에너지나 열에너지로 활성화시켜, 웨이퍼 표면에 공급한 가스와의 화학 반응 처리로 박막을 퇴적시키는 방식을 채용하고 있다. 성막 처리 장치에 충만한 활성화 가스는, 랜덤하고 브라운 운동한 가스 유속뿐이지 가스 입자 자신이 고속도를 갖고 있지 않기 때문에 기판 표면에서의 퇴적 성막 반응에는 유효했지만, 기판 표면의 요철이 매우 큰 면이나 3차원 성막면을 균등하게 성막하는 데에는 적합하지 않다. 또한 고반응성 가스의 경우, 화학 반응 시간이 짧기 때문에 매우 수명이 짧다. 그 때문에, 기판 표면에만 반응이 촉진되고, 요철이 매우 큰 고애스펙트의 면에는 공급 가스가 도달하지 않아, 균일한 성막이 이루어지지 않는다는 결점이 있었다. 이 경우, 빠른 시간에 웨이퍼 내면까지 반응 가스를 유도하여 웨이퍼 내면까지 균일하게 반응시켜 성막을 할 수 있도록 하게 하거나, 웨이퍼 내면 내에서 충만한 가스에 에너지를 부여하여 활성화 가스로 변환시키거나 할 필요가 있다.
특허문헌 2에 개시된 CVD·ALD의 성막 처리 장치는, 용기 내에 균일하게 가스를 공급하여 웨이퍼 전체에 퇴적시키고 있지만, 가스의 반응성이 높은 경우, 웨이퍼에 도달하기 전에 반응성을 상실해 버리는 문제점이 있다. 그 때문에, 용기 내에서 플라스마를 발생시켜 반응성의 가스를 생성하여 기판에 공급하는 방법이나, 용기 내나 웨이퍼를 고온으로 하여 반응성을 높게 하는 방법이 알려져 있다.
특허문헌 3에 개시된, 플라스마를 사용한 플라스마 CVD·ALD 장치에서는, 공급 중인 가스에 플라스마의 에너지를 부여하여 고반응성의 가스로 변환하여 공급한다. 그 경우, 웨이퍼나 용기 내의 온도를 열 성막에 비하여 낮게 설정할 수 있다는 이점이 있지만, 플라스마 발생원과 피처리면은 근접해 있을 필요가 있으며, 기판이 근접함으로써 반대로 기판 자체 플라스마의 영향을 받아 손상을 입는다는 결점도 있었다. 또한 종래의 CVD·ALD의 성막 처리 장치와, 현 상황에서 가동하고 있는 플라스마 CVD·ALD 장치를 비교하면, 비교적 작은 요철이 있는 웨이퍼 표면 상에 있어서의 3차원 성막 처리에는 적합하지만, 보다 큰 요철이 있는 고애스펙트의 웨이퍼 표면 상에 있어서의 3차원 성막 처리를 실현하여 품질이 높은 3차원 성막 구조를 얻는 것이란, 실질적으로 불가능하였다.
특허문헌 4에 개시된, 3차원 구조 반도체를 제조하는 제조 방법에서는, TSV(through-silicon via) 구조의 둘레에 위치하는 배리어막은 균일한 성막이 필요해진다. 이 경우, 깊이 방향의 균일한 성막에는 한계가 있으며, 그 때문에 깊이 방향을 복수 회로 나누어 몇 개의 층마다 배리어막의 성막을 행하고 있다.
일본 특허 공개 제2004-111739호 공보 일본 특허 공개 제2013-219380호 공보 일본 특허 공개 제2001-135628호 공보 일본 특허 공개 제2014-86498호 공보
상술한 바와 같이 종래의 박막 성막 기술은, 공급 가스를 보내어 성막 처리 장치 내를 소정 압력으로 하여 성막 처리가 행해지기 때문에, 고속도이고 지향성을 갖게 하는 것이 필요하지는 않았다. 그 때문에, 최근 요구되고 있는, 요철이 있는 면에 대한 성막 처리, 특히 깊이가 있는 구멍 형상으로 대표되는, 고애스펙트비를 갖는 웨이퍼에 대한 성막 처리에 부적합하였다.
또한 고반응성 가스를 단시간에 웨이퍼 표면까지 공급하기 위하여, 가스를 저진공 처리 챔버에 빠르게 공급하는 수단으로서 단일의 제한 통(오리피스)을 설치하여 가스의 공급 속도를 빠르게 하여, 저진공 처리 챔버 내에 있어서 저진공 상태의 환경 하에서 가스를 분출함으로써 마하를 넘는 초고속으로 분출시키는 방법이 적합하다. 그 경우, 가스 공급 장치 내의 압력과 저진공 상태의 저진공 처리 챔버 내의 압력의 압력 차를 소정 압력비 이상으로 하는 것이 필요하며, 이 압력 차가 클수록, 또한 저진공 처리 챔버 내의 압력이 낮을수록 고속의 공급 가스로 되어 단시간에 웨이퍼 표면에 가스를 공급할 수 있다. 제한 통에 있어서의 유통 경로의 개구부의 직경을 작게 하여 압력 차를 크게 하면, 유속은 빨라짐으로써 가스 공급 시간은 짧아진다.
그러나 마하를 넘는 초고속으로 가스를 분출시킨 경우, 가스 속도는 마하 속도의 가스 충격 압력과 온도 상태에서 가스 유속 프레임(가스 분류 속도)에 영향을 주어, 어떤 분출 위치의 지점에서 가스 유속이 극단적으로 저하되는 영향을 초래하며, 그 결과, 마하 디스크 상태(어떤 분출 위치의 지점에서 가스 유속이 극단적으로 저하된 상태)로 되는 현상이 발생해 버린다. 이 마하 디스크 상태로 되는 현상을 가능한 한 작게 하는 것이 바람직하지만, 구체적인 해결책을 찾지 못하고 있었다.
본 발명에서는 상기와 같은 문제점을 해결하여, 마하를 넘는 초고속으로 가스를 기판에 공급할 때, 기판에 공급한 가스가 초고속화 되는 것에 의한 충격 압력이나 온도 상태에 수반하여 가스에 극단적인 감속이 발생하는 현상을 효과적으로 억제할 수 있는 가스 공급 장치를 제공하는 것을 목적으로 한다.
본 발명에 따른 가스 공급 장치는, 처리 대상 기판을 적재하는 적재부와, 상기 적재부의 상방에 설치되어, 저면에 개구부를 갖는 처리 챔버로부터 상기 처리 대상 기판에 가스를 공급하는 가스 분출기를 구비하고, 상기 가스 분출기는, 가스 공급구로부터 공급되는 가스를 일시적으로 수용하는 1차 수용실과, 상기 처리 챔버와, 상기 1차 수용실과 상기 처리 챔버의 사이에 설치되는 노즐부를 구비하고, 상기 노즐부는, 평면으로 본 개구부 단면 형상이 제1 직경으로 원형으로 형성되고, 상기 1차 수용실 내의 가스를 하방에 공급하는 제1 제한 통과, 평면으로 본 개구부 단면 형상이 제2 직경으로 원형으로 형성되고, 상기 제1 제한 통으로부터 공급되는 가스를 상기 처리 챔버를 향하여 공급하는 제2 제한 통을 갖고, 상기 제1 직경은, 상기 1차 수용실 내와 상기 처리 챔버 내와의 압력 차가 소정 압력비 이상으로 되도록 설정되고, 상기 제2 직경은 상기 제1 직경보다 길어지도록 설정된다.
제1항에 기재된 본원 발명의 가스 공급 장치의 가스 분출기는, 노즐부에 있어서의 제1 직경을 갖는 제1 제한 통에 의하여, 처리 챔버에 분출하는 가스에 지향성을 갖게 할 수 있기 때문에, 마하를 넘는 초고속으로 가스를 처리 대상 기판에 공급할 수 있다. 이때, 제1 제한 통과 처리 챔버의 사이에 설치한 제2 제한 통의 존재에 의하여, 분출된 가스가 초고속화 되는 것에 수반하여 충격 압력 및 온도 상태에 따라서, 분출되는 가스의 극단적인 감속이 발생하는 마하 디스크 현상을 억제할 수 있다.
그 결과, 제1항에 기재된 본원 발명의 가스 공급 장치는, 고애스펙트비의 웨이퍼 표면 상에 있어서의 성막에 적합한 가스를 처리 대상 기판에 공급할 수 있다는 효과를 발휘한다.
본 발명의 목적, 특징, 국면 및 이점은 이하의 상세한 설명과 첨부 도면에 의하여, 보다 명백해진다.
도 1은 본 발명의 실시 형태 1인 가스 공급 장치의 구성을 도시하는 설명도이다.
도 2는 본 발명의 실시 형태 2인 가스 공급 장치의 구성을 도시하는 설명도이다.
도 3은 본 발명의 실시 형태 3인 가스 공급 장치의 구성을 도시하는 설명도이다.
도 4는 본 발명의 실시 형태 4인 가스 공급 장치의 구성을 도시하는 설명도(그 첫 번째)이다.
도 5는 본 발명의 실시 형태 4인 가스 공급 장치의 구성을 도시하는 설명도(그 두 번째)이다.
도 6은 본 발명의 실시 형태 5인 가스 공급 장치의 구성을 도시하는 설명도이다.
도 7은 실시 형태 1의 가스 공급 장치를 사용한 가스 분류의 속도 상태를 모식적으로 나타내는 설명도이다.
도 8은 실시 형태 1의 가스 공급 장치를 사용한 가스 분류의 압력 상태를 모식적으로 나타내는 설명도이다.
도 9는 종래의 가스 공급 장치를 사용한 가스 분류의 속도 상태를 모식적으로 나타내는 설명도이다.
도 10은 종래의 가스 공급 장치를 사용한 가스 분류의 압력 상태를 모식적으로 나타내는 설명도이다.
도 11은 1차 수용실과 저진공 처리 챔버의 압력비가 30배 미만인 경우의 가스 분류의 속도 상태를 모식적으로 나타내는 설명도이다.
도 12는 1차 수용실과 저진공 처리 챔버의 압력비가 30배 미만인 경우의 가스 분류의 압력 상태를 모식적으로 나타내는 설명도이다.
도 13은 종래의 가스 공급 장치를 사용한 경우의 마하 디스크 발생 구조를 모식적으로 도시하는 설명도이다.
도 14는 본 실시 형태의 가스 공급 장치를 사용한 경우의 효과를 모식적으로 도시하는 설명도이다.
<실시 형태 1>
도 1은, 본 발명의 실시 형태 1인 가스 공급 장치의 구성을 도시하는 설명도이다. 도 1에 있어서, XYZ 직교 좌표계를 나타내고 있다.
동 도면에 도시한 바와 같이 실시 형태 1의 가스 공급 장치는, 처리 대상 기판인 웨이퍼(25)를 적재하는 적재대(19)(적재부)와, 적재대(19)의 상방에 설치되어, 저면에 개구부를 갖는 저진공 처리 챔버(18)(처리 챔버)로부터 하방의 웨이퍼(25)에 가스를 공급하는 가스 분출기(1)로 구성되어 있다.
가스 분출기(1)는 1차 수용실(11), 가스 공급구(12), 제1 단 제한 통(13)(제1 제한 통), 제2 단 제한 통(14)(제2 제한 통) 및 저진공 처리 챔버(18)(처리 챔버)를 주요 구성부로서 갖고 있다.
그리고 제한 통 군(13 및 14)을 포함하는 구성에 의하여 노즐부(10)를 형성하고 있다. 즉, 노즐부(10)는 1차 수용실(11)과 저진공 처리 챔버(18)의 사이에 설치된다.
노즐부(10)를 구성하는 제1 단 제한 통(13)은, XY 평면에 있어서의(평면으로 본) 개구부 단면 형상이 (직)경 r1(제1 직경)의 원형을 띠고, 1차 수용실(11)의 원료 가스(G1)를 하방(-Z 방향)으로 공급한다. 직경 r1은, 1차 수용실(11) 내와 저진공 처리 챔버(18) 내의 압력 차가 소정 압력비 이상으로 되도록 설정된다.
제2 단 제한 통(14)은 Z 방향을 따라 제1 단 제한 통(13)과 연속적으로 형성되며, XY 평면에 있어서의(평면으로 본) 저면의 개구부 단면 형상이 (직)경 r2(제2 직경)의 원형을 띠고, 제1 단 제한 통(13)으로부터 공급되는 원료 가스(G1)를 하방의 저진공 처리 챔버(18)에 공급한다. 직경 r2는 「r2>r1」을 만족시키도록 설정된다.
예를 들어 제1 단 제한 통(13)의 직경 r1을 직경 1.35㎜, 깊이(Z 방향으로 연장된 형성 길이)를 1㎜, 제2 단 제한 통(14)의 직경 r2를 직경 8㎜, 깊이(Z 방향으로 연장된 형성 길이)를 4㎜, 원료 가스(G1)로서, 예를 들어 질소 가스를 유량 4slm(standard liter per minute)으로 공급한다. 따라서 제1 단 제한 통(13)을 경유한 원료 가스(G1)는 초고속 가스로 되어 제2 단 제한 통(14)을 통하여 저진공 처리 챔버(18) 내에 공급된다.
1차 수용실(11)은 가스 공급구(12)로부터 공급되는 원료 가스(G1)를 일시적으로 수용한다. 이 1차 수용실(11) 내의 압력이 1차 압력으로 된다.
가스 공급구(12)로부터 공급되는 원료 가스(G1)는 1차 수용실(11)을 통과한 후, 제1 단 제한 통(13)에 의하여 2차 압력이 결정된다. 원료 가스(G1)는 제2 단 제한 통(14)을 경유하여 저진공 처리 챔버(18) 내에 공급된다.
그때, 1차 수용실(11) 내의 1차 압력과 저진공 처리 챔버(18) 내의 2차 압력의 압력비 PC는 30배 이상으로 되도록 설정된다. 그러면, 제1 단 제한 통(13)을 통과한 원료 가스(G1)의 유속은 상기 압력비 PC에 의하여 마하 이상의 유속으로 되며, 제2 단 제한 통(14)의 존재에 의하여 원료 가스(G1)는, 고속 분류로 생성되는 마하 디스크 상태가 발생하는 현상이 억제된 후, 저진공 처리 챔버(18) 내에 공급된다.
예를 들어 1차 수용실(11) 내의 1차 압력은 30㎪, 저진공 처리 챔버(18) 내의 압력은 266㎩이라 하면, 원료 가스(G1)는, 초고속 가스로서의 최고 마하수는 "5"를 초과하여 적재대(19) 상의 웨이퍼(25)에 공급된다.
이때, 발생이 우려되는 마하 디스크 상태는 제2 단 제한 통(14)의 존재에 의하여 효과적으로 억제되기 때문에, 종래와 비교하여 고속의 상태로 웨이퍼에 가스를 공급할 수 있다.
즉, 제2 단 제한 통(14)을 설치함으로써, 저진공 처리 챔버(18) 내의 압력 분포, 유속 분포를 완화하여 마하 디스크 MD 상태의 발생을 회피하면서 원료 가스(G1)가 저진공 처리 챔버(18) 내에 공급되고, 적재대(19)(웨이퍼대) 상에 설치된 웨이퍼(25)에 공급된다. 반응이 종료된 가스는 가스 분출기(1), 적재대(19) 사이에 설치된 배기구(21)로부터 배기된다.
(종래 구성과의 비교 등)
도 7은, 노즐부(10)를 갖는 실시 형태 1의 가스 공급 장치를 사용한 가스 분류의 속도 상태를 모식적으로 나타내는 설명도이다.
도 8은, 노즐부(10)를 갖는 실시 형태 1의 가스 공급 장치를 사용한 가스 분류의 압력 상태를 모식적으로 나타내는 설명도이다.
도 9는, 제1 단 제한 통(13)만을 포함하는 노즐부를 갖는 종래의 가스 공급 장치를 사용한 가스 분류의 속도 상태를 모식적으로 나타내는 설명도이다.
도 10은, 제1 단 제한 통(13)만을 포함하는 노즐부를 갖는 종래의 가스 공급 장치를 사용한 가스 분류의 압력 상태를 모식적으로 나타내는 설명도이다. 도 7 내지 도 10에 있어서, 최상부의 사선부는, 예를 들어 후술하는 실시 형태 4에 있어서의 상부 전극(22)의 형성 영역에 상당한다. 도 11 및 도 12에 있어서, 최상부의 사선부는 후술하는 실시 형태 4에 있어서의 상부 전극(22)의 형성 영역에 상당한다.
도 8 및 도 10에 나타낸 바와 같이, 상술한 1차 압력과 2차 압력의 압력비 PC는 30배 이상으로 설정되어 있다.
도 7과 도 9의 비교로부터 밝혀진 바와 같이 실시 형태 1의 가스 공급 장치는, 마하 디스크 MD가 발생하는 현상을 회피함으로써, 극단적으로 속도를 저하시키는 일 없이 원료 가스(G1)를 웨이퍼(25)에 공급할 수 있다. 한편, 도 9에 나타낸 바와 같이, 종래의 가스 공급 장치에서는 마하 디스크 MD가 발생하고 있다.
도 11은, 실시 형태 1의 구성에 있어서, 1차 수용실(11)과 저진공 처리 챔버(18)의 압력비 PC가 30배 미만인 경우의 가스 분류의 속도 상태를 모식적으로 나타내는 설명도이다.
도 12는, 실시 형태 1의 구성에 있어서, 1차 수용실(11)과 저진공 처리 챔버(18)의 압력비 PC가 30배 미만인 경우의 가스 분류의 압력 상태를 모식적으로 나타내는 설명도이다. 도 11 및 도 12에 있어서, 최상부의 사선부는 후술하는 실시 형태 4에 있어서의 상부 전극(22)의 형성 영역에 상당한다.
도 12에 나타낸 바와 같이, 상술한 1차 압력과 2차 압력의 압력비 PC는 30배 미만으로 설정되어 있다.
도 7과 도 11의 비교로부터 밝혀진 바와 같이, 압력비 PC가 30배 이상인 경우, 압력비 PC가 30배 미만인 경우에 비하여, 보다 분류 속도가 빠른 속도 분포가 얻어지고 있으며, 확실히 웨이퍼(25)의 표면에 지향성을 갖는 가스를 공급할 수 있다.
(제2 단 제한 통(14)에 의한 효과)
도 13은, 제1 단 제한 통(13)만을 포함하는 노즐부를 갖는 종래의 가스 공급 장치를 사용한 경우의 마하 디스크 발생 구조를 모식적으로 도시하는 설명도이다.
공급 가스인 원료 가스(G1)가 제1 단 제한 통(13)(오리피스)을 경유할 때, 1차 수용실(11)의 1차 압력이 저진공 처리 챔버(18)의 2차 압력보다 높은, 즉, 제1 단 제한 통(13)으로부터의 원료 가스(G1)의 분출 압력이 저진공 처리 챔버(18) 내보다 높은 경우, 제1 단 제한 통(13)의 출구(오리피스 출구)를 빠져나온 흐름은 충격파 셀 구조(shock cell)라는 현상을 일으켜, 하류 방향으로 상기 충격파 셀 구조가 주기적으로 관찰된다. 충격파 셀 구조는, 후술하는 반사 충격파 RS가 다음에 후술하는 경계 영역 JB(Jet Boundary)로 됨으로써 반복하여 얻어지는 충격파의 구조를 의미한다.
이와 같은, 오리피스 출구에서의 압력이 저진공 처리 챔버(18) 내의 압력보다 큰 경우를 부족 팽창(under expansion)이라 칭하며, 오리피스 출구를 빠져나온 후, 흐름은 팽창된다.
오리피스 출구의 압력이 저진공 처리 챔버(18)의 압력보다 더욱 큰 경우, 아직 가스는 충분히 다 팽창되지 않았으므로, 오리피스 출구의 에지로부터 팽창파 EW(Expansion Waves)가 발생하여 가스는 외측으로 크게 팽창된다. 가스의 마하수가 큰 경우에는, 이 팽창파 EW가 경계 영역 JB(Jet Boundary)에서 반사되어 압축파로 되어 제트 중심축측으로 되돌아온다. 또한 압축파는, 압력이 기준보다 높고, 통과하면 그 점의 압력이 상승하는 파이고, 팽창파는, 압력이 기준보다 낮고, 통과하면 그 점의 압력이 하강하는 파를 의미한다.
이와 같이, 노즐부의 통과 전후의 압력 차가 큰 경우에는, 형성된 압축파가 선행하는 압축파를 따라붙어 배럴형의 배럴 충격파 BS(Barrel Shock)를 형성한다. 또한 압력 차가 커지면, 배럴 충격파 BS는 분류의 중심축 상에서는 정상 교차하지 못하고, 축 대칭의 분류에서는 마하 디스크 MD(마하 충격파)라 칭해지는 원반형 수직 충격파를 형성한다. 그 후의 흐름은 아음속류로 된다. 또한 배럴 충격파 BS의 단부로부터 반사 충격파 RS(Reflection Shock)가 발생한다. 또한 트리플 포인트 TP는, 압축파인 배럴 충격파 BS와 마하 디스크 MD와 반사 충격파 RS가 교차하는 포인트이다.
한편, 도 14에 도시한 바와 같이 실시 형태 1의 가스 분출기(1)에서는, 제1 단 제한 통(13)에 연속적으로 형성되는 제2 단 제한 통(14)을 설치함으로써, 확장파 EW가 제2 단 제한 통(14)의 측면에서 반사됨으로써 배럴 충격파 BS는 분류의 중심축 XC 상에서 정상 교차할 수 있기 때문에, 마하 디스크 MD의 발생을 회피할 수 있다.
(발명의 효과 등)
실시 형태 1의 가스 공급 장치의 가스 분출기(1)는, 노즐부(10)에 설치된, 직경 r1의 개구부를 갖는 제1 단 제한 통(13)에 의하여, 저진공 처리 챔버(18)에 분출되는 원료 가스(G1)에 지향성을 갖게 할 수 있기 때문에, 마하를 넘는 초고속으로 가스를 처리 대상 기판인 웨이퍼(25)에 공급할 수 있다. 이때, 제1 단 제한 통(13)과 저진공 처리 챔버(18)의 사이에 설치한 제2 단 제한 통(14)의 존재에 의하여, 분출된 원료 가스(G1) 가스가 초고속화 되는 것에 수반하여 충격 압력 및 온도에 의하여 극단적으로 감속한다는 마하 디스크 MD의 발생을 효과적으로 억제할 수 있다.
그 결과, 실시 형태 1의 가스 공급 장치는, 고애스펙트비의 웨이퍼(25)의 표면 상을 성막함으로써 3차원 구조의 성막을 실현 가능하며, 원료 가스(G1)로서, 예를 들어 반응성 가스를 웨이퍼(25)에 공급할 수 있다는 효과를 발휘한다.
또한 실시 형태 1의 가스 공급 장치는, 1차 수용실(11) 내의 1차 압력과 저진공 처리 챔버(18) 내의 2차 압력의 압력비 PC를 30배 이상으로 설정함으로써, 고속인 상태의 원료 가스(G1)를 처리 대상 기판인 웨이퍼(25)에 공급할 수 있다.
또한 실시 형태 1의 가스 공급 장치는, 제2 단 제한 통(14)의 직경 r2를 직경 30㎜ 이내로 설정함으로써 마하 디스크 MD를 보다 효과적으로 억제할 수 있다.
또한 가스 분출기(1)를 구성하는 가스 공급구(12), 1차 수용실(11), 제1 단 제한 통(13) 및 제2 단 제한 통(14)에 있어서, 원료 가스(G1)와 접촉하는 영역인 가스 접촉 영역을 석영 또는 알루미나재를 구성 재료로 하여 형성하는 제1 양태를 채용하는 것이 바람직하다.
원료 가스(G1)로서 일반적으로 반응성 가스가 사용된다. 따라서 제1 양태를 채용한 실시 형태 1의 가스 분출기(1)는, 적어도 상기 가스 접촉 영역의 재질을 석영 또는 알루미나재로 형성하고 있으며, 석영 재료면이나 알루미나면은 상술한 반응성 가스에 대하여 화학적으로 안정된 물질이기 때문에, 반응성 가스와 접촉하는 가스 접촉 영역과의 사이에서, 화학 반응이 적은 상태에서, 저진공 처리 챔버(18) 내에 반응성 가스를 공급할 수 있다.
또한 가스 분출기(1) 내에서의 반응성 가스와의 화학 반응에 수반하여 부생성물로서의 부식 물질의 생성도 적게 할 수 있으며, 그 결과로서, 공급하는 반응성 가스에 오염물을 포함하지 않는, 원료 가스(G1)로서 클린한 반응성 가스를 저진공 처리 챔버(18) 내에 공급할 수 있어, 웨이퍼(25) 상에 형성되는 막의 성막 품질을 높인다는 효과가 발생한다.
또한 원료 가스(G1)의 웨이퍼(25)로의 공급 시에 가스 분출기(1)를 100℃ 이상으로 가열하고, 가열한 원료 가스(G1)를 웨이퍼(25)에 공급하는 제2 양태를 채용하는 것이 바람직하다. 또한 가열 처리로서, 예를 들어 가스 분출기(1)의 근방에 핫 플레이트 등의 가열 처리 기구를 설치하는 등의 구성을 생각할 수 있다.
제2 양태를 채용한 가스 공급 장치는, 원료 가스(G1)로서 사용되는 반응성 가스가 가열 처리에 의하여 열에너지를 받아, 보다 반응성이 높은 가스로서 저진공 처리 챔버(18) 내에 공급될 수 있어, 보다 고속으로 웨이퍼(25) 상에서 성막할 수 있다는 효과가 발생하여, 고속 성막 처리를 할 수 있다는 효과가 발생한다.
또한 가스 공급구(12)로부터 공급되는 원료 가스(G1)는, 적어도 질소, 산소, 불소, 수소를 함유한 가스인 제3 양태를 채용하는 것이 바람직하다.
제3 양태를 채용한 가스 공급 장치는, 가스 공급구(12)로부터 공급되는 원료 가스(G1)를, 적어도 질소, 산소, 불소, 수소 가스를 포함하는 가스로 했으므로, 질화막이나 산화막의 절연막 형성의 성막뿐 아니라, 레지스트 박리나 에칭 가스, 세정 가스로서의 불화 가스의 활성 가스에 의한 고애스펙트비의 웨이퍼(25)의 표면 처리에도 이용할 수 있다. 또한 수소 라디칼 가스 등의 초고속 가스를 웨이퍼(25)의 표면에 접촉시킴으로써 절연막 형성, 에칭 처리, 세정 기능 이외의 용도에 이용 가능한 원료 가스(G1)도 공급할 수 있기 때문에, 다양한 성막 처리에 가스 공급 장치를 이용할 수 있다.
상기 제3 양태 대신, 가스 공급구(12)로부터 공급되는 원료 가스(G1)는 전구체 가스(프리커서 가스)인 제4 양태를 채용하도록 해도 된다.
가스 공급구(12)로부터 공급되는 원료 가스(G1)를 전구체 가스(프리커서 가스)로 함으로써, 반응성 가스로서의 고애스펙트비의 웨이퍼(25)의 표면 처리용의 가스의 이용뿐 아니라, 웨이퍼(25) 상에서의 성막에 필요한, 성막으로서 퇴적 금속의 소재로 되는 전구체 가스에 대해서도, 웨이퍼(25)의 표면에 공급하여 성막할 수 있다.
저진공 처리 챔버(18) 내의 대기압(1013.25h㎩) 이하 10㎪ 이상의 압력으로 설정하도록, 가스 공급구(12)로부터 공급되는 원료 가스(G1)의 가스 유량을 제어하는 유량 제어부를 설치한 구성을 제5 양태로서 채용하는 것이 바람직하다. 또한 유량 제어부로서는, 예를 들어 원료 가스(G1)의 공급부로부터 가스 공급구(12) 사이의 공급 경로에 가스 유량 제어 기기(매스 플로 컨트롤러; MFC)를 설치하여 가스 유량 제어 기기를 제어하는 등의 구성을 생각할 수 있다.
제5 양태를 채용한 가스 공급 장치는, 가스 분출기(1)의 노즐부(10)로부터 저진공 처리 챔버(18) 내에 분출되는 원료 가스(G1)에 있어서의 초고속 가스 유속의 안정성을 향상시킬 수 있어, 웨이퍼(25)의 표면에 성막하는 성막 두께 등을 균일화하는 등의 성막 품질을 높인다는 효과를 발휘할 수 있다.
<실시 형태 2>
도 2는, 본 발명의 실시 형태 2인 가스 공급 장치의 구성을 도시하는 설명도이다. 도 2에 있어서, XYZ 직교 좌표계를 나타내고 있다.
동 도면에 도시한 바와 같이 실시 형태 2의 가스 공급 장치는, 처리 대상 기판인 웨이퍼(25)를 적재하는 적재대(19)(적재부)와, 적재대(19)의 상방에 설치되어, 개구부를 갖는 저진공 처리 챔버(18) 내로부터 웨이퍼(25)에 가스를 공급하는 가스 분출기(2)로 구성되어 있다.
가스 분출기(2)는 1차 수용실(11), 가스 공급구(12), 제1 단 제한 통(13)(제1 제한 통), 제2 단 제한 통(14)(제2 제한 통), 제3 단 제한 통(15)(제3 제한 통) 및 저진공 처리 챔버(18)를 주요 구성부로서 갖고 있다.
그리고 3개의 제한 통 군(13 내지 15)를 포함하는 구성에 의하여 노즐부(20)를 형성하고 있다. 즉, 노즐부(20)는 1차 수용실(11)과 저진공 처리 챔버(18)의 사이에 설치된다.
노즐부(20)를 구성하는 제1 단 제한 통(13)은, 실시 형태 1과 마찬가지로, 평면으로 본 개구부 단면 형상이 직경 r1의 원형을 띠고, 1차 수용실(11)의 원료 가스(G1)를 하방에 공급한다.
제2 단 제한 통(14)은 Z 방향을 따라 제1 단 제한 통(13)과 연속적으로 형성되며, 실시 형태 1과 마찬가지로, 평면으로 본 저면의 개구부 단면 형상이 직경 r2의 원형을 띠고, 제1 단 제한 통(13)으로부터 공급되는 원료 가스(G1)를 하방에 공급한다.
제3 단 제한 통(15)은 Z 방향을 따라 제2 단 제한 통(14)과 연속적으로 형성되며, XY 평면에 있어서의(평면으로 본) 저면의 개구부 단면 형상이 (직)경 r3(제3 직경)의 원형을 띠고, 제2 단 제한 통(14)로부터 공급되는 원료 가스(G1)를 하방의 저진공 처리 챔버(18)에 공급한다. 직경 r3은 「r3>r2」를 만족시키도록 설정된다.
예를 들어 제1 단 제한 통(13)의 직경 r1을 직경 1.35㎜, 깊이를 1㎜, 제2 단 제한 통(14)의 직경 r2를 8㎜, 깊이를 4㎜로 한 경우, 제3 단 제한 통(15)의 직경 r3을 직경 20㎜, 깊이(Z 방향으로 연장된 형성 길이)를 46㎜로 설정하고, 예를 들어 질소 가스를 유량 4slm으로 공급함으로써, 제1 단 제한 통(13)을 경유한 원료 가스(G1)는 초고속 가스로 되어 제2 단 제한 통(14) 및 제3 단 제한 통(15)을 통하여 저진공 처리 챔버(18) 내에 공급된다.
또한 가스 분출기(2)에 있어서의 다른 구성은 실시 형태 1의 가스 분출기(1)와 마찬가지이기 때문에, 적절히 동일한 부호를 붙여 설명을 생략한다.
실시 형태 2의 가스 공급 장치의 가스 분출기(1)는, 각각이 직경 r1, 직경 r2 및 직경 r3의 개구부를 갖는 제1 단 제한 통(13), 제2 단 제한 통(14) 및 제3 단 제한 통(15)에 의하여 노즐부(20)를 구성함으로써, 저진공 처리 챔버(18)에 분출되는 원료 가스(G1)에 지향성을 갖게 할 수 있다. 이때, 실시 형태 1과 마찬가지로, 제2 단 제한 통(14)의 존재에 의하여 마하 디스크 MD 현상을 효과적으로 억제할 수 있다.
또한 실시 형태 2의 가스 공급 장치는 실시 형태 1의 가스 공급 장치와 마찬가지의 효과를 발휘함과 함께, 제1 내지 제5 양태를 채용한 경우의 효과를 갖고 있다.
또한 실시 형태 2의 가스 분출기(2)는, 노즐부(20)로서 제3 단 제한 통(15)을 더 설치하고, 제2 단 제한 통(14)의 직경 r2보다 제3 단 제한 통(15)의 직경 r3을 길게 설정함으로써, 압력비 PC로 발생한 고속 분류에 기인한 마하 디스크 MD의 발생을 실시 형태 1에 비하여, 보다 억제된 상태에서 원료 가스(G1)를 웨이퍼(25)에 공급할 수 있다.
<실시 형태 3>
도 3은, 본 발명의 실시 형태 3인 가스 공급 장치의 구성을 도시하는 설명도이다. 도 3에 있어서, XYZ 직교 좌표계를 나타내고 있다.
동 도면에 도시한 바와 같이 실시 형태 3의 가스 공급 장치는, 처리 대상 기판인 웨이퍼(25)를 적재하는 적재대(19)(적재부)와, 적재대(19)의 상방에 설치되어, 개구부를 갖는 저진공 처리 챔버(18) 내로부터 웨이퍼(25)에 가스를 공급하는 가스 분출기(3)로 구성되어 있다.
가스 분출기(3)는 1차 수용실(11), 가스 공급구(12), 제1 단 제한 통(13)(제1 제한 통), 반구형 제한 통(17)(제2 제한 통) 및 저진공 처리 챔버(18)를 주요 구성부로서 갖고 있다.
그리고 2개의 제한 통 군(13 및 17)을 포함하는 구성에 의하여 노즐부(30)를 형성하고 있다. 즉, 노즐부(30)는 1차 수용실(11)과 저진공 처리 챔버(18)의 사이에 설치된다.
노즐부(30)를 구성하는 제1 단 제한 통(13)(제1 제한 통)은 실시 형태 1과 마찬가지로, 개구부 단면 형상이 직경 r1의 원형을 띠고, 1차 수용실(11)의 원료 가스(G1)를 하방에 공급한다.
반구형 제한 통(17)은 Z 방향을 따라 제1 단 제한 통(13)과 연속적으로 형성되며, XY 평면에 있어서의 저면의 개구부 단면 형상의 (직)경 r2b(제2 직경)의 원형을 띠고, 제1 단 제한 통(13)으로부터 공급되는 원료 가스(G1)를 하방의 저진공 처리 챔버(18)에 공급한다. 저면에 있어서의 직경 r2b에 관하여 「r2b>r1」을 만족시키도록 설정된다.
단, 반구형 제한 통(17)은, 최정상부에 개구부를 갖는 반구형으로 형성됨으로써, 개구부의 직경 r2는 하방(-Z 방향)에 걸쳐 커지도록 설정된다. 즉, 반구형 제한 통(17)을 평면으로 본 개구부의 직경 r2는, 최정상부에 있어서의 직경 r2t(=직경 r1)로부터 저면에 있어서의 직경 r2b에 걸쳐, 하방을 향함에 따라 길어지도록 설정된다.
또한 가스 분출기(3)에 있어서의 다른 구성은 실시 형태 1의 가스 분출기(1)와 마찬가지이기 때문에, 적절히 동일한 부호를 붙여 설명을 생략한다.
실시 형태 3의 가스 공급 장치의 가스 분출기(1)는, 직경 r1, 직경 r2(r2t 내지 r2b)의 개구부를 갖는 제1 단 제한 통(13) 및 반구형 제한 통(17)에 의하여 노즐부(30)를 구성함으로써, 저진공 처리 챔버(18)에 분출되는 원료 가스(G1)에 지향성을 갖게 할 수 있다. 이때, 실시 형태 1과 마찬가지로, 반구형 제한 통(17)의 존재에 의하여 마하 디스크 MD 현상을 억제한다는 효과를 발휘한다.
또한 실시 형태 3의 가스 공급 장치는 실시 형태 1의 가스 공급 장치와 마찬가지의 효과를 발휘함과 함께, 제1 내지 제5 양태를 채용한 경우의 효과를 갖고 있다.
또한 실시 형태 3의 가스 분출기(3)에 있어서의 반구형 제한 통(17)(제2 제한 통)은, 저진공 처리 챔버(18)를 향하는 방향(-Z 방향)을 따라 개구부의 직경 r2가 길어지도록 반구형으로 형성되기 때문에, 압력비 PC로 발생한 고속 분류에 기인한 마하 디스크 MD의 발생을 실시 형태 1에 비하여, 보다 억제한 상태에서 원료 가스(G1)를 웨이퍼(25)에 공급할 수 있다.
또한 상술한 실시 형태 3의 구성에 있어서, 변형예로서, 반구형 제한 통(17)의 하방에, 실시 형태 2의 제3 단 제한 통(15)과 마찬가지로 제3 단 제한 통을 더 설치해도 된다. 실시 형태 3의 제3 단 제한 통의 형상으로서는, 반구형 제한 통(17)의 저면의 직경 r2b와 동일한 직경의 원기둥 형상 등을 생각할 수 있다.
<실시 형태 4>
도 4 및 도 5는, 본 발명의 실시 형태 4인 가스 공급 장치의 구성을 도시하는 설명도이다. 도 4는 단면도이고 도 5는 사시도이다. 도 4 및 도 5 각각에 있어서, XYZ 직교 좌표계를 나타내고 있다.
이들 도면에 도시한 바와 같이 실시 형태 4의 가스 공급 장치는, 처리 대상 기판인 웨이퍼(25)를 적재하는 적재대(19)(적재부)와, 적재대(19)의 상방에 설치되어, 개구부를 갖는 저진공 처리 챔버(18) 내로부터 웨이퍼(25)에 가스를 공급하는 가스 분출기(4)로 구성되어 있다.
가스 분출기(4)는 1차 수용실(11), 가스 공급구(12), 제1 단 제한 통(13X)(제1 제한 통), 제2 단 제한 통(14X)(제2 제한 통), 상부 전극(22), 하부 전극(24) 및 저진공 처리 챔버(18)를 주요 구성부로서 갖고 있다.
그리고 2개의 제한 통 군(13X 및 14X) 및 하부 전극(24)을 포함하는 구성에 의하여 노즐부(40)를 형성하고 있다. 즉, 노즐부(40)는 1차 수용실(11)과 저진공 처리 챔버(18)의 사이에 설치된다.
서로 대향하는 면에 알루미나 등의 유전체를 갖는 상부 전극(22) 및 하부 전극(24)은 각각, XY 평면에 있어서(평면으로 보아) 원형으로 서로 대향하여 설치된다. 또한 상부 전극(22) 및 하부 전극(24) 중 한쪽 전극의 대향면에만 유전체를 갖는 구성으로 해도 된다.
즉, 가스 분출기(4)는, 서로 대향하여 설치된 상부 전극(22) 및 하부 전극(24)(제1 및 제2 전극)을 갖고, 상부 전극(22)과 하부 전극(24)의 사이에 방전 공간이 형성되고, 상부 전극(22) 및 하부 전극(24) 중 적어도 한쪽이 상기 방전 공간을 형성하는 면에 유전체를 갖고 있다.
구체적으로는, 상부 전극(22)은 1차 수용실(11) 내의 저면 근방에 배치된다. 한편, 하부 전극(24)은, 1차 수용실(11)의 저면의 일부를 형성하도록 1차 수용실(11)의 저면 하에 배치되며, 하부 전극(24)의 중심에 형성한 관통구가 제1 단 제한 통(13X)으로 되도록 형성하고 있다.
노즐부(40)를 구성하는 제1 단 제한 통(13X)(제1 제한 통)은 실시 형태 1의 제1 단 제한 통(13)과 마찬가지로, XY 평면에 있어서의(평면으로 보아) 개구부 단면 형상이 직경 r1(제1 직경)의 원형을 띠고, 1차 수용실(11)의 원료 가스(G1)를 하방에 공급한다.
제2 단 제한 통(14X)은, Z 방향을 따라 제1 단 제한 통(13X)을 포함하는 하부 전극(24) 바로 아래에 연속적으로 형성되며, 실시 형태 1의 제2 단 제한 통(14)과 마찬가지로, XY 평면에 있어서의(평면으로 보아) 개구부 단면 형상이 (직)경 r2(제2 직경)의 원형을 띠고, 제1 단 제한 통(13)으로부터 공급되는 원료 가스(G1)를 하방의 저진공 처리 챔버(18)에 공급한다. 직경 r2는 「r2>r1」을 만족시키도록 설정된다.
이와 같이 실시 형태 4의 가스 분출기(4)는, 유전체를 사이에 두고 서로 대향하는 상부 전극(22) 및 하부 전극(24) 사이의 방전 공간에 있어서, 원료 가스(G1)를 전리시켜 이온화 또는 라디칼화시키는 가스 전리부를 내부에 갖고 있다.
상기 가스 전리부는, 서로 대향하는 상부 전극(22)과 하부 전극(24) 사이에 유전체를 개재한 방전 공간을 갖고 있으며, 상부 전극(22) 및 하부 전극(24)의 사이에 교류 전압을 인가하여 방전 공간에 있어서 유전체 배리어 방전을 발생시켜, 원료 가스(G1)를 이온화 또는 라디칼화시켜 얻어지는 이온화 가스, 라디칼화 가스를 제2 단 제한 통(14X)을 통하여 저진공 처리 챔버(18) 내에 공급할 수 있다.
이와 같이, 1차 수용실(11)과 노즐부(40)의 경계 영역 근방에, 가스 공급구(12)로부터 공급된 원료 가스(G1)를 전리시킴으로써 원료 가스(G1)를 이온화 또는 라디칼화시킨 이온화 가스 또는 라디칼화 가스를 얻는 가스 전리부를 설치한 것을 특징으로 하고 있다.
또한 가스 분출기(4)에 있어서의 다른 구성은 실시 형태 1의 가스 분출기(1)와 마찬가지이기 때문에, 적절히 동일한 부호를 붙여 설명을 생략한다.
실시 형태 4의 가스 공급 장치의 가스 분출기(1)는, 직경 r1, 직경 r2의 개구부를 갖는 제1 단 제한 통(13X) 및 제2 단 제한 통(14X)에 의하여 노즐부(40)를 구성함으로써, 저진공 처리 챔버(18)에 분출되는 원료 가스(G1)에 지향성을 갖게 할 수 있다. 이때, 실시 형태 1과 마찬가지로, 제2 단 제한 통(14X)의 존재에 의하여 마하 디스크 MD 현상을 억제하는 것이 가능해진다는 효과를 발휘한다.
또한 실시 형태 4의 가스 공급 장치는 실시 형태 1의 가스 공급 장치와 마찬가지의 효과를 발휘함과 함께, 제1 내지 제5 양태를 채용한 경우의 효과를 갖고 있다. 이때, 실시 형태 4의 제2 양태의 가열 처리로서, 상부 전극(22) 및 하부 전극(24) 사이에서의 방전 처리를 이용할 수 있다.
또한 실시 형태 4의 가스 분출기(4)는, 상기 가스 전리부에 의하여 가스 분출기(4) 내에서 가스 방전을 시켜, 이온화 가스 또는 라디칼화 가스를 지향성이 있는 초고속 분류 가스로 하여, 저진공 처리 챔버(18)로부터 웨이퍼(25)의 표면에 직접 접촉시킬 수 있다. 이로 인하여, 종래의 성막 처리 장치인 플라스마 CVD·ALD 장치에 비하여, 보다 고밀도이고 고전계의 활성인 이온화 가스 또는 라디칼화 가스를 웨이퍼(25)의 표면에 접촉시킬 수 있어 보다 품질이 높은 성막 처리를 실현할 수 있어, 애스펙트비가 높은 웨이퍼(25)로의 성막이나 3차원 구조의 성막을 용이하게 행할 수 있다는 효과가 있다.
또한 실시 형태 4의 가스 분출기(4)는 내부의 상기 가스 전리부에 있어서, 서로 대향하는 상부 전극(22)과 하부 전극(24) 사이에 유전체를 개재하여 방전 공간을 형성하고, 상부 전극(22), 하부 전극(24) 사이에 교류 전압을 인가하여 방전 공간에 있어서 유전체 배리어 방전을 발생시켜, 원료 가스(G1)를 이온화 또는 라디칼화하여 얻어지는 이온화 가스 또는 라디칼화 가스를 공급할 수 있도록 하였다. 이때, 이온화 가스, 라디칼화 가스는 매우 수명이 짧은 것을 고려하여, 발생된 이온화 가스, 라디칼화 가스를 단시간에 처리 대상 기판 표면에 접촉시키기 위하여 가스 분출기(4) 내에 유전체 배리어 방전 기구(상부 전극(22) 및 하부 전극(24))를 설치함으로써, 공급되는 이온화 가스, 라디칼화 가스에 의하여 고품질의 성막 처리를 가능하게 한다는 효과를 발휘할 수 있다.
구체적으로는, 제1 단 제한 통(13X)은 하부 전극(24)(제2 전극)에 형성되는 관통구로서 구성하여 저진공 처리 챔버(18) 내에 방전 가스를 분출하도록 함으로써, 유전체 배리어 방전으로 생성된 이온화 가스, 라디칼화 가스를 매우 짧은 밀리초 이하의 단시간에 웨이퍼(25)의 표면에 접촉시킬 수 있다. 따라서 실시 형 4의 가스 공급 장치는, 방전으로 생성된, 수명이 매우 짧은 이온화 가스, 라디칼화 가스이더라도 감쇠를 최소한으로 억제하여 웨이퍼(25)의 표면에 접촉시킬 수 있어, 성막이 저온에서 가능해지거나 성막 속도의 향상을 도모하거나 한다는 효과를 발휘할 수 있다.
또한 상술한 실시 형태 4에서는 상부 전극(22) 및 하부 전극(24)의 평면 형상이 원형인 경우를 나타냈지만, 이 형상에 한정되지 않는 것은 물론이다.
<실시 형태 5>
도 6은, 본 발명의 실시 형태 5인 가스 공급 장치의 구성을 도시하는 설명도이다. 도 6에 있어서, XYZ 직교 좌표계를 나타내고 있다.
동 도면에 도시한 바와 같이 실시 형태 5의 가스 공급 장치는, 처리 대상 기판인 웨이퍼(25)를 적재하는 적재대(19)(적재부)와, 적재대(19)의 상방에 설치되어, 개구부를 갖는 저진공 처리 챔버(180) 내로부터 웨이퍼(25)에 가스를 공급하는 가스 분출기(100)로 구성되어 있다.
가스 분출기(100)는 1차 수용실(110), 가스 공급구(12), 제1 단 제한 통(13a 내지 13d)(복수의 제1 제한 통), 제2 단 제한 통(14a 내지 14d)(복수의 제2 제한 통) 및 저진공 처리 챔버(180)를 주요 구성부로서 갖고 있다.
그리고 제1 단 제한 통(13a 내지 13d) 및 제2 단 제한 통(14a 내지 14d)을 포함하는 구성에 의하여 노즐부(10a 내지 10d)를 형성하고 있다. 즉, 노즐부(10a 내지 10d)는 1차 수용실(110)과 저진공 처리 챔버(180)의 사이에 설치된다. 노즐부(10a)는 제1 단 제한 통(13a) 및 제2 단 제한 통(14a)에 의하여 구성되고, 노즐부(10b)는 제1 단 제한 통(13b) 및 제2 단 제한 통(14b)에 의하여 구성되고, 노즐부(10c)는 제1 단 제한 통(13c) 및 제2 단 제한 통(14c)에 의하여 구성되고, 노즐부(10d)는 제1 단 제한 통(13d) 및 제2 단 제한 통(14d)에 의하여 구성된다.
제1 단 제한 통(13a 내지 13d)(복수의 제1 제한 통)은 각각 실시 형태 1의 제1 단 제한 통(13)과 마찬가지로, 평면으로 보아 개구부 단면 형상이 직경 r1의 원형을 띠고, 1차 수용실(110)의 원료 가스(G1)를 하방에 공급한다.
제2 단 제한 통(14a 내지 14d)(제2 제한 통)은 각각 Z 방향을 따라 제1 단 제한 통(13a 내지 13d)과 연속적으로 형성되며, 실시 형태 1의 제2 단 제한 통(14)과 마찬가지로, 평면으로 보아 개구부 단면 형상이 직경 r2의 원형을 띠고, 제1 단 제한 통(13a 내지 13d)으로부터 각각 공급되는 원료 가스(G1)를 하방에 공급한다. 반응이 종료된 가스는 가스 분출기(100), 적재대(19) 사이에 설치된 배기구(210)로부터 배기된다.
또한 가스 분출기(100)에 있어서의 다른 구성은 실시 형태 1의 가스 분출기(1)와 마찬가지이기 때문에, 적절히 동일한 부호를 붙여 설명을 생략한다.
실시 형태 5의 가스 공급 장치의 가스 분출기(1)는, 각각이 직경 r1 및 직경 r2를 갖는 제1 단 제한 통(13a 내지 13d) 및 제2 단 제한 통(14a 내지 14d)에 의하여 노즐부(10a 내지 10d)(복수의 노즐부)를 가짐으로써, 저진공 처리 챔버(180)에 분출되는 원료 가스(G1)에 지향성을 갖게 할 수 있다. 이때, 실시 형태 1과 마찬가지로, 제2 단 제한 통(14a 내지 14d)의 존재에 의하여 마하 디스크 MD 현상을 효과적으로 억제할 수 있다는 효과를 발휘한다.
또한 실시 형태 5의 가스 공급 장치는 실시 형태 1의 가스 공급 장치와 마찬가지의 효과를 발휘함과 함께, 제1 내지 제5 양태를 채용한 경우의 효과를 갖고 있다.
또한 실시 형태 5의 가스 분출기(100)는, 노즐부(10a 내지 10d)(복수의 노즐부)로부터 지향성이 있는 고속 가스를 웨이퍼(25)의 전체면에 균일하게 접촉시킬 수 있어, 애스펙트비가 큰 웨이퍼(25)로의 성막 시나 3차원 구조의 웨이퍼(25)의 표면 상에서의 3차원 구조의 성막 시에 있어서도 양질이고 균일한 성막 처리를 비교적 단시간에 실행할 수 있다.
또한 제1 단 제한 통(13a 내지 13d)의 직경 r1을 직경 r1a 내지 r1d라 했을 때, 직경 r1a 내지 r1d 간에 상이한 값으로 설정하는 제6 양태를 채용해도 된다. 즉, 노즐부(10a 내지 10d) 각각에 있어서의 직경 r1을 노즐부(10a 내지 10d) 간에 상이한 값으로 설정하는 제6 양태를 채용해도 된다.
제6 양태를 채용한 실시 형태 5의 가스 공급 장치는, 분출하는 가스 유량, 가스 속도를 노즐부(10a 내지 10d) 간에 상이한 내용으로 제어할 수 있다. 이 때문에, 예를 들어 웨이퍼(25)의 표면에 접촉되는 위치에 대응시켜, 이온화 가스, 라디칼화 가스 등을 포함하는 원료 가스(G1)가 분사되는 가스양을 노즐부(10a 내지 10d) 사이에서 독립적으로 제어하면, 웨이퍼(25)의 전체면에 있어서 균일한 성막을 할 수 있는 등의 성막 품질 향상으로 이어진다는 효과가 발생한다.
또한 노즐부(10a 내지 10d) 각각의 구조를 실시 형태 4의 노즐부(40)와 마찬가지의 구조로 하여, 노즐부(10a 내지 10d)에 대응하여 설치되는 복수의 가스 전리부를 서로 독립적으로 제어 가능하게 한 제7 양태를 채용해도 된다.
노즐부(10a 내지 10d)(복수의 노즐부)에 대응하여 설치되는 복수의 가스 전리부는 서로 독립적으로 제어 가능하기 때문에, 복수의 이온화 가스, 라디칼화 가스가 분사되는 가스양 및 방전 전력을 제어함으로써, 예를 들어 웨이퍼(25)의 표면에 접촉되는 위치에 대응시켜, 이온화 가스, 라디칼화 가스가 분사되는 가스양 및 방전 전력을 제어할 수 있다. 그 결과, 실시 형태 5의 가스 공급 장치에 있어서의 제7 양태는, 웨이퍼(25) 전체면에 있어서 균일한 성막을 할 수 있는 등의 성막 품질 향상으로 이어진다는 효과가 발생한다.
또한 상술한 실시 형태 5에서는, 노즐부(10a 내지 10d) 각각의 구조로서 실시 형태 1의 노즐부(10)와 마찬가지의 구조를 채용했지만, 노즐부(10a 내지 10d) 각각의 구조로서 실시 형태 2의 노즐부(20), 실시 형태 3의 노즐부(30), 또는 실시 형태 4의 노즐부(40)와 마찬가지의 구조를 채용해도 된다.
실시 형태 5의 제6 양태에서는, 제1 단 제한 통(13a 내지 13d)의 직경 r1을 직경 r1a 내지 r1d로 했을 때, 직경 r1a 내지 r1d 간에 상이한 값으로 설정했지만, 또한 제2 단 제한 통(14a 내지 14d)의 직경 r2를 직경 r2a 내지 r2d로 했을 때, 직경 r2a 내지 r2d 간에 상이한 값으로 설정해도 된다(제1 변형예). 게다가 실시 형태 5의 노즐부(10a 내지 10d) 각각이 실시 형태 2와 같이 제3 단 제한 통(15(15a 내지 15d))을 더 갖는 구성의 경우, 제3 단 제한 통(15a 내지 15d)의 직경 r3을 직경 r3a 내지 r3d로 했을 때, 직경 r3a 내지 r3d 간에 상이한 값으로 설정해도 된다(제2 변형예).
제6 양태의 제1 및 제2 변형예를 채용한 실시 형태 5의 가스 공급 장치는, 분출하는 가스 유량, 가스 속도를 노즐부(10a 내지 10d) 간에 상이한 내용으로 다양하게 제어할 수 있다. 또한 노즐부(10a 내지 10d) 각각을 실시 형태 3의 노즐부(30) 또는 실시 형태 4의 노즐부(40)의 구성으로 한 경우에도, 상술한 제1 또는 제2 변형예를 채용하여 반구형 제한 통(17)의 직경 r2(변형예의 제3 단 제한 통의 직경을 포함함)나 제2 단 제한 통(14X)의 직경 r2 등을 노즐부(10a 내지 10d) 간에 상이한 값으로 설정하도록 해도 된다.
<그 외>
또한 상술한 실시 형태에서는, 제한 통의 개수를 최대 3단 구성(실시 형태 2)으로 한 것을 나타냈지만, 예를 들어 실시 형태 2의 제3 단 제한 통(15)의 하방에 추가로 제4 단 제한 통을 설치하는 등, 4단 이상의 제한 통을 설치하는 구성도 물론 생각할 수 있다.
본 발명은 상세히 설명되었지만, 상술한 설명은 모든 국면에 있어서 예시이며, 본 발명이 그에 한정되는 것은 아니다. 예시되지 않은 무수한 변형예가, 본 발명의 범위로부터 벗어나는 일 없이 상정될 수 있는 것으로 해석된다.
1 내지 4, 100: 가스 분출기
11, 110: 1차 수용실
12: 가스 공급구
13, 13a 내지 13d, 13X: 제1 단 제한 통
14, 14a 내지 14d, 14X: 제2 단 제한 통
15: 제3 단 제한 통
17: 반구형 제한 통
18, 180: 저진공 처리 챔버
19: 적재대
22: 상부 전극
24: 하부 전극
25: 웨이퍼

Claims (15)

  1. 처리 대상 기판(25)을 적재하는 적재부(19)와,
    상기 적재부의 상방에 설치되어, 저면에 개구부를 갖는 처리 챔버(18, 180)로부터 상기 처리 대상 기판에 가스를 공급하는 가스 분출기(1 내지 4, 100)를 구비하고,
    상기 가스 분출기는,
    가스 공급구(12)로부터 공급되는 가스를 일시적으로 수용하는 1차 수용실(11, 110)과,
    상기 처리 챔버와,
    상기 1차 수용실과 상기 처리 챔버의 사이에 설치되는 노즐부(10, 20, 30, 40, 110)를 구비하고,
    상기 노즐부는,
    평면으로 본 개구부 단면 형상이 제1 직경으로 원형으로 형성되고, 상기 1차 수용실 내의 가스를 하방에 공급하는 제1 제한 통(13, 13X)과,
    평면으로 본 개구부 단면 형상이 제2 직경으로 원형으로 형성되고, 상기 제1 제한 통으로부터 공급되는 가스를 상기 처리 챔버를 향하여 공급하는 제2 제한 통(14, 14X, 17)을 갖고,
    상기 제1 직경은, 상기 1차 수용실 내와 상기 처리 챔버 내의 압력 차가 소정 압력비 이상으로 되도록 설정되고,
    상기 제2 직경은 상기 제1 직경보다 길어지도록 설정되는
    가스 공급 장치.
  2. 제1항에 있어서,
    상기 소정 압력비는 30배이고,
    상기 제1 제한 통의 상기 제1 직경을 직경 2㎜ 이하, 형성 길이를 2㎜ 이하로 설정하고,
    상기 1차 수용실 내의 압력과 상기 처리 챔버 내의 압력의 압력 차를 30배 이상으로 하도록 한 것을 특징으로 하는
    가스 공급 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 제2 제한 통의 상기 제2 직경을 직경 30㎜ 이내로 설정한 것을 특징으로 하는
    가스 공급 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 노즐부(30)는,
    평면으로 본 개구부 단면 형상이 제3 직경의 원형으로 형성되고, 상기 제2 제한 통으로부터 공급되는 가스를 상기 처리 챔버를 향하여 공급하는 제3 제한 통(15)을 더 포함하고,
    상기 제3 직경은 상기 제2 직경보다 긴 것을 특징으로 하는
    가스 공급 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 노즐부(40)에 있어서의 상기 제2 제한 통(17)은,
    상기 처리 챔버를 향함에 따라 상기 제2 직경이 길어지도록 반구형으로 형성되는 것을 특징으로 하는
    가스 공급 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 가스 분출기 중, 가스와 접촉하는 영역인 가스 접촉 영역을 석영 또는 알루미나재를 구성 재료로 하여 형성한 것을 특징으로 하는
    가스 공급 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 가스 분출기를 100℃ 이상으로 가열함으로써, 가열한 가스를 상기 처리 대상 기판에 공급하도록 한 것을 특징으로 하는
    가스 공급 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 가스 공급구로부터 공급되는 가스는, 적어도 질소, 산소, 불소, 수소를 함유한 가스인
    가스 공급 장치.
  9. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 가스 공급구로부터 공급되는 가스는 전구체 가스인
    가스 공급 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 처리 챔버 내의 압력을 대기압 이하 10㎪ 이상의 압력으로 설정하도록, 상기 가스 공급구로부터 공급되는 가스의 가스 유량을 제어하는
    가스 공급 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 노즐부는,
    복수의 노즐을 포함하는
    가스 공급 장치.
  12. 제11항에 있어서,
    복수의 노즐부 각각에 있어서의 상기 제1 제한 통의 상기 제1 직경을 상기 복수의 노즐부 간에 상이한 값으로 설정한 것을 특징으로 하는
    가스 공급 장치.
  13. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 1차 수용실과 상기 노즐부의 경계 영역 근방에, 상기 가스 공급구로부터 공급된 가스를 전리시켜 이온화 또는 라디칼화시켜, 이온화 가스 또는 라디칼화 가스를 얻는 가스 전리부(22, 24)를 설치한 것을 특징으로 하는
    가스 공급 장치.
  14. 제13항에 있어서,
    상기 가스 전리부는,
    서로 대향하여 설치된 제1 및 제2 전극(22 및 24)을 갖고, 상기 제1 전극과 상기 제2 전극의 사이에 방전 공간을 갖고, 상기 제1 및 제2 전극 중 적어도 한쪽이 상기 방전 공간을 형성하는 면에 유전체를 갖고,
    상기 제1 제한 통은, 상기 제2 전극에 형성되는 관통구에 의하여 형성되고,
    상기 제1 및 제2 전극 간에 교류 전압을 인가하여 상기 방전 공간에 있어서 유전체 배리어 방전을 발생시켜, 얻어지는 상기 이온화 가스 또는 상기 라디칼화 가스를 상기 처리 챔버 내에 공급하는
    가스 공급 장치.
  15. 제13항 또는 제14항에 있어서,
    상기 노즐부는 복수의 노즐을 포함하고,
    상기 가스 전리부는, 상기 복수의 노즐부에 대응하여 설치되는 복수의 가스 전리부를 포함하고, 상기 복수의 가스 전리부는 서로 독립적으로 제어 가능한 것을 특징으로 하는
    가스 공급 장치.
KR1020187015815A 2016-01-06 2016-01-06 가스 공급 장치 KR102112432B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050188 WO2017119074A1 (ja) 2016-01-06 2016-01-06 ガス供給装置

Publications (2)

Publication Number Publication Date
KR20180077274A true KR20180077274A (ko) 2018-07-06
KR102112432B1 KR102112432B1 (ko) 2020-05-18

Family

ID=59273406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187015815A KR102112432B1 (ko) 2016-01-06 2016-01-06 가스 공급 장치

Country Status (7)

Country Link
US (2) US20190055648A1 (ko)
EP (1) EP3401949B1 (ko)
JP (1) JP6430664B2 (ko)
KR (1) KR102112432B1 (ko)
CN (1) CN108292603B (ko)
TW (1) TWI600791B (ko)
WO (1) WO2017119074A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533801B2 (en) * 2017-11-30 2022-12-20 Corning Incorporated Atmospheric pressure linear rf plasma source for surface modification and treatment
WO2019138453A1 (ja) * 2018-01-10 2019-07-18 東芝三菱電機産業システム株式会社 活性ガス生成装置及び成膜処理装置
JP7038618B2 (ja) * 2018-07-12 2022-03-18 東京エレクトロン株式会社 クリーニング方法及び基板処理装置
JP6725605B2 (ja) * 2018-08-24 2020-07-22 ファナック株式会社 レーザ加工システム、及びレーザ加工方法
KR102545951B1 (ko) 2019-11-12 2023-06-22 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 활성 가스 생성 장치
KR102524433B1 (ko) * 2019-11-27 2023-04-24 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 활성 가스 생성 장치
US20210355580A1 (en) * 2020-05-13 2021-11-18 Tokyo Electron Limited Systems and Methods for Depositing a Layer on a Substrate Using Atomic Oxygen
CN112376029B (zh) * 2020-11-11 2022-10-21 北京北方华创微电子装备有限公司 等离子体浸没离子注入设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283372A (ja) * 1992-04-01 1993-10-29 Nissin Electric Co Ltd エッチング装置
JP2001135628A (ja) 1999-11-10 2001-05-18 Nec Corp プラズマcvd装置
JP2003529926A (ja) * 2000-03-30 2003-10-07 東京エレクトロン株式会社 プラズマ処理システム内への調整可能なガス注入のための方法及び装置
JP2004111739A (ja) 2002-09-19 2004-04-08 Tokyo Electron Ltd 絶縁膜の形成方法、半導体装置の製造方法、基板処理装置
KR20100034737A (ko) * 2007-06-07 2010-04-01 어플라이드 머티어리얼스, 인코포레이티드 균일한 실리콘 필름을 증착하기 위한 장치 및 균일한 실리콘 필름을 제조하기 위한 방법
JP2013219380A (ja) 2007-06-04 2013-10-24 Tokyo Electron Ltd 成膜方法及び成膜装置
JP2014086498A (ja) 2012-10-22 2014-05-12 Makoto Shizukuishi 半導体素子の製造方法
KR20150056631A (ko) * 2012-09-21 2015-05-26 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 프로세스 장비에서의 화학물질 제어 피쳐들

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369538A (ja) * 1986-09-09 1988-03-29 Canon Inc 反応装置
JP2536681B2 (ja) * 1989-09-29 1996-09-18 三菱自動車工業株式会社 多管式分流希釈トンネル装置
JPH1027778A (ja) * 1996-07-09 1998-01-27 Komatsu Ltd 表面処理装置及びこれに用いられるノズル
JP3710587B2 (ja) * 1997-02-17 2005-10-26 株式会社荏原製作所 ガス噴射ヘッド
JPH11293469A (ja) * 1998-04-13 1999-10-26 Komatsu Ltd 表面処理装置および表面処理方法
JP2000038903A (ja) * 1998-05-18 2000-02-08 Hiroyasu Tanigawa 制御装置を有する蒸気ガスタ―ビン合体機関
CN100371491C (zh) * 1999-08-17 2008-02-27 东京电子株式会社 脉冲等离子体处理方法及其设备
US8877000B2 (en) * 2001-03-02 2014-11-04 Tokyo Electron Limited Shower head gas injection apparatus with secondary high pressure pulsed gas injection
JP2003324072A (ja) * 2002-05-07 2003-11-14 Nec Electronics Corp 半導体製造装置
KR100628888B1 (ko) * 2004-12-27 2006-09-26 삼성전자주식회사 샤워 헤드 온도 조절 장치 및 이를 갖는 막 형성 장치
JP5665297B2 (ja) * 2009-09-30 2015-02-04 三菱重工業株式会社 煤塵除去装置
US9082593B2 (en) * 2011-03-31 2015-07-14 Tokyo Electron Limited Electrode having gas discharge function and plasma processing apparatus
TWI437120B (zh) * 2011-07-08 2014-05-11 Roth & Rau Ag 具有減小的工具足跡之用於均勻薄膜沉積的平行板反應器
JP5848140B2 (ja) * 2012-01-20 2016-01-27 東京エレクトロン株式会社 プラズマ処理装置
JP6140412B2 (ja) * 2012-09-21 2017-05-31 東京エレクトロン株式会社 ガス供給方法及びプラズマ処理装置
TW201435138A (zh) * 2012-12-21 2014-09-16 Applied Materials Inc 具高清洗效率的對稱氣體分配設備及方法
JP6219179B2 (ja) * 2014-01-20 2017-10-25 東京エレクトロン株式会社 プラズマ処理装置
US10487399B2 (en) * 2014-06-26 2019-11-26 Applied Materials, Inc. Atomic layer deposition chamber with counter-flow multi inject
JP6001015B2 (ja) 2014-07-04 2016-10-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
US10407771B2 (en) 2014-10-06 2019-09-10 Applied Materials, Inc. Atomic layer deposition chamber with thermal lid
US10403474B2 (en) 2016-07-11 2019-09-03 Lam Research Corporation Collar, conical showerheads and/or top plates for reducing recirculation in a substrate processing system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283372A (ja) * 1992-04-01 1993-10-29 Nissin Electric Co Ltd エッチング装置
JP2001135628A (ja) 1999-11-10 2001-05-18 Nec Corp プラズマcvd装置
JP2003529926A (ja) * 2000-03-30 2003-10-07 東京エレクトロン株式会社 プラズマ処理システム内への調整可能なガス注入のための方法及び装置
JP2004111739A (ja) 2002-09-19 2004-04-08 Tokyo Electron Ltd 絶縁膜の形成方法、半導体装置の製造方法、基板処理装置
JP2013219380A (ja) 2007-06-04 2013-10-24 Tokyo Electron Ltd 成膜方法及び成膜装置
KR20100034737A (ko) * 2007-06-07 2010-04-01 어플라이드 머티어리얼스, 인코포레이티드 균일한 실리콘 필름을 증착하기 위한 장치 및 균일한 실리콘 필름을 제조하기 위한 방법
KR20150056631A (ko) * 2012-09-21 2015-05-26 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 프로세스 장비에서의 화학물질 제어 피쳐들
JP2014086498A (ja) 2012-10-22 2014-05-12 Makoto Shizukuishi 半導体素子の製造方法

Also Published As

Publication number Publication date
CN108292603A (zh) 2018-07-17
TWI600791B (zh) 2017-10-01
EP3401949A4 (en) 2019-08-21
US20200291515A1 (en) 2020-09-17
CN108292603B (zh) 2022-06-28
EP3401949A1 (en) 2018-11-14
JPWO2017119074A1 (ja) 2018-04-26
JP6430664B2 (ja) 2018-11-28
TW201725277A (zh) 2017-07-16
EP3401949B1 (en) 2021-03-24
US20190055648A1 (en) 2019-02-21
US11453945B2 (en) 2022-09-27
WO2017119074A1 (ja) 2017-07-13
KR102112432B1 (ko) 2020-05-18

Similar Documents

Publication Publication Date Title
KR20180077274A (ko) 가스 공급 장치
JP6474943B2 (ja) 活性ガス生成装置
JP6339218B2 (ja) 成膜装置へのガス噴射装置
KR101432375B1 (ko) 기판 적재 시스템, 기판 처리 장치, 정전 척 및 기판 냉각 방법
WO2016067381A1 (ja) ガス噴射装置
KR20190005798A (ko) 정전 척의 제조 방법 및 정전 척
KR101913978B1 (ko) 라디칼 가스 발생 시스템
JP6440871B2 (ja) 活性ガス生成装置及び成膜処理装置
JP6926632B2 (ja) 表面処理装置および表面処理方法
JP2009289782A (ja) プラズマcvd装置およびアモルファスシリコン薄膜の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant