KR20180074768A - 갭 계측 장치 및 갭 계측 방법 - Google Patents

갭 계측 장치 및 갭 계측 방법 Download PDF

Info

Publication number
KR20180074768A
KR20180074768A KR1020187014850A KR20187014850A KR20180074768A KR 20180074768 A KR20180074768 A KR 20180074768A KR 1020187014850 A KR1020187014850 A KR 1020187014850A KR 20187014850 A KR20187014850 A KR 20187014850A KR 20180074768 A KR20180074768 A KR 20180074768A
Authority
KR
South Korea
Prior art keywords
measuring
sensor
gap
plate
upper plate
Prior art date
Application number
KR1020187014850A
Other languages
English (en)
Other versions
KR102045696B1 (ko
Inventor
유이치 사사노
게이 요시토미
다쿠야 고토
다카히로 구보타
Original Assignee
미츠비시 쥬고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 쥬고교 가부시키가이샤 filed Critical 미츠비시 쥬고교 가부시키가이샤
Publication of KR20180074768A publication Critical patent/KR20180074768A/ko
Application granted granted Critical
Publication of KR102045696B1 publication Critical patent/KR102045696B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

작업원에 의한 불일치를 억제하고, 갭을 형성하는 재료에 흠집을 내는 것을 저감하는 갭 계측 장치 및 갭 계측 방법을 제공한다. 갭 계측 장치(20)는, 상판(12)과 하판(14)이 두께 방향인 Z 축 방향을 따른 방향으로 중첩되어 형성된 재료(10)에 있어서, 상판(12)의 하면(12b)과 하판(14)의 상면(14a) 사이의 거리, 즉 상판(12)과 하판(14) 사이의 갭(G)을 계측하는 계측 장치이다. 갭 계측 장치(20)는, 상판(12)의 두께인 판 두께(T)를 계측하는 판 두께 계측 센서로서의 초음파 센서(22)와, 상판(12)의 상면(12a)과 하판(14)의 상면(14a) 사이의 거리인 단차(D)를 계측하는 단차 계측 센서로서의 레이저 센서(26)와, 단차(D)로부터 판 두께(T)를 공제함으로써 상판(12)과 하판(14) 사이의 갭(G)을 산출하는 산출부(32)를 갖는다.

Description

갭 계측 장치 및 갭 계측 방법
본 발명은 갭 계측 장치(gap measurement device) 및 갭 계측 방법에 관한 것이다.
종래 캘리퍼스(calipers) 또는 테이퍼 게이지(taper gauge) 등으로는 계측할 수 없는 좁은 갭의 계측에는 갭 게이지가 이용되고 있다. 갭 게이지는 리프(leaf)라고 불리는 얇은 금속판을 갭에 삽입하고, 그 갭의 치수를 계측하기 위한 공구이다. 갭 게이지는 정확하게 갭의 치수를 계측하기 위해, 리프가 갭에 대해 수평으로 삽입될 필요가 있다. 또한, 특허문헌 1에는, 면 사이의 갭의 양측에 구성되는 2개의 삼각형의 위치를 패턴 매칭법(pattern matching method)으로 계측하고, 2개의 삼각형의 위치에 기초하여 갭을 계측하는 갭의 측정 방법이 기재되어 있다.
일본 공개특허공보 제(평)6-288713호
그러나 갭 게이지를 이용하여 갭을 계측하는 경우, 갭 게이지를 사용하는 작업원에 의해 리프가 갭에 대해 어느 정도 수평으로 삽입되는지가 다를 가능성이 있다. 또한, 리프가 갭을 형성하는 재료에 흠집을 낼 가능성이 있다. 또한, 계측하는 갭의 개소가 많은 경우에는, 작업원에게 부담이 될 가능성이 있다.
특허문헌 1에 기재되어 있는 방법에서는, 갭의 양측에 삼각형이 구성되어 있는 것 등, 갭을 형성하는 것의 형상이 요건으로 된다. 그 때문에 판이 두께 방향으로 중첩되어 형성된 재료의 갭을 계측할 수는 없다.
본 발명은 상기를 감안하여 이루어진 것으로, 판이 두께 방향으로 중첩되어 형성된 재료의 갭을 계측하는 경우에, 작업원에 의한 불일치(inconsistency)를 억제하고, 갭을 형성하는 재료에 흠집을 내는 것을 저감하는 갭 계측 장치 및 갭 계측 방법을 제공하는 것을 목적으로 한다.
상기한 과제를 해결하고, 목적을 달성하기 위해, 본 발명의 갭 계측 장치는, 상판과 하판이 두께 방향으로 중첩되어 형성된 재료에 있어서, 상기 상판과 상기 하판 사이의 갭을 계측하는 계측 장치로서, 상기 상판의 두께인 판 두께를 계측하는 판 두께 계측 센서와, 상기 상판의 상면과 상기 하판의 상면 사이의 거리인 단차를 계측하는 단차 계측 센서와, 상기 단차로부터 상기 판 두께를 공제함으로써 상기 상판과 상기 하판 사이의 갭을 산출하는 산출부를 갖는 것을 특징으로 한다.
이 갭 계측 장치는 단차 계측 센서에서 계측하는 단차로부터 판 두께 계측 센서에서 계측하는 판 두께를 공제함으로써 갭을 산출하고 있기 때문에 작업원에 의한 불일치를 억제하고, 갭을 형성하는 재료에 흠집을 내는 것을 저감할 수 있다.
본 발명의 갭 계측 장치에 있어서, 상기 판 두께 계측 센서를 연직 방향으로 지지하는 지지부의 상기 두께 방향에 있어서의 변위인 제1 변위를 계측하는 변위 센서와, 상기 상판의 상면에 대향하는 상기 판 두께 계측 센서의 자세를 판정하는 자세 판정부를 추가로 가지며, 상기 단차 계측 센서는 상기 단차 계측 센서의 상기 두께 방향에 있어서의 변위인 제2 변위 및 상기 상판의 상면에 대향하는 상기 단차 계측 센서의 자세각(姿勢角)인 제1 자세각을 계측하고, 상기 산출부는, 상기 판 두께 계측 센서와 상기 단차 계측 센서와의 각 계측점 사이의 거리, 상기 제1 변위 및 상기 제2 변위에 기초하여, 상기 상판의 상면에 대향하는 상기 판 두께 계측 센서의 자세각의 성분인 제2 자세각을 산출하고, 상기 자세 판정부는, 상기 제1 자세각 및 상기 제2 자세각에 기초하여, 상기 자세를 판정하는 것이 바람직하다. 이에 의해 각 센서의 자세가 갭의 계측에 적절한지 여부를 판정할 수 있기 때문에 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
본 발명의 자세 판정부를 갖는 갭 계측 장치에 있어서, 상기 판 두께 계측 센서, 상기 단차 계측 센서 및 상기 변위 센서를, 상기 상판의 상면과의 거리를 반경으로 하는 원호면을 따라 이동 가능하게 파지하는 고니오 스테이지(gonio stage)를 추가로 가지며, 상기 산출부는 상기 자세가 상기 갭의 계측에 부적절하다고 판정된 경우, 상기 자세의 수정값을 산출하고, 상기 수정값을 상기 고니오 스테이지에 송신하며, 상기 고니오 스테이지는 상기 산출부로부터 수신한 상기 수정값에 따라 상기 자세를 수정하는 것이 바람직하다. 이에 의해 각 센서의 자세를 갭의 계측에 적절한 자세로 수정할 수 있기 때문에 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
본 발명의 갭 계측 장치에 있어서, 상기 변위 센서는, 추가로 판 두께 계측 센서가 상기 상판에 대해 가하고 있는 압력을 계측하는 것이 바람직하다. 이에 의해 재료를 구성하는 상판과 하판이 접합하고 있지 않은 경우에 상판과 하판 사이에 형성되는 갭을 계측할 때, 갭의 계측 조건의 하나인 압력을 계측할 수 있다.
본 발명의 갭 계측 장치에 있어서, 상기 판 두께 계측 센서는, 상기 상판의 상방으로부터 상기 상판의 상면을 향해 초음파를 발생시켜 상기 상판의 상면 및 하면에서 각각 반사한 초음파를 검출하는 초음파 센서인 것이 바람직하다. 이에 의해 초음파를 이용하여 상판의 상면에만 접촉하고, 또한 정밀도 좋게 판 두께를 계측할 수 있기 때문에 갭을 형성하는 재료에 흠집을 내는 것을 보다 확실하게 저감하고, 또한 갭의 계측 정밀도를 향상시킬 수 있다.
본 발명의 갭 계측 장치에 있어서, 상기 판 두께 계측 센서는 상기 재료에 평행한 방향을 따른 축 주변에 회동(回動) 가능하게 지지되어 있고, 상기 재료에 대한 이동에 따라 회전하는 롤러 센서부를 갖는 것이 바람직하다. 이에 의해 롤러 센서부를 재료의 위에서 회전시킴으로써 재료의 위에서 연속적으로 각 센서를 이동시킬 수 있기 때문에 복수의 갭 계측 포인트에서 연속적으로 계측할 수 있다.
본 발명의 판 두께 계측 센서가 롤러 센서부를 갖는 갭 계측 장치에 있어서, 상기 롤러 센서부에 대해 평행하게 설치되고, 상기 롤러 센서부의 축에 평행한 축 주변에 회동 가능하게 지지되어 있고, 상기 재료에 대한 이동에 따라 상기 롤러 센서부와 함께 회전하는 롤러를 추가로 갖는 것이 바람직하다. 이에 의해 재료의 위에서 연속적으로 안정하게 롤러 센서부를 이동시킬 수 있기 때문에 복수의 갭 계측 포인트에서 연속적으로 계측하는 경우에도 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
본 발명의 갭 계측 장치에 있어서, 상기 단차 계측 센서는, 상기 상판의 상방으로부터 상기 상판과 상기 하판이 함께 상기 재료의 상측에 노출하고 있는 개소를 향해 레이저를 조사(照射)하고, 상기 상판의 상면 및 상기 하판의 상면에서 각각 반사한 레이저를 검출하는 레이저 센서인 것이 바람직하다. 이에 의해 레이저를 이용하여 재료에 비접촉으로, 또한 정밀도 좋게 단차를 계측할 수 있기 때문에 갭을 형성하는 재료를 손상하는 것을 보다 확실하게 저감하고, 또한 갭의 계측 정밀도를 향상시킬 수 있다.
본 발명의 갭 계측 장치에 있어서, 상기 판 두께 계측 센서 및 상기 단차 계측 센서를 3차원 방향으로 이동 가능하게 파지하는 구동 장치를 추가로 갖는 것이 바람직하다. 이에 의해 재료의 위를 자동으로 각 센서를 이동시킬 수 있기 때문에 작업원에 의한 불일치를 더욱더 억제하고, 또한 작업원의 부담을 저감할 수 있다.
본 발명의 갭 계측 방법은, 상판과 하판이 두께 방향으로 중첩되어 형성된 재료에 있어서, 상기 상판과 상기 하판 사이의 갭을 계측하는 계측 방법으로서, 판 두께 계측 센서에서 상기 상판의 두께인 판 두께를 계측하는 판 두께 계측 단계와, 단차 계측 센서에서 상기 상판의 상면과 상기 하판의 상면 사이의 거리인 단차를 계측하는 단차 계측 단계와, 상기 단차로부터 상기 판 두께를 공제함으로써 상기 상판과 상기 하판 사이의 갭을 산출하는 갭 산출 단계를 갖는 것을 특징으로 한다.
이 갭 계측 방법은 단차 계측 센서에서 계측하는 단차로부터 판 두께 계측 센서에서 계측하는 판 두께를 공제함으로써 갭을 산출하고 있기 때문에 작업원에 의한 불일치를 억제하고, 갭을 형성하는 재료에 흠집을 내는 것을 저감할 수 있다.
본 발명의 갭 계측 방법에 있어서, 상기 판 두께 계측 센서를 연직 방향으로 지지하는 지지부의 상기 두께 방향에 있어서의 변위인 제1 변위를 계측하는 제1 변위 계측 단계와, 상기 단차 계측 센서의 상기 두께 방향에 있어서의 변위인 제2 변위를 계측하는 제2 변위 계측 단계와, 상기 상판의 상면에 대향하는 상기 단차 계측 센서의 자세각인 제1 자세각을 계측하는 제1 자세각 계측 단계와, 상기 판 두께 계측 센서와 상기 단차 계측 센서와의 각 계측점 사이의 거리, 상기 제1 변위 및 상기 제2 변위에 기초하여, 상기 상판의 상면에 대향하는 상기 판 두께 계측 센서의 자세각의 성분인 제2 자세각을 산출하는 제2 자세각 산출 단계와, 상기 제1 자세각 및 상기 제2 자세각에 기초하여, 상기 자세를 판정하는 자세 판정 단계를 추가로 갖는 것이 바람직하다. 이에 의해 각 센서의 자세가 갭의 계측에 적절한지 여부를 판정할 수 있기 때문에 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
본 발명의 자세 판정 단계를 갖는 갭 계측 방법에 있어서, 상기 자세가 상기 갭의 계측에 부적절하다고 판정된 경우, 상기 자세의 수정값을 산출하는 자세 수정값 산출 단계와, 상기 수정값에 따라 상기 자세를 수정하는 자세 수정 단계를 추가로 갖는 것이 바람직하다. 이에 의해 각 센서의 자세를 갭의 계측에 적절한 자세로 수정할 수 있기 때문에 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
본 발명의 갭 계측 방법에 있어서, 상기 판 두께 계측 단계는 상기 상판의 상방으로부터 상기 상판을 향해 초음파를 발생시켜 상기 상판의 상면 및 하면에서 각각 반사한 초음파를 검출함으로써, 상기 판 두께를 계측하는 것이 바람직하다. 이에 의해 초음파를 이용하여 상판의 상면에만 접촉하고, 또한 정밀도 좋게 판 두께를 계측할 수 있기 때문에 갭을 형성하는 재료에 흠집을 내는 것을 보다 확실하게 저감하고, 또한 갭의 계측 정밀도를 향상시킬 수 있다.
본 발명의 갭 계측 방법에 있어서, 상기 단차 계측 단계는 상기 상판의 상방으로부터 상기 상판과 상기 하판이 함께 상기 재료의 상측에 노출하고 있는 개소를 향해 레이저를 조사하고, 상기 상판의 상면 및 상기 하판의 상면에서 각각 반사한 레이저를 검출함으로써, 상기 단차를 계측하는 것이 바람직하다. 이에 의해 레이저를 이용하여 재료에 비접촉으로, 또한 정밀도 좋게 단차를 계측할 수 있기 때문에 갭을 형성하는 재료를 손상하는 것을 보다 확실하게 저감하고, 또한 갭의 계측 정밀도를 향상시킬 수 있다.
본 발명의 갭 계측 방법에 있어서, 상기 갭을 계측하는 개소를 상기 재료의 수평 방향을 따라 이동시키는 계측 개소 이동 단계를 추가로 갖는 것이 바람직하다. 이에 의해 재료의 위를 자동으로 각 센서를 이동시킬 수 있기 때문에 작업원에 의한 불일치를 더욱더 억제하고, 또한 작업원의 부담을 저감할 수 있다.
본 발명의 갭 계측 방법에 있어서, 상기 갭을 계측할 때, 상기 재료에 상기 재료의 두께 방향을 따라 압력을 가하는 압력 부가 단계와, 상기 압력을 계측하는 압력 계측 단계를 추가로 갖는 것이 바람직하다. 이에 의해 재료를 구성하는 상판과 하판이 접합하고 있지 않더라도 상판과 하판 사이에 형성되는 갭을 계측할 수 있기 때문에 재료의 제조 전에 사전에 형성되는 갭을 계측할 수 있다. 또한, 재료를 구성하는 상판과 하판이 접합하고 있지 않은 경우에 상판과 하판 사이에 형성되는 갭을 계측할 때, 갭의 계측 조건의 하나인 압력을 계측할 수 있다.
본 발명에 의하면, 판이 두께 방향으로 중첩되어 형성된 재료의 갭을 계측하는 경우에, 작업원에 의한 불일치를 억제하고, 갭을 형성하는 재료에 흠집을 내는 것을 저감하는 갭 계측 장치 및 갭 계측 방법을 얻을 수 있다.
도 1은 본 발명의 제1 실시형태에 관한 갭 계측 장치의 개략을 나타내는 도면이다.
도 2는 본 발명의 제1 실시형태에 관한 갭 계측 장치의 구성을 나타내는 측면도의 일례이다.
도 3은 본 발명의 제1 실시형태에 관한 갭 계측 장치의 구성을 나타내는 측면도의 일례이다.
도 4는 본 발명의 제1 실시형태에 관한 갭 계측 장치의 데이터 플로(data flow)이다.
도 5는 초음파 검사부 및 상판의 위치 관계와 초음파의 경로와의 상관관계를 설명하는 도면이다.
도 6은 초음파 검사부 및 상판의 위치 관계와 초음파의 경로와의 상관관계를 설명하는 도면이다.
도 7은 본 발명의 제1 실시형태에 관한 갭 계측 방법의 플로 차트이다.
도 8은 본 발명의 제1 실시형태에 관한 갭 계측 방법에 있어서의 자세 판정에 관한 플로 차트이다.
도 9는 본 발명의 제2 실시형태에 관한 갭 계측 장치의 구성을 나타내는 도면이다.
도 10은 본 발명의 제3 실시형태에 관한 갭 계측 장치의 구성을 나타내는 도면이다.
이하에, 본 발명의 실시형태에 관한 갭 계측 장치 및 갭 계측 방법을 도면에 기초하여 상세히 설명한다. 또한, 이하의 실시형태의 설명은 본 발명을 한정하는 것은 아니며, 적절히 변경하여 실시 가능하다.
도 1은 본 발명의 제1 실시형태에 관한 갭 계측 장치(20)의 개략을 나타내는 도면이다. 도 2는 본 발명의 제1 실시형태에 관한 갭 계측 장치(20)의 구성을 나타내는 측면도의 일례이다. 도 2는 후술하는 XZ 면에 직교하는 방향에서 본 측면도이다. 도 3은 본 발명의 제1 실시형태에 관한 갭 계측 장치(20)의 구성을 나타내는 측면도의 일례이다. 도 3은 후술하는 YZ 면에 직교하는 방향에서 본 측면도이다. 도 4는 본 발명의 제1 실시형태에 관한 갭 계측 장치(20)의 데이터 플로이다. 도 4는 후술하는 제3 실시형태에 관한 갭 계측 장치(50)의 데이터 플로도 아울러 나타내고 있다. 이하, 도 1부터 도 4를 이용하여 갭 계측 장치(20)에 대해 설명한다.
갭 계측 장치(20)는, 도 1에 나타내는 바와 같이, 상판(12)과 하판(14)이 두께 방향인 Z 축 방향으로 중첩되어 형성된 재료(10)에 있어서, 상판(12)과 하판(14) 사이의 갭(G)(도 2 참조)을 계측하는 계측 장치로서 이용된다. 갭(G)은 구체적으로는, 도 2에 나타내는 바와 같이, 상판(12)의 하면(12b)과 하판(14)의 상면(14a) 사이의 거리이다. 갭 계측 장치(20)는 작업원이 수동으로 사용하는 것도 가능하지만, 도 1에 나타내는 바와 같이, 로봇 아암(robot arm)(16)에 의해 3차원 방향, 즉 Z 축 방향에 직교하고 상판(12)의 단면이 연재하는 X 축 방향과, X 축 방향 및 Z 축 방향에 직교하는 Y 축 방향과, Z 축 방향으로 이동 가능하게 파지되어 사용되는 것이 바람직하다. 본 실시형태에서는 로봇 아암(16)을 이용하여 갭 계측 장치(20)를 파지하고 있지만, 본 발명은 이에 한정되지 않고, 3차원 방향으로 이동 가능하게 파지하는 주지(周知)의 구동 장치를 이용하여 갭 계측 장치(20)를 파지할 수 있다. 로봇 아암(16)은 로봇 제어부(18)에 의해 제어되고 있고, 파지하고 있는 갭 계측 장치(20)를 자동으로 3차원 방향으로 이동시킬 수 있다. 갭 계측 장치(20)는 로봇 아암(16)에 예시되는 구동 장치로 파지됨으로써 재료(10)의 위를 자동으로, 갭 계측 장치(20)에 포함되는 각 센서를 자동으로 이동시킬 수 있는, 즉 초음파 센서(22)에 의한 계측 개소 및 레이저 센서(26)에 의한 계측 개소를 자동으로 이동시킬 수 있다. 그 때문에 갭 계측 장치(20)는 갭의 계측 개소를 자동으로 이동시킬 수 있다. 또한, 초음파 센서(22)에 의한 계측 개소와 레이저 센서(26)에 의한 계측 개소는 모두 로봇 제어부(18)와 통신 가능하게 접속되어 있는 컴퓨터(30)로 처리할 수 있다. 또한, 초음파 센서(22)에 의한 계측 개소와 레이저 센서(26)에 의한 계측 개소 사이의 좌표의 차이는 컴퓨터(30)로 보정할 수 있다. 이에 의해 갭 계측 장치(20)는 작업원에 의한 갭(G)의 계측의 불일치를 억제하고, 또한 작업원의 갭(G)의 계측 작업의 부담을 저감할 수 있다.
재료(10)는 구체적으로는 상판(12) 및 하판(14)이 함께 알루미늄 합금판으로 형성된 항공기 외판의 랩부 등의 항공 재료가 바람직한 것으로서 예시된다. 상판(12) 및 하판(14)은 이 항공 재료로 이용되는 알루미늄 합금판으로 예시되도록 중실(中實)이고, 또한 단일 재료로 만들어진 판재인 것이 바람직하다. 상판(12) 및 하판(14)은 각 판의 두께에 대해 무시할 수 있는 두께의 도장(塗裝)이 되어 있어도 좋다. 이 재료(10)는, 상판(12) 및 하판(14)이 이 항공 재료로 이용되는 리벳으로 예시되는 접합 부재로 접합된 후라도, 접합 재료로 접합되기 전이라도 좋다. 즉, 갭 계측 장치(20)는 상판(12) 및 하판(14)의 접합 전에 갭(G)을 계측하는 것도 가능하고, 상판(12) 및 하판(14)의 접합 후에 갭(G)을 계측하는 것도 가능하다. 갭 계측 장치(20)는 상판(12) 및 하판(14)의 접합 전에 갭(G)을 계측하는 경우, 상판(12)의 상면(12a)에 대해 상측으로부터 압력을 가하면서 갭(G)을 계측하는 것이 바람직하다. 압력은 본 실시형태에서는 30 ㎪가 예시된다. 압력은 초음파 센서(22)의 롤러 센서부(22a)를 재료(10)의 상방으로부터 상판(12)의 상면(12a)에 가압함으로써 가해도 좋고, 갭 계측 장치(20)의 부근에 구비한 압력 장치 등을 이용하여 가해도 좋다. 이 경우, 재료(10)의 접합 전에, 사전에 형성되는 갭(G)을 계측할 수 있다.
갭 계측 장치(20)는, 도 2 및 도 3에 나타내는 바와 같이, 판 두께 계측 센서로서 기능하는 초음파 센서(22)와, 초음파 센서(22)를 지지하는 지지부의 연직 방향, 즉 Z 축 방향에 있어서의 변위인 제1 변위를 계측하는 변위 센서(24)와, 단차 계측 센서로서 기능하는 레이저 센서(26)와, 컴퓨터(30)를 갖는다. 컴퓨터(30)는 초음파 센서(22), 변위 센서(24) 및 레이저 센서(26)와 통신 가능하게 접속되어 있고, 각 센서의 계측을 제어 및 보조한다. 또한, 컴퓨터(30)는 계측하여 얻어진 정보에 소정의 산출 조작을 가하여 새로운 수치 정보를 취득하는 산출부(32)와, 상판(12)의 상면(12a)에 대향하는 초음파 센서(22)의 자세를 판정하는 자세 판정부(34)를 갖는다.
초음파 센서(22)는, 롤러 센서부(22a)와, 측면 부재(22b)와, 축 지지 부재(22c)와, 연직 지지 부재(22d)를 갖는다. 롤러 센서부(22a)는 롤러 형상이며, 재료(10)에 평행한 방향을 따른 축, 보다 구체적으로는 Y 축 방향을 따르는 방향을 향한 축 주변에 회동 가능하게 지지되어 있다. 롤러 센서부(22a)는 내부에 원주 방향으로 초음파를 발생시켜 사출하고, 원주 방향으로부터 입사한 초음파를 검출하는 초음파 검사부(22s)(도 5 및 도 6참조)를 갖는다. 측면 부재(22b)는 롤러 센서부(22a)의 양 측면에 설치된 부재이다. 측면 부재(22b)는 롤러 센서부(22a)의 측면에 대향하는 측면이 평면상이며, 롤러 센서부(22a)가 대향하는 측과는 반대 측의 측면이 중앙 영역에 롤러 센서부(22a)의 축 방향을 따른 원주상 축 돌기부를 갖는다. 축 지지 부재(22c)는 측면 부재(22b)의 롤러 센서부(22a)의 측면에 대향하지 않는 측면을 コ 자상으로 협지하도록 설치된 부재이다. 축 지지 부재(22c)는 측면 부재(22b)의 돌기부의 위치에 대응하는 개소에, 돌기부가 삽입되는 삽입 구멍을 갖는다. 축 지지 부재(22c)는 롤러 센서부(22a) 및 그 양 측면에 설치된 측면 부재(22b)를 축 주변에 회동 가능하게 지지한다. 연직 지지 부재(22d)는 Z 축 방향으로 연재하는 봉상 부재이며, 축 지지 부재(22c)의 롤러 센서부(22a) 및 측면 부재(22b)를 넘어서는 개소, 즉 コ 자상 중앙 개소에 고정되어 있다. 연직 지지 부재(22d)는 축 지지 부재(22c)를 Z 축 방향 상측으로부터 지지한다. 초음파 센서(22)는 이상과 같은 구성을 갖고 있으며, Z 축 방향 상측으로부터 레이저 센서(26)와 공통인 지지 기구로 지지되어 있다. 초음파 센서(22)는, 롤러 센서부(22a) 및 측면 부재(22b)가 롤러의 가동부로서, 축 지지 부재(22c) 및 연직 지지 부재(22d)가 롤러의 고정부로서 기능한다. 초음파 센서(22)는, 롤러 센서부(22a)가 갭 계측 장치(20)의 재료(10)에 대한 X 축 방향을 따른 이동에 따라 회전한다. 즉, 초음파 센서(22)는 Z 축 방향 상측으로부터 지지되면서, 롤러 센서부(22a)가 상판(12)의 상면(12a)을 X 축 방향을 따라 회전 이동한다.
초음파 센서(22)는, 롤러 센서부(22a)의 내부의 초음파 검사부(22s)가 상판(12)의 상방에 있는 초음파 사출구(22o)로부터 상판(12)의 상면(12a)을 향해 초음파(US)를 발생시켜 사출한다. 초음파 센서(22)는, 롤러 센서부(22a)의 내부의 초음파 검사부(22s)가 상판(12)의 상면(12a) 및 하면(12b)에서 각각 반사한 초음파(US)를 검출한다. 이 초음파(US)를 발생시켜 사출하고, 반사한 초음파(US)를 검출하는 개소를 초음파 센서(22)에 의한 계측 개소라고 부른다. 이에 의해 초음파 센서(22)는 발생시킨 초음파(US) 및 검출한 초음파(US)의 정보를 취득한다. 초음파 센서(22)가 발생시킨 초음파(US) 및 검출한 초음파(US)의 정보는 상판(12)의 두께인 판 두께(T)의 계측에 이용된다. 즉, 초음파 센서(22)는 판 두께(T)를 계측한다. 판 두께 계측 센서는, 본 실시형태에서는 초음파 센서(22)이지만, 이에 한정되는 것은 아니며, 상판(12)을 부분적으로 투과하고, 상판(12)의 상면(12a) 및 하면(12b)에서 반사하는 매체를 이용하는 주지의 계측 센서를 이용할 수 있다.
변위 센서(24)는 초음파 센서(22)와 마찬가지로 Z 축 방향 상측으로부터 지지되어 있다. 변위 센서(24)는, 선단부가 축 지지 부재(22c)의 상면에 접하도록 고정되어 있다. 변위 센서(24)는, 본 실시형태에서는 댐퍼(damper)가 이용되고 있지만, 이에 한정되지 않고, 주지의 변위 센서를 이용할 수 있다. 변위 센서(24)는 축 지지 부재(22c) 및 연직 지지 부재(22d)의 Z 축 방향에 있어서의 변위인 제1 변위(ΔZ1)를 계측한다. 제1 변위(ΔZ1)의 정보는 상판(12)의 상면(12a)에 대향하는 초음파 센서(22)의 입체각인 자세각의 정보를 포함한다. 즉, 제1 변위(ΔZ1)의 정보는 자세각의 제1 성분인 제1 자세각(θ)과, 자세각의 제2 성분인 제2 자세각(φ)이 혼합한 정보를 포함한다. 제1 자세각(θ)은, 도 3에 나타내는 바와 같이, 상판(12)의 상면(12a)에 대향하는 레이저 센서(26)의 X 축 주변의 회전 방향의 각도이며, 초음파 센서(22)와 레이저 센서(26)의 지지의 방법 등으로부터 상판(12)의 상면(12a)에 대향하는 초음파 센서(22)의 X 축 주변의 회전 방향의 각도와 공통한다. 제2 자세각(φ)은, 도 2에 나타내는 바와 같이, 상판(12)의 상면(12a)에 대향하는 초음파 센서(22)의 Y 축 주변의 회전 방향의 각도이다.
또한, 제1 변위(ΔZ1)의 정보는, 갭 계측 장치(20)가 초음파 센서(22)의 롤러 센서부(22a)에서 상판(12)의 상면(12a)에 대해 상측으로부터 걸려 있는 압력의 정보를 포함한다. 즉, 변위 센서(24)는 갭(G)을 계측할 때, 갭(G)의 계측의 조건의 하나인 압력을 계측할 수 있다.
레이저 센서(26)는 Z 축 방향의 상방에 있어서 초음파 센서(22)와 공통인 지지 기구로 지지되어 있다. 레이저 센서(26)는 상판(12)의 상방에 있는 레이저 조사구(照射口)(26o)로부터 상판(12)의 단면 부근, 즉 상판(12)의 상면(12a)과 하판(14)의 상면(14a)이 함께 재료(10)의 상측에 노출하고 있는 개소에 레이저 빔(LB)을 조사한다. 레이저 센서(26)는 상판(12)의 상면(12a) 및 하판(14)의 상면(14a)에서 각각 반사한 레이저 빔(LB)을 검출한다. 이에 의해 레이저 센서(26)는 조사한 레이저 빔(LB) 및 검출한 레이저 빔(LB)의 정보를 취득한다. 이 레이저 빔(LB)을 조사하고, 반사한 레이저 빔(LB)을 검출하는 개소를 레이저 센서(26)에 의한 계측 개소라고 부른다. 레이저 센서(26)가 조사한 레이저 빔(LB) 및 검출한 레이저 빔(LB)의 정보는 레이저 빔(LB)에 의해 계측된 상판(12)의 상면(12a)의 정보와 하판(14)의 상면(14a)의 정보를 포함한다. 그 때문에 레이저 센서(26)가 조사한 레이저 빔(LB) 및 검출한 레이저 빔(LB)의 정보는 상판(12)의 상면(12a)과 하판(14)의 상면(14a) 사이의 거리인 단차(D)의 계측에 이용된다. 즉, 레이저 센서(26)는 단차(D)를 계측한다.
레이저 센서(26)가 조사한 레이저 빔(LB) 및 검출한 레이저 빔(LB)의 정보는 레이저 조사구(26o)와 상판(12)의 상면(12a) 사이의 거리의 계측에 이용됨으로써 레이저 센서(26)의 Z 축 방향에 있어서의 변위인 제2 변위(ΔZ2)의 계측에 이용된다. 즉, 레이저 센서(26)는 제2 변위(ΔZ2)를 계측한다. 제2 변위(ΔZ2)의 정보는 제1 자세각(θ)의 정보를 포함한다. 즉, 레이저 센서(26)는 제1 자세각(θ)을 계측한다. 단차 계측 센서는, 본 실시형태에서는 레이저 센서(26)이지만, 이에 한정되는 것은 아니며, 상판(12)의 상면(12a) 및 하판(14)의 상면(14a)에서 반사하는 매체를 이용하는 주지의 계측 센서를 이용할 수 있다.
산출부(32)는, 도 4에 나타내는 바와 같이, 초음파 센서(22)로부터 판 두께(T)의 정보를 취득하고, 레이저 센서(26)로부터 단차(D)의 정보를 취득한다. 산출부(32)는, 식 1에 나타내는 바와 같이, 단차(D)로부터 판 두께(T)를 공제함으로써 갭(G)을 산출한다. 산출부(32)는 산출한 갭(G)의 값을 컴퓨터(30)에 접속된 표시부에 표시시키거나, 컴퓨터(30)의 내부 또는 외부에 접속된 기억부에 기억시킴으로써 산출한 갭(G)의 값을 기록하거나 할 수 있다.
갭(G)=단차(D)-판 두께(T) 식 1
산출부(32)는 변위 센서(24)로부터 제1 변위(ΔZ1)의 정보를 취득하고, 레이저 센서(26)로부터 제2 변위(ΔZ2)의 정보를 취득한다. 또한, 산출부(32)는 컴퓨터(30)에 접속된 기억부로부터 기억 데이터의 하나인 초음파 센서(22)와 레이저 센서(26)와의 각 계측점의 거리(L)의 정보를 취득한다. 산출부(32)는, 식 2에 나타내는 바와 같이, 거리(L), 제1 변위(ΔZ1) 및 제2 변위(ΔZ2)에 기초하여, 제2 자세각(φ)을 산출한다. 산출부(32)는 제2 자세각(φ)의 정보를 자세 판정부(34)에 출력한다.
제2 자세각(φ)=sin-1((제1 변위(ΔZ1)-제2 변위(ΔZ2))/거리(L)) 식 2
도 5는 초음파 검사부(22s) 및 상판(12)의 위치 관계와 초음파(US)의 경로와의 상관관계를 설명하는 도면이다. 도 6은 초음파 검사부(22s) 및 상판(12)의 위치 관계와 초음파(US)의 경로와의 상관관계를 설명하는 도면이다. 도 5 및 도 6을 이용하여 갭 계측 장치(20)의 자세, 즉 갭(G)의 계측에 적절한 갭 계측 장치(20)의 자세에 대해 설명한다. 갭 계측 장치(20)는, 도 5에 나타내는 바와 같이, 초음파 센서(22)가 상판(12)의 상면(12a)에 대해 Z 축 방향을 따른 방향을 향하고 있는 경우, 초음파 검사부(22s)가 상판(12)의 상면(12a)에 대해 Z 축 방향을 따른 방향으로 사출파(射出波)(US1)를 사출하고, 사출파(US1)가 상판(12)의 하면(12b)에서 반사되어 Z 축 방향을 따른 방향으로 진행하는 반사파(US2)로 되고, 반사파(US2)가 초음파 검사부(22s)에 검출되어 적절히 판 두께(T)를 계측할 수 있기 때문에 갭(G)의 계측에 적절한 자세이다. 한편, 갭 계측 장치(20)는, 도 6에 나타내는 바와 같이, 초음파 센서(22)가 상판(12)의 상면(12a)에 대해 Z 축 방향을 따른 방향으로부터 기울어 향하고 있는 경우, 초음파 검사부(22s)가 상판(12)의 상면(12a)에 대해 Z 축 방향을 따른 방향으로부터 기울어진 방향으로 사출파(US3)를 사출하고, 사출파(US3)가 상판(12)의 하면(12b)에서 반사되어 Z 축 방향을 따른 방향으로부터 기울어진 방향으로 진행하는 반사파(US4)로 되고, 반사파(US4)가 초음파 검사부(22s)에 검출되지 않아 적절하게 판 두께(T)를 계측할 수 없기 때문에 갭(G)의 계측에 부적절한 자세이다. 즉, 갭 계측 장치(20)는 갭(G)을 계측할 때, 초음파 센서(22)가 상판(12)의 상면(12a)에 대해 Z 축 방향을 따른 방향으로부터 기울지 않은 자세로 함으로써 정확한 갭의 거리를 계측할 수 있다.
자세 판정부(34)는 갭 계측 장치(20)의 자세를 판정한다. 즉, 갭 계측 장치(20)의 자세가 갭(G)의 계측에 적절한 자세인지 여부를 판정한다. 자세 판정부(34)는, 도 4에 나타내는 바와 같이, 산출부(32)로부터 제2 자세각(φ)의 정보를 취득한다. 자세 판정부(34)는 레이저 센서(26)로부터 제1 자세각(θ)의 정보를 취득한다. 자세 판정부(34)는 제1 자세각(θ) 및 제2 자세각(φ)에 기초하여 갭 계측 장치(20)의 자세를 판정한다. 구체적으로는, 자세 판정부(34)는 먼저, 식 3에 나타내는 바와 같이, 제1 자세각(θ)이 역치(
Figure pct00001
)로 규정되는 범위 내, 예를 들어 -0.5° 이상 0.5° 이하의 범위 내에 있는지 여부를 판정한다. 자세 판정부(34)는 그 다음에, 식 4에 나타내는 바와 같이, 제2 자세각(φ)이 역치로 규정되는 범위 내, 예를 들어 -0.5° 이상 0.5° 이하의 범위 내에 있는지 여부를 판정한다. 그리고 자세 판정부(34)는, 제1 자세각(θ) 및 제2 자세각(φ)이 모두 소정의 범위 내에 들어 있다고 판정한 경우, 적절, 즉 갭 계측 장치(20)가 갭(G)의 계측에 적절한 자세라고 판정하고, 제1 자세각(θ) 및 제2 자세각(φ)의 적어도 어느 한쪽이 소정의 범위 내에 들어 있지 않다고 판정한 경우, 부적절, 즉 갭 계측 장치(20)가 갭(G)의 계측에 부적절한 자세라고 판정한다. 자세 판정부(34)는 자세의 판정 결과를 산출부(32)에 출력한다.
-0.5°
Figure pct00002
제1 자세각(θ)
Figure pct00003
0.5° 식 3
-0.5°
Figure pct00004
제2 자세각(φ)
Figure pct00005
0.5° 식 4
산출부(32)는 자세 판정부(34)로부터 자세의 판정 결과를 취득한다. 산출부(32)는 갭(G)의 값을 표시 또는 기억시키는 경우, 자세 판정부(34)에 의한 자세의 판정 결과를 합하여 표시 또는 기억시킬 수 있다. 또한, 이 대신에, 산출부(32)는 자세의 판정 결과가 적절인 경우에만 갭(G)의 값을 표시 또는 기억시키고, 자세의 판정 결과가 부적절인 경우에는 갭(G)의 값을 표시 또는 기억시키지 않고, 갭 계측 장치(20)의 자세를 수정하고 나서 갭(G)을 재계측시킬 수도 있다.
이상과 같은 구성을 갖는 제1 실시형태에 관한 갭 계측 장치(20)의 작용에 대해 이하에 설명한다. 갭 계측 장치(20)는 본 발명의 제1 실시형태에 관한 갭 계측 방법을 실행한다. 도 7은 본 발명의 제1 실시형태에 관한 갭 계측 방법의 플로 차트이다. 도 8은 본 발명의 제1 실시형태에 관한 갭 계측 방법에 있어서의 자세 판정에 관한 플로 차트이다. 갭 계측 장치(20)에 의해 실행되는 갭 계측 방법에 대하여 도 7 및 도 8을 이용하여 설명한다.
본 발명의 제1 실시형태에 관한 갭 계측 방법은, 도 7에 나타내는 바와 같이, 판 두께 계측 단계(S12)와, 단차 계측 단계(S14)와, 갭 산출 단계(S16)를 갖는다. 먼저, 갭 계측 장치(20)는, 초음파 센서(22)의 롤러 센서부(22a)가 상판(12)의 단면 부근에 있어서의 상판(12)의 상면(12a) 위에, 단면이 연재하는 X 축 방향을 따라 이동 가능하게 배치된다. 이에 따라, 갭 계측 장치(20)는, 레이저 센서(26)의 레이저 조사구(26o)가 상판(12)의 상면(12a)의 단면 부근의 상방에 배치된다.
초음파 센서(22)는, 초음파 검사부(22s)가 초음파 사출구(22o)로부터 상판(12)을 향해 초음파(US)를 발생시킨다. 초음파 센서(22)는, 초음파 검사부(22s)가 상판(12)의 상면(12a) 및 하면(12b)에서 각각 반사한 초음파(US)를 검출한다. 초음파 센서(22)는 발생시킨 초음파(US) 및 검출한 초음파(US)의 정보에 기초하여 판 두께(T)를 계측한다(단계(S12)).
레이저 센서(26)는 레이저 조사구(26o)로부터 상판(12) 및 하판(14)을 향해 레이저 빔(LB)을 조사한다. 레이저 센서(26)는 상판(12)의 상면(12a) 및 하판(14)의 상면(14a)에서 각각 반사한 레이저 빔(LB)을 검출한다. 레이저 센서(26)는 조사한 레이저 빔(LB) 및 검출한 레이저 빔(LB)의 정보에 기초하여 단차(D)를 계측한다(단계(S14)).
또한, 판 두께 계측 단계(S12)와 단차 계측 단계(S14)는 이 순번으로 행해져도 좋고, 동시에 행해져도 좋고, 반대의 순번으로 행해져도 좋다.
판 두께 계측 단계(S12)와 단차 계측 단계(S14)가 행해진 후, 산출부(32)는 초음파 센서(22)로부터 판 두께(T)의 정보를 취득하고, 레이저 센서(26)로부터 단차(D)의 정보를 취득한다. 산출부(32)는 단차(D)로부터 판 두께(T)를 공제함으로써 갭(G)을 산출한다(단계(S16)). 산출부(32)는 산출한 갭(G)의 값을 컴퓨터(30)에 접속된 표시부에 표시시키거나, 컴퓨터(30)의 내부 또는 외부에 접속된 기억부에 기억시키거나 할 수 있다.
제1 실시형태에 관한 갭 계측 장치(20)에 의한 갭 계측 방법은 이상과 같은 단계(S12)부터 단계(S16)를 갖는다. 즉, 제1 실시형태에 관한 갭 계측 장치(20)에 의한 갭 계측 방법은 단차 계측 센서에서 계측하는 단차(D)로부터 판 두께 계측 센서에서 계측하는 판 두께(T)를 공제함으로써 갭(G)을 산출하고 있기 때문에 작업원에 의한 불일치를 억제하고, 갭을 형성하는 재료에 흠집을 내는 것을 저감할 수 있다.
본 발명의 제1 실시형태에 관한 갭 계측 방법은, 도 8에 나타내는 바와 같이, 추가로 제1 변위 계측 단계(S22)와, 제2 변위 계측 단계(S24)와, 제1 자세각 계측 단계(S26)와, 제2 자세각 산출 단계(S28)와, 자세 판정 단계(S30)를 갖는 것이 바람직하다.
변위 센서(24)는 축 지지 부재(22c) 및 연직 지지 부재(22d)의, Z 축 방향에 있어서의 변위인 제1 변위(ΔZ1)를 계측한다(단계(S22)). 레이저 센서(26)는 조사한 레이저 빔(LB) 및 검출한 레이저 빔(LB)의 정보에 기초하여 제2 변위(ΔZ2)를 계측한다(단계(S24)).
또한, 제1 변위 계측 단계(S22)와 제2 변위 계측 단계(S24)는 이 순번으로 행해져도 좋고, 동시에 행해져도 좋고, 반대의 순번으로 행해져도 좋다.
레이저 센서(26)는 또한 제2 변위(ΔZ2)의 정보에 기초하여 제1 자세각(θ)을 계측한다(단계(S26)).
제1 변위 계측 단계(S22)와 제2 변위 계측 단계(S24)가 행해진 후, 산출부(32)는 변위 센서(24)로부터 제1 변위(ΔZ1)의 정보를 취득하고, 레이저 센서(26)로부터 제2 변위(ΔZ2)의 정보를 취득한다. 또한, 산출부(32)는 컴퓨터(30)에 접속된 기억부로부터 초음파 센서(22)와 레이저 센서(26)와의 각 계측점의 거리(L)의 정보를 취득한다. 산출부(32)는 거리(L), 제1 변위(ΔZ1) 및 제2 변위(ΔZ2)에 기초하여 제2 자세각(φ)을 산출한다(단계(S28)). 산출부(32)는 제1 자세각(θ)의 정보와 제2 자세각(φ)의 정보를 자세 판정부(34)에 출력한다.
또한, 제1 자세각 계측 단계(S26)와 제2 자세각 산출 단계(S28)는 이 순번으로 행해져도 좋고, 동시에 행해져도 좋고, 반대의 순번으로 행해져도 좋다.
자세 판정부(34)는 산출부(32)로부터 제2 자세각(φ)의 정보를 취득한다. 자세 판정부(34)는 레이저 센서(26)로부터 제1 자세각(θ)의 정보를 취득한다. 자세 판정부(34)는 제1 자세각(θ) 및 제2 자세각(φ)에 기초하여 갭 계측 장치(20)의 자세를 판정한다. 구체적으로는, 자세 판정부(34)는, 제1 자세각(θ)이 역치로 규정되는 범위 내, 예를 들어 -0.5° 이상 0.5° 이하의 범위 내에 있는지 여부를 판정한다. 자세 판정부(34)는, 제2 자세각(φ)이 역치로 규정되는 범위 내, 예를 들어 -0.5° 이상 0.5° 이하의 범위 내에 있는지 여부를 판정한다. 그리고 자세 판정부(34)는, 제1 자세각(θ) 및 제2 자세각(φ)이 모두 소정의 범위 내에 들어 있다고 판정한 경우, 적절, 즉 갭 계측 장치(20)가 갭(G)의 계측에 적절한 자세라고 판정하고, 제1 자세각(θ) 및 제2 자세각(φ)의 적어도 어느 것도 소정의 범위 내에 들어 있지 않다고 판정한 경우, 부적절, 즉 갭 계측 장치(20)가 갭(G)의 계측에 부적절한 자세라고 판정한다(단계(S30)). 자세 판정부(34)는 자세의 판정 결과를 산출부(32)에 출력한다.
산출부(32)는 자세 판정부(34)로부터 자세의 판정 결과를 취득한다. 산출부(32)는 갭(G)의 값을 표시 또는 기억시키는 경우, 자세 판정부(34)에 의한 자세의 판정 결과를 합쳐서 표시 또는 기억시킬 수 있다. 또한, 이 대신에, 산출부(32)는, 자세의 판정 결과가 적절인 경우에만 갭(G)의 값을 표시 또는 기억시키고, 자세의 판정 결과가 부적절인 경우에는 갭(G)의 값을 표시 또는 기억시키지 않고, 갭 계측 장치(20)의 자세를 수정하고 나서 갭(G)을 재계측시킬 수도 있다.
제1 실시형태에 관한 갭 계측 장치(20)에 의한 갭 계측 방법은 이상과 같은 단계(S22)부터 단계(S30)를 추가로 갖는다. 즉, 제1 실시형태에 관한 갭 계측 장치(20)에 의한 갭 계측 방법은 갭 계측 장치(20)의 각 센서의 자세가 갭의 계측에 적절한지 여부를 판정할 수 있기 때문에 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
본 발명의 제1 실시형태에 관한 갭 계측 방법은 추가로 로봇 아암(16) 등의 구동 장치를 이용하여, 초음파 센서(22)에 의한 계측 개소 및 레이저 센서(26)에 의한 계측 개소를 이동시킴으로써 갭(G)을 계측하는 개소를 재료(10)의 수평 방향을 따른 방향인 XY 면 방향으로, 보다 구체적으로는 X 축 방향을 따른 방향으로 이동시키는 계측 개소 이동 단계를 갖는 것이 바람직하다. 이에 의해 본 발명의 제1 실시형태에 관한 갭 계측 방법은 작업원에 의한 갭(G)의 계측의 불일치를 억제하고, 또한 작업원의 갭(G)의 계측 작업의 부담을 저감할 수 있다.
본 발명의 제1 실시형태에 관한 갭 계측 방법은 추가로 재료(10)의 두께 방향을 따른 방향, 즉 Z 축 방향을 따른 방향으로 압력을 가하는 압력 부가 단계를 갖는 것이 바람직하다. 압력은 초음파 센서(22)의 롤러 센서부(22a)를 재료(10)의 상방으로부터 상판(12)의 상면(12a)에 가압함으로써 가해도 좋고, 갭 계측 장치(20)의 부근에 구비된 압력 장치 등을 이용하여 가해도 좋다. 이에 의해 상판(12) 및 하판(14)의 접합 전에 갭(G)을 계측할 수 있다. 또한, 본 발명의 제1 실시형태에 관한 갭 계측 방법은 추가로 이 압력을 계측하는 압력 계측 단계를 갖는 것이 바람직하다. 압력은 변위 센서(24)로 계측할 수 있다. 이에 의해 상판(12)과 하판(14) 사이에 형성되는 갭(G)을 계측할 때, 갭(G)의 계측의 조건의 하나인 압력을 계측할 수 있다.
도 9는 본 발명의 제2 실시형태에 관한 갭 계측 장치(40)의 구성을 나타내는 도면이다. 제2 실시형태에 관한 갭 계측 장치(40)는, 제1 실시형태에 관한 갭 계측 장치(20)에 있어서, 롤러 유닛(42)이 추가로 설치된 것이다. 제2 실시형태에 관한 갭 계측 장치(40)는 이에 따라, 제1 실시형태에 관한 갭 계측 장치(20)에 있어서, 축 지지 부재(22c)와 연직 지지 부재(22d) 사이에 대차 부재(台車部材)(44), 축 지지 부재(46), 베어링(48a) 및 축 부재(48b)가 새롭게 설치되어 있다. 또한, 제2 실시형태에 관한 갭 계측 장치(40)는 이에 따라, 제1 실시형태에 관한 갭 계측 장치(20)에 있어서, 변위 센서(24)의 선단부가 고정되는 위치가 축 지지 부재(22c)의 상면에 접하는 개소로부터 대차 부재(44)의 상면에 접하는 개소로 변경되어 있다. 제2 실시형태에 관한 갭 계측 장치(40)는 제1 실시형태와 같은 구성에 제1 실시형태와 동일한 부호군을 이용하고, 그 상세한 설명을 생략한다.
롤러 유닛(42)은 초음파 센서(22)에 있어서 초음파를 발생 및 검출하는 초음파 검사부(22s)를 제거한 것과 거의 같은 구성을 갖는다. 즉, 롤러 유닛(42)은, 롤러(42a)와, 측면 부재(42b)와, 축 지지 부재(42c)를 갖는다. 초음파 센서(22)에 포함되는 연직 지지 부재(22d)는 초음파 센서(22)와 롤러 유닛(42)에서 공통의 구성으로 되어 있다.
롤러(42a)는 롤러 센서부(22a)와 마찬가지로 롤러 형상이며, 롤러 센서부(22a)의 축에 평행한 방향을 따른 축 주변에, 보다 구체적으로는 Y 축 방향을 따르는 방향으로 향해진 축 주변에 회동 가능하게 지지되어 있다. 측면 부재(42b)는 초음파 센서(22)에 있어서의 측면 부재(22b)와 마찬가지로 롤러(42a)의 양 측면에 설치된 부재이다. 즉, 측면 부재(42b)는, 롤러(42a)의 측면에 대향하는 측면이 평면상이며, 롤러(42a)가 대향하는 측과는 반대 측의 측면이, 중앙 영역에 롤러(42a)의 축 방향을 따른 원주상 축 돌기부를 갖는다. 축 지지 부재(42c)는 초음파 센서(22)에 있어서의 축 지지 부재(22c)와 마찬가지로 측면 부재(42b)의 롤러(42a)의 측면에 대향하지 않는 측면을 コ 자상으로 협지하도록 설치된 부재이다. 즉, 축 지지 부재(42c)는 측면 부재(42b)의 돌기부의 위치에 대응하는 개소에, 돌기부가 삽입되는 삽입 구멍을 갖는다. 축 지지 부재(42c)는 롤러(42a) 및 그 양 측면에 설치된 측면 부재(42b)를 축 주변에 회동 가능하게 지지한다. 롤러 유닛(42)은, 롤러(42a) 및 측면 부재(42b)가 롤러의 가동부로서, 축 지지 부재(42c)가 롤러의 고정부로서 기능한다. 롤러 유닛(42)은 초음파 센서(22)와 함께, 롤러(42a)가 갭 계측 장치(40)의 재료(10)에 대한 X 축 방향을 따른 이동에 따라 회전한다. 즉, 롤러 유닛(42)은 초음파 센서(22)와 함께 Z 축 방향 상측으로부터 지지되면서, 롤러(42a)가 상판(12)의 상면(12a)을 X 축 방향을 따라 회전 이동한다.
대차 부재(44)는 XY 면 방향으로 연재하는 판상 부재이며, 하면이 축 지지 부재(22c)의 롤러 센서부(22a) 및 측면 부재(22b)를 넘어서는 개소, 즉 コ 자상 중앙 개소의 면과 축 지지 부재(42c)의 롤러(42a) 및 측면 부재(42b)를 넘어서는 개소, 즉 コ 자상 중앙 개소의 면에 고정되어 있다. 대차 부재(44)는 축 지지 부재(22c) 및 축 지지 부재(42c)를 Z 축 방향 상측으로부터 지지하고, 초음파 센서(22) 및 롤러 유닛(42)에 공통하는 고정부로서 기능한다. 대차 부재(44)는, 초음파 센서(22)의 롤러 센서부(22a) 및 롤러 유닛(42)의 롤러(42a)가 상판(12)의 상면(12a)을 회전 이동하는 것에 수반하여 상판(12)의 상방을 XY 평면을 따른 면 방향으로 이동한다.
롤러 유닛(42)은 상판(12)의 상면(12a) 위에서 갭 계측 장치(40)를 안정화시킬 수 있고, 갭 계측 장치(40)의 각 센서의 상판(12)의 상면(12a)에 대한 기울기를 저감할 수 있다. 즉, 롤러 유닛(42)은, 갭 계측 장치(40)의 자세가 갭(G)의 계측에 적절한 자세를 취하기 쉽게 한다. 도 9에서는, 롤러 유닛(42)은 1개 기재되어 있지만, 2개 이상 있어도 좋다. 갭 계측 장치(40)는 롤러 유닛(42)을 2개 갖고 있고, 또한 2개의 롤러 유닛(42)과 초음파 센서(22)와 삼각형을 형성하는 것이 바람직하며, 이 경우, 초음파 센서(22)와 2개의 롤러 유닛(42)과의 3점으로 지지되기 때문에 보다 안정화된다. 갭 계측 장치(40)는 롤러 유닛(42)을 진행 방향에 직교하는 방향, 즉 Y 축 방향으로 복수 배치함으로써, 갭 계측 장치(40)가 θ 방향으로 기우는 것을 억제할 수 있다.
롤러 유닛(42)은 초음파 센서(22)보다도 레이저 센서(26)로부터 떨어져 있는 것이 바람직하다. 즉, 초음파 센서(22)는 롤러 유닛(42)보다도 레이저 센서(26)에 가까운 것이 바람직하다. 이 경우, 초음파 센서(22)의 계측 개소와 레이저 센서(26)의 계측 개소 사이의 좌표의 차이를 정밀도 좋게 보정할 수 있다.
축 지지 부재(46)는 대차 부재(44)의 상면에 고정되어 있다. 축 지지 부재(46)는 베어링(48a)을 거쳐 축 부재(48b)를 재료(10)에 평행한 방향을 따른 축, 보다 구체적으로는 Y 축 방향을 따르는 방향으로 향해진 축 주변에 회동 가능하게 지지하고 있다. 축 지지 부재(46)는 베어링(48a)을 거쳐 축 부재(48b)를, Z 축 방향을 따르는 방향에 있어서 상방 가까이, 또한 X 축 방향을 따르는 방향에 있어서 중앙의 개소에 지지하고 있다.
축 부재(48b)는 재료(10)에 평행한 방향을 따라 연재하는 봉상 부재, 보다 구체적으로는 Y 축 방향을 따라 연재하는 봉상 부재이다. 축 부재(48b)는 베어링(48a)을 거쳐 축 지지 부재(46)에, 재료(10)에 평행한 방향을 따른 축, 보다 구체적으로는 Y 축 방향을 따르는 방향으로 향해진 축 주변에 회동 가능하게 지지하고 있다. 축 부재(48b)는, 연직 지지 부재(22d)가 고정되어 있다. 축 부재(48b) 주변에서는, 연직 지지 부재(22d) 및 축 부재(48b)가 고정부로서, 축 지지 부재(46) 및 대차 부재(44) 등이 가동 부재로서 각각 기능한다.
변위 센서(24)는, 선단부가 고정되는 위치가 축 지지 부재(22c)의 상면에 접하는 개소로부터 대차 부재(44)의 상면에 접하는 개소로 변경되어 있지만, 제1 실시형태와 마찬가지로 연직 지지 부재(22d)의, Z 축 방향에 있어서의 변위인 제1 변위(ΔZ1)를 계측한다. 제1 변위(ΔZ1)는 제1 실시형태와 같은 정보를 포함하는 계측량이다.
제2 실시형태에 관한 갭 계측 장치(40)는 이상과 같은 구성을 갖기 때문에 재료(10)의 위에서 연속적으로 안정하게 롤러 센서부(22a)를 이동시킬 수 있기 때문에 복수의 갭 계측 포인트에서 연속적으로 계측하는 경우에도 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
도 10은 본 발명의 제3 실시형태에 관한 갭 계측 장치(50)의 구성을 나타내는 도면이다. 제3 실시형태에 관한 갭 계측 장치(50)는, 제1 실시형태에 관한 갭 계측 장치(20)에 있어서, 초음파 센서(22), 변위 센서(24) 및 레이저 센서(26)를 지지 및 수납하는 케이싱(52)과 고니오 스테이지(54)가 추가로 설치된 것이다. 제3 실시형태에 관한 갭 계측 장치(50)는 제1 실시형태와 같은 구성에 제1 실시형태와 동일한 부호군을 이용하고, 그 상세한 설명을 생략한다.
고니오 스테이지(54)는 스테이지부(54a)와 스테이지 구동부(54b)를 갖는다. 스테이지부(54a)는 케이싱(52)을, 초음파 센서(22)의 초음파 사출구(22o)를 중심으로 하는 반경(R)의 원호면을 따라 이동 가능하게 파지한다. 여기에서, 반경(R)은 고니오 스테이지(54)의 스테이지부(54a)의 중앙 부분과 상판(12)의 상면(12a)과의 거리이다. 즉, 스테이지부(54a)는 케이싱(52)을, 초음파 사출구(22o)를 중심으로 하여, 상판(12)의 상면(12a)에 대해 제1 자세각(θ)의 방향 및 제2 자세각(φ)의 방향으로 이동 가능하게 파지한다. 스테이지 구동부(54b)는 스테이지부(54a)를 구동하는 구동부이며, 컴퓨터(30)와 통신 가능하게 접속되어 있다. 스테이지 구동부(54b)는, 도 4에 나타내는 바와 같이, 자세 판정부(34)가, 갭 계측 장치(50)의 자세가 갭(G)의 계측에 부적절한 자세라고 판정한 경우, 산출부(32)가 제1 자세각(θ) 및 제2 자세각(φ)의 정보에 기초하여 산출하는 자세의 수정값에 따라 스테이지부(54a)를 구동하여 갭 계측 장치(50)의 자세를 수정할 수 있다. 고니오 스테이지(54)는 이상과 같은 구성을 갖기 때문에 갭 계측 장치(50)의 자세를 제어하는 자세 제어 장치로서 기능한다.
산출부(32) 및 자세 판정부(34)는, 제3 실시형태에 관한 갭 계측 장치(50)에서는 제1 실시형태에 관한 갭 계측 장치(20)보다도 많은 기능을 갖는다. 자세 판정부(34)는, 갭 계측 장치(50)의 자세가 갭(G)의 계측에 부적절한 자세라고 판정한 경우, 그 판정 결과의 정보를 산출부(32)에 출력한다. 산출부(32)는, 자세 판정부(34)로부터 갭 계측 장치(50)의 자세가 갭(G)의 계측에 부적절한 자세라는 판정 결과의 정보를 취득한 경우, 제1 자세각(θ) 및 제2 자세각(φ)의 정보에 기초하여 자세의 수정값을 산출하고, 산출한 자세의 수정값을 고니오 스테이지(54)의 스테이지 구동부(54b)에 송신한다.
이상과 같은 구성을 갖는 제3 실시형태에 관한 갭 계측 장치(50)의 작용에 대해 이하에 설명한다. 갭 계측 장치(50)는 본 발명의 제1 실시형태에 관한 갭 계측 방법에 더해, 추가로 자세 수정값 산출 단계와 자세 수정 단계를 실행할 수 있다. 자세 수정값 산출 단계는, 산출부(32)가 자세 판정부(34)로부터, 갭 계측 장치(50)의 자세가 갭(G)의 계측에 부적절한 자세라는 판정 결과의 정보를 취득한 경우, 제1 자세각(θ) 및 제2 자세각(φ)의 정보에 기초하여 자세의 수정값을 산출하는 단계이다. 자세 수정 단계는 자세 수정값 산출 단계의 후에 행해지고, 스테이지 구동부(54b)가 산출부(32)로부터 수신한 자세의 수정값에 따라 스테이지부(54a)를 구동하여 갭 계측 장치(50)의 자세를 수정하는 단계이다.
제3 실시형태에 관한 갭 계측 장치(50)에 의한 갭 계측 방법은 이상과 같은 자세 수정값 산출 단계와 자세 제어 단계를 추가로 갖는다. 즉, 제3 실시형태에 관한 갭 계측 장치(50)에 의한 갭 계측 방법은 각 센서의 자세를 갭(G)의 계측에 적절한 자세로 수정할 수 있기 때문에 작업원에 의한 불일치를 보다 확실하게 억제할 수 있다.
10: 재료
12: 상판
12a: 상면
12b: 하면
14a: 상면
14: 하판
16: 로봇 아암
18: 로봇 제어부
20, 40, 50: 갭 계측 장치
22: 초음파 센서(판 두께 계측 센서)
22a: 롤러 센서부
22b: 측면 부재
22c: 축 지지 부재
22d: 연직 지지 부재
22o: 초음파 사출구
22s: 초음파 검사부
24: 변위 센서
26: 레이저 센서(단차 계측 센서)
26o: 레이저 조사구
30: 컴퓨터
32: 산출부
34: 자세 판정부
42: 롤러 유닛
42a: 롤러
42b: 측면 부재
42c: 축 지지 부재
44: 대차 부재
46: 축 지지 부재
48a: 베어링
48b: 축 부재
52: 케이싱
54: 고니오 스테이지
54a: 스테이지부
54b: 스테이지 구동부

Claims (17)

  1. 상판과 하판이 두께 방향으로 중첩되어 형성된 재료에 있어서, 상기 상판과 상기 하판 사이의 갭을 계측하는 계측 장치로서,
    상기 상판의 두께인 판 두께를 계측하는 판 두께 계측 센서와,
    상기 상판의 상면과 상기 하판의 상면 사이의 거리인 단차를 계측하는 단차 계측 센서와,
    상기 단차로부터 상기 판 두께를 공제함으로써 상기 상판과 상기 하판 사이의 갭을 산출하는 산출부와,
    상기 판 두께 계측 센서를 연직 방향으로 지지하는 지지부의 상기 두께 방향에 있어서의 변위인 제1 변위를 계측하는 변위 센서와,
    상기 상판의 상면에 대향하는 상기 판 두께 계측 센서의 자세를 판정하는 자세 판정부를 갖고,
    상기 단차 계측 센서는 상기 단차 계측 센서의 상기 두께 방향에 있어서의 변위인 제2 변위 및 상기 상판의 상면에 대향하는 상기 단차 계측 센서의 자세각인 제1 자세각을 계측하고,
    상기 산출부는, 상기 판 두께 계측 센서와 상기 단차 계측 센서와의 각 계측점 사이의 거리, 상기 제1 변위 및 상기 제2 변위에 기초하여, 상기 상판의 상면에 대향하는 상기 판 두께 계측 센서의 자세각의 성분인 제2 자세각을 산출하고,
    상기 자세 판정부는, 상기 제1 자세각 및 상기 제2 자세각에 기초하여, 상기 자세를 판정하는 것을 특징으로 하는 갭 계측 장치.
  2. (삭제)
  3. 제1항에 있어서,
    상기 판 두께 계측 센서, 상기 단차 계측 센서 및 상기 변위 센서를, 상기 상판의 상면과의 거리를 반경으로 하는 원호면을 따라 이동 가능하게 파지하는 고니오 스테이지를 추가로 가지며,
    상기 산출부는, 상기 자세가 상기 갭의 계측에 부적절하다고 판정된 경우, 상기 자세의 수정값을 산출하고, 상기 수정값을 상기 고니오 스테이지에 송신하며,
    상기 고니오 스테이지는 상기 산출부로부터 수신한 상기 수정값에 따라 상기 자세를 수정하는 것을 특징으로 하는 갭 계측 장치.
  4. 제1항 또는 제3항에 있어서,
    상기 변위 센서는, 추가로 판 두께 계측 센서가 상기 상판에 대해 가하고 있는 압력을 계측하는 것을 특징으로 하는 갭 계측 장치.
  5. 제1항, 제3항, 제4항, 제6항, 제7항 및 제17항 중 어느 한 항에 있어서,
    상기 판 두께 계측 센서는 상기 상판의 상방으로부터 상기 상판의 상면을 향해 초음파를 발생시켜 상기 상판의 상면 및 하면에서 각각 반사한 초음파를 검출하는 초음파 센서인 것을 특징으로 하는 갭 계측 장치.
  6. 제1항, 제3항 및 제4항 중 어느 한 항에 있어서,
    상기 판 두께 계측 센서는 상기 재료에 평행한 축 주변에 회동 가능하게 지지되어 있고, 상기 재료에 대한 이동에 따라 회전하는 롤러 센서부를 갖는 것을 특징으로 하는 갭 계측 장치.
  7. 제6항에 있어서,
    상기 롤러 센서부에 대해 평행하게, 상기 재료에 대해 상기 롤러 센서부와 동일한 측에 설치되어, 상기 롤러 센서부의 축에 평행한 방향을 따른 축 주변에 회동 가능하게 지지되어 있고, 상기 재료에 대한 이동에 따라 상기 롤러 센서부와 함께 회전하는 롤러
    를 추가로 갖는 것을 특징으로 하는 갭 계측 장치.
  8. 제1항, 제3항 내지 제7항 및 제17항 중 어느 한 항에 있어서,
    상기 단차 계측 센서는, 상기 상판의 상방으로부터 상기 상판과 상기 하판이 함께 상기 재료의 상측에 노출하고 있는 개소를 향해 레이저를 조사하고, 상기 상판의 상면 및 상기 하판의 상면에서 각각 반사한 레이저를 검출하는 레이저 센서인 것을 특징으로 하는 갭 계측 장치.
  9. 제1항, 제3항 내지 제8항 및 제17항 중 어느 한 항에 있어서,
    상기 판 두께 계측 센서 및 상기 단차 계측 센서를 3차원 방향으로 이동 가능하게 파지하는 구동 장치
    를 추가로 갖는 것을 특징으로 하는 기재된 갭 계측 장치.
  10. 상판과 하판이 두께 방향으로 중첩되어 형성된 재료에 있어서, 상기 상판과 상기 하판 사이의 갭을 계측하는 계측 방법으로서,
    판 두께 계측 센서에서 상기 상판의 두께인 판 두께를 계측하는 판 두께 계측 단계와,
    단차 계측 센서에서 상기 상판의 상면과 상기 하판의 상면 사이의 거리인 단차를 계측하는 단차 계측 단계와,
    상기 단차로부터 상기 판 두께를 공제함으로써 상기 상판과 상기 하판 사이의 갭을 산출하는 갭 산출 단계
    를 갖고,
    상기 판 두께 계측 센서를 연직 방향으로 지지하는 지지부의 상기 두께 방향에 있어서의 변위인 제1 변위를 계측하는 제1 변위 계측 단계와,
    상기 단차 계측 센서의 상기 두께 방향에 있어서의 변위인 제2 변위를 계측하는 제2 변위 계측 단계와,
    상기 상판의 상면에 대향하는 상기 단차 계측 센서의 자세각인 제1 자세각을 계측하는 제1 자세각 계측 단계와,
    상기 판 두께 계측 센서와 상기 단차 계측 센서와의 각 계측점 사이의 거리, 상기 제1 변위 및 상기 제2 변위에 기초하여, 상기 상판의 상면에 대향하는 상기 판 두께 계측 센서의 자세각의 성분인 제2 자세각을 산출하는 제2 자세각 산출 단계와,
    상기 제1 자세각 및 상기 제2 자세각에 기초하여, 상기 자세를 판정하는 자세 판정 단계
    를 추가로 갖는 것을 특징으로 하는 갭 계측 방법.
  11. (삭제)
  12. 제10항에 있어서,
    상기 자세가 상기 갭의 계측에 부적절하다고 판정된 경우, 상기 자세의 수정값을 산출하는 자세 수정값 산출 단계와,
    상기 수정값에 따라 상기 자세를 수정하는 자세 수정 단계
    를 추가로 갖는 것을 특징으로 하는 갭 계측 방법.
  13. 제10항 또는 제12항 중 어느 한 항에 있어서,
    상기 판 두께 계측 단계는 상기 상판의 상방으로부터 상기 상판을 향해 초음파를 발생시켜 상기 상판의 상면 및 하면에서 각각 반사한 초음파를 검출함으로써 상기 판 두께를 계측하는 것을 특징으로 하는 갭 계측 방법.
  14. 제10항, 제12항 및 제13항 중 어느 한 항에 있어서,
    상기 단차 계측 단계는, 상기 상판의 상방으로부터 상기 상판과 상기 하판이 함께 상기 재료의 상측에 노출하고 있는 개소를 향해 레이저를 조사하고, 상기 상판의 상면 및 상기 하판의 상면에서 각각 반사한 레이저를 검출함으로써 상기 단차를 계측하는 것을 특징으로 하는 갭 계측 방법.
  15. 제10항 및 제12항 내지 제14항 중 어느 한 항에 있어서,
    상기 갭을 계측하는 개소를 상기 재료의 수평 방향을 따라 이동시키는 계측 개소 이동 단계
    를 추가로 갖는 것을 특징으로 하는 갭 계측 방법.
  16. 제10항 및 제12항 내지 제15항 중 어느 한 항에 있어서,
    상기 갭을 계측할 때, 상기 재료에 상기 재료의 두께 방향을 따라 압력을 가하는 압력 부가 단계와,
    상기 압력을 계측하는 압력 계측 단계
    를 추가로 갖는 것을 특징으로 하는 갭 계측 방법.
  17. 상판과 하판이 두께 방향으로 중첩되어 형성된 재료에 있어서, 상기 상판과 상기 하판 사이의 갭을 계측하는 계측 장치로서,
    상기 상판의 두께인 판 두께를 계측하는 판 두께 계측 센서와,
    상기 상판의 상면과 상기 하판의 상면 사이의 거리인 단차를 계측하는 단차 계측 센서와,
    상기 단차로부터 상기 판 두께를 공제함으로써 상기 상판과 상기 하판 사이의 갭을 산출하는 산출부를 가지며,
    상기 판 두께 계측 센서는 상기 재료에 평행한 축 주변에 회동 가능하게 지지되어 있고, 상기 재료에 대한 이동에 따라 회전하는 롤러 센서부를 갖고,
    상기 롤러 센서부에 대해 평행하게, 상기 재료에 대해 상기 롤러 센서부와 동일한 측에 설치되어, 상기 롤러 센서부의 축에 평행한 방향을 따른 축 주변에 회동 가능하게 지지되어 있고, 상기 재료에 대한 이동에 따라 상기 롤러 센서부와 함께 회전하는 롤러
    를 추가로 갖는 것을 특징으로 하는 갭 계측 장치.

KR1020187014850A 2016-01-20 2016-11-24 갭 계측 장치 및 갭 계측 방법 KR102045696B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2016-009096 2016-01-20
JP2016009096A JP6723634B2 (ja) 2016-01-20 2016-01-20 隙間計測装置及び隙間計測方法
PCT/JP2016/084834 WO2017126218A1 (ja) 2016-01-20 2016-11-24 隙間計測装置及び隙間計測方法

Publications (2)

Publication Number Publication Date
KR20180074768A true KR20180074768A (ko) 2018-07-03
KR102045696B1 KR102045696B1 (ko) 2019-11-15

Family

ID=59361586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187014850A KR102045696B1 (ko) 2016-01-20 2016-11-24 갭 계측 장치 및 갭 계측 방법

Country Status (9)

Country Link
US (1) US11054253B2 (ko)
EP (1) EP3370035B1 (ko)
JP (1) JP6723634B2 (ko)
KR (1) KR102045696B1 (ko)
CN (1) CN108369093A (ko)
BR (1) BR112018010979A2 (ko)
CA (1) CA3006543C (ko)
ES (1) ES2765744T3 (ko)
WO (1) WO2017126218A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3708482T3 (pl) * 2019-03-13 2023-09-11 Becker Marine Systems Gmbh Ster do jednostek pływających z przyrządem do pomiaru luzu łożyskowego, sposób pomiaru luzu łożyskowego w sterze oraz przyrząd do pomiaru luzu łożyskowego steru
JP7283228B2 (ja) * 2019-05-27 2023-05-30 コニカミノルタ株式会社 測定装置、画像形成装置、および、測定方法
CN110631495B (zh) * 2019-10-25 2024-05-14 宁波中车时代传感技术有限公司 磁电式速度传感器曲面间隙检测方法
CN111690802B (zh) * 2020-06-17 2021-11-09 广西先进铝加工创新中心有限责任公司 一种辊底式热处理炉炉辊的安装调试方法
CN114179322A (zh) * 2021-12-08 2022-03-15 博众精工科技股份有限公司 一种模具间隙检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474405A (en) * 1987-09-16 1989-03-20 Toyota Motor Corp Method for measuring work gap at the time of arc welding
JPH06288713A (ja) 1993-03-31 1994-10-18 Hitachi Ltd ギャップ位置計測方法及び画像処理方法
JPH09318342A (ja) * 1996-05-31 1997-12-12 Ket Kagaku Kenkyusho:Kk 定圧機構
JP2010101656A (ja) * 2008-10-21 2010-05-06 Toyota Motor Corp 膜厚計測方法および膜厚計測装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165178A (en) 1978-06-29 1979-08-21 International Business Machines Corporation Gap measurement tool
JPS5784306A (en) 1980-11-14 1982-05-26 Toshiba Corp Method for providing gap
JPS6367908U (ko) * 1986-10-23 1988-05-07
GB2206690B (en) 1987-06-30 1991-12-11 Matsushita Electric Works Ltd Optically scanning displacement sensor
US5113358A (en) * 1990-03-28 1992-05-12 Barber-Colman Company Web caliper measuring system
US5250897A (en) * 1992-05-07 1993-10-05 Lsi Logic Corporation Solenoid/slug gap measurement tool for semiconductor equipment and method of measurement
FR2745905B1 (fr) 1996-03-08 1998-04-24 Lorraine Laminage Appareil de detection acoustique de defauts dans une bande en defilement
JP3529744B2 (ja) * 2001-07-05 2004-05-24 日本工業検査株式会社 鋼板厚測定装置
DE102010020116A1 (de) * 2010-05-10 2011-11-10 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Verfahren und Vorrichtung zur Messung der Dicke dünner Schichten an großflächigen Messoberflächen
KR20130139251A (ko) * 2010-11-12 2013-12-20 에베 그룹 에. 탈너 게엠베하 웨이퍼 스택에 있는 결함 및 층 두께를 측정하기 위한 측정 장치 및 측정 방법
GB2494170A (en) * 2011-09-01 2013-03-06 Sonar Pipeline Inspection Systems Ltd Acoustic pipeline inspection
CN103512904A (zh) 2012-06-29 2014-01-15 鸿富锦精密工业(深圳)有限公司 工件外观测量装置及其操作方法
DE102014200157A1 (de) * 2013-10-28 2015-05-21 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren zur Dickenmessung an Messobjekten und Vorrichtung zur Anwendung des Verfahrens
CN104525722B (zh) 2014-12-04 2016-09-14 柳州福臻车体实业有限公司 一种拉延模间隙的测量方法
CN109073372B (zh) * 2016-05-19 2020-11-20 三菱日立电力系统株式会社 测量用夹具、测量装置以及间隙测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474405A (en) * 1987-09-16 1989-03-20 Toyota Motor Corp Method for measuring work gap at the time of arc welding
JPH06288713A (ja) 1993-03-31 1994-10-18 Hitachi Ltd ギャップ位置計測方法及び画像処理方法
JPH09318342A (ja) * 1996-05-31 1997-12-12 Ket Kagaku Kenkyusho:Kk 定圧機構
JP2010101656A (ja) * 2008-10-21 2010-05-06 Toyota Motor Corp 膜厚計測方法および膜厚計測装置

Also Published As

Publication number Publication date
WO2017126218A1 (ja) 2017-07-27
JP2017129464A (ja) 2017-07-27
US20180347973A1 (en) 2018-12-06
ES2765744T3 (es) 2020-06-10
CA3006543C (en) 2020-06-02
CA3006543A1 (en) 2017-07-27
CN108369093A (zh) 2018-08-03
EP3370035A1 (en) 2018-09-05
EP3370035B1 (en) 2019-10-23
KR102045696B1 (ko) 2019-11-15
BR112018010979A2 (pt) 2018-12-04
EP3370035A4 (en) 2018-09-05
US11054253B2 (en) 2021-07-06
JP6723634B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
KR20180074768A (ko) 갭 계측 장치 및 갭 계측 방법
TWI457541B (zh) 物件表面之傾斜角的偵測方法、補償方法及其系統
US10041909B2 (en) Portable ultrasonic testing device and ultrasonic testing method
CN111065947B (zh) 用于确定相干断层摄影机的光学设备的定向的设备、相干断层摄影机和激光加工系统
EP2397815B1 (en) Industrial machine
JP2009220155A (ja) 溶接品質検査方法および装置
JP2014104483A (ja) 形状評価方法、鋼板形状矯正方法、及び鋼板製造方法
JP2008302428A (ja) アーク溶接品質検査方法
US11794272B2 (en) Automatic joining system
JP7045194B2 (ja) レンズ測定装置およびレンズ測定方法
US9879987B2 (en) Positioning system and method
WO2017199410A1 (ja) レーザ加工機、補正値算出装置及びプログラム
US9664604B2 (en) Measurement apparatus, measurement method, and method of manufacturing article
Lankalapalli et al. Laser weld penetration estimation using temperature measurements
US6771363B1 (en) Device and method for determining a bending angle of a sheet and the use thereof for the angle-bending of sheets
JP2000146506A (ja) 接触式管内径測定装置
JP2020159819A (ja) 検査システム、検査方法及びプログラム
JP5690549B2 (ja) 測定用長尺状物の位置決め治具
US20200206861A1 (en) Method for determining the topography of a machine tool
US11440128B2 (en) Electrode orientation checking apparatus and electrode orientation checking method
JP2024029719A (ja) 形状計測装置および形状計測方法
JP2010048686A (ja) 距離計測装置および距離計測方法
JPH09304017A (ja) 非接触式の距離及び傾斜測定方法及び同装置
JP2015014534A (ja) タービン軸の溶接検査装置、溶接装置、および溶接検査方法
JP2017132014A (ja) ロボット装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant