KR20180052814A - 반도체 메모리 장치 및 그것의 동작 방법 - Google Patents

반도체 메모리 장치 및 그것의 동작 방법 Download PDF

Info

Publication number
KR20180052814A
KR20180052814A KR1020160149530A KR20160149530A KR20180052814A KR 20180052814 A KR20180052814 A KR 20180052814A KR 1020160149530 A KR1020160149530 A KR 1020160149530A KR 20160149530 A KR20160149530 A KR 20160149530A KR 20180052814 A KR20180052814 A KR 20180052814A
Authority
KR
South Korea
Prior art keywords
erase
voltage
verify
word line
memory block
Prior art date
Application number
KR1020160149530A
Other languages
English (en)
Other versions
KR102643658B1 (ko
Inventor
이동훈
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020160149530A priority Critical patent/KR102643658B1/ko
Priority to US15/641,485 priority patent/US10373689B2/en
Publication of KR20180052814A publication Critical patent/KR20180052814A/ko
Application granted granted Critical
Publication of KR102643658B1 publication Critical patent/KR102643658B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/344Arrangements for verifying correct erasure or for detecting overerased cells
    • G11C16/3445Circuits or methods to verify correct erasure of nonvolatile memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits

Landscapes

  • Read Only Memory (AREA)

Abstract

본 기술은 전자 장치에 관한 것으로, 보다 구체적으로는 반도체 메모리 장치 및 그것의 동작 방법에 관한 것이다. 본 기술에 따른 향상된 신뢰성을 갖는 반도체 메모리 장치는 복수의 메모리 블록들을 포함하는 메모리 셀 어레이, 상기 복수의 메모리 블록들 중 선택된 메모리 블록에 대한 소거 동작을 수행하는 주변 회로 및 상기 소거 동작의 수행 시, 상기 선택된 메모리 블록에 대한 소거 검증에 패스하면, 상기 선택된 메모리 블록과 연결된 복수의 워드 라인들 중 기준 워드 라인에 연결되는 메모리 셀들을 검증하고, 상기 기준 워드 라인에 연결되는 메모리 셀들의 검증 결과에 따라 상기 소거 동작을 수행하도록 상기 주변 회로를 제어하는 제어회로를 포함한다.

Description

반도체 메모리 장치 및 그것의 동작 방법{SEMICONDUCTOR MEMORY DEVICE AND OPERATING METHOD THEREOF}
본 발명은 전자 장치에 관한 것으로, 보다 구체적으로는 반도체 메모리 장치 및 그것의 동작 방법에 관한 것이다.
반도체 메모리 장치(semiconductor memory device)는 실리콘(Si, silicon), 게르마늄(Ge, Germanium), 비화 갈륨(GaAs, gallium arsenide), 인화인듐(InP, indium phospide) 등과 같은 반도체를 이용하여 구현되는 기억장치이다. 반도체 메모리 장치는 크게 휘발성 메모리 장치(Volatile memory device)와 불휘발성 메모리(Nonvolatile memory device)로 구분된다.
휘발성 메모리 장치는 전원 공급이 차단되면 저장하고 있던 데이터가 소멸되는 메모리 장치이다. 휘발성 메모리 장치에는 SRAM (Static RAM), DRAM (Dynamic RAM), SDRAM (Synchronous DRAM) 등이 있다. 불휘발성 메모리 장치는 전원 공급이 차단되어도 저장하고 있던 데이터를 유지하는 메모리 장치이다. 불휘발성 메모리 장치에는 ROM (Read Only Memory), PROM (Programmable ROM), EPROM (Electrically Programmable ROM), EEPROM (Electrically Erasable and Programmable ROM), 플래시 메모리, PRAM (Phase-change RAM), MRAM (Magnetic RAM), RRAM (Resistive RAM), FRAM (Ferroelectric RAM) 등이 있다. 플래시 메모리는 크게 노어 타입과 낸드 타입으로 구분된다.
본 발명의 실시 예는 향상된 신뢰성을 갖는 반도체 메모리 장치 및 그것의 동작 방법을 제공하기 위한 것이다.
본 발명의 실시 예에 따른 반도체 메모리 장치는, 복수의 메모리 블록들을 포함하는 메모리 셀 어레이, 상기 복수의 메모리 블록들 중 선택된 메모리 블록에 대한 소거 동작을 수행하는 주변 회로 및 상기 소거 동작의 수행 시, 상기 선택된 메모리 블록에 대한 소거 검증에 패스하면, 상기 선택된 메모리 블록과 연결된 복수의 워드 라인들 중 기준 워드 라인에 연결되는 메모리 셀들을 검증하고, 상기 기준 워드 라인에 연결되는 메모리 셀들의 검증 결과에 따라 상기 소거 동작을 수행하도록 상기 주변 회로를 제어하는 제어회로를 포함한다.
본 발명의 일 실시 예에 따른 반도체 메모리 장치의 동작 방법은, 복수의 메모리 블록들 중 선택된 메모리 블록에 대한 소거 동작을 수행하는 단계, 상기 선택된 메모리 블록에 대한 소거 검증이 패스되면, 상기 선택된 메모리 블록과 연결된 복수의 워드 라인들 중 기준 워드 라인에 연결된 메모리 셀들의 문턱전압을 검증 하는 단계 및 상기 기준 워드 라인에 연결된 메모리 셀들의 검증 결과에 따라 상기 소거 동작을 수행하는 단계를 포함한다.
본 발명의 일 실시 예에 따른 반도체 메모리 장치의 동작 방법은, 선택된 메모리 블록에 소거 전압을 인가하는 단계, 상기 선택된 메모리 블록을 제1 검증 전압을 이용하여 검증하는 제1 검증 동작을 수행하는 단계, 상기 제1 검증 동작이 페일되면, 상기 제1 검증 전압보다 높은 레벨을 갖는 제2 검증 전압을 이용하여 상기 메모리 블록을 검증하는 제2 검증 동작을 수행하는 단계; 및 상기 제1 검증 동작이 패스되면, 상기 선택된 메모리 블록에 포함된 메모리 셀들 중 기준 워드 라인에 연결된 메모리 셀들을 검증하는 워드 라인 검증 동작을 수행하는 단계를 포함한다.
본 발명의 실시 예에 따르면, 향상된 신뢰성을 갖는 반도체 메모리 장치 및 그것의 동작방법이 제공된다.
도 1은 메모리 시스템의 구성을 나타낸 블록도이다.
도 2는 본 발명의 실시 예에 따른 반도체 메모리 장치를 보여주는 블록도이다.
도 3은 도 2의 메모리 셀 어레이 구조를 나타낸 도면이다.
도 4는 도 2의 메모리 셀 어레이의 다른 실시 예를 나타낸 것이다.
도 5는 종래 반도체 메모리 장치의 소거 동작을 설명하기 위한 순서도이다.
도 6은 도 5에 따른 반도체 메모리 장치의 소거 동작에 따른 문제점을 설명하기 위한 도면이다.
도 7은 본 발명의 실시 예에 따른 반도체 메모리 장치의 동작 방법을 설명하기 위한 순서도이다.
도 8은 본 발명의 다른 실시 예에 따른 반도체 메모리 장치의 동작 방법을 설명하기 위한 순서도이다.
도 9는 도 2의 반도체 메모리 장치를 포함하는 메모리 시스템을 보여주는 블록도이다.
도 10은 도 9의 메모리 시스템의 응용 예를 보여주는 블록도이다.
도 11은 도 10을 참조하여 설명된 메모리 시스템을 포함하는 컴퓨팅 시스템을 보여주는 블록도이다.
본 명세서 또는 출원에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시 예들은 다양한 형태로 실시될 수 있으며 본 명세서 또는 출원에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 서술된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 메모리 시스템의 구성을 나타낸 블록도이다.
메모리 시스템(50)은 반도체 메모리 장치(1000) 및 컨트롤러(1100)를 포함한다.
반도체 메모리 장치(1000)는 낸드 플래시 메모리(NAND flash memory), 수직형 낸드 플래시 메모리(Vertical NAND), 노아 플래시 메모리(NOR flash memory), 저항성 램(resistive random access memory: RRAM), 상변화 메모리(phase-change memory: PRAM), 자기저항 메모리(magnetoresistive random access memory: MRAM), 강유전체 메모리(ferroelectric random access memory: FRAM), 스핀주입 자화반전 메모리(spin transfer torque random access memory: STT-RAM) 등이 될 수 있다. 또한, 본 발명의 반도체 메모리 장치(1000)는 3차원 어레이 구조(three-dimensional array structure)로 구현될 수 있다. 본 발명은 전하 저장층이 전도성 부유 게이트(floating gate; FG)로 구성된 플래시 메모리 장치는 물론, 전하 저장층이 절연막으로 구성된 차지 트랩형 플래시(charge trap flash; CTF)에도 적용될 수 있다.
반도체 메모리 장치(1000)는 메모리 셀 어레이(100) 및 메모리 셀 어레이(100)를 구동하기 위한 주변 회로(600)를 포함한다. 메모리 셀 어레이(100)는 복수의 불휘발성 메모리 셀들을 포함한다.
메모리 셀 어레이(100)는 복수의 메모리 블록들을 포함한다. 하나의 메모리 블록은 복수의 메모리 셀들을 포함한다. 메모리 블록에 포함된 메모리 셀들은 복수의 페이지들로 정의될 수 있다. 하나의 페이지는 같은 워드 라인에 연결된 메모리 셀들로 정의될 수 있다.
주변 회로(600)는 컨트롤러(1100)의 제어에 응답하여 동작한다. 주변 회로(600)는 컨트롤러(1100)의 제어에 응답하여, 메모리 셀 어레이(100)에 데이터를 프로그램 할 수 있다. 주변 회로(600)는 메모리 셀 어레이(100)로부터 데이터를 읽고, 메모리 셀 어레이(100)의 데이터를 소거하도록 동작할 수 있다.
다양한 실시 예에서, 반도체 메모리 장치(1000)의 읽기 동작 및 프로그램 동작은 페이지 단위로 수행될 수 있다. 반도체 메모리 장치(1000)의 소거 동작은 메모리 블록 단위로 수행될 수 있다.
프로그램 동작 시, 주변 회로(600)는 컨트롤러(1100)로부터 프로그램 동작을 나타내는 커맨드, 물리 블록 어드레스(physical block address, PBA) 및 쓰기 데이터를 수신할 수 있다. 주변회로(600)는 물리 블록 어드레스(PBA)에 의해 하나의 메모리 블록과 해당 메모리 블록에 포함된 하나의 페이지가 선택되면, 선택된 페이지에 데이터를 프로그램 할 수 있다.
읽기 동작 시, 주변 회로(600)는 컨트롤러(1100)로부터 읽기 동작을 나타내는 커맨드(이하, 읽기 커맨드), 물리 블록 어드레스(PBA)를 수신할 수 있다. 주변 회로(600)는 물리 블록 어드레스(PBA)에 의해 선택된 하나의 메모리 블록과 그것에 포함된 하나의 페이지로부터 데이터를 읽고, 읽어진 데이터(이하, 페이지 데이터라 한다.)를 컨트롤러(1100)로 출력할 수 있다.
소거 동작 시에, 주변 회로(600)는 컨트롤러(1100)로부터 소거 동작을 나타내는 커맨드 및 물리 블록 어드레스(PBA)를 수신할 수 있다. 물리 블록 어드레스(PBA)는 하나의 메모리 블록을 특정할 것이다. 주변 회로(600)는 물리 블록 어드레스(PBA)에 대응하는 메모리 블록의 데이터를 소거할 것이다.
컨트롤러(1100)는 반도체 메모리 장치(1000)의 전반적인 동작을 제어한다. 컨트롤러(1100)는 외부 호스트로부터의 요청에 응답하여 반도체 메모리 장치(1000)를 액세스할 수 있다. 컨트롤러(1100)는 외부 호스트로부터의 요청에 응답하여 반도체 메모리 장치(1000)를 커맨드한다.
실시 예로서, 컨트롤러(1100)는 프로그램 동작, 읽기 동작 또는 소거 동작 등을 수행하도록 반도체 메모리 장치(1000)를 제어할 것이다. 프로그램 동작 시, 컨트롤러(1100)는 프로그램 커맨드, 어드레스 및 데이터를 채널을 통해 반도체 메모리 장치(1000)에 제공할 것이다. 읽기 동작 시, 컨트롤러(1100)는 읽기 커맨드 및 어드레스를 채널을 통해 반도체 메모리 장치(1000)에 제공할 것이다. 소거 동작 시, 컨트롤러(1100)는 소거 커맨드 및 어드레스를 채널을 통해 반도체 메모리 장치(1000)에 제공할 것이다.
컨트롤러(1100)는 램(1110), 메모리 제어부(1120) 및 에러 정정 회로(1130)을 포함할 수 있다.
램(random access memory; RAM)(1110)은 메모리 제어부(1120)의 제어에 따라 동작하며, 워크 메모리(work memory), 버퍼 메모리(buffer memory), 캐시 메모리(cache memory) 등으로 사용될 수 있다. 램(1110)이 워크 메모리로 사용되는 경우에, 메모리 제어부(1120)에 의해서 처리되는 데이터가 임시 저장될 수 있다. 램(1110)이 버퍼 메모리로 사용되는 경우에는, 호스트(미도시)에서 반도체 메모리 장치(1000)로 또는 반도체 메모리 장치(1000)에서 호스트(미도시)로 전송될 데이터를 버퍼링 하는데 사용될 수 있다.
메모리 제어부(1120)는 반도체 메모리 장치(1000)의 읽기 동작, 프로그램 동작, 소거 동작, 그리고 배경(background) 동작을 제어하도록 구성된다. 메모리 제어부(1120)는 반도체 메모리 장치(1000)를 제어하기 위한 펌웨어(firmware)를 구동하도록 구성된다.
메모리 제어부(1120)는 플래시 변환 계층(FTL)의 기능을 수행할 수 있다. 메모리 제어부(1120)는 플래시 변환 계층(FTL)을 통해 호스트가 제공한 논리 블록 어드레스(logical block address, LBA)를 물리 블록 어드레스(physical block address, PBA)로 변환할 수 있다. 플래시 변환 계층(FTL)은 맵핑 테이블을 이용하여 논리 블록 어드레스(LBA)를 입력 받아, 물리 블록 어드레스(PBA)로 변환시킬 수 있다. 플래시 변환 계층의 주소 맵핑 방법에는 맵핑 단위에 따라 여러 가지가 있다. 대표적인 어드레스 맵핑 방법에는 페이지 맵핑 방법(Page mapping method), 블록 맵핑 방법(Block mapping method), 그리고 혼합 맵핑 방법(Hybrid mapping method)이 있다.
에러 정정 코드 회로(1130)는 프로그램 할 데이터에 대한 에러 정정 코드(Error Correction Code; ECC)인 패리티를 생성한다. 또한 읽기 동작시, 에러 정정 코드 회로(1130)는 독출한 페이지 데이터에 대해 패리티를 이용하여 오류를 정정할 수 있다. 에러 정정 코드 회로(230)는 LDPC(low density parity check) code, BCH (Bose, Chaudhri, Hocquenghem) Code, turbo code, 리드-솔로몬 코드(Reed-Solomon code), convolution code, RSC(recursive systematic code), TCM(trellis-coded modulation), BCM(Block coded modulation), 해밍 코드(hamming code) 등의 코디드 모듈레이션(coded modulation)을 사용하여 에러를 정정할 수 있다.
읽기 동작 시, 에러 정정 코드 회로(1130)는 독출된 페이지 데이터의 오류를 정정할 수 있다. 독출된 페이지 데이터에 정정 가능한 비트 수를 초과하는 에러 비트들이 포함된 경우 디코드는 실패할 수 있다. 페이지 데이터에 정정 가능한 비트 수보다 같거나 작은 에러 비트들이 포함된 경우 디코드는 성공할 수 있다.
디코드의 성공은 해당 읽기 커맨드가 패스(pass)되었음을 나타낸다. 디코드의 실패는 해당 읽기 커맨드가 실패(fail)하였음을 나타낸다. 디코드가 성공될 때 컨트롤러(1100)는 에러가 정정된 페이지 데이터를 호스트로 출력한다.
도면에는 도시되어 있지 않지만, 컨트롤러(1100)는 반도체 메모리 장치(1000)와 통신하기 위한 메모리 인터페이스를 더 포함할 수 있다. 메모리 인터페이스는 반도체 메모리 장치(1000)와 통신하기 위한 프로토콜을 포함한다. 예를 들면, 메모리 인터페이스는 낸드(NAND) 인터페이스, 노어(NOR) 인터페이스 등과 같은 플래시 인터페이스들 중 적어도 하나를 포함할 수 있다.
또한, 컨트롤러(1100)는 호스트 및 컨트롤러(1100) 사이의 데이터 교환을 수행하기 위해 호스트 인터페이스(미도시)를 더 포함할 수 있다. 호스트 인터페이스는 호스트와 컨트롤러(1100)간에 통신하기 위한 프로토콜을 포함한다. 예시적으로, 컨트롤러(1100)는 USB(Universal Serial Bus) 프로토콜, MMC(multimedia card) 프로토콜, PCI(peripheral component interconnection) 프로토콜, PCI-E(PCI-express) 프로토콜, ATA(Advanced Technology Attachment) 프로토콜, Serial-ATA 프로토콜, Parallel-ATA 프로토콜, SCSI(small computer small interface) 프로토콜, ESDI(enhanced small disk interface) 프로토콜, 그리고 IDE(Integrated Drive Electronics) 프로토콜 등과 같은 다양한 인터페이스 프로토콜들 중 적어도 하나를 통해 외부(호스트)와 통신하도록 구성된다.
도 2는 본 발명의 실시 예에 따른 반도체 메모리 장치를 보여주는 블록도이다.
도 3은 도 2의 메모리 셀 어레이(100) 구조를 나타낸 도면이다.
도 2를 참조하면, 반도체 메모리 장치(1000)는 메모리 셀 어레이(100), 주변 회로(600, peripheral circuit) 및 제어 회로(700)를 포함한다.
메모리 셀 어레이(100)는 복수의 메모리 블록들(BLK1~BLKz)을 포함한다. 복수의 메모리 블록들(BLK1~BLKz)은 행 라인들(RL)을 통해 어드레스 디코더(200)에 연결된다. 복수의 메모리 블록들(BLK1~BLKz)은 비트 라인들(BL1 내지 BLm)을 통해 읽기 및 쓰기 회로(400)에 연결된다. 복수의 메모리 블록들(BLK1~BLKz) 각각은 복수의 메모리 셀들을 포함한다. 실시 예로서, 복수의 메모리 셀들은 불휘발성 메모리 셀들이다. 복수의 메모리 셀들은 동일 워드라인에 연결된 메모리 셀들을 하나의 페이지로 정의된다. 즉 메모리 셀 어레이(100)는 다수의 페이지로 구성된다.
반도체 메모리 장치(1000)의 메모리 셀들은 각각 하나의 데이터 비트를 저장하는 싱글 레벨 셀(Single Level Cell; SLC), 두 개의 데이터 비트들을 저장하는 멀티 레벨 셀(Multi Level Cell; MLC), 세 개의 데이터 비트들을 저장하는 트리플 레벨 셀(Triple Level Cell; TLC) 또는 네 개의 데이터 비트를 저장할 수 있는 쿼드 레벨 셀(Quad Level Cell; QLC)로 구성될 수 있다.
도 3을 참조하면, 메모리 셀 어레이(100_1)에 포함된 제 1 내지 제 z 메모리 블록들(BLK1~BLKz)은 제 1 내지 제 m 비트 라인들(BL1~BLm)에 공통 연결된다. 도 3에서, 설명의 편의를 위해 복수의 메모리 블록들(BLK1~BLKz) 중 제 1 메모리 블록(BLK1)에 포함된 요소들이 도시되고, 나머지 메모리 블록들(BLK2~BLKz) 각각에 포함된 요소들은 생략된다. 나머지 메모리 블록들(BLK2~BLKz) 각각은 제 1 메모리 블록(BLK1)과 마찬가지로 구성됨이 이해될 것이다.
메모리 블록(BLK1)은 복수의 셀 스트링들(CS1_1~CS1_m)을 포함한다. 제 1 내지 제 m 셀 스트링들(CS1_1~CS1_m)은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)에 연결된다.
제 1 내지 제 m 셀 스트링들(CS1_1~CS1_m) 각각은 드레인 선택 트랜지스터(DST), 직렬 연결된 복수의 메모리 셀들(MC1~MCn) 및 소스 선택 트랜지스터(SST)를 포함한다. 드레인 선택 트랜지스터(DST)는 드레인 선택 라인(DSL1)에 연결된다. 제 1 내지 제 n 메모리 셀들(MC1~MCn)은 각각 제 1 내지 제 n 워드 라인들(WL1~WLn)에 연결된다. 소스 선택 트랜지스터(SST)는 소스 선택 라인(SSL1)에 연결된다. 드레인 선택 트랜지스터(DST)의 드레인 측은 해당 비트 라인에 연결된다. 제 1 내지 제 m 셀 스트링들(CS1_1~CS1_m)의 드레인 선택 트랜지스터들은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)에 연결된다. 소스 선택 트랜지스터(SST)의 소스 측은 공통 소스 라인(CSL)에 연결된다. 실시 예로서, 공통 소스 라인(CSL)은 제 1 내지 제 z 메모리 블록들(BLK1~BLKz)에 공통 연결될 수 있다.
드레인 선택 라인(DSL1), 제 1 내지 제 n 워드 라인들(WL1~WLn), 및 소스 선택 라인(SSL1)은 도 2의 행 라인들(RL)에 포함된다. 드레인 선택 라인(DSL1), 제 1 내지 제 n 워드 라인들(WL1~WLn), 및 소스 선택 라인(SSL1)은 어드레스 디코더(121)에 의해 제어된다. 공통 소스 라인(CSL)은 제어 로직(125)에 의해 제어된다. 제 1 내지 제 m 비트 라인들(BL1~BLm)은 읽기 및 쓰기 회로(123)에 의해 제어된다.
다시 도 2를 참조하면, 주변회로(600)는 어드레스 디코더(200), 전압 발생기(300), 읽기 및 쓰기 회로(400) 및 데이터 입출력 회로(500)을 포함할 수 있다.
주변회로(600)는 제어회로(700)의 제어에 따라 메모리 셀 어레이(100)를 구동한다. 예를 들어 주변회로(600)는 제어회로(700)의 제어에 따라 프로그램 동작, 읽기 동작 및 소거 동작을 수행하도록 메모리 셀 어레이(100)를 구동할 수 있다.
어드레스 디코더(200)는 행 라인들(RL)을 통해 메모리 셀 어레이(100)에 연결된다. 어드레스 디코더(200)는 제어회로(700)의 제어에 응답하여 동작하도록 구성된다. 어드레스 디코더(200)는 반도체 메모리 장치(1000) 내부의 입출력 버퍼(미도시)를 통해 제어회로(700)로부터 어드레스(ADDR)를 수신한다.
어드레스 디코더(200)는 수신된 어드레스(ADDR) 중 블록 어드레스를 디코딩하도록 구성된다. 어드레스 디코더(200)는 디코딩된 블록 어드레스에 따라 메모리 블록들(BLK1~BLKz) 중 적어도 하나의 메모리 블록을 선택한다. 어드레스 디코더(200)는 수신된 어드레스(ADDR) 중 행 어드레스를 디코딩하도록 구성된다. 어드레스 디코더(200)는 디코딩된 행 어드레스에 따라 전압 발생기(300)로부터 제공받은 전압들을 적어도 하나의 워드 라인(WL)에 인가하여 선택된 메모리 블록의 적어도 하나의 워드 라인을 선택할 수 있다.
프로그램 동작 시에, 어드레스 디코더(200)는 선택된 워드 라인에 프로그램 전압을 인가하고 비선택된 워드 라인들에 프로그램 전압보다 낮은 레벨의 패스 전압을 인가할 것이다. 프로그램 검증 동작 시에, 어드레스 디코더(200)는 선택된 워드 라인에 검증 전압을 인가하고 비선택된 워드 라인들에 검증 전압보다 높은 검증 패스 전압을 인가할 것이다.
읽기 동작 시에, 어드레스 디코더(200)는 선택된 워드 라인에 읽기 전압을 인가하고, 비선택된 워드 라인들에 읽기 전압보다 높은 패스 전압을 인가할 것이다.
실시 예로서, 반도체 메모리 장치(1000)의 소거 동작은 메모리 블록 단위로 수행된다. 소거 동작 시에 반도체 메모리 장치(1000)에 입력되는 어드레스(ADDR)는 블록 어드레스를 포함한다. 어드레스 디코더(200)는 블록 어드레스를 디코딩하고, 디코딩된 블록 어드레스에 따라 하나의 메모리 블록을 선택할 수 있다.
소거 동작 시, 어드레스 디코더(200)는 선택된 메모리 블록에 입력되는 워드 라인에 접지 전압을 인가할 수 있다.
실시 예에서 어드레스 디코더(200)는 블록 디코더, 워드라인 디코더 및 어드레스 버퍼 등을 포함할 수 있다.
전압 발생기(300)는 반도체 메모리 장치(1000)에 공급되는 외부 전원 전압을 이용하여 복수의 전압들을 발생하도록 구성된다. 전압 발생기(300)는 제어회로(700)의 제어에 응답하여 동작한다.
실시 예로서, 전압 발생기(300)는 외부 전원 전압을 레귤레이팅하여 내부 전원 전압을 생성할 수 있다. 전압 발생기(300)에서 생성된 내부 전원 전압은 반도체 메모리 장치(1000)의 동작 전압으로서 사용된다.
실시 예로서, 전압 발생기(300)는 외부 전원 전압 또는 내부 전원 전압을 이용하여 복수의 전압들을 생성할 수 있다. 예를 들면, 전압 발생기(300)는 내부 전원 전압을 수신하는 복수의 펌핑 커패시터들을 포함하고, 제어회로(700)의 제어에 응답하여 복수의 펌핑 커패시터들을 선택적으로 활성화하여 복수의 전압들을 생성할 것이다. 생성된 복수의 전압들은 어드레스 디코더(200)에 의해 선택된 워드 라인들에 인가된다.
읽기 및 쓰기 회로(400)는 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)을 포함한다. 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)을 통해 메모리 셀 어레이(100)에 연결된다. 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 제어회로(700)의 제어에 응답하여 동작한다.
제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 데이터 입출력 회로(500)와 데이터를 통신한다. 프로그램 시에, 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 데이터 입출력 회로(500) 및 데이터 라인들(DL)을 통해 저장될 데이터(DATA)를 수신한다.
프로그램 동작 시, 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 선택된 워드 라인에 프로그램 펄스가 인가될 때, 저장될 데이터(DATA)를 데이터 입출력 회로(500)를 통해 수신한 데이터(DATA)를 비트 라인들(BL1~BLm)을 통해 선택된 메모리 셀들에 전달할 것이다. 전달된 데이터(DATA)에 따라 선택된 페이지의 메모리 셀들은 프로그램 된다. 프로그램 허용 전압(예를 들면, 접지 전압)이 인가되는 비트 라인과 연결된 메모리 셀은 상승된 문턱 전압을 가질 것이다. 프로그램 금지 전압(예를 들면, 전원 전압)이 인가되는 비트 라인과 연결된 메모리 셀의 문턱 전압은 유지될 것이다. 프로그램 검증 동작 시에, 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 선택된 메모리 셀들로부터 비트 라인들(BL1~BLm)을 통해 페이지 데이터를 읽는다.
읽기 동작 시, 읽기 및 쓰기 회로(400)는 선택된 페이지의 메모리 셀들로부터 비트 라인들(BL)을 통해 데이터(DATA)를 읽고, 읽어진 데이터(DATA)를 입출력 회로(500)로 출력한다.
소거 동작 시에, 읽기 및 쓰기 회로(400)는 비트 라인들(BL)을 플로팅(floating) 시킬 수 있다. 실시 예로서, 읽기 및 쓰기 회로(123)는 열 선택 회로를 포함할 수 있다.
데이터 입출력 회로(500)는 데이터 라인들(DL)을 통해 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)에 연결된다. 데이터 입출력 회로(124)는 제어회로(700)의 제어에 응답하여 동작한다. 프로그램 시에, 데이터 입출력 회로(124)는 외부 컨트롤러(미도시)로부터 저장될 데이터(DATA)를 수신한다. 데이터 입출력 회로(500)는 읽기 동작 시, 읽기 및 쓰기 회로(400)에 포함된 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)로부터 전달된 데이터를 외부 컨트롤러로 출력한다.
제어회로(700)는 어드레스 디코더(200), 전압 발생기(300), 읽기 및 쓰기 회로(400) 및 데이터 입출력 회로(500)에 연결된다. 제어회로(700)는 반도체 메모리 장치(1000)의 전반적인 동작을 제어할 수 있다. 제어회로(700)는 외부 컨트롤러로부터 커맨드(CMD) 및 어드레스(ADDR)를 수신한다. 제어회로(700)는 커맨드(CMD)에 응답하여 주변회로(600)를 제어 할 수 있다. 제어회로(700)는 수신된 커맨드에 대응되는 동작을 수행하도록 어드레스 디코더(200), 전압 발생기(300), 읽기 및 쓰기 회로(400) 및 데이터 입출력 회로(500)를 제어할 수 있다. 실시 예에서, 제어회로(700)은 소거 동작 시 소스 라인에 고전압의 소거 전압(Verase)이 인가할 수 있다.
제어회로(700)는 소거 동작 제어부(710)를 더 포함할 수 있다.
소거 동작 제어부(710)는 소거 동작시, 메모리 블록에 인가되는 소거 전압(Verase)의 레벨, 소거 전압(Verase)을 인가하는 시간 또는 소거 검증 전압의 레벨 중 적어도 어느 하나를 제어할 수 있다.
구체적으로, 소거 동작 제어부(710)는 소거 전압의 레벨 및 소거 전압의 인가 시간을 설정하고, 선택된 메모리 블록에 설정된 인가 시간 동안 소거 전압이 인가될 수 있도록 주변 회로(600)를 제어할 수 있다.
반도체 메모리 장치(1000)의 소거 동작은 선택된 메모리 블록에 소거전압을 인가하여 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 낮추는 소거 전압 인가 단계와, 선택된 메모리 블록의 메모리 셀들의 소거 상태를 판단하는 소거 검증 단계를 포함하는 소거 루프(loop)를 반복함으로써 수행될 수 있다.
실시 예에서, 반도체 메모리 장치(1000)는 소거 루프의 수행 횟수가 증가될 때마다 소거 전압의 레벨을 스텝 전압만큼 증가시키는 ISPE(Incremental Stem Pulse Erase)방식으로 소거 동작을 수행할 수 있다.
본 발명의 실시 예에 따르면, 소거 동작 제어부(710)는 선택된 메모리 블록에 대한 소거 검증 결과가 패스이면, 선택된 메모리 블록에 포함된 메모리 셀들 중, 기 설정된 기준 워드 라인에 연결된 메모리 셀들의 소거 상태를 검증하도록 주변 회로(600)를 제어할 수 있다. 실시 예에서, 소거 동작 제어부(710)는 기준 워드 라인에 대한 리드 동작을 수행하여, 기준 워드 라인에 연결된 메모리 셀들의 소거 상태를 검증할 수 있다.
실시 예에서, 소거 동작 제어부(710)는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과에 따라서, 소거 동작의 종료 여부를 결정할 수 있다. 예를 들어, 소거 동작 제어부(710)는 선택된 메모리 블록에 대한 검증 결과가 패스이더라도, 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 소거 동작을 종료하지 않고, 기준 워드 라인에 연결된 메모리 셀들의 소거 검증이 패스될 때까지 소거 루프를 반복 하도록 주변 회로(600)를 제어할 수 있다.
실시 예에서, 소거 동작 제어부(710)는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과에 따라서, 소거 전압의 레벨과 소거 전압의 인가 시간을 설정할 수 있다. 예를 들어, 소거 동작 제어부(710)는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하거나, 소거 전압의 인가 시간을 기 설정된 인가 시간보다 짧게 줄일 수 있다. 또는 소거 동작 제어부(710)는 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하고, 또한 소거 전압의 인가 시간도 기 설정된 인가 시간보다 짧게 설정할 수 있다.
다양한 실시 예에서, 소거 동작 제어부(710)는 선택된 메모리 블록에 대한 소거 검증 결과가 페일된 경우, 검증 전압을 변경하여, 선택된 메모리 블록에 대한 소거 검증을 수행할 수 있다. 예를 들어, 선택된 메모리 블록에 대해서, 제1 검증 전압을 이용한 제1 검증 동작이 페일되면, 소거 동작 제어부(710)는 검증 전압을 제1 검증 전압보다 높은 제2 검증 전압을 이용하여 선택된 메모리 블록에 대해서 제2 검증 동작을 수행할 수 있다. 제2 검증 동작의 결과에 따라 소거 동작 제어부(710)는 소거 전압 및 인가 시간을 설정할 수 있다. 구체적으로, 소거 동작 제어부(710)는 제2 검증 결과가 페일이면, 기 설정된 스탭 전압과 기 설정된 인가 시간에 따라 소거 루프를 반복하고, 제2 검증 결과가 페일이면 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하거나, 소거 전압의 인가 시간을 기 설정된 인가 시간보다 짧게 줄일 수 있다. 또는 소거 동작 제어부(710)는 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하고, 또한 소거 전압의 인가 시간도 기 설정된 인가 시간보다 짧게 설정할 수 있다.
소거 동작 제어부(710)는 제1 검증 결과가 패스이면, 선택된 메모리 블록에 포함된 메모리 셀들 중, 기 설정된 기준 워드 라인에 연결된 메모리 셀들의 소거 상태를 검증하도록 주변 회로(600)를 제어할 수 있다. 실시 예에서, 소거 동작 제어부(710)는 기준 워드 라인에 대한 리드 동작을 수행하여, 기준 워드 라인에 연결된 메모리 셀들의 소거 상태를 검증할 수 있다.
실시 예에서, 소거 동작 제어부(710)는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과에 따라서, 소거 동작의 종료 여부를 결정할 수 있다. 예를 들어, 소거 동작 제어부(710)는 선택된 메모리 블록에 대한 검증 결과가 패스이더라도, 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 소거 동작을 종료하지 않고, 기준 워드 라인에 연결된 메모리 셀들의 소거 검증이 패스될 때까지 소거 루프를 반복 하도록 주변 회로(600)를 제어할 수 있다.
실시 예에서, 소거 동작 제어부(710)는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과에 따라서, 소거 전압의 레벨과 소거 전압의 인가 시간을 설정할 수 있다. 예를 들어, 소거 동작 제어부(710)는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하거나, 소거 전압의 인가 시간을 기 설정된 인가 시간보다 짧게 줄일 수 있다. 또는 소거 동작 제어부(710)는 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하고, 또한 소거 전압의 인가 시간도 기 설정된 인가 시간보다 짧게 설정할 수 있다.
도 4는 도 2의 메모리 셀 어레이의 다른 실시 예를 나타낸 것이다.
도 4를 참조하면, 메모리 셀 어레이(100_2)는 복수의 메모리 블록들(BLK1'~BLKz')을 포함한다. 도 4에서, 인식의 편의를 위해 제 1 메모리 블록(BLK1')의 내부 구성이 도시되고, 나머지 메모리 블록들(BLK2'~BLKz')의 내부 구성은 생략되어 있다. 제 2 내지 제 z 메모리 블록들(BLK2'~BLKz')도 제 1 메모리 블록(BLK1')과 마찬가지로 구성됨이 이해될 것이다.
제 1 메모리 블록(BLK1')은 복수의 셀 스트링들(CS11'~CS1m', CS21'~CS2m')을 포함한다. 복수의 셀 스트링들(CS11'~CS1m', CS21'~CS2m') 각각은 +Z 방향을 따라 신장된다. 제 1 메모리 블록(BLK1') 내에서, +X 방향으로 m개의 셀 스트링들이 배열된다. 도 5에서, +Y 방향으로 2개의 셀 스트링들이 배열되는 것으로 도시되었다. 하지만 이는 설명의 편의를 위한 것으로서 열 방향으로 3개 이상의 셀 스트링들이 배열될 수 있음이 이해될 것이다.
복수의 셀 스트링들(CS11'~CS1m', CS21'~CS2m') 각각은, 적어도 하나의 소스 선택 트랜지스터(SST), 제 1 내지 제 n 메모리 셀들(MC1~MCn), 그리고 적어도 하나의 드레인 선택 트랜지스터(DST)를 포함한다.
각 셀 스트링의 소스 선택 트랜지스터(SST)은 공통 소스 라인(CSL)과 메모리 셀들(MC1~MCn) 사이에 연결된다. 동일한 행에 배열된 셀 스트링들의 소스 선택 트랜지스터들은 동일한 소스 선택 라인에 연결된다. 제 1 행에 배열된 셀 스트링들(CS11'~CS1m')의 소스 선택 트랜지스터들은 제 1 소스 선택 라인(SSL1)에 연결된다. 제 2 행에 배열된 셀 스트링들(CS21'~CS2m')의 소스 선택 트랜지스터들은 제 2 소스 선택 라인(SSL2)에 연결된다. 다른 실시 예로서, 셀 스트링들(CS11'~CS1m', CS21'~CS2m')의 소스 선택 트랜지스터들은 하나의 소스 선택 라인에 공통 연결될 수 있다.
각 셀 스트링의 제 1 내지 제 n 메모리 셀들(MC1~MCn)은 소스 선택 트랜지스터(SST)과 드레인 선택 트랜지스터(DST) 사이에서 직렬 연결된다. 제 1 내지 제 n 메모리 셀들(MC1~MCn)의 게이트들은 각각 제 1 내지 제 n 워드 라인들(WL1~WLn)에 연결된다.
실시 예로서, 제 1 내지 제 n 메모리 셀들(MC1~MCn) 중 적어도 하나는 더미 메모리 셀로서 이용될 수 있다. 더미 메모리 셀이 제공되는 경우, 해당 셀 스트링의 전압 또는 전류는 안정적으로 제어될 수 있다. 이에 따라 메모리 블록(BLK1')에 저장된 데이터의 신뢰성은 향상된다.
각 셀 스트링의 드레인 선택 트랜지스터(DST)는 해당 비트 라인과 메모리 셀들(MC1~MCn) 사이에 연결된다. 행 방향으로 배열되는 셀 스트링들의 드레인 선택 트랜지스터들은 행 방향으로 신장되는 드레인 선택 라인에 연결된다. 제 1 행의 셀 스트링들(CS11'~CS1m')의 드레인 선택 트랜지스터들은 제 1 드레인 선택 라인(DSL1)에 연결된다. 제 2 행의 셀 스트링들(CS21'~CS2m')의 드레인 선택 트랜지스터들은 제 2 드레인 선택 라인(DSL2)에 연결된다.
다른 실시 예에서, 복수의 셀 스트링들 각각은, 적어도 하나의 소스 선택 트랜지스터, 제 1 내지 제 m 메모리 셀들, 파이프 트랜지스터(PT) 그리고 적어도 하나의 드레인 선택 트랜지스터를 포함할 수 있다. 이 경우, 복수의 셀 스트링들 각각은 'U'자형으로 형성될 수 있다. 즉, 제 1 내지 제 m 메모리 셀들은 제 1 내지 제 p 메모리 셀들과 제 p+1 내지 제 m 메모리 셀들로 구분될 수 있다. 제 1 내지 제 p 메모리 셀들은 +Z 방향과 역방향으로 순차적으로 배열되며, 소스 선택 트랜지스터와 파이프 트랜지스터(PT) 사이에서 직렬 연결될 수 있다. 제 p+1 내지 제 m 메모리 셀들은 +Z 방향으로 순차적으로 배열되며, 파이프 트랜지스터(PT)와 드레인 선택 트랜지스터 사이에서 직렬 연결될 수 있다. 제 1 내지 제 p 메모리 셀들과 제 p+1 내지 제 m 메모리 셀들은 파이프 트랜지스터(PT)를 통해 연결될 수 있다. 실시 예에서, 각 셀 스트링의 파이프 트랜지스터(PT)의 게이트는 파이프 라인(PL)에 연결될 수 있다.
본 발명의 실시 예에 따른 반도체 메모리 장치는 도 4의 실시 예에 따른 메모리 셀 스트링들을 포함하는 메모리 블록들을 포함할 수 있고, 또는 다른 실시 예에 따라 파이프 트랜지스터(PT)를 포함하는 'U'자형 메모리 셀 스트링들을 포함하는 메모리 블록들을 포함할 수 있다. 메모리 셀 스트링의 형태와 파이프 트랜지스터의 유무는 본 발명의 실시 예에 의해 제한되지 않는다.
도 5는 종래 반도체 메모리 장치의 소거 동작을 설명하기 위한 순서도이다.
반도체 메모리 장치는 소거 동작이 수행되는 동안 소거 전압(Verase)을 생성하고, 생성된 소거 전압(Verase)을 공통 소스 라인(CSL)에 인가한다(Source Bias). 이때 소스 선택 트랜지스터(SST) 및 드레인 선택 트랜지스터(DST)는 플로팅 상태가 되도록 제어한다. 선택된 메모리 블록의 로컬 워드라인들에는 소거 허용 전압(예: 접지전압)이 인가될 수 있다.
소거 동작에 의해 메모리 셀들의 데이터가 소거된 후 공통 소스 라인(CSL)에 인가되던 소거 전압(Verase)을 차단하고, 공통 소스 라인(CSL)의 전위를 디스차지한다.
도 5를 참조하면, 501 단계에서, 반도체 메모리 장치는 소거 전압(Verase)의 레벨과 소거 전압이 인가되는 시간을 설정한다. 소거 전압(Verase)의 레벨과 인가되는 시간은 기 설정된 값에 따라 결정될 수 있다.
502 단계에서, 반도체 메모리 장치는 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 낮추기 위하여, 선택된 메모리 블록에 소거전압을 인가할 수 있다. 예를 들면, 선택된 메모리 블록에 연결된 모든 워드라인들에 소거 허용전압을 인가하고, 메모리 블록의 구조에 따라 선택된 메모리 블록의 웰(well) 또는 공통 소스 라인(CSL)에 소거전압을 인가할 수 있다.
503 단계에서, 반도체 메모리 장치는 소거전압을 일정시간 동안 인가한 후, 소거 검증 동작을 수행한다. 예를 들면, 소거 검증 동작은 선택된 메모리 블록에 포함된 모든 메모리 셀들의 문턱전압이 목표레벨까지 낮아졌는지를 판단하기 위하여 수행된다. 선택된 메모리 블록의 모든 메모리 셀들의 소거 검증 동작이 패스되면 선택된 메모리 블록의 소거 동작이 종료되지만, 일부 메모리 셀들의 문턱전압이 목표레벨까지 낮아지지 않은 것으로 판단되면, 504 단계로 진행한다.
504 단계에서, 반도체 메모리 장치는 소거 전압을 스텝 전압만큼 상승시킨다. 이 때, 소거 전압은 기 설정된 스텝 전압만큼 상승될 수 있다. 반도체 메모리 장치는 502 단계로 진행하여 선택된 메모리 블록에 상승된 소거전압을 인가하여 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 소거 전압 인가 동작을 수행한다.
도 6은 도 5에 따른 반도체 메모리 장치의 소거 동작에 따른 문제점을 설명하기 위한 도면이다.
도 6은 소거 검증 동작시, 선택된 메모리 블록에 연결된 모든 워드 라인을 검증하였을 때의 문턱 전압 분포(1점 쇄선)와 각각의 워드라인을 리드 한 경우의 문턱 전압 분포(실선)을 나타낸다.
반도체 메모리 장치의 소거 검증 동작에서는 선택된 메모리 블록의 모든 워드 라인에 저항을 걸어 패스 또는 페일을 판별한다. 이 때, 메모리 블록에 포함된 모든 페이지에 데이터가 저장된 기입 완료 블록(Close BLK)의 경우, 소거 전압의 인가에 따라 모든 메모리 셀들의 문턱 전압이 동일하게 감소하는 것을 볼 수 있다.
반면에, 메모리 셀의 일부에만 데이터가 기입된 오픈 블록(Open BLK)의 경우 선택된 메모리 블록의 모든 워드 라인에 저항을 걸어 패스 또는 페일을 판별하는 소거 검증에서는 패스될 수 있으나, 워드 라인 별로 메모리 셀의 문턱 전압을 리드 하면, 가장 먼저 프로그램 되는 0번 워드 라인(WL00) 또는 1번 워드 라인(WL01) 에 연결된 메모리 셀들은 문턱전압이 소거 상태에 도달하지 않을 수 있다. 즉, 각각의 워드 라인을 리드 하면, 0번 워드 라인(WL00) 또는 0번과 1번 워드라인(WL00, WL01)에 연결된 메모리 셀이 소거 상태의 문턱전압을 가지지 못하였음에도, 해당 메모리 블록 전체에 대한 소거 검증은 패스될 수 있다.
따라서, 오픈 블록의 소거 검증 전압과 기입 완료 블록의 소거 검증 전압을 동일하게 사용한다면, P/E cycle (program/erase cycle)에 따라 소거 속도(erase speed)가 열화 되거나, 소거 서스펜드(ERS suspend)에 따른 소거 시간(ERS time)의 부족으로 인한 소거 속도(erase speed)가 열화 되거나, 반도체 메모리 장치의 온도 하향에 따라 소거 속도(erase speed)가 열화되거나, 복수의 플레인들에 대한 소거에 따라 소거 속도(erase speed)가 열화됨에 따라 소거 속도가 느려지는 경우에, 실제로는 소거가 되지 않았음에도, 소거 검증이 패스될 수 있으므로, 반도체 메모리 장치의 신뢰성에 문제가 될 수 있다. 이를 개선하기 위하여, 본 발명의 실시 예에 따른 반도체 메모리 장치는, 소거 검증에 패스하더라도, 첫 번째 워드라인에 대한 소거 검증을 추가로 수행할 수 있다.
도 7은 본 발명의 실시 예에 따른 반도체 메모리 장치의 동작 방법을 설명하기 위한 순서도이다.
도 7을 참조하면, 701 단계에서, 반도체 메모리 장치는 소거 전압(Verase)의 레벨과 소거 전압이 인가되는 시간을 설정한다. 소거 전압(Verase)의 레벨과 인가되는 시간은 기 설정된 값에 따라 결정될 수 있다. 실시 예에서, 반도체 메모리 장치는 701 단계에서 소거 동작의 시작 전압, 스텝 전압의 레벨, 인가 시간을 설정할 수 있다.
703 단계에서, 반도체 메모리 장치는 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 낮추기 위하여, 선택된 메모리 블록에 소거전압을 인가할 수 있다. 예를 들면, 선택된 메모리 블록에 연결된 모든 워드라인들에 소거 허용전압을 인가하고, 메모리 블록의 구조에 따라 선택된 메모리 블록의 웰(well) 또는 공통 소스 라인(CSL)에 소거전압을 인가할 수 있다.
705 단계에서, 반도체 메모리 장치는 소거전압을 일정시간 동안 인가한 후, 소거 검증 동작을 수행한다. 예를 들면, 소거 검증 동작은 선택된 메모리 블록에 포함된 모든 메모리 셀들의 문턱전압이 목표레벨까지 낮아졌는지를 판단하기 위하여 수행된다. 소거 검증 결과가 페일이면 707 단계로 진행한다.
707 단계에서, 반도체 메모리 장치는 소거 전압을 스텝 전압만큼 상승시킨다. 실시 예에서, 반도체 메모리 장치는 705 단계의 검증 결과에 따라 소거 전압 및 인가 시간을 조절할 수 있다. 다양한 실시 예에서, 707 단계에서 반도체 메모리 장치는 801 단계에서 설정된 스텝 전압 및 인가 시간을 변경하지 않고 그대로 유지할 수 있다.
705 단계에서, 반도체 메모리 장치는 소거 검증 결과가 패스이면, 809 단계로 진행할 수 있다.
709 단계에서, 반도체 메모리 장치는 기준 워드 라인을 리드 할 수 있다. 실시 예에서 기준 워드 라인은 기 설정된 워드 라인일 수 있다. 기준 워드 라인은 선택된 메모리 블록에서 가장 먼저 프로그램 되는 페이지에 대응하는 워드 라인일 수 있다. 즉, 기준 워드 라인은 선택된 메모리 블록에 대한 프로그램 동작시 가장 먼저 선택되는 워드 라인일 수 있다. 실시 예에서 기준 워드 라인은 워드 라인 0번(WL00)일 수 있다. 다양한 실시 예에서, 기준 워드 라인은 복수의 워드 라인들을 포함할 수 있다. 예를 들어, 프로그램 동작시 선택되는 순서에 따라 둘 이상의 워드 라인들이 기준 워드 라인으로 설정될 수 있다. 실시 예에서, 기준 워드 라인은 워드라인 0번(WL00) 및 워드 라인 1번(WL01)일 수 있다.
709 단계은 기준 워드 라인에 대한 소거 검증을 수행하는 동작일 수 있다. 반도체 메모리 장치는 선택된 워드 라인에 소거 검증 전압을 인가하고, 비트 라인을 통해 출력되는 전압 또는 전류를 센싱함으로서 기준 워드 라인에 연결된 메모리 셀들의 소거 상태를 검증 할 수 있다.
실시 예에서, 도면에는 미도시 되었으나, 반도체 메모리 장치는 709 단계의 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과에 따라서, 소거 동작의 종료 여부를 결정할 수 있다. 예를 들어, 반도체 메모리 장치는 709 단계의 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 711 및 713 단계를 거치지 않고, 703 단계로 진행하여 메모리 블록 전체에 대한 소거 동작을 수행한 뒤, 705 단계의 소거 검증을 수행할 수도 있다.
709 단계에서 검증한 결과가 패스이면, 반도체 메모리 장치는 검증 동작을 종료한다. 709 단계에서 검증한 결과가 페일이면 711 단계로 진행한다.
711 단계에서, 반도체 메모리 장치는 소거 전압의 레벨과 소거 전압의 인가 시간을 설정할 수 있다. 실시 예에서, 반도체 메모리 장치는 소거 전압의 상승 폭인 스텝 전압의 크기와 소거 전압의 인가 시간 중 적어도 어느 하나를 설정할 수 있다. 예를 들어, 반도체 메모리 장치는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 스텝 전압의 레벨을 701 단계 또는 707 단계에서 설정된 스탭 전압의 레벨 보다 낮게 설정하거나, 소거 전압의 인가 시간을 701 단계 또는 707 단계에서 설정된 인가 시간보다 짧게 줄일 수 있다. 또는 반도체 메모리 장치는 스텝 전압의 레벨을 기 설정된 스탭 전압의 레벨 보다 낮게 설정하고, 또한 소거 전압의 인가 시간도 기 설정된 인가 시간보다 짧게 설정할 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 반도체 메모리 장치의 동작 방법을 설명하기 위한 순서도이다.
도 8을 참조하면, 반도체 메모리 장치는 801 단계에서, 반도체 메모리 장치는 소거 전압(Verase)의 레벨과 소거 전압이 인가되는 시간을 설정한다. 소거 전압(Verase)의 레벨과 인가되는 시간은 기 설정된 값에 따라 결정될 수 있다. 실시 예에서, 반도체 메모리 장치는 801 단계에서 소거 동작의 시작 전압, 스텝 전압의 레벨, 인가 시간을 설정할 수 있다.
803 단계에서, 반도체 메모리 장치는 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 낮추기 위하여, 선택된 메모리 블록에 소거전압을 인가할 수 있다. 예를 들면, 선택된 메모리 블록에 연결된 모든 워드라인들에 소거 허용전압을 인가하고, 메모리 블록의 구조에 따라 선택된 메모리 블록의 웰(well) 또는 공통 소스 라인(CSL)에 소거전압을 인가할 수 있다.
805 단계에서, 반도체 메모리 장치는 소거전압을 일정시간 동안 인가한 후, 제1 소거 검증 동작을 수행한다. 예를 들면, 소거 검증 동작은 선택된 메모리 블록에 포함된 모든 메모리 셀들의 문턱전압이 목표레벨까지 낮아졌는지를 판단하기 위하여 수행된다. 구체적으로 반도체 메모리 장치는 제1 검증 전압을 이용하여 메모리 셀들의 문턱전압을 검증할 수 있다. 제1 검증 전압은 소거 상태를 검증하기 위한 검증 전압일 수 있다. 제1 소거 검증 결과가 페일이면 807 단계로 진행한다.
807 단계에서, 반도체 메모리 장치는 검증 전압을 변경하여, 선택된 메모리 블록에 대한 소거 검증을 수행할 수 있다. 예를 들어, 선택된 메모리 블록에 대해서, 제1 검증 전압보다 높은 제2 검증 전압을 이용하여 선택된 메모리 블록에 대해서 제2 검증 동작을 수행할 수 있다.
반도체 메모리 장치는 제2 소거 검증 동작의 결과에 따라 반도체 메모리 장치는 소거 전압 및 인가 시간을 설정할 수 있다. 구체적으로, 반도체 메모리 장치는 제2 검증 결과가 페일이면, 811단계로 진행하고, 패스이면 809 단계로 진행한다.
809 단계에서, 반도체 메모리 장치는 기 설정된 스탭 전압과 기 설정된 인가 시간에 따라 소거 루프를 반복하도록 소거 전압과 인가 시간을 설정할 수 있다. 예를 들어 반도체 메모리 장치는 소거 전압을 제1 전압으로 설정하고, 인가 시간을 제1 시간으로 설정할 수 있다. 실시 예에서, 제1 전압과 제1 시간은 801 단계에서 설정한 소거 전압의 레벨과 인가 시간과 동일한 값일 수 있다. 실시 예에서, 제1 전압은 스텝 전압의 레벨일 수 있다.
811 단계에서, 반도체 메모리 장치는 기 설정된 스탭 전압과 기 설정된 인가 시간에 따라 소거 루프를 반복하도록 소거 전압과 인가 시간을 설정할 수 있다. 예를 들어 반도체 메모리 장치는 소거 전압을 제2 전압으로 설정하고, 인가 시간을 제2 시간으로 설정할 수 있다. 실시 예에서, 제2 전압과 제2 시간은 각각 809 단계에서 설정한 제1 전압보다 높고, 제1 시간 길이 보다 긴 시간일 수 있다.
805단계에서 제1 검증이 패스되면, 813 단계에서, 반도체 메모리 장치는 기준 워드 라인을 리드 할 수 있다. 실시 예에서 기준 워드 라인은 기 설정된 워드 라인일 수 있다. 기준 워드 라인은 선택된 메모리 블록에서 가장 먼저 프로그램 되는 페이지에 대응하는 워드 라인일 수 있다. 즉, 기준 워드 라인은 선택된 메모리 블록에 대한 프로그램 동작시 가장 먼저 선택되는 워드 라인일 수 있다. 실시 예에서 기준 워드 라인은 워드 라인 0번(WL00)일 수 있다. 다양한 실시 예에서, 기준 워드 라인은 복수의 워드 라인들을 포함할 수 있다. 예를 들어, 프로그램 동작시 선택되는 순서에 따라 둘 이상의 워드 라인들이 기준 워드 라인으로 설정될 수 있다. 실시 예에서, 기준 워드 라인은 워드라인 0번(WL00) 및 워드 라인 1번(WL01)일 수 있다.
813 단계는 기준 워드 라인에 대한 소거 검증을 수행하는 동작일 수 있다. 반도체 메모리 장치는 선택된 워드 라인에 소거 검증 전압을 인가하고, 비트 라인을 통해 출력되는 전압 또는 전류를 센싱함으로서 기준 워드 라인에 연결된 메모리 셀들의 소거 상태를 검증 할 수 있다.
실시 예에서, 도면에는 미도시 되었으나, 반도체 메모리 장치는 813 단계의 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과에 따라서, 소거 동작의 종료 여부를 결정할 수 있다. 예를 들어, 반도체 메모리 장치는 813 단계의 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 815 및 817 단계를 거치지 않고, 803 단계로 진행하여 메모리 블록 전체에 대한 소거 동작을 수행한 뒤, 제1 검증(805) 및 제2 검증(807) 단계를 다시 수행할 수도 있다.813 단계에서 검증한 결과가 패스이면, 반도체 메모리 장치는 검증 동작을 종료한다. 813 단계에서 검증한 결과가 페일이면 815 단계로 진행한다.
815 단계에서, 반도체 메모리 장치는 소거 전압의 레벨과 소거 전압의 인가 시간을 설정할 수 있다. 실시 예에서, 반도체 메모리 장치는 소거 전압의 상승 폭인 스텝 전압의 크기와 소거 전압의 인가 시간 중 적어도 어느 하나를 설정할 수 있다. 예를 들어, 반도체 메모리 장치는 기준 워드 라인에 연결된 메모리 셀들의 소거 검증 결과가 페일이면, 스텝 전압의 레벨을 제3 전압으로 설정하고, 인가 시간을 제3 시간으로 설정할 수 있다. 실시 예에서, 제3 전압은 제2 전압의 레벨보다 같거나 작을 수 있다. 제3 시간의 길이는 제2 시간의 길이와 같거나 짧을 수 있다.
817 단계에서, 반도체 메모리 장치는 설정된 소거 전압을 설정된 인가 시간 동안 선택된 메모리 블록에 인가할 수 있다.
도 9는 도 2의 반도체 메모리 장치를 포함하는 메모리 시스템을 보여주는 블록도이다.
도 9를 참조하면, 메모리 시스템(1500)은 반도체 메모리 장치(1300) 및 컨트롤러(1200)를 포함한다.
반도체 메모리 장치(1300)는 도 2를 참조하여 설명된 반도체 메모리 장치(1000)와 마찬가지로 구성되고, 동작할 수 있다. 이하, 중복되는 설명은 생략된다.
컨트롤러(1200)는 호스트(Host) 및 반도체 메모리 장치(1300)에 연결된다. 호스트(Host)로부터의 요청에 응답하여, 컨트롤러(1200)는 반도체 메모리 장치(1300)를 액세스하도록 구성된다. 예를 들면, 컨트롤러(1200)는 반도체 메모리 장치(1300)의 리드, 프로그램, 소거, 그리고 배경(background) 동작을 제어하도록 구성된다. 컨트롤러(1200)는 반도체 메모리 장치(1300) 및 호스트(Host) 사이에 인터페이스를 제공하도록 구성된다. 컨트롤러(1200)는 반도체 메모리 장치(1300)을 제어하기 위한 펌웨어(firmware)를 구동하도록 구성된다.
컨트롤러(1200)는 램(1210, Random Access Memory), 프로세싱 유닛(1220, processing unit), 호스트 인터페이스(1230, host interface), 메모리 인터페이스(1240, memory interface) 및 에러 정정 블록(1250)을 포함한다.
램(1210)은 프로세싱 유닛(1220)의 동작 메모리, 반도체 메모리 장치(1300) 및 호스트(Host) 사이의 캐시 메모리, 그리고 반도체 메모리 장치(1300) 및 호스트(Host) 사이의 버퍼 메모리 중 적어도 하나로서 이용된다.
프로세싱 유닛(1220)은 컨트롤러(1200)의 제반 동작을 제어한다.
프로세싱 유닛(1220)은 호스트(Host)로부터 수신된 데이터를 랜더마이즈하도록 구성된다. 예를 들면, 프로세싱 유닛(1220)은 랜더마이징 시드(seed)를 이용하여 호스트(Host)로부터 수신된 데이터를 랜더마이즈할 것이다. 랜더마이즈된 데이터는 저장될 데이터로서 반도체 메모리 장치(1300)에 제공되어 메모리 셀 어레이에 프로그램된다.
프로세싱 유닛(1220)은 리드 동작 시 반도체 메모리 장치(1300)로부터 수신된 데이터를 디랜더마이즈하도록 구성된다. 예를 들면, 프로세싱 유닛(1220)은 디랜더마이징 시드를 이용하여 반도체 메모리 장치(1300)로부터 수신된 데이터를 디랜더마이즈할 것이다. 디랜더마이즈된 데이터는 호스트(Host)로 출력될 것이다.
실시 예로서, 프로세싱 유닛(1220)은 소프트웨어(software) 또는 펌웨어(firmware)를 구동함으로써 랜더마이즈 및 디랜더마이즈를 수행할 수 있다.
호스트 인터페이스(1230)는 호스트(Host) 및 컨트롤러(1200) 사이의 데이터 교환을 수행하기 위한 프로토콜을 포함한다. 예시적인 실시 예로서, 컨트롤러(1200)는 USB (Universal Serial Bus) 프로토콜, MMC (multimedia card) 프로토콜, PCI (peripheral component interconnection) 프로토콜, PCI-E (PCI-express) 프로토콜, ATA (Advanced Technology Attachment) 프로토콜, Serial-ATA 프로토콜, Parallel-ATA 프로토콜, SCSI (small computer small interface) 프로토콜, ESDI (enhanced small disk interface) 프로토콜, 그리고 IDE (Integrated Drive Electronics) 프로토콜, 사유(private) 프로토콜 등과 같은 다양한 인터페이스 프로토콜들 중 적어도 하나를 통해 호스트(Host)와 통신하도록 구성된다.
메모리 인터페이스(1240)는 반도체 메모리 장치(1300)과 인터페이싱한다. 예를 들면, 메모리 인터페이스는 낸드 인터페이스 또는 노어 인터페이스를 포함한다.
에러 정정 블록(1250)은 에러 정정 코드(ECC, Error Correcting Code)를 이용하여 반도체 메모리 장치(1300)로부터 수신된 데이터의 에러를 검출하고, 정정하도록 구성된다.
컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적될 수 있다. 예시적인 실시 예로서, 컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적되어, 메모리 카드를 구성할 수 있다. 예를 들면, 컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적되어 PC 카드(PCMCIA, personal computer memory card international association), 컴팩트 플래시 카드(CF), 스마트 미디어 카드(SM, SMC), 메모리 스틱, 멀티미디어 카드(MMC, RS-MMC, MMCmicro), SD 카드(SD, miniSD, microSD, SDHC), 유니버설 플래시 기억장치(UFS) 등과 같은 메모리 카드를 구성할 것이다.
컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적되어 반도체 드라이브(SSD, Solid State Drive)를 구성할 수 있다. 반도체 드라이브(SSD)는 반도체 메모리에 데이터를 저장하도록 구성되는 저장 장치를 포함한다. 메모리 시스템이 반도체 드라이브(SSD)로 이용되는 경우, 메모리 시스템에 연결된 호스트(Host)의 동작 속도는 획기적으로 개선된다.
다른 예로서, 메모리 시스템은 컴퓨터, UMPC (Ultra Mobile PC), 워크스테이션, 넷북(net-book), PDA (Personal Digital Assistants), 포터블(portable) 컴퓨터, 웹 타블렛(web tablet), 무선 전화기(wireless phone), 모바일 폰(mobile phone), 스마트폰(smart phone), e-북(e-book), PMP(portable multimedia player), 휴대용 게임기, 네비게이션(navigation) 장치, 블랙박스(black box), 디지털 카메라(digital camera), 3차원 수상기(3-dimensional television), 디지털 음성 녹음기(digital audio recorder), 디지털 음성 재생기(digital audio player), 디지털 영상 녹화기(digital picture recorder), 디지털 영상 재생기(digital picture player), 디지털 동영상 녹화기(digital video recorder), 디지털 동영상 재생기(digital video player), 정보를 무선 환경에서 송수신할 수 있는 장치, 홈 네트워크를 구성하는 다양한 전자 장치들 중 하나, 컴퓨터 네트워크를 구성하는 다양한 전자 장치들 중 하나, 텔레매틱스 네트워크를 구성하는 다양한 전자 장치들 중 하나, RFID 장치, 또는 컴퓨팅 시스템을 구성하는 다양한 구성 요소들 중 하나 등과 같은 전자 장치의 다양한 구성 요소들 중 하나로 제공된다.
예시적인 실시 예로서, 반도체 메모리 장치(1300) 또는 메모리 시스템은 다양한 형태들의 패키지로 실장될 수 있다. 예를 들면, 반도체 메모리 장치(1300) 또는 메모리 시스템은 PoP(Package on Package), Ball grid arrays(BGAs), Chip scale packages(CSPs), Plastic Leaded Chip Carrier(PLCC), Plastic Dual In Line Package(PDIP), Die in Waffle Pack, Die in Wafer Form, Chip On Board(COB), Ceramic Dual In Line Package(CERDIP), Plastic Metric Quad Flat Pack(MQFP), Thin Quad Flatpack(TQFP), Small Outline integrated circuit (SOIC), Shrink Small Outline Package(SSOP), Thin Small Outline Package(TSOP), Thin Quad Flatpack(TQFP), System In Package(SIP), Multi-Chip Package(MCP), Wafer-level Fabricated Package(WFP), Wafer-Level Processed Stack Package(WSP) 등과 같은 방식으로 패키지화되어 실장될 수 있다.
도 10은 도 9의 메모리 시스템의 응용 예(2000)를 보여주는 블록도이다.
도 10을 참조하면, 메모리 시스템(2000)은 반도체 메모리 장치(2100) 및 컨트롤러(2200)를 포함한다. 반도체 메모리 장치(2100)는 복수의 반도체 메모리 칩들을 포함한다. 복수의 반도체 메모리 칩들은 복수의 그룹들로 분할된다.
도 10에서, 복수의 그룹들은 각각 제 1 내지 제 k 채널들(CH1~CHk)을 통해 컨트롤러(2200)와 통신하는 것으로 도시되어 있다. 각 반도체 메모리 칩은 도 2을 참조하여 설명된 반도체 메모리 장치(1000) 중 하나와 마찬가지로 구성되고, 동작할 것이다.
각 그룹은 하나의 공통 채널을 통해 컨트롤러(2200)와 통신하도록 구성된다. 컨트롤러(2200)는 도 9를 참조하여 설명된 컨트롤러(1200)와 마찬가지로 구성되고, 복수의 채널들(CH1~CHk)을 통해 반도체 메모리 장치(2100)의 복수의 메모리 칩들을 제어하도록 구성된다.
도 10에서, 하나의 채널에 복수의 반도체 메모리 칩들이 연결되는 것으로 설명되었다. 그러나, 하나의 채널에 하나의 반도체 메모리 칩이 연결되도록 메모리 시스템(2000)이 변형될 수 있음이 이해될 것이다.
도 11은 도 10을 참조하여 설명된 메모리 시스템을 포함하는 컴퓨팅 시스템을 보여주는 블록도이다.
도 11을 참조하면, 컴퓨팅 시스템(3000)은 중앙 처리 장치(3100), 램(3200, RAM, Random Access Memory), 사용자 인터페이스(3300), 전원(3400), 시스템 버스(3500), 그리고 메모리 시스템(2000)을 포함한다.
메모리 시스템(2000)은 시스템 버스(3500)를 통해, 중앙처리장치(3100), 램(3200), 사용자 인터페이스(3300), 그리고 전원(3400)에 전기적으로 연결된다. 사용자 인터페이스(3300)를 통해 제공되거나, 중앙 처리 장치(3100)에 의해서 처리된 데이터는 메모리 시스템(2000)에 저장된다.
도 11에서, 반도체 메모리 장치(2100)는 컨트롤러(2200)를 통해 시스템 버스(3500)에 연결되는 것으로 도시되어 있다. 그러나, 반도체 메모리 장치(2100)는 시스템 버스(3500)에 직접 연결되도록 구성될 수 있다. 이때, 컨트롤러(2200)의 기능은 중앙 처리 장치(3100) 및 램(3200)에 의해 수행될 것이다.
도 11에서, 도 10을 참조하여 설명된 메모리 시스템이 제공되는 것으로 도시되어 있다. 그러나, 메모리 시스템(2000)은 도 9를 참조하여 설명된 메모리 시스템(1500)으로 대체될 수 있다. 실시 예로서, 컴퓨팅 시스템(3000)은 도 9 및 도 10을 참조하여 설명된 메모리 시스템들(1500, 2000)을 모두 포함하도록 구성될 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
상술한 실시 예들에서, 모든 단계는 선택적으로 수행의 대상이 되거나 생략의 대상이 될 수 있다. 또한 각 실시 예에서 단계들은 반드시 순서대로 일어날 필요는 없으며, 뒤바뀔 수 있다. 한편, 본 명세서와 도면에 개시된 본 명세서의 실시 예들은 본 명세서의 기술 내용을 쉽게 설명하고 본 명세서의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 명세서의 범위를 한정하고자 하는 것은 아니다. 즉 본 명세서의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 명세서가 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
100: 메모리 셀 어레이
200: 어드레스 디코더
300: 전압 발생기
400: 읽기 및 쓰기 회로
500: 데이터 입출력 회로
600: 주변 회로
700: 제어 회로
710: 소거 동작 제어부
1000: 반도체 메모리 장치

Claims (20)

  1. 복수의 메모리 블록들을 포함하는 메모리 셀 어레이;
    상기 복수의 메모리 블록들 중 선택된 메모리 블록에 대한 소거 동작을 수행하는 주변 회로; 및
    상기 소거 동작의 수행 시, 상기 선택된 메모리 블록에 대한 소거 검증에 패스하면, 상기 선택된 메모리 블록과 연결된 복수의 워드 라인들 중 기준 워드 라인에 연결되는 메모리 셀들을 검증하고, 상기 기준 워드 라인에 연결되는 메모리 셀들의 검증 결과에 따라 상기 소거 동작을 수행하도록 상기 주변 회로를 제어하는 제어회로;를 포함하는 반도체 메모리 장치.
  2. 제 1항에 있어서, 상기 제어회로는,
    상기 소거 동작시, 상기 소거 검증이 패스될 때 까지 상기 선택된 메모리 블록에 소거 전압을 인가하는 소거 전압 인가 동작 및 상기 선택된 메모리 블록에 대한 상기 소거 검증 동작을 반복 수행하는 반도체 메모리 장치.
  3. 제 2항에 있어서, 상기 제어회로는,
    상기 소거 전압 인가 동작과 상기 소거 검증 동작이 반복 수행될 때마다 상기 소거 전압을 제1 스텝 전압만큼 증가시키고,
    상기 기준 워드 라인에 연결되는 메모리 셀들의 검증 결과가 페일이면, 상기 제1 스텝 전압을 상기 제1 스텝 전압보다 작은 레벨을 갖는 제2 스텝 전압으로 설정하는 반도체 메모리 장치.
  4. 제 2항에 있어서, 상기 제어회로는,
    상기 소거 전압 인가 동작과 상기 소거 검증 동작이 반복 수행될 때마다 상기 소거 전압을 제1 시간만큼 상기 메모리 블록에 인가하고,
    상기 기준 워드 라인에 연결되는 메모리 셀들의 검증 결과가 페일이면, 상기 제1 시간 보다 짧은 제2 시간동안 상기 소거 전압을 상기 메모리 블록에 인가하는 반도체 메모리 장치.
  5. 제 1항에 있어서, 상기 기준 워드 라인은,
    상기 선택된 메모리 블록에 연결되는 워드 라인들 중 적어도 하나 이상을 포함하는 반도체 메모리 장치.
  6. 제 1항에 있어서, 상기 기준 워드 라인은,
    상기 선택된 메모리 블록에 포함된 복수의 메모리 셀들 중 가장 먼저 프로그램 되는 메모리 셀들에 연결되는 워드 라인인 반도체 메모리 장치.
  7. 제 1항에 있어서, 상기 제어회로는,
    상기 기준 워드 라인에 연결되는 메모리 셀들의 검증 결과가 패스이면, 상기 소거 동작을 종료하는 반도체 메모리 장치.
  8. 복수의 메모리 블록들 중 선택된 메모리 블록에 대한 소거 동작을 수행하는 단계;
    상기 선택된 메모리 블록에 대한 소거 검증이 패스되면, 상기 선택된 메모리 블록과 연결된 복수의 워드 라인들 중 기준 워드 라인에 연결된 메모리 셀들의 문턱전압을 검증 하는 단계; 및
    상기 기준 워드 라인에 연결된 메모리 셀들의 검증 결과에 따라 상기 소거 동작을 수행하는 단계;를 포함하는 반도체 메모리 장치의 동작 방법.
  9. 제 8항에 있어서, 상기 소거 동작을 수행하는 단계는,
    상기 선택된 메모리 블록에 소거 전압을 인가하는 단계;
    상기 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 검증하는 단계; 및
    상기 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압에 대한 검증이 패스될 때까지 상기 소거 전압을 인가하는 단계 및 상기 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 검증하는 단계를 반복 수행하는 단계;를 포함하는 반도체 메모리 장치의 동작 방법.
  10. 제 9항에 있어서, 상기 소거 전압은,
    상기 소거 전압을 인가하는 단계 및 상기 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 검증하는 단계를 반복 수행될 때마다 제1 스텝 전압만큼 증가되고,
    상기 기준 워드 라인에 연결된 메모리 셀들의 문턱전압의 검증결과에 따라 상기 소거 동작을 수행하는 단계는,
    상기 기준 워드 라인에 연결된 메모리 셀들의 검증 결과가 페일이면, 상기 제1 스텝 전압을 상기 제1 스텝 전압보다 작은 레벨을 갖는 제2 스텝 전압으로 설정하는 반도체 메모리 장치의 동작 방법.
  11. 제 9항에 있어서, 상기 소거 전압은,
    상기 소거 전압을 인가하는 단계 및 상기 선택된 메모리 블록에 포함된 메모리 셀들의 문턱전압을 검증하는 단계를 반복 수행될 때마다 상기 메모리 블록에 제1 시간 동안 인가되고,
    상기 기준 워드 라인에 연결된 메모리 셀들의 문턱전압의 검증결과에 따라 상기 소거 동작을 수행하는 단계는,
    상기 기준 워드 라인에 연결된 메모리 셀들의 검증 결과가 페일이면, 상기 소거 전압을 상기 제1 시간 보다 짧은 제2 시간 동안 인가하는 반도체 메모리 장치의 동작 방법.
  12. 제 8항에 있어서, 상기 기준 워드 라인은,
    상기 선택된 메모리 블록에 연결되는 워드 라인들 중 적어도 하나 이상을 포함하는 반도체 메모리 장치의 동작 방법.
  13. 제 8항에 있어서, 상기 기준 워드 라인은,
    상기 선택된 메모리 블록에 포함된 복수의 메모리 셀들 중 가장 먼저 프로그램 되는 메모리 셀들에 연결되는 워드 라인인 반도체 메모리 장치의 동작 방법.
  14. 제 8항에 있어서, 상기 기준 워드 라인에 연결된 메모리 셀들의 문턱전압의 검증결과에 따라 상기 소거 동작을 수행하는 단계는,
    상기 기준 워드 라인에 연결된 메모리 셀들의 검증 결과가 패스이면, 상기 소거 동작을 종료하는 반도체 메모리 장치의 동작 방법.
  15. 선택된 메모리 블록에 소거 전압을 인가하는 단계;
    상기 선택된 메모리 블록을 제1 검증 전압을 이용하여 검증하는 제1 검증 동작을 수행하는 단계
    상기 제1 검증 동작이 페일되면, 상기 제1 검증 전압보다 높은 레벨을 갖는 제2 검증 전압을 이용하여 상기 메모리 블록을 검증하는 제2 검증 동작을 수행 하는 단계; 및
    상기 제1 검증 동작이 패스되면, 상기 선택된 메모리 블록에 포함된 메모리 셀들 중 기준 워드 라인에 연결된 메모리 셀들을 검증하는 워드 라인 검증 동작을 수행하는 단계;를 포함하는 반도체 메모리 장치의 동작 방법.
  16. 제 15항에 있어서,
    상기 제2 검증 동작이 페일되면, 상기 소거 전압을 제1 스탭 전압만큼 증가시켜 상기 선택된 메모리 블록에 인가하고,
    상기 제2 검증 동작이 패스되면, 상기 소거 전압을 상기 제1 스탭 전압보다 낮은 제2 스탭 전압만큼 증가시켜 상기 선택된 메모리 블록에 인가하는 단계;를 더 포함하는 반도체 메모리 장치의 동작 방법.
  17. 제 16항에 있어서,
    상기 워드 라인 검증 동작이 페일되면, 상기 소거 전압을 상기 제1 스탭 전압보다 낮은 제3 스탭 전압만큼 증가시켜 상기 선택된 메모리 블록에 인가하는 단계;를 더 포함하는 반도체 메모리 장치의 동작 방법.
  18. 제 15항에 있어서,
    상기 제2 검증 동작이 페일되면, 상기 소거 전압을 제1 시간 동안 상기 선택된 메모리 블록에 인가하고,
    상기 제2 검증 동작이 패스되면, 상기 소거 전압을 상기 제1 시간 보다 짧은 제2 시간 동안 상기 선택된 메모리 블록에 인가하는 단계;를 더 포함하는 반도체 메모리 장치의 동작 방법.
  19. 제 18항에 있어서,
    상기 워드 라인 검증 동작이 페일되면, 상기 소거 전압을 상기 제1 시간보다 짧은 제3 시간 동안 상기 선택된 메모리 블록에 인가하는 단계;를 더 포함하는 반도체 메모리 장치의 동작 방법.
  20. 제 15항에 있어서, 상기 기준 워드 라인은,상기 선택된 메모리 블록에 포함된 복수의 메모리 셀들 중 가장 먼저 프로그램 되는 메모리 셀들에 연결되는 워드 라인인 반도체 메모리 장치의 동작 방법.
KR1020160149530A 2016-11-10 2016-11-10 반도체 메모리 장치 및 그것의 동작 방법 KR102643658B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160149530A KR102643658B1 (ko) 2016-11-10 2016-11-10 반도체 메모리 장치 및 그것의 동작 방법
US15/641,485 US10373689B2 (en) 2016-11-10 2017-07-05 Semiconductor memory device and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160149530A KR102643658B1 (ko) 2016-11-10 2016-11-10 반도체 메모리 장치 및 그것의 동작 방법

Publications (2)

Publication Number Publication Date
KR20180052814A true KR20180052814A (ko) 2018-05-21
KR102643658B1 KR102643658B1 (ko) 2024-03-07

Family

ID=62065660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160149530A KR102643658B1 (ko) 2016-11-10 2016-11-10 반도체 메모리 장치 및 그것의 동작 방법

Country Status (2)

Country Link
US (1) US10373689B2 (ko)
KR (1) KR102643658B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200139042A (ko) * 2019-06-03 2020-12-11 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305654B2 (en) * 2012-12-19 2016-04-05 Intel Corporation Erase and soft program for vertical NAND flash
KR102545044B1 (ko) * 2018-06-01 2023-06-19 삼성전자주식회사 비휘발성 메모리 장치의 데이터 소거 방법 및 이를 수행하는 비휘발성 메모리 장치
US11289170B2 (en) 2018-06-01 2022-03-29 Samsung Electronics Co., Ltd. Nonvolatile memory device with capability of determing degradation of data erase characteristics
KR102501778B1 (ko) * 2018-06-20 2023-02-21 에스케이하이닉스 주식회사 저장 장치 및 그 동작 방법
KR102569820B1 (ko) * 2018-10-25 2023-08-24 에스케이하이닉스 주식회사 메모리 컨트롤러 및 그 동작 방법
KR20210069257A (ko) * 2019-12-03 2021-06-11 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법
US11935603B2 (en) * 2021-11-04 2024-03-19 Infineon Technologies LLC Erase power loss indicator (EPLI) implementation in flash memory device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080158997A1 (en) * 2005-03-31 2008-07-03 Gerrit Jan Hemink Systems For Erasing Non-Volatile Memory Using Individual Verification And Additional Erasing of Subsets of Memory Cells
KR100921014B1 (ko) * 2005-03-31 2009-10-09 샌디스크 코포레이션 메모리 셀들의 서브세트들에 대한 개별 검증 및 추가소거를 이용한 비휘발성 메모리의 소거
US7630255B2 (en) * 2006-12-28 2009-12-08 Hynix Semiconductor Inc. Method for erasing data of NAND flash memory device
KR20130127180A (ko) * 2012-05-14 2013-11-22 삼성전자주식회사 저항성 랜덤 액세스 메모리의 소거 방법
KR20160046954A (ko) * 2014-10-20 2016-05-02 삼성전자주식회사 불휘발성 메모리 장치의 동작 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732585B1 (ko) 2010-08-26 2017-05-04 삼성전자주식회사 불휘발성 메모리 장치, 그것의 동작 방법, 그리고 그것을 포함하는 메모리 시스템
KR20120092911A (ko) 2011-02-14 2012-08-22 에스케이하이닉스 주식회사 반도체 메모리 장치 및 데이터 소거 방법
JP5514135B2 (ja) * 2011-02-15 2014-06-04 株式会社東芝 不揮発性半導体記憶装置
US8553468B2 (en) * 2011-09-21 2013-10-08 Densbits Technologies Ltd. System and method for managing erase operations in a non-volatile memory
KR20130044698A (ko) 2011-10-24 2013-05-03 에스케이하이닉스 주식회사 반도체 메모리 장치 및 이의 동작 방법
KR102235516B1 (ko) * 2014-09-30 2021-04-05 삼성전자주식회사 이레이즈 컨트롤 유닛을 포함하는 메모리 시스템 및 동작 방법
US9728268B1 (en) * 2016-03-25 2017-08-08 Kabushiki Kaisha Toshiba Memory device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080158997A1 (en) * 2005-03-31 2008-07-03 Gerrit Jan Hemink Systems For Erasing Non-Volatile Memory Using Individual Verification And Additional Erasing of Subsets of Memory Cells
KR100921014B1 (ko) * 2005-03-31 2009-10-09 샌디스크 코포레이션 메모리 셀들의 서브세트들에 대한 개별 검증 및 추가소거를 이용한 비휘발성 메모리의 소거
US7630255B2 (en) * 2006-12-28 2009-12-08 Hynix Semiconductor Inc. Method for erasing data of NAND flash memory device
KR20130127180A (ko) * 2012-05-14 2013-11-22 삼성전자주식회사 저항성 랜덤 액세스 메모리의 소거 방법
KR20160046954A (ko) * 2014-10-20 2016-05-02 삼성전자주식회사 불휘발성 메모리 장치의 동작 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200139042A (ko) * 2019-06-03 2020-12-11 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법

Also Published As

Publication number Publication date
KR102643658B1 (ko) 2024-03-07
US10373689B2 (en) 2019-08-06
US20180130535A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US9997248B2 (en) Semiconductor memory device and method of operating the same
CN109427400B (zh) 存储器装置及其操作方法
US10276245B2 (en) Semiconductor memory device and method of operating the same
US10147489B2 (en) Semiconductor memory device and operation method for controlling bit line voltage of the same
KR20190019427A (ko) 메모리 장치 및 그 동작 방법
US10339996B2 (en) Semiconductor memory device and method for operating the same
US10515685B2 (en) Semiconductor memory device for performing erase operation and operating method thereof
US10373689B2 (en) Semiconductor memory device and method of operating the same
US10121545B2 (en) Semiconductor memory device and operating method for inhibiting programming
KR20170092006A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR102595291B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR102503169B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR102603243B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR102429456B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20190044349A (ko) 반도체 메모리 장치 및 그 동작 방법
KR20180032911A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20190012571A (ko) 메모리 장치 및 그 동작 방법
KR20180051984A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20170052029A (ko) 반도체 메모리 장치 및 그것의 동작 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right