KR20150082481A - 공기입 타이어 - Google Patents

공기입 타이어 Download PDF

Info

Publication number
KR20150082481A
KR20150082481A KR1020157014766A KR20157014766A KR20150082481A KR 20150082481 A KR20150082481 A KR 20150082481A KR 1020157014766 A KR1020157014766 A KR 1020157014766A KR 20157014766 A KR20157014766 A KR 20157014766A KR 20150082481 A KR20150082481 A KR 20150082481A
Authority
KR
South Korea
Prior art keywords
tire
circumferential
belt
reinforcing layer
width
Prior art date
Application number
KR1020157014766A
Other languages
English (en)
Other versions
KR101711815B1 (ko
Inventor
코이치 코토쿠
Original Assignee
요코하마 고무 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요코하마 고무 가부시키가이샤 filed Critical 요코하마 고무 가부시키가이샤
Publication of KR20150082481A publication Critical patent/KR20150082481A/ko
Application granted granted Critical
Publication of KR101711815B1 publication Critical patent/KR101711815B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • B60C2011/013Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered provided with a recessed portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

공기입 타이어(1)는, 타이어 둘레 방향으로 연재하는 적어도 3개의 둘레 방향 주홈(2)과, 이들의 둘레 방향 주홈(2)으로 구획되어 이루어지는 복수의 육부(3)를 구비한다. 또한, 벨트층이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층을 적층하여 이루어진다. 또한, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부의 점 P1에 있어서의 직경 D1과, 숄더 육부(3)의 접지면 내에 있는 소정의 점 P2에 있어서의 직경 D2와, 타이어 접지단(T)에 있어서의 직경 D3이, D2<D1 또한 D2<D3의 관계를 가진다.

Description

공기입 타이어{PNEUMATIC TIRE}
본 발명은, 공기입(空氣入) 타이어에 관한 것이고, 한층 더 상세하게는, 내편마모(耐偏摩耗) 성능을 향상할 수 있는 공기입 타이어에 관한 것이다.
트럭·버스 등에 장착되는 근년(近年)의 중하중용(重荷重用) 타이어는, 낮은 편평률을 가지는 한편으로, 벨트층에 둘레 방향 보강층을 배치하는 것에 의하여, 트레드(tread)부의 형상을 보지(保持)하고 있다. 이 둘레 방향 보강층은, 타이어 둘레 방향에 대하여 대략 0[deg]가 되는 벨트 각도를 가지는 벨트 플라이(belt ply)이고, 한 쌍의 교차 벨트에 적층되어 배치된다. 이와 같은 구성을 채용하는 종래의 공기입 타이어로서, 특허 문헌 1 ~ 4에 기재되는 기술이 알려져 있다.
특허 문헌 1 : 일본국 특허공보 특허제4642760호 특허 문헌 2 : 일본국 특허공보 특허제4663638호 특허 문헌 3 : 일본국 특허공보 특허제4663639호 특허 문헌 4 : 일본국 공표특허공보 특표2012-522686호
여기에서, 공기입 타이어에서는, 숄더 육부(陸部)의 편마모를 억제하여야 할 과제가 있다.
그래서, 본 발명은, 상기에 감안하여 이루어진 것이고, 내편마모 성능을 향상할 수 있는 공기입 타이어를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명에 관련되는 공기입 타이어는, 카커스(carcass)층과, 상기 카커스층의 타이어 직경 방향 외측에 배치되는 벨트층과, 상기 벨트층의 타이어 직경 방향 외측에 배치되는 트레드 고무를 구비하는 것과 함께, 타이어 둘레 방향으로 연재(延在)하는 적어도 3개의 둘레 방향 주(主)홈과, 이들의 둘레 방향 주홈으로 구획되어 이루어지는 복수의 육부를 구비하는 공기입 타이어이고, 상기 벨트층이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층을 적층하여 이루어지고, 또한, 상기 둘레 방향 주홈 중 타이어 폭 방향의 가장 외측에 있는 좌우의 상기 둘레 방향 주홈을 최외주(最外周) 방향 주홈이라고 부르는 것과 함께, 상기 좌우의 최외주 방향 주홈보다도 타이어 폭 방향 외측에 있는 상기 육부를 숄더 육부라고 부를 때에, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 숄더 육부의 타이어 폭 방향 내측의 에지(edge)부의 점 P1에 있어서의 직경 D1과, 상기 숄더 육부의 접지면 내에 있는 소정의 점 P2에 있어서의 직경 D2와, 타이어 접지단(接地端)(T)에 있어서의 직경 D3이, D2<D1 또한 D2<D3의 관계를 가지는 것을 특징으로 한다.
본 발명에 관련되는 공기입 타이어에서는, 접지 영역에 있어서의 숄더 육부의 프로파일이, 타이어 폭 방향 내측의 에지부와 타이어 접지단(T)과의 사이에, 소경(小徑)부(D2<D1 또한 D2<D3으로 되는 직경 D2를 가지는 점)를 구비한다. 이와 같은 구성에서는, 타이어 접지 시에 있어서의 숄더 육부의 접지단(T) 측의 접지압(接地壓)이 높아지고, 타이어 접지 시에 있어서의 센터 영역의 육부(3)의 미끄러짐량과 숄더 육부의 미끄러짐량이 균일화된다. 이것에 의하여, 숄더 육부(3)의 편마모가 효과적으로 억제되는 이점이 있다.
도 1은, 본 발명의 실시 형태에 관련되는 공기입 타이어를 도시하는 타이어 자오선 방향의 단면도이다.
도 2는, 도 1에 기재한 공기입 타이어의 벨트층을 도시하는 설명도이다.
도 3은, 도 1에 기재한 공기입 타이어의 벨트층을 도시하는 설명도이다.
도 4는, 도 1에 기재한 공기입 타이어의 숄더 육부를 도시하는 확대도이다.
도 5는, 도 1에 기재한 공기입 타이어를 도시하는 설명도이다.
도 6은, 도 1에 기재한 공기입 타이어의 작용을 도시하는 설명도이다.
도 7은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다.
도 8은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다.
도 9는, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
도 10은, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
도 11은, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
도 12는, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
이하, 본 발명에 관하여 도면을 참조하면서 상세하게 설명한다. 덧붙여, 이 실시 형태에 의하여 본 발명이 한정되는 것은 아니다. 또한, 이 실시 형태의 구성 요소에는, 발명의 동일성을 유지하면서 치환 가능한 또한 치환 자명한 것이 포함된다. 또한, 이 실시 형태에 기재된 복수의 변형예는, 당업자 자명의 범위 내에서 임의로 조합이 가능하다.
[공기입 타이어]
도 1은, 본 발명의 실시 형태에 관련되는 공기입 타이어를 도시하는 타이어 자오선 방향의 단면도이다. 동(同) 도면은, 공기입 타이어(1)의 일례로서, 장거리 수송용의 트럭, 버스 등에 장착되는 중하중용 레이디얼 타이어(radial tire)를 도시하고 있다. 덧붙여, 부호 CL은, 타이어 적도면이다. 또한, 동 도면에서는, 트레드단(P)과 타이어 접지단(T)이, 일치하고 있다. 또한, 동 도면에서는, 둘레 방향 보강층(145)에 해칭(hatching)을 넣고 있다.
이 공기입 타이어(1)는, 한 쌍의 비드 코어(bead core)(11, 11)와, 한 쌍의 비드 필러(bead filler)(12, 12)와, 카커스층(13)과, 벨트층(14)과, 트레드 고무(15)와, 한 쌍의 사이드 월(side wall) 고무(16, 16)를 구비한다(도 1 참조).
한 쌍의 비드 코어(11, 11)는, 환상(環狀) 구조를 가지고, 좌우의 비드부의 코어를 구성한다. 한 쌍의 비드 필러(12, 12)는, 로어(lower) 필러(121) 및 어퍼(upper) 필러(122)로 이루어지고, 한 쌍의 비드 코어(11, 11)의 타이어 직경 방향 외주(外周)에 각각 배치되어 비드부를 보강한다.
카커스층(13)은, 좌우의 비드 코어(11, 11) 간에 토로이덜(toroidal) 형상으로 걸쳐 놓아져 타이어의 골격을 구성한다. 또한, 카커스층(13)의 양 단부(端部)는, 비드 코어(11) 및 비드 필러(12)를 감싸도록 타이어 폭 방향 내측으로부터 타이어 폭 방향 외측으로 되감겨 계지(係止)된다. 또한, 카커스층(13)은, 스틸 혹은 유기 섬유재(예를 들어, 나일론, 폴리에스테르, 레이온 등)로 이루어지는 복수의 카커스 코드를 코트 고무로 피복(被覆)하고 압연(壓延) 가공하여 구성되고, 절댓값으로 85[deg] 이상 95[deg] 이하의 카커스 각도(타이어 둘레 방향에 대한 카커스 코드의 섬유 방향의 경사각)를 가진다.
벨트층(14)은, 복수의 벨트 플라이(141 ~ 145)를 적층하여 이루어지고, 카커스층(13)의 외주에 걸어 돌려져 배치된다. 벨트층(14)의 구체적인 구성에 관하여는, 후술한다.
트레드 고무(15)는, 카커스층(13) 및 벨트층(14)의 타이어 직경 방향 외주에 배치되어 타이어의 트레드부를 구성한다. 한 쌍의 사이드 월 고무(16, 16)는, 카커스층(13)의 타이어 폭 방향 외측에 각각 배치되어 좌우의 사이드 월부를 구성한다.
덧붙여, 도 1의 구성에서는, 공기입 타이어(1)가, 타이어 둘레 방향으로 연재하는 7개의 둘레 방향 주홈(2)과, 이들의 둘레 방향 주홈(2)으로 구획되어 이루어지는 8개의 육부(3)를 구비하고 있다. 또한, 각 육부(3)가, 타이어 둘레 방향으로 연속하는 리브(rib), 혹은, 러그(lug) 홈(도시 생략)에 의하여 타이어 둘레 방향으로 분단된 블록으로 되어 있다.
여기에서, 둘레 방향 주홈이란, 5.0[mm] 이상의 홈 폭을 가지는 둘레 방향 홈을 말한다. 둘레 방향 주홈의 홈 폭은, 홈 개구부에 형성된 노치(notch)부나 모따기부를 제외하여 측정된다.
또한, 이 공기입 타이어(1)에서는, 타이어 폭 방향의 가장 외측에 있는 좌우의 둘레 방향 주홈(2, 2)을 최외주 방향 주홈이라고 부른다. 또한, 좌우의 최외주 방향 주홈(2, 2)으로 구획된 타이어 폭 방향 외측에 있는 좌우의 육부(3, 3)를 숄더 육부라고 부른다.
[벨트층]
도 2 및 도 3은, 도 1에 기재한 공기입 타이어의 벨트층을 도시하는 설명도이다. 이러한 도면에 있어서, 도 2는, 타이어 적도면(CL)을 경계로 한 트레드부의 편측 영역을 도시하고, 도 3은, 벨트층(14)의 적층 구조를 도시하고 있다. 덧붙여, 도 3에서는, 각 벨트 플라이(141 ~ 145) 중의 가는 선이 각 벨트 플라이(141 ~ 145)의 벨트 코드를 모식적으로 도시하고 있다.
벨트층(14)은, 고각도(高角度) 벨트(141)와, 한 쌍의 교차 벨트(142, 143)와, 벨트 커버(144)와, 둘레 방향 보강층(145)을 적층하여 이루어지고, 카커스층(13)의 외주에 걸어 돌려져 배치된다(도 2 참조).
고각도 벨트(141)는, 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 코트 고무로 피복하고 압연 가공하여 구성되고, 절댓값으로 45[deg] 이상 70[deg] 이하의 벨트 각도(타이어 둘레 방향에 대한 벨트 코드의 섬유 방향의 경사각)를 가진다. 또한, 고각도 벨트(141)는, 카커스층(13)의 타이어 직경 방향 외측에 적층되어 배치된다.
한 쌍의 교차 벨트(142, 143)는, 코트 고무로 피복된 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 압연 가공하여 구성되고, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가진다. 또한, 한 쌍의 교차 벨트(142, 143)는, 서로 다른 부호의 벨트 각도를 가지고, 벨트 코드의 섬유 방향을 서로 교차시켜 적층된다(크로스 플라이(cross ply) 구조). 여기에서는, 타이어 직경 방향 내측에 위치하는 교차 벨트(142)를 내경(內徑) 측 교차 벨트라고 부르고, 타이어 직경 방향 외측에 위치하는 교차 벨트(143)를 외경(外徑) 측 교차 벨트라고 부른다. 덧붙여, 3매 이상의 교차 벨트가 적층되어 배치되어도 무방하다(도시 생략). 또한, 한 쌍의 교차 벨트(142, 143)는, 이 실시 형태에서는, 고각도 벨트(141)의 타이어 직경 방향 외측에 적층되어 배치되어 있다.
또한, 벨트 커버(144)는, 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 코트 고무로 피복하고 압연 가공하여 구성되고, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가진다. 또한, 벨트 커버(144)는, 한 쌍의 교차 벨트(142, 143)의 타이어 직경 방향 외측에 적층되어 배치되어 있다. 덧붙여, 이 실시 형태에서는, 벨트 커버(144)가, 외경 측 교차 벨트(143)와 동일한 벨트 각도를 가지고, 또한, 벨트층(14)의 최외층(最外層)에 배치되어 있다.
둘레 방향 보강층(145)은, 코트 고무로 피복된 스틸제의 벨트 코드를 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에서 경사시키면서 나선상(螺旋狀)으로 감아 돌려 구성된다. 또한, 둘레 방향 보강층(145)은, 이 실시 형태에서는, 한 쌍의 교차 벨트(142, 143)의 사이에 끼워 넣어져 배치되어 있다. 또한, 둘레 방향 보강층(145)은, 한 쌍의 교차 벨트(142, 143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치된다. 구체적으로는, 1개 혹은 복수 개의 와이어가 내경 측 교차 벨트(142)의 외주에 나선상으로 감아 돌려져, 둘레 방향 보강층(145)이 형성된다. 이 둘레 방향 보강층(145)이 타이어 둘레 방향의 강성을 보강하는 것에 의하여, 타이어의 내구(耐久) 성능이 향상한다.
덧붙여, 이 공기입 타이어(1)에서는, 벨트층(14)이, 에지 커버를 가져도 무방하다(도시 생략). 일반적으로, 에지 커버는, 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 코트 고무로 피복하고 압연 가공하여 구성되고, 절댓값으로 0[deg] 이상 5[deg] 이하의 벨트 각도를 가진다. 또한, 에지 커버는, 외경 측 교차 벨트(143)(혹은 내경 측 교차 벨트(142))의 좌우의 에지부의 타이어 직경 방향 외측에 각각 배치된다. 이들의 에지 커버가 테 효과를 발휘하는 것에 의하여, 트레드부 센터 영역과 숄더 영역과의 직경 성장차가 완화되어, 타이어의 내편마모 성능이 향상한다.
또한, 도 2의 구성에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143)의 사이에 끼워 넣어져 배치되어 있다(도 2 참조). 그러나, 이것에 한하지 않고, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143)의 타이어 직경 방향 외측에 배치되어도 무방하다(도시 생략). 또한, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143)의 내측에 배치되어도 무방하다. 예를 들어, 둘레 방향 보강층(145)이, (1) 고각도 벨트(141)와 내경 측 교차 벨트(142)와의 사이에 배치되어도 무방하고, (2) 카커스층(13)과 고각도 벨트(141)와의 사이에 배치되어도 무방하다(도시 생략).
[내편마모 성능의 향상]
트럭·버스 등에 장착되는 근년의 중하중용 타이어는, 낮은 편평률을 가지는 한편으로, 벨트층에 둘레 방향 보강층을 배치하는 것에 의하여, 트레드부의 형상을 보지하고 있다. 구체적으로는, 둘레 방향 보강층이, 트레드부 센터 영역에 배치되어 테 효과를 발휘하는 것에 의하여, 트레드부의 직경 성장을 억제하여 트레드부의 형상을 보지하고 있다.
이와 같은 구성에서는, 둘레 방향 보강층의 설치 범위 내에서 상기의 테 효과를 얻을 수 있지만, 그 반면, 둘레 방향 보강층의 설치 범위 외(타이어 폭 방향 외측의 영역)에서 타이어 둘레 방향의 강성이 상대적으로 부족하다. 이 때문에, 타이어 전동(轉動) 시에서, 숄더 육부의 미끄러짐이 커져, 숄더 육부에 편마모가 발생한다고 하는 과제가 있다.
그래서, 이 공기입 타이어(1)에서는, 숄더 육부의 편마모를 억제하기 위하여, 이하의 구성을 채용하고 있다(도 1 ~ 도 3 참조).
우선, 도 2에 도시하는 바와 같이, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 주홈(2)의 말단 마모면(WE)을 긋는다. 말단 마모면(WE)이란, 타이어에 존재하는 마모 지표로부터 추정되는 표면을 말한다. 또한, 말단 마모면(WE)은, 타이어를 비(非) 인플레이트(inflate) 상태로 한 타이어 단체(單體)의 상태로 측정된다. 일반적인 공기입 타이어에서는, 말단 마모면(WE)이, 트레드 프로파일에 대략 평행한 곡선 상에 있다.
이 때, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc와 둘레 방향 보강층(145)의 단부로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가지는 것이 바람직하고, De/Dcc≤0.92의 관계를 가지는 것이 보다 바람직하다. 비 De/Dcc의 하한은, 특별히 한정이 없지만, 최외층 벨트층과 말단 마모면(WE) 간의 거리와의 관계로 제약을 받는다. 예를 들어, 비 De/Dcc의 하한이, 0.65≤De/Dcc의 범위에 있는 것이 바람직하다.
거리 Dcc 및 거리 De는, 타이어를 비 인플레이트 상태로 한 타이어 단체의 상태로 측정된다. 또한, 둘레 방향 보강층(145) 측의 측정점은, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 중심점을 잇는 곡선에 의하여 규정된다. 또한, 둘레 방향 보강층(145)의 단부는, 둘레 방향 보강층(145)을 구성하는 벨트 코드 중 타이어 폭 방향의 가장 외측에 있는 벨트 코드를 기준으로 하여 규정된다.
여기에서, 규정 림이란, JATMA에 규정되는 「적용 림」, TRA에 규정되는 「Design Rim」, 혹은 ETRTO에 규정되는 「Measuring Rim」을 말한다. 또한, 규정 내압이란, JATMA에 규정되는 「최고 공기압」, TRA에 규정되는 「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」의 최댓값, 혹은 ETRTO에 규정되는 「INFLATION PRESSURES」를 말한다. 또한, 규정 하중이란, JATMA에 규정되는 「최대 부하 능력」, TRA에 규정되는 「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」의 최댓값, 혹은 ETRTO에 규정되는 「LOAD CAPACITY」를 말한다. 다만, JATMA에 있어서, 승용차용 타이어의 경우에는, 규정 내압이 공기압 180[kPa]이고, 규정 하중이 최대 부하 능력의 88[%]이다.
또한, 타이어 적도면(CL)에 있어서의 트레드 프로파일로부터 타이어 내주면(內周面)까지의 거리 Gcc와 트레드단(P)으로부터 타이어 내주면까지의 거리 Gsh가, 1.10≤Gsh/Gcc의 관계를 가지는 것이 바람직하고, 1.20≤Gsh/Gcc의 관계를 가지는 것이 보다 바람직하다.
비 Gsh/Gcc의 상한은, 특별히 한정이 없다. 다만, 타이어가 규정 림에 장착되고 규정 내압이 부여되어 무부하 상태로 되었을 때에, 트레드 프로파일의 트레드단(P)에 있어서의 라디어스(radius)가 타이어 적도면(CL)에 있어서의 라디어스에 대하여 동등 이하로 되도록, 비 Gsh/Gcc의 상한이 규정되는 것이 바람직하다. 즉, 트레드 프로파일이 타이어 직경 방향 내측에 중심을 가지는 원호 형상 내지는 직선 형상을 가지고, 역 R 형상(타이어 직경 방향 외측에 중심을 가지는 원호 형상)으로 되지 않도록, 비 Gsh/Gcc의 상한이 규정되는 것이 바람직하다. 예를 들어, 도 2와 같은 스퀘어 형상의 숄더부를 가지는 구성에서는, 비 Gsh/Gcc의 상한이 1.4 ~ 1.5 정도로 된다. 한편으로, 후술하는 도 7과 같은 라운드 형상의 숄더부를 가지는 구성에서는, 비 Gsh/Gcc의 상한이 1.3 ~ 1.4 정도로 된다.
거리 Gcc는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 타이어 적도면(CL)과 트레드 프로파일과의 교점으로부터 타이어 적도면(CL)과 타이어 내주면과의 교점까지의 거리로서 측정된다. 따라서, 도 1 및 도 2의 구성과 같이, 타이어 적도면(CL)에 둘레 방향 주홈(2)이 있는 구성에서는, 이 둘레 방향 주홈(2)을 제외하고, 거리 Gcc가 측정된다. 거리 Gsh는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 트레드단(P)으로부터 타이어 내주면에 내린 수선의 길이로서 측정된다.
덧붙여, 도 2의 구성에서는, 공기입 타이어(1)가, 카커스층(13)의 내주면에 이너 라이너(inner liner)(18)를 구비하고, 이 이너 라이너(18)가, 타이어 내주면의 전역(全域)에 걸쳐 배치되어 있다. 이와 같은 구성에서는, 거리 Gcc 및 거리 Gsh가, 이 이너 라이너(18)의 표면을 기준(타이어 내주면)으로 하여 측정된다.
트레드단(P)이란, (1) 스퀘어 형상의 숄더부를 가지는 구성에서는, 그 에지부의 점을 말한다. 예를 들어, 도 2의 구성에서는, 숄더부가 스퀘어 형상을 가지는 것에 의하여, 트레드단(P)과 타이어 접지단(T)이 일치하고 있다. 한편, (2) 후술하는 도 7의 변형예에 도시하는 바와 같은, 라운드 형상의 숄더부를 가지는 구성에서는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 트레드부의 프로파일과 사이드 월부의 프로파일과의 교점(P’)을 취하고, 이 교점(P’)으로부터 숄더부에 그은 수선(垂線)의 발을 트레드단(P)으로 한다.
덧붙여, 타이어 접지단(T)이란, 타이어가 규정 림에 장착되어 규정 내압이 부여되는 것과 함께 정지 상태에서 평판에 대하여 수직으로 놓여져 규정 하중에 대응하는 부하를 가하였을 때의 타이어와 평판과의 접촉면에 있어서의 타이어 축 방향의 최대 폭 위치를 말한다.
도 4는, 도 1에 기재한 공기입 타이어의 숄더 육부를 도시하는 확대도이다. 동 도면은, 접지면 내에 있어서의 숄더 육부(3)의 프로파일 형상을 도시하고 있다.
도 4에 도시하는 바와 같이, 이 공기입 타이어(1)에서는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부의 점 P1에 있어서의 직경 D1과, 숄더 육부(3)의 접지면 내에 있는 소정의 점 P2에 있어서의 직경 D2와, 타이어 접지단(T)에 있어서의 직경 D3이, D2<D1 또한 D2<D3의 관계를 가진다.
이 때, 점 P1에 있어서의 직경 D1과 타이어 접지단(T)에 있어서의 직경 D3과의 대소 관계는, 특별히 한정이 없다. 따라서, 숄더 육부(3)는, 이들의 직경 D1, D3보다도 작은 직경 D2를 가지는 점 P2를, 접지면의 프로파일 상에 가지면 된다. 또한, 점 P1으로부터 타이어 접지단(T)까지 사이의 영역이 숄더 육부(3)의 접지면으로 되기 때문에, 점 P2는, 필연적으로 점 P1과 타이어 접지단(T)과의 사이에 있다.
또한, 접지면 내에 있어서의 숄더 육부(3)의 프로파일을, 점 P1으로부터 점 P2까지의 구간의 제1 프로파일(PL1)과, 점 P2로부터 타이어 접지단(T)까지의 구간에 있어서의 제2 프로파일(PL2)로 나누어서 생각한다. 이 때, 제1 프로파일(PL1) 및 제2 프로파일(PL2)이, 단일의 원호 혹은 복수의 원호의 조합으로 이루어지는 매끄러운 곡선인 것이 바람직하다. 그러나, 이것에 한하지 않고, 제1 프로파일(PL1) 및 제2 프로파일(PL2)의 일방 혹은 쌍방이, 직선 혹은 직선 성분을 포함하는 곡선이어도 무방하다.
특히, 제2 프로파일(PL2)은, 상기한 점 P2와 타이어 접지단(T)과의 위치 관계(D2<D3)를 채우는 한, 임의의 프로파일 형상을 가질 수 있다. 즉, 제2 프로파일(PL2)은, 타이어 접지단(T)이 점 P2에 대하여 타이어 직경 방향 외측으로 돌출하고 있는 것을 요건으로 하여, 임의의 프로파일 형상을 가질 수 있다. 예를 들어, 제2 프로파일(PL2)이, 타이어 직경 방향 내측으로 볼록으로 되는 곡선, 타이어 직경 방향 외측으로 볼록으로 되는 곡선, 직선 등으로 구성되어도 무방하다.
프로파일 형상 및 프로파일의 직경은, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 또한, 프로파일의 직경은, 타이어 회전축을 중심으로 하는 프로파일의 직경으로 하여 측정된다.
예를 들어, 도 4의 구성에서는, 제1 프로파일(PL1)이, 타이어 직경 방향 외측으로 볼록으로 되는 단일의 원호로 이루어진다. 또한, 제2 프로파일(PL2)이, 타이어 직경 방향 내측으로 볼록으로 되는 단일의 원호로 이루어지고, 점 P2에서 제1 프로파일(PL1)에 매끄럽게 접속하고 있다. 이 때문에, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 숄더 육부(3)가, 전체적으로 완만한 대략 S자 형상의 프로파일을 가지고, 그 변곡점을 점 P2에 가지고 있다. 또한, 최외주 방향 주홈(2)으로부터 타이어 폭 방향 내측에 있는 육부(센터 육부(3) 및 세컨드 육부(3))가, 타이어 직경 방향 외측으로 볼록으로 되는 프로파일을 가지고, 또한, 이들의 육부(3)의 프로파일이, 단일의 원호 혹은 복수의 원호의 조합으로 이루어진다. 그리고, 제1 프로파일(PL1)이, 이 센터 육부(3) 및 세컨드 육부(3)의 프로파일의 연장선 상에 있고, 이 프로파일에 일치하고 있다. 또한, 제1 프로파일(PL1)이, 점 P1으로부터 타이어 폭 방향 외측을 향하는 것에 따라 직경을 축소하고, 점 P2에서 최소 직경으로 되어 있다. 또한, 제2 프로파일(PL2)이, 타이어 폭 방향 외측을 향하는 것에 따라 직경을 증가시키고 있다. 이 때문에, 숄더 육부(3)가, 점 P2로부터 타이어 접지단(T)을 향하는 것에 따라 타이어 직경 방향 외측으로 올라오는 접지면 형상을 가지고 있다.
덧붙여, 상기의 구성에서는, 제1 프로파일(PL1)의 길이 AR1(도시 생략)과 제2 프로파일(PL2)의 길이 AR2(도시 생략)가, 0.10≤AR2/(AR1+AR2)≤0.50의 관계를 가지는 것이 바람직하고, 0.20≤AR2/(AR1+AR2)≤0.40의 관계를 가지는 것이 보다 바람직하다(도 4 참조). 이것에 의하여, 제1 프로파일(PL1)의 길이 AR1과 제2 프로파일(PL2)의 길이 AR2와의 비율이 적정화되어, 숄더 육부(3)의 강성이 보강된다.
길이 AR1, AR2는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서의 각 프로파일(PL1, PL2)의 선분의 길이이고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다.
또한, 상기의 구성에서는, 점 P1에 있어서의 직경 D1과, 점 P2에 있어서의 직경 D2와, 타이어 접지단(T)에 있어서의 직경 D3이, 0.30≤(D1-D2)/(D3-D2)≤0.70의 관계를 가지는 것이 바람직하고, 0.40≤(D1-D2)/(D3-D2)≤0.60의 관계를 가지는 것이 보다 바람직하다(도 4 참조). 이것에 의하여, 제1 프로파일(PL1)에 있어서의 숄더 육부(3)의 편마모량 D1-D2와 제2 프로파일(PL2)에 있어서의 숄더 육부(3)의 편마모량 D3-D2와의 관계가 적정화된다. 또한, (D1-D2)<(D3-D2)인 것에 의하여, 숄더 육부(3)의 타이어 접지단(T) 측의 강성이 보강되어, 숄더 육부(3)의 편마모가 억제된다.
도 5는, 도 1에 기재한 공기입 타이어를 도시하는 설명도이다. 동 도면은, 도 2의 복제이고, 도 2에 기재한 치수 및 부호에 대신하여, 숄더 육부(3)의 구성의 설명에 필요한 치수 및 부호를 새롭게 추가하고 있다.
도 5에 도시하는 바와 같이, 상기의 구성에서는, 타이어 적도면(CL)으로부터 점 P2까지의 거리 WL과 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)의 단부까지의 거리 Ws’가, 0.60≤Ws’/WL≤1.00의 관계를 가지는 것이 바람직하고, 0.70≤Ws’/WL≤0.90의 관계를 가지는 것이 보다 바람직하다. 이것에 의하여, 최소 직경으로 되는 점 P2의 위치가 적정화된다.
거리 WL 및 거리 Ws’는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 덧붙여, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)이 타이어 적도면(CL)을 중심으로 하여 좌우 대칭으로 배치되기 때문에, 둘레 방향 보강층(145)의 단부의 거리 Ws’가, 둘레 방향 보강층(145)의 반폭 Ws/2와 동일하다.
또한, 상기의 구성에서는, 타이어 적도면(CL)으로부터 점 P2까지의 거리 WL과 타이어 적도면(CL)으로부터 폭이 넓은 교차 벨트(142)의 단부까지 폭 Wb2’가, 0.90≤Wb2’/WL≤1.30의 관계를 가지는 것이 바람직하다(도 5 참조). 이것에 의하여, 최소 직경으로 되는 점 P2의 위치가 적정화된다.
거리 Wb2’는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 덧붙여, 이 공기입 타이어(1)에서는, 폭이 넓은 교차 벨트(142)가 타이어 적도면(CL)을 중심으로 하여 좌우 대칭으로 배치되기 때문에, 폭이 넓은 교차 벨트(142)의 단부의 거리 Wb2’가, 폭이 넓은 교차 벨트(142)의 반폭 Wb2/2와 동일하다.
도 6은, 도 1에 기재한 공기입 타이어의 작용을 도시하는 설명도이다. 동 도면은, 서로 다른 비 De/Dcc 및 비 Gsh/Gcc를 가지는 타이어의 접지 상태를 각각 도시하고 있다.
도 6(a)의 비교예의 타이어에서는, 도 1 ~ 도 3의 구성에 있어서, 비 De/Dcc가 동일하게 설정되고(De/Dcc=1.00), 또한, 비 Gsh/Gcc가 작게 설정되어 있다(Gsh/Gcc=1.06). 이와 같은 구성에서는, 타이어 비접지 상태에서, 트레드 프로파일이, 타이어 적도면(CL)으로부터 트레드단(P)을 향하여 외경을 축소하는 편마모 형상을 가진다(도시 생략). 이 때문에, 타이어 접지 시에는, 도 6(a)에 도시하는 바와 같이, 트레드부 숄더 영역이 노면 측(타이어 직경 방향 외측)으로 크게 변형한다. 이 때, 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc, De가 일양(一樣)(De/Dcc=1.00)이기 때문에, 둘레 방향 보강층(145)의 단부가, 트레드부 숄더 영역의 변형에 추종하여 노면 측(타이어 직경 방향 외측)으로 크게 휜다. 이 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 크다.
이것에 대하여, 도 6(b)의 실시예의 타이어에서는, 도 1 ~ 도 3의 구성에 있어서, 비 De/Dcc가 작게 설정되고(De/Dcc=0.92), 또한, 비 Gsh/Gcc가 크게 설정된다(Gsh/Gcc=1.20). 이와 같은 구성에서는, 타이어 비접지 상태에서, 트레드 프로파일의 타이어 적도면(CL)에 있어서의 외경과 트레드단(P)에 있어서의 외경과의 직경차가 작고, 트레드 프로파일이 전체적으로 플랫(타이어 회전축에 대략 평행)인 형상을 가진다(도 1 및 도 2 참조). 이 때문에, 도 6(b)에 도시하는 바와 같이, 타이어 접지 시에 있어서의 트레드부 숄더 영역의 변형량이 작다. 나아가, 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc, De가 De<Dcc의 관계를 가지기 때문에, 타이어 접지 시에서, 둘레 방향 보강층(145)의 단부가 트레드부 숄더 영역의 변형에 추종하여 휘었을 때에, 둘레 방향 보강층(145)이 전체적으로 플랫한 형상으로 된다. 이것에 의하여, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 저감된다.
상기와 같이, 도 6(b)의 구성에서는, 도 6(a)의 구성과 비교하여, 타이어 접지 시에서, 트레드부 숄더 영역의 변형량이 작고, 또한, 둘레 방향 보강층(145)의 일그러짐이 작다. 이것에 의하여, 타이어 접지 시에 있어서의 센터 영역의 육부(3)의 미끄러짐량과 숄더 육부(3)의 미끄러짐량이 균일화되어, 숄더 육부(3)의 편마모가 억제된다.
나아가, 도 6(b)의 구성에서는, 도 4에서 도시한 바와 같이, 접지 영역에 있어서의 숄더 육부(3)의 프로파일이, 타이어 폭 방향 내측의 에지부(점 P1)와 타이어 접지단(T)과의 사이에, 소경부(D2<D1 또한 D2<D3으로 되는 직경 D2를 가지는 점 P2)를 구비한다. 이와 같은 구성에서는, 타이어 접지 시에 있어서의 숄더 육부(3)의 접지단(T) 측의 접지압이 높아지고, 타이어 접지 시에 있어서의 센터 영역의 육부(3)의 미끄러짐량과 숄더 육부(3)의 미끄러짐량이 균일화된다. 이것에 의하여, 숄더 육부(3)의 편마모가 효과적으로 억제된다.
[라운드 형상의 숄더부]
도 7은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다. 동 도면은, 라운드 형상의 숄더부를 가지는 구성을 도시하고 있다.
도 1의 구성에서는, 도 2에 도시하는 바와 같이, 숄더부가 스퀘어 형상을 가지고, 타이어 접지단(T)과 트레드단(P)이 일치하고 있다.
그러나, 이것에 한하지 않고, 도 7에 도시하는 바와 같이, 숄더부가 라운드 형상을 가져도 무방하다. 이와 같은 경우에는, 상기와 같이, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 트레드부의 프로파일과 사이드 월부의 프로파일과의 교점(P’)을 취하고, 이 교점(P’)으로부터 숄더부로 그은 수선의 발을 트레드단(P)으로 한다. 이 때문에, 통상은, 타이어 접지단(T)과 트레드단(P)이 서로 다른 위치에 있다.
[부가적 사항]
또한, 이 공기입 타이어(1)에서는, 도 1에 있어서, 트레드 폭 TW와 둘레 방향 보강층(145)의 폭 Ws가, 0.70≤Ws/TW≤0.90의 관계를 가지는 것이 바람직하다.
트레드 폭 TW란, 좌우의 트레드단(P, P)의 타이어 회전축 방향의 거리이고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다.
둘레 방향 보강층(145)의 폭 Ws는, 둘레 방향 보강층(145)의 좌우의 단부의 타이어 회전축 방향의 거리이고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 또한, 둘레 방향 보강층(145)이 타이어 폭 방향으로 분할된 구조를 가지는 경우(도시 생략)에는, 둘레 방향 보강층(145)의 폭 Ws가, 각 분할부의 최외단부 간의 거리로 된다.
덧붙여, 일반적인 공기입 타이어는, 도 1에 도시하는 바와 같이, 타이어 적도면(CL)을 중심으로 하는 좌우 대칭인 구조를 가진다. 이 때문에, 타이어 적도면(CL)으로부터 트레드단(P)까지의 거리가 TW/2이고, 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)까지의 거리가 Ws/2로 된다.
이것에 대하여, 좌우 비대칭인 구조를 가지는 공기입 타이어(도시 생략)에서는, 상기한 트레드 폭 TW와 둘레 방향 보강층의 폭 Ws와의 비 Ws/TW의 범위가, 타이어 적도면(CL)을 기준으로 하는 반폭으로 환산되어 규정된다. 구체적으로는, 타이어 적도면(CL)으로부터 트레드단(P)까지의 거리 TW’(도시 생략)와 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)의 단부까지의 거리 Ws’(도시 생략)가, 0.70≤Ws’/TW’≤0.90의 관계로 설정된다.
또한, 도 1에 도시하는 바와 같이, 트레드 폭 TW와 타이어 총 폭 SW가, 0.79≤TW/SW≤0.89의 관계를 가지는 것이 바람직하다.
타이어 총 폭 SW란, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 사이드 월 간의(타이어 측면의 모양, 문자 등의 모든 부분을 포함한다) 직선 거리를 말한다.
또한, 도 1 및 도 5에 있어서, 숄더 육부(3)의 접지 폭 Wsh와 트레드 폭 TW가, 0.1≤Wsh/TW≤0.2의 관계를 가지는 것이 바람직하다. 이것에 의하여, 숄더 육부(3)의 접지 폭 Wsh가 적정화된다.
접지 폭은, 타이어가 규정 림에 장착되어 규정 내압이 부여되는 것과 함께 정지 상태에서 평판에 대하여 수직으로 놓여져 규정 하중에 대응하는 부하를 가하였을 때의 타이어와 평판과의 접촉면에 있어서의 타이어 축 방향의 최대 직선 거리로서 측정된다. 또한, 둘레 방향 주홈(2)이 타이어 둘레 방향으로 지그재그 형상으로 연재하는 구성 혹은 둘레 방향 주홈(2)이 에지부에 노치부나 모따기부를 가지는 구성에서는, 접지 폭이, 타이어 전체 둘레에 있어서의 평균값으로서 산출된다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL)에 가장 가까운 육부(3)의 접지 폭 Wcc와 숄더 육부(3)의 접지 폭 Wsh가, 0.90≤Wsh/Wcc≤1.30의 관계를 가진다(도 5 참조). 이것에 의하여, 비 Wsh/Wcc가 적정화되는 이점이 있다. 즉, 0.90≤Wsh/Wcc인 것에 의하여, 숄더 육부(3)의 접지면압이 적정하게 확보되어, 타이어의 편마모가 억제된다. 한편으로, 1.30<Wsh/Wcc라고 하여도, 접지 폭 Wsh를 증가시킨 것에 의한 숄더 육부(3)의 접지면압의 상승 효과가 작다.
타이어 적도면(CL)에 가장 가까운 육부(3)란, 타이어 적도면(CL)에 육부(3)가 있는 경우에는, 이 육부(3)를 말하고, 타이어 적도면(CL) 상에 둘레 방향 주홈(2)이 있는 경우에는, 이 둘레 방향 주홈(2)에 의하여 구획된 좌우의 육부(3, 3) 중, 비교 대상으로 되는 숄더 육부(3)와 동일 측에 있는 육부(3)를 말한다. 예를 들어, 좌우 비대칭인 트레드 패턴을 가지는 구성(도시 생략)에 있어서, 타이어 적도면(CL) 상에 둘레 방향 주홈(2)이 있는 경우에는, 타이어 적도면(CL)을 경계로 하는 편측 영역에서, 타이어 적도면(CL)에 가장 가까운 육부(3)의 접지 폭 Wcc와 숄더 육부(3)의 접지 폭 Wsh와의 비 Wsh/Wcc가 측정된다.
또한, 도 1에 있어서, 카커스층(13)의 최대 높이 위치의 직경 Ya와, 카커스층(13)의 최대 폭 위치의 직경 Yc와, 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd가, 0.80≤Yc/Ya≤0.90 및 0.95≤Yd/Ya≤1.02의 관계를 가진다. 이것에 의하여, 카커스층(13)의 형상이 적정화된다.
카커스층(13)의 최대 높이 위치의 직경 Ya는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의, 타이어 회전축으로부터 타이어 적도면(CL)과 카커스층(13)과의 교점까지의 거리로서 측정된다.
카커스층(13)의 최대 폭 위치의 직경 Yc는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의, 타이어 회전축으로부터 카커스층(13)의 최대 폭 위치까지의 거리로서 측정된다.
둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd는, 둘레 방향 보강층(145)의 단부로부터 타이어 직경 방향으로 그은 직선과 카커스층(13)과의 교점을 점 Q3(도시 생략)으로 하고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의, 타이어 회전축으로부터 점 Q3까지의 거리로서 측정된다.
또한, 트레드 폭 TW와 카커스층(13)의 단면 폭 Wca가, 0.82≤TW/Wca≤0.92의 관계를 가지는 것이 바람직하다.
카커스층(13)의 단면 폭 Wca는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 카커스층(13)의 좌우의 최대 폭 위치의 직선 거리를 말한다.
또한, 도 3에 있어서, 폭이 좁은 교차 벨트(143)의 폭 Wb3과 둘레 방향 보강층(145)의 폭 Ws가, 0.75≤Ws/Wb3≤0.90의 관계를 가지는 것이 바람직하다. 이것에 의하여, 둘레 방향 보강층(145)의 폭 Ws가 적정하게 확보된다.
또한, 도 3에 도시하는 바와 같이, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되는 것이 바람직하다. 또한, 폭이 좁은 교차 벨트(143)의 폭 Wb3과 둘레 방향 보강층(145)의 에지부로부터 폭이 좁은 교차 벨트(143)의 에지부까지의 거리 S가, 0.03≤S/Wb3≤0.12의 범위에 있는 것이 바람직하다. 이것에 의하여, 교차 벨트(143)의 폭 Wb3의 단부와 둘레 방향 보강층(145)의 단부와의 거리가 적정하게 확보된다. 덧붙여, 이 점은, 둘레 방향 보강층(145)이 분할 구조를 가지는 구성(도시 생략)에 있어서도, 마찬가지이다.
둘레 방향 보강층(145)의 거리 S는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 타이어 폭 방향의 거리로서 측정된다.
덧붙여, 도 1의 구성에서는, 도 3에 도시하는 바와 같이, 둘레 방향 보강층(145)이, 1개의 스틸 와이어를 나선상으로 감아 돌려 구성되어 있다. 그러나, 이것에 한하지 않고, 둘레 방향 보강층(145)이, 복수 개의 와이어를 서로 병주(倂走)시키면서 나선상으로 감아 돌려 구성되어도 무방하다(다중 감기 구조). 이 때, 와이어의 개수가, 5개 이하인 것이 바람직하다. 또한, 5개의 와이어를 다중 감기 하였을 때의 단위당의 감기 폭이, 12[mm] 이하인 것이 바람직하다. 이것에 의하여, 복수 개(2개 이상 5개 이하)의 와이어를 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에서 경사시키면서 적정하게 감을 수 있다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)의 폭 Wb1과 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 폭 Wb3이, 0.85≤Wb1/Wb3≤1.05의 관계를 가지는 것이 바람직하다(도 3 참조). 이것에 의하여, 비 Wb1/Wb3가 적정화된다.
고각도 벨트(141)의 폭 Wb1 및 교차 벨트(143)의 폭 Wb3은, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 타이어 폭 방향의 거리로서 측정된다.
덧붙여, 도 1의 구성에서는, 도 3에 도시하는 바와 같이, 벨트층(14)이 타이어 적도면(CL)을 중심으로 하는 좌우 대칭인 구조를 가지고, 또한, 고각도 벨트(141)의 폭 Wb1과 폭이 좁은 교차 벨트(143)의 폭 Wb3이, Wb1<Wb3의 관계를 가지고 있다. 이 때문에, 타이어 적도면(CL)의 편측 영역에서, 고각도 벨트(141)의 에지부가 폭이 좁은 교차 벨트(143)의 에지부보다도 타이어 폭 방향 내측에 배치되어 있다. 그러나, 이것에 한하지 않고, 고각도 벨트(141)의 폭 Wb1과 폭이 좁은 교차 벨트(143)의 폭 Wb3이, Wb1≥Wb3의 관계를 가져도 무방하다(도시 생략).
또한, 고각도 벨트(141)의 벨트 코드가 스틸 와이어이고, 고각도 벨트가 15[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가지는 것이 바람직하다. 또한, 한 쌍의 교차 벨트(142, 143)의 벨트 코드가 스틸 와이어이고, 한 쌍의 교차 벨트(142, 143)가 18[개/50mm] 이상 28[개/50mm] 이하의 엔드수를 가지는 것이 바람직하고, 20[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가지는 것이 보다 바람직하다. 또한, 둘레 방향 보강층(145)의 벨트 코드가, 스틸 와이어이고, 또한, 17[개/50mm] 이상 30[개/50mm] 이하의 엔드수를 가지는 것이 바람직하다. 이것에 의하여, 각 벨트 플라이(141, 142, 143, 145)의 강도가 적정하게 확보된다.
또한, 고각도 벨트(141)의 코트 고무의 100% 신장 시 모듈러스 E1과 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 0.90≤Es/E1≤1.10의 관계를 가지는 것이 바람직하다. 또한, 한 쌍의 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 E2, E3과 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 0.90≤Es/E2≤1.10 또한 0.90≤Es/E3≤1.10의 관계를 가지는 것이 바람직하다. 또한, 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 4.5[MPa]≤Es≤7.5[MPa]의 범위 내에 있는 것이 바람직하다. 이것에 의하여, 각 벨트 플라이(141, 142, 143, 145)의 모듈러스가 적정화된다.
100% 신장 시 모듈러스는, JIS-K6251(3호 덤벨 사용)에 따른 실온에서의 인장(引張) 시험에 의하여 측정된다.
또한, 고각도 벨트(141)의 코트 고무의 파단(破斷) 신장 λ1이, λ1≥200[%]의 범위에 있는 것이 바람직하다. 또한, 한 쌍의 교차 벨트(142, 143)의 코트 고무의 파단 신장 λ2, λ3이, λ2≥200[%] 또한 λ3≥200[%]의 범위에 있는 것이 바람직하다. 또한, 둘레 방향 보강층(145)의 코트 고무의 파단 신장 λs가, λs≥200[%]의 범위에 있는 것이 바람직하다. 이것에 의하여, 각 벨트 플라이(141, 142, 143, 145)의 내구성이 적정하게 확보된다.
파단 신장은, JIS-K7162 규정의 1B형(두께 3mm의 덤벨형)의 시험편(試驗片)에 관하여, JIS-K7161에 준거하여 인장 시험기(INSTRON5585H, 인스트론사(INSTRON Company Limited)제)를 이용한 인장 속도 2[mm/분]에서의 인장 시험에 의하여 측정된다.
또한, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 부재(部材)일 때에 있어서 인장 하중 100[N]으로부터 300[N]일 때의 신장이 1.0[%] 이상 2.5[%] 이하, 타이어일 때(타이어로부터 꺼낸 것)에 있어서 인장 하중 500[N]으로부터 1000[N]일 때의 신장이 0.5[%] 이상 2.0[%] 이하인 것이 바람직하다. 이와 같은 벨트 코드(하이엘롱게이션(high elongation) 스틸 와이어)는, 통상의 스틸 와이어보다도 저하중 부하시의 신장률이 좋고, 제조 시부터 타이어 사용 시에 걸쳐 둘레 방향 보강층(145)에 걸리는 부하에 견딜 수 있기 때문에, 둘레 방향 보강층(145)의 손상을 억제할 수 있는 점에서 바람직하다.
벨트 코드의 신장은, JIS-G3510에 준거하여 측정된다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 파단 신장이, 350[%] 이상의 범위에 있는 것이 바람직하다. 이것에 의하여, 트레드 고무(15)의 강도가 확보되어, 최외주 방향 주홈(2)에 있어서의 티어(tear)의 발생이 억제된다. 덧붙여, 트레드 고무(15)의 파단 신장의 상한은, 특별히 한정이 없지만, 트레드 고무(15)의 고무 콤파운드(compound)의 종류에 의하여 제약을 받는다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 경도가, 60 이상의 범위에 있는 것이 바람직하다. 이것에 의하여, 트레드 고무(15)의 강도가 적정하게 확보된다. 덧붙여, 트레드 고무(15)의 경도의 상한은, 특별히 한정이 없지만, 트레드 고무(15)의 고무 콤파운드의 종류에 의하여 제약을 받는다.
고무 경도란, JIS-K6263에 준거한 JIS-A 경도를 말한다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 손실 정접(正接) tanδ가, 0.10≤tanδ의 범위에 있는 것이 바람직하다.
손실 정접 tanδ는, 점탄성 스펙트로미터를 이용하여, 온도 20[℃], 전단(剪斷) 일그러짐 10[%], 주파수 20[Hz]의 조건에서 측정된다.
[벨트 쿠션]
도 2에 도시하는 바와 같이, 이 공기입 타이어(1)는, 벨트 쿠션(20)을 구비한다. 이 벨트 쿠션(20)은, 한 쌍의 교차 벨트(142, 143) 중 타이어 직경 방향 내측에 있는 교차 벨트(142)의 단부와, 카커스층(13)과의 사이에 끼워 넣어져 배치된다. 예를 들어, 도 2의 구성에서는, 벨트 쿠션(20)이, 타이어 직경 방향 외측의 단부를 교차 벨트(142)의 단부와 카커스층(13)과의 사이에 삽입하여, 고각도 벨트(141)의 에지부에 당접(當接)하고 있다. 또한, 벨트 쿠션(20)이, 카커스층(13)을 따라서 타이어 직경 방향 내측으로 연재하여, 카커스층(13)과 사이드 월 고무(16)와의 사이에 끼워 넣어져 배치되어 있다. 또한, 좌우 한 쌍의 벨트 쿠션(20)이, 타이어 좌우의 사이드 월부에 각각 배치되어 있다.
또한, 벨트 쿠션(20)의 100% 신장 시 모듈러스 Ebc가, 1.5[MPa]≤Ebc≤3.0[MPa]의 범위 내에 있다. 벨트 쿠션(20)의 모듈러스 Ebc가 이와 같은 범위 내에 있는 것에 의하여, 벨트 쿠션(20)이 응력(應力) 완화 작용을 발휘하여, 교차 벨트(142)의 단부에 있어서의 주변 고무의 세퍼레이션(separation)이 억제된다.
또한, 벨트 쿠션(20)의 파단 신장 λbc가, λbc≥400[%]의 범위에 있다. 이것에 의하여, 벨트 쿠션(20)의 내구성이 적정하게 확보된다.
[벨트 에지 쿠션의 이색(二色) 구조]
도 8은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다. 동 도면은, 벨트층(14)의 타이어 폭 방향 외측의 단부의 확대도를 도시하고 있다. 또한, 동 도면에서는, 둘레 방향 보강층(145), 벨트 에지 쿠션(19)에 해칭을 넣고 있다.
도 1의 구성에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되어 있다. 또한, 한 쌍의 교차 벨트(142, 143)의 사이이고 한 쌍의 교차 벨트(142, 143)의 에지부에 대응하는 위치에, 벨트 에지 쿠션(19)이 끼워 넣어져 배치되어 있다. 구체적으로는, 벨트 에지 쿠션(19)이, 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 배치되어 둘레 방향 보강층(145)에 인접하고, 둘레 방향 보강층(145)의 타이어 폭 방향 외측의 단부로부터 한 쌍의 교차 벨트(142, 143)의 타이어 폭 방향 외측의 단부까지 연재하여 배치되어 있다.
또한, 도 1의 구성에서는, 벨트 에지 쿠션(19)이, 타이어 폭 방향 외측을 향하는 것에 따라 두께를 증가시키는 것에 의하여, 전체적으로, 둘레 방향 보강층(145)보다도 두께가 두꺼운 구조를 가지고 있다. 또한, 벨트 에지 쿠션(19)이, 각 교차 벨트(142, 143)의 코트 고무보다도 낮은 100% 신장 시 모듈러스 E를 가지고 있다. 구체적으로는, 벨트 에지 쿠션(19)의 100% 신장 시 모듈러스 E와 코트 고무의 모듈러스 Eco가, 0.60≤E/Eco≤0.95의 관계를 가지고 있다. 이것에 의하여, 한 쌍의 교차 벨트(142, 143) 간 또한 둘레 방향 보강층(145)의 타이어 폭 방향 외측의 영역에 있어서의 고무 재료의 세퍼레이션의 발생이 억제되고 있다.
이것에 대하여, 도 8의 구성에서는, 도 1의 구성에 있어서, 벨트 에지 쿠션(19)이, 응력 완화 고무(191)와 단부 완화 고무(192)로 이루어지는 이색 구조를 가진다. 응력 완화 고무(191)는, 한 쌍의 교차 벨트(142, 143)의 사이이고 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 배치되어 둘레 방향 보강층(145)에 인접한다. 단부 완화 고무(192)는, 한 쌍의 교차 벨트(142, 143)의 사이이고, 응력 완화 고무(191)의 타이어 폭 방향 외측 또한 한 쌍의 교차 벨트(142, 143)의 에지부에 대응하는 위치에 배치되어 응력 완화 고무(191)에 인접한다. 따라서, 벨트 에지 쿠션(19)이, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 응력 완화 고무(191)와 단부 완화 고무(192)를 타이어 폭 방향으로 연설(連設)하여 이루어지는 구조를 가지고, 둘레 방향 보강층(145)의 타이어 폭 방향 외측의 단부로부터 한 쌍의 교차 벨트(142, 143)의 에지부까지의 영역을 채워 배치된다.
또한, 도 8의 구성에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, Ein<Es의 관계를 가진다. 구체적으로는, 응력 완화 고무(191)의 모듈러스 Ein과 둘레 방향 보강층(145)의 모듈러스 Es가, 0.6≤Ein/Es≤0.9의 관계를 가지는 것이 바람직하다.
또한, 도 8의 구성에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 각 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 Eco가, Ein<Eco의 관계를 가진다. 구체적으로는, 응력 완화 고무(191)의 모듈러스 Ein과 코트 고무의 모듈러스 Eco가, 0.6≤Ein/Eco≤0.9의 관계를 가지는 것이 바람직하다.
또한, 도 8의 구성에서는, 단부 완화 고무(192)의 100% 신장 시 모듈러스 Eout과 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein이, Eout<Ein의 관계를 가지는 것이 바람직하다. 또한, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein이, 4.0[MPa]≤Ein≤5.5[MPa]의 범위 내에 있는 것이 바람직하다.
도 8의 구성에서는, 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 응력 완화 고무(191)가 배치되기 때문에, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 또한, 교차 벨트(142, 143)의 에지부에 대응하는 위치에 단부 완화 고무(192)가 배치되기 때문에, 교차 벨트(142, 143)의 에지부에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 이들에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제된다.
[효과]
이상 설명한 바와 같이, 이 공기입 타이어(1)는, 카커스층(13)과, 카커스층(13)의 타이어 직경 방향 외측에 배치되는 벨트층(14)과, 벨트층(14)의 타이어 직경 방향 외측에 배치되는 트레드 고무(15)를 구비한다(도 1 참조). 또한, 공기입 타이어(1)는, 타이어 둘레 방향으로 연재하는 적어도 3개의 둘레 방향 주홈(2)과, 이들의 둘레 방향 주홈(2)으로 구획되어 이루어지는 복수의 육부(3)를 구비한다. 또한, 벨트층(14)이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트(142, 143)와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층(145)을 적층하여 이루어진다(도 2 참조). 또한, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부의 점 P1에 있어서의 직경 D1과, 숄더 육부(3)의 접지면 내에 있는 소정의 점 P2에 있어서의 직경 D2와, 타이어 접지단(T)에 있어서의 직경 D3이, D2<D1 또한 D2<D3의 관계를 가진다(도 4 참조).
이와 같은 구성에서는, 접지 영역에 있어서의 숄더 육부(3)의 프로파일이, 타이어 폭 방향 내측의 에지부(점 P1)와 타이어 접지단(T)과의 사이에, 소경부(D2<D1 또한 D2<D3으로 되는 직경 D2를 가지는 점 P2)를 구비한다. 이와 같은 구성에서는, 타이어 접지 시에 있어서의 숄더 육부(3)의 접지단(T) 측의 접지압이 높아지고, 타이어 접지 시에 있어서의 센터 영역의 육부(3)의 미끄러짐량과 숄더 육부(3)의 미끄러짐량이 균일화된다. 이것에 의하여, 숄더 육부(3)의 편마모가 효과적으로 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 숄더 육부(3)가, 점 P1으로부터 점 P2까지의 구간에서 타이어 직경 방향 외측으로 볼록으로 되는 제1 프로파일(PL1)과, 점 P2로부터 타이어 접지단(T)까지의 구간에서 타이어 직경 방향 내측으로 볼록으로 되는 제2 프로파일(PL2)을 가진다(도 4 참조). 이것에 의하여, 숄더 육부(3)의 접지 형상이 적정화되어, 숄더 육부(3)의 편마모가 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 주홈(2)의 말단 마모면(WE)을 그을 때에, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc와 둘레 방향 보강층(145)의 단부로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가진다(도 2 참조). 이와 같은 구성에서는, 말단 마모면(WE)에 대한 둘레 방향 보강층(145)의 거리 Dcc, De가 적정화되기 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 저감된다(도 6(a), (b)를 비교 참조). 이것에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL)에 있어서의 트레드 프로파일로부터 타이어 내주면까지의 거리 Gcc와 트레드단(P)으로부터 타이어 내주면까지의 거리 Gsh가, 1.10≤Gsh/Gcc의 관계를 가진다(도 2 참조). 이와 같은 구성에서는, 타이어 비접지 상태에 있어서의 트레드 프로파일이 전체적으로 플랫한 형상을 가지기(도 1 및 도 2 참조) 때문에, 타이어 접지 시에 있어서의 트레드부 숄더 영역의 변형량이 저감된다(도 6(a), (b)를 비교 참조). 이것에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 보다 효과적으로 억제되는 이점이 있다. 또한, 타이어 전동 시에 있어서의 둘레 방향 보강층(145)의 단부의 반복 일그러짐이 저감되어, 둘레 방향 보강층(145)의 벨트 코드의 파단이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 제1 프로파일(PL1)의 길이 AR1(도시 생략)과 제2 프로파일(PL2)의 길이 AR2(도시 생략)가, 0.10≤AR2/(AR1+AR2)≤0.50의 관계를 가진다(도 4 참조). 이와 같은 구성에서는, 제1 프로파일(PL1)의 길이 AR1과 제2 프로파일(PL2)의 길이 AR2와의 비율이 적정화되어, 숄더 육부(3)의 강성이 보강된다. 이것에 의하여, 숄더 육부(3)의 편마모가 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 점 P1에 있어서의 직경 D1과, 점 P2에 있어서의 직경 D2와, 타이어 접지단(T)에 있어서의 직경 D3이, 0.30≤(D1-D2)/(D3-D2)≤0.70의 관계를 가진다(도 4 참조). 이와 같은 구성에서는, 제1 프로파일(PL1)에 있어서의 숄더 육부(3)의 편마모량 D1-D2와, 제2 프로파일(PL2)에 있어서의 숄더 육부(3)의 편마모량 D3-D2와의 관계가 적정화된다. 이것에 의하여, 숄더 육부(3)의 타이어 접지단(T) 측의 강성이 보강되어, 숄더 육부(3)의 편마모가 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL)으로부터 점 P2까지의 거리 WL과 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)의 단부까지의 거리 Ws’이, 0.60≤Ws’/WL≤1.00의 관계를 가진다(도 5 참조). 이것에 의하여, 최소 직경으로 되는 점 P2의 위치가 적정화되어, 숄더 육부(3)의 편마모가 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL)으로부터 점 P2까지의 거리 WL과 타이어 적도면(CL)으로부터 폭이 넓은 교차 벨트(143)의 단부까지 폭 Wb2’이, 0.90≤Wb2’/WL≤1.30의 관계를 가진다(도 5 참조). 이것에 의하여, 최소 직경으로 되는 점 P2의 위치가 적정화되어, 숄더 육부(3)의 편마모가 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 숄더 육부(3)의 접지 폭 Wsh와 트레드 폭 TW가, 0.1≤Wsh/TW≤0.2의 관계를 가진다(도 1 및 도 5 참조). 이와 같은 구성에서는, 숄더 육부(3)의 접지 폭 Wsh가 적정화되는 이점이 있다. 즉, 0.1≤Wsh/TW인 것에 의하여, 숄더 육부(3)의 접지 면적이 확보되어, 타이어의 내편마모 성능이 확보된다. 또한, Wsh/TW≤0.2인 것에 의하여, 타이어 접지 시에 있어서의 숄더 육부(3)의 접지면압이 증가하여, 타이어의 웨트 성능이 향상한다.
또한, 이 공기입 타이어(1)에서는, 트레드 폭 TW와 타이어 총 폭 SW가, 0.79≤TW/SW≤0.89의 관계를 가진다(도 1 참조). 이와 같은 구성에서는, 비 TW/SW가 상기의 범위 내에 있는 것에 의하여, 좌우의 숄더부의 직경 성장이 억제된다. 그러면, 센터 영역과 숄더 영역과의 직경 성장차가 완화되어, 타이어의 접지압 분포가 균일화된다. 이것에 의하여, 타이어의 내편마모성이 향상하는 이점이 있다. 구체적으로는, 0.79≤TW/SW인 것에 의하여, 평균 접지압이 저하한다. 또한, TW/SW≤0.89인 것에 의하여, 숄더부의 올라감이 억제되어, 접지 형상 시의 휨이 억제된다.
또한, 이 공기입 타이어(1)에서는, 트레드 폭 TW와 카커스층(13)의 단면 폭 Wca가, 0.82≤TW/Wca≤0.92의 관계를 가진다(도 1 참조). 이와 같은 구성에서는, 벨트층(14)이 둘레 방향 보강층(145)을 가지는 것에 의하여, 센터 영역의 직경 성장이 억제된다. 나아가, 비 TW/Wca가 상기의 범위 내에 있는 것에 의하여, 센터 영역과 숄더 영역과의 직경 성장차가 완화되어, 타이어 폭 방향으로 걸리는 접지압 분포가 균일화된다. 이것에 의하여, 타이어의 접지압 분포가 균일화되는 이점이 있다. 즉, 0.82≤TW/Wca인 것에 의하여, 타이어 내 에어 볼륨이 확보되고, 휨이 억제된다. 또한, TW/Wca≤0.92인 것에 의하여, 숄더부의 올라감이 억제되어, 접지압 분포가 균일화된다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL)에 가장 가까운 육부(3)의 접지 폭 Wcc와 숄더 육부(3)의 접지 폭 Wsh가, 0.90≤Wsh/Wcc≤1.30의 관계를 가진다(도 5 참조). 이것에 의하여, 비 Wsh/Wcc가 적정화되는 이점이 있다. 즉, 0.90≤Wsh/Wcc인 것에 의하여, 숄더 육부(3)의 접지면압이 적정하게 확보되어, 타이어의 편마모가 억제된다. 한편으로, 1.30<Wsh/Wcc라고 하여도, 접지폭 Wsh를 증가시킨 것에 의한 숄더 육부(3)의 접지면압의 상승 효과가 작다.
또한, 이 공기입 타이어(1)에서는, 카커스층(13)의 최대 높이 위치의 직경 Ya와 카커스층(13)의 최대 폭 위치의 직경 Yc가, 0.80≤Yc/Ya≤0.90의 관계를 가진다(도 1 참조). 이것에 의하여, 카커스층(13)의 형상이 적정화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 카커스층(13)의 최대 높이 위치의 직경 Ya와 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd가, 0.95≤Yd/Ya≤1.02의 관계를 가진다(도 1 참조). 이것에 의하여, 카커스층(13)의 형상이 적정화되어, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 배치 영역에서의 카커스층(13)의 변형량이 저감되는 이점이 있다. 즉, 0.95≤Yd/Ya인 것에 의하여, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 배치 영역에서의 카커스층(13)의 변형량이 저감된다. 또한, Yd/Ya≤1.02인 것에 의하여, 타이어 형상이 적정하게 확보된다.
또한, 이 공기입 타이어(1)에서는, 벨트층(14)이, 절댓값으로 45[deg] 이상 70[deg] 이하의 벨트 각도를 가지는 고각도 벨트(141)를 가진다(도 1 및 도 3 참조). 이것에 의하여, 벨트층(14)이 보강되어, 타이어 접지 시에 있어서의 벨트층(14)의 단부의 일그러짐이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)의 벨트 코드가 스틸 와이어이고, 고각도 벨트(141)가 15[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가진다(도 1 및 도 3 참조). 이것에 의하여, 고각도 벨트(141)의 벨트 코드의 엔드수가 적정화되는 이점이 있다. 즉, 엔드수가 15[개/50mm] 이상인 것에 의하여, 고각도 벨트(141)의 강도가 적정하게 확보된다. 또한, 엔드수가 25[개/50mm] 이하인 것에 의하여, 고각도 벨트(141)의 코트 고무의 고무량이 적정하게 확보되어, 인접하는 벨트 플라이 간(도 3에서는, 카커스층(13) 및 타이어 직경 방향 내측의 교차 벨트(142)와 고각도 벨트(141)와의 사이)에 있어서의 고무 재료의 세퍼레이션이 억제된다.
또한, 이 공기입 타이어(1)에서는, 교차 벨트(142, 143)의 벨트 코드가, 스틸 와이어이고, 18[개/50mm] 이상 28[개/50mm] 이하의 엔드수를 가진다. 이것에 의하여, 교차 벨트(142, 143)의 벨트 코드의 엔드수가 적정화되는 이점이 있다. 즉, 18[개/50mm] 이상인 것에 의하여, 교차 벨트(142, 143)의 강도가 적정하게 확보된다. 또한, 28[개/50mm] 이하인 것에 의하여, 교차 벨트(142, 143)의 코트 고무의 고무량이 적정하게 확보되어, 인접하는 벨트 플라이 간에 있어서의 고무 재료의 세퍼레이션이 억제된다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 고무 경도가, 60 이상의 범위에 있다. 이것에 의하여, 트레드 고무(15)의 강도가 적정하게 확보되어, 타이어의 내편마모 성능이 향상하는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)의 벨트 코드가, 스틸 와이어이고, 17[개/50mm] 이상 30[개/50mm] 이하의 엔드수를 가진다. 이것에 의하여, 둘레 방향 보강층(145)의 벨트 코드의 엔드수가 적정화되는 이점이 있다. 즉, 엔드수가 17[개/50mm] 이상인 것에 의하여, 둘레 방향 보강층(145)의 강도가 적정하게 확보된다. 또한, 엔드수가 30[개/50mm] 이하인 것에 의하여, 둘레 방향 보강층(145)의 코트 고무의 고무량이 적정하게 확보되어, 인접하는 벨트 플라이 간(도 3에서는, 한 쌍의 교차 벨트(142, 143)와 둘레 방향 보강층(145)과의 사이)에 있어서의 고무 재료의 세퍼레이션이 억제된다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 부재일 때에 있어서의 인장 하중 100[N]으로부터 300[N]일 때의 신장이 1.0[%] 이상 2.5[%] 이하이다. 이것에 의하여, 둘레 방향 보강층(145)에 의한 센터 영역의 직경 성장의 억제 작용이 적정하게 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 타이어일 때에 있어서의 인장 하중 500[N]으로부터 1000[N]일 때의 신장이 0.5[%] 이상 2.0[%] 이하이다. 이것에 의하여, 둘레 방향 보강층(145)에 의한 센터 영역의 직경 성장의 억제 작용이 적정하게 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치된다(도 3 참조). 또한, 공기입 타이어(1)는, 한 쌍의 교차 벨트(142, 143)의 사이이고 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 배치되어 둘레 방향 보강층(145)에 인접하는 응력 완화 고무(191)와, 한 쌍의 교차 벨트(142, 143)의 사이이고 응력 완화 고무(191)의 타이어 폭 방향 외측 또한 한 쌍의 교차 벨트(142, 143)의 에지부에 대응하는 위치에 배치되어 응력 완화 고무(191)에 인접하는 단부 완화 고무(192)를 구비한다(도 7 참조). 이와 같은 구성에서는, 둘레 방향 보강층(145)이 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되는 것에 의하여, 둘레 방향 보강층(145)의 에지부에 있어서의 주변 고무의 피로(疲勞) 파단이 억제되는 이점이 있다. 또한, 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 응력 완화 고무(191)가 배치되기 때문에, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 또한, 교차 벨트(142, 143)의 에지부에 대응하는 위치에 단부 완화 고무(192)가 배치되기 때문에, 교차 벨트(142, 143)의 에지부에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 이들에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 한 쌍의 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 Eco가, Ein<Eco의 관계를 가진다. 이것에 의하여, 응력 완화 고무(191)의 모듈러스 Ein이 적정화되어, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 한 쌍의 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 Eco가, 0.6≤Ein/Eco≤0.9의 관계를 가진다. 이것에 의하여, 비 Ein/Eco가 적정화되어, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein이, 4.0[MPa]≤Ein≤5.5[MPa]의 범위 내에 있다(도 7 참조). 이것에 의하여, 응력 완화 고무(191)의 모듈러스 Ein이 적정화되어, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치된다(도 3 참조). 또한, 폭이 좁은 교차 벨트(143)의 폭 Wb3과 둘레 방향 보강층(145)의 에지부로부터 폭이 좁은 교차 벨트(143)의 에지부까지의 거리 S가, 0.03≤S/Wb3≤0.12의 범위에 있다. 이것에 의하여, 교차 벨트(142, 143)의 에지부와 둘레 방향 보강층(145)의 에지부와의 위치 관계 S/Wb3이 적정화되는 이점이 있다. 즉, 0.03≤S/Wb3인 것에 의하여, 둘레 방향 보강층(145)의 단부와 교차 벨트(143)의 단부와의 거리가 적정하게 확보되어, 이들의 벨트 플라이(145, 143)의 단부에 있어서의 주변 고무의 세퍼레이션이 억제된다. 또한, S/Wb3≤0.12인 것에 의하여, 교차 벨트(143)의 폭 Wb3에 대한 둘레 방향 보강층(145)의 폭 Ws가 확보되어, 둘레 방향 보강층(145)에 의한 테 효과가 적정하게 확보된다.
[적용 대상]
또한, 이 공기입 타이어(1)는, 타이어가 정규 림에 림 조립되는 것과 함께 타이어에 정규 내압 및 정규 하중이 부여된 상태에서, 편평률이 40[%] 이상 70[%] 이하인 중하중용 타이어에 적용되는 것이 바람직하다. 중하중용 타이어에서는, 승용차용 타이어와 비교하여, 타이어 사용 시의 부하가 크다. 이 때문에, 트레드면에 있어서의 둘레 방향 보강층(145)의 배치 영역과, 둘레 방향 보강층(145)보다도 타이어 폭 방향 외측의 영역과의 직경차가 커지기 쉽다. 또한, 상기와 같은 낮은 편평률을 가지는 타이어에서는, 접지 형상이 북 형상으로 되기 쉽다. 그래서, 이와 같은 중하중용 타이어를 적용 대상으로 하는 것에 의하여, 상기한 타이어의 내편마모 성능 향상 효과를 현저하게 얻을 수 있다.
실시예
도 9 ~ 도 12는, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
이 성능 시험에서는, 서로 다른 복수의 공기입 타이어에 관하여, 내(耐)벨트 에지 세퍼레이션 성능에 관한 평가가 행하여졌다(도 9 ~ 도 12 참조). 이 평가에서는, 타이어 사이즈 315/60R22.5인 공기입 타이어가 림 사이즈 22.5×9.00인 림에 조립되고, 이 공기입 타이어에 공기압 900[kPa]이 부여된다. 또한, 공기입 타이어가 시험 차량인 4×2 트랙터·트레일러의 프런트 축에 장착되고, 하중 34.81[kN]이 부여된다. 그리고, 시험 차량이 10만[km] 주행한 후에, 숄더 육부의 편마모 마모량 (숄더 육부의 에지부의 마모량과 최외주 방향 주홈의 마모량과의 차)이 측정되어, 평가가 행하여진다. 이 평가는, 수치가 클수록 바람직하다. 특히, 평가가 105 이상(기준값 100에 대하여 +5포인트 이상)이면, 종래예에 대하여 충분한 우위성이 있고, 평가가 110 이상이면, 종래예에 대하여 비약적인 우위성이 있다고 말할 수 있다.
실시예 1의 공기입 타이어(1)는, 도 1 ~ 도 3에 기재한 구성을 가진다. 또한, 교차 벨트(142, 143)의 벨트 각도가 ±19[deg]이고, 둘레 방향 보강층(145)의 벨트 각도가 실질 0[deg]이다. 또한, 주요 치수가, TW=275[mm], Gcc=32.8[mm], Dcc=11.2[mm], Hcc =21.3[mm], Ya=446[mm], D1>D2, D1>D3으로 설정되어 있다. 실시예 2 ~ 50의 공기입 타이어(1)는, 실시예 1의 공기입 타이어의 변형예이다.
종래예의 공기입 타이어는, 도 1 ~ 도 3의 구성에 있어서, 둘레 방향 보강층(145)을 구비하고 있지 않다.
시험 결과가 나타내는 바와 같이, 실시예 1 ~ 50의 공기입 타이어(1)에서는, 타이어의 내편마모 성능이 향상하는 것을 알 수 있다. 또한, 특히, 실시예 1 ~ 9를 비교하면, 1.20≤Gsh/Gcc, De/Dcc≤0.92, D2<D1 또한 D2<D3으로 하는 것에 의하여, 내편마모 성능에 관하여 우위성 있는 효과(평가 105 이상)가 얻어지는 것을 알 수 있다.
1: 공기입 타이어, 2: 둘레 방향 주홈, 3: 육부, 11: 비드 코어, 12: 비드 필러, 121: 로어 필러, 122: 어퍼 필러, 13: 카커스층, 14: 벨트층, 141: 고각도 벨트, 142, 143: 교차 벨트, 144: 벨트 커버, 145: 둘레 방향 보강층, 15: 트레드 고무, 16: 사이드 월 고무, 18: 이너 라이너, 19: 벨트 에지 쿠션, 191: 응력 완화 고무, 192: 단부 완화 고무, 20: 벨트 쿠션

Claims (27)

  1. 카커스(carcass)층과, 상기 카커스층의 타이어 직경 방향 외측에 배치되는 벨트층과, 상기 벨트층의 타이어 직경 방향 외측에 배치되는 트레드(tread) 고무를 구비하는 것과 함께, 타이어 둘레 방향으로 연재(延在)하는 적어도 3개의 둘레 방향 주(主)홈과, 이들의 둘레 방향 주홈으로 구획되어 이루어지는 복수의 육부(陸部)를 구비하는 공기입(空氣入) 타이어이고,
    상기 벨트층이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층을 적층하여 이루어지고, 또한,
    상기 둘레 방향 주홈 중 타이어 폭 방향의 가장 외측에 있는 좌우의 상기 둘레 방향 주홈을 최외주(最外周) 방향 주홈이라고 부르는 것과 함께, 상기 좌우의 최외주 방향 주홈보다도 타이어 폭 방향 외측에 있는 상기 육부를 숄더 육부라고 부를 때에,
    타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 숄더 육부의 타이어 폭 방향 내측의 에지(edge)부의 점 P1에 있어서의 직경 D1과, 상기 숄더 육부의 접지면 내에 있는 소정의 점 P2에 있어서의 직경 D2와, 타이어 접지단(接地端)(T)에 있어서의 직경 D3이, D2<D1 또한 D2<D3의 관계를 가지는 것을 특징으로 하는 공기입 타이어.
  2. 제1항에 있어서,
    타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 숄더 육부가, 점 P1로부터 점 P2까지의 구간에서 타이어 직경 방향 외측으로 볼록으로 되는 제1 프로파일과, 점 P2로부터 타이어 접지단(T)까지의 구간에서 타이어 직경 방향 내측으로 볼록으로 되는 제2 프로파일을 가지는 공기입 타이어.
  3. 제1항 또는 제2항에 있어서,
    타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 둘레 방향 주홈의 말단 마모면(WE)을 그을 때에,
    타이어 적도면 상에 있어서의 상기 둘레 방향 보강층으로부터 말단 마모면(WE)까지의 거리 Dcc와 상기 둘레 방향 보강층의 단부(端部)로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가지는 공기입 타이어.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    타이어 적도면에 있어서의 트레드 프로파일로부터 타이어 내주면(內周面)까지의 거리 Gcc와 트레드단으로부터 타이어 내주면까지의 거리 Gsh가, 1.10≤Gsh/Gcc의 관계를 가지는 공기입 타이어.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 제1 프로파일의 길이 AR1과 상기 제2 프로파일의 길이 AR2가, 0.10≤AR2/(AR1+AR2)≤0.50의 관계를 가지는 공기입 타이어.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    점 P1에 있어서의 직경 D1과, 점 P2에 있어서의 직경 D2와, 타이어 접지단(T)에 있어서의 직경 D3이, 0.30≤(D1-D2)/(D3-D2)≤0.70의 관계를 가지는 공기입 타이어.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    타이어 적도면으로부터 점 P2까지의 거리 WL과 타이어 적도면으로부터 상기 둘레 방향 보강층의 단부까지의 거리 Ws’이, 0.60≤Ws’/WL≤1.00의 관계를 가지는 공기입 타이어.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    타이어 적도면으로부터 점 P2까지의 거리 WL과 타이어 적도면으로부터 폭이 넓은 상기 교차 벨트의 단부까지 폭 Wb2’이, 0.90≤Wb2’/WL≤1.30의 관계를 가지는 공기입 타이어.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 숄더 육부의 접지 폭 Wsh와 트레드 폭 TW가, 0.1≤Wsh/TW≤0.2의 관계를 가지는 공기입 타이어.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    트레드 폭 TW와 타이어 총 폭 SW가, 0.79≤TW/SW≤0.89의 관계를 가지는 공기입 타이어.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    트레드 폭 TW와 상기 카커스층의 단면 폭 Wca가, 0.82≤TW/Wca≤0.92의 관계를 가지는 공기입 타이어.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    타이어 적도면에 가장 가까운 상기 육부의 접지 폭 Wcc와 상기 숄더 육부의 접지 폭 Wsh가, 0.90≤Wsh/Wcc≤1.30의 관계를 가지는 공기입 타이어.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 카커스층의 최대 높이 위치의 직경 Ya와 상기 카커스층의 최대 폭 위치의 직경 Yc가, 0.80≤Yc/Ya≤0.90의 관계를 가지는 공기입 타이어.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    상기 카커스층의 최대 높이 위치의 직경 Ya와 상기 둘레 방향 보강층의 단부 위치에 있어서의 상기 카커스층의 직경 Yd가, 0.95≤Yd/Ya≤1.02의 관계를 가지는 공기입 타이어.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 벨트층이, 절댓값으로 45[deg] 이상 70[deg] 이하의 벨트 각도를 가지는 고각도(高角度) 벨트를 가지는 공기입 타이어.
  16. 제15항에 있어서,
    상기 고각도 벨트의 벨트 코드가 스틸 와이어이고, 상기 고각도 벨트가 15[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가지는 공기입 타이어.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    상기 교차 벨트의 벨트 코드가, 스틸 와이어이고, 또한, 18[개/50mm] 이상 28[개/50mm] 이하의 엔드수를 가지는 공기입 타이어.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서,
    상기 트레드 고무의 고무 경도가, 60 이상의 범위에 있는 공기입 타이어.
  19. 제1항 내지 제18항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층의 벨트 코드가, 스틸 와이어이고, 17[개/50mm] 이상 30[개/50mm] 이하의 엔드수를 가지는 공기입 타이어.
  20. 제1항 내지 제19항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층을 구성하는 벨트 코드의 부재(部材)일 때에 있어서의 인장(引張) 하중 100[N]으로부터 300[N]일 때의 신장이 1.0[%] 이상 2.5[%] 이하인 공기입 타이어.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층을 구성하는 벨트 코드의 타이어일 때에 있어서의 인장 하중 500[N]으로부터 1000[N]일 때의 신장이 0.5[%] 이상 2.0[%] 이하인 공기입 타이어.
  22. 제1항 내지 제21항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층이, 상기 한 쌍의 교차 벨트 중 폭이 좁은 교차 벨트의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되고, 또한,
    상기 한 쌍의 교차 벨트의 사이이고 상기 둘레 방향 보강층의 타이어 폭 방향 외측에 배치되어 상기 둘레 방향 보강층에 인접하는 응력(應力) 완화 고무와,
    상기 한 쌍의 교차 벨트의 사이이고 상기 응력 완화 고무의 타이어 폭 방향 외측 또한 상기 한 쌍의 교차 벨트의 에지부에 대응하는 위치에 배치되어 상기 응력 완화 고무에 인접하는 단부 완화 고무를 구비하는 공기입 타이어.
  23. 제22항에 있어서,
    상기 응력 완화 고무의 100% 신장 시 모듈러스 Ein과 상기 한 쌍의 교차 벨트의 코트 고무의 100% 신장 시 모듈러스 Eco가, Ein<Eco의 관계를 가지는 공기입 타이어.
  24. 제22항 또는 제23항에 있어서,
    상기 응력 완화 고무의 100% 신장 시 모듈러스 Ein과 상기 한 쌍의 교차 벨트의 코트 고무의 100% 신장 시 모듈러스 Eco가, 0.6≤Ein/Eco≤0.9의 관계를 가지는 공기입 타이어.
  25. 제22항 내지 제24항 중 어느 한 항에 있어서,
    상기 응력 완화 고무의 100% 신장 시 모듈러스 Ein이, 4.0[MPa]≤Ein≤5.5[MPa]의 범위 내에 있는 공기입 타이어.
  26. 제1항 내지 제25항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층이, 상기 한 쌍의 교차 벨트 중 폭이 좁은 교차 벨트의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되고, 또한,
    상기 폭이 좁은 교차 벨트의 폭 Wb3과 상기 둘레 방향 보강층의 에지부로부터 상기 폭이 좁은 교차 벨트의 에지부까지의 거리 S가, 0.03≤S/Wb3의 범위에 있는 공기입 타이어.
  27. 제1항 내지 제26항 중 어느 한 항에 있어서,
    편평률 70[%] 이하의 중하중용(重荷重用) 타이어에 적용되는 공기입 타이어.
KR1020157014766A 2012-12-28 2012-12-28 공기입 타이어 KR101711815B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084211 WO2014103062A1 (ja) 2012-12-28 2012-12-28 空気入りタイヤ

Publications (2)

Publication Number Publication Date
KR20150082481A true KR20150082481A (ko) 2015-07-15
KR101711815B1 KR101711815B1 (ko) 2017-03-13

Family

ID=51020207

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157014766A KR101711815B1 (ko) 2012-12-28 2012-12-28 공기입 타이어

Country Status (6)

Country Link
US (1) US9950570B2 (ko)
JP (1) JP6107648B2 (ko)
KR (1) KR101711815B1 (ko)
CN (1) CN104884271B (ko)
DE (1) DE112012007266B4 (ko)
WO (1) WO2014103062A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740761B2 (ja) * 2016-07-12 2020-08-19 住友ゴム工業株式会社 タイヤ
JP7124494B2 (ja) * 2018-07-03 2022-08-24 横浜ゴム株式会社 空気入りタイヤおよび空気入りタイヤの製造方法
JP7172213B2 (ja) * 2018-07-13 2022-11-16 住友ゴム工業株式会社 重荷重用空気入りタイヤ
WO2020141012A1 (en) * 2018-12-31 2020-07-09 Goldhofer Ag Heavy-load vehicle
FR3102097A1 (fr) * 2019-10-16 2021-04-23 Compagnie Generale Des Etablissements Michelin Pneumatique a emission de bruit reduit et son procede de fabrication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301425A (ja) * 2000-04-24 2001-10-31 Bridgestone Corp 空気入りタイヤ
JP2008001264A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP4642760B2 (ja) 2003-07-18 2011-03-02 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663639B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663638B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4984013B1 (ja) * 2011-09-22 2012-07-25 横浜ゴム株式会社 空気入りタイヤ
JP2012522686A (ja) 2009-04-07 2012-09-27 ソシエテ ド テクノロジー ミシュラン 周方向補強要素の層を有する大型車両用タイヤ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237844B2 (ko) * 1974-04-23 1977-09-26
JPS62152902A (ja) * 1985-12-26 1987-07-07 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH0399903A (ja) * 1989-09-14 1991-04-25 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JPH0466304A (ja) * 1990-07-04 1992-03-02 Sumitomo Rubber Ind Ltd ラジアルタイヤ
DE69014876T2 (de) * 1990-09-05 1995-06-08 Goodyear Tire & Rubber Laufstreifen für Luftreifen für LKW.
US5616195A (en) * 1995-08-28 1997-04-01 The Goodyear Tire & Rubber Company Low aspect ratio truck tire
JP3254166B2 (ja) * 1997-05-16 2002-02-04 住友ゴム工業株式会社 重荷重用ラジアルタイヤ
FR2770458B1 (fr) 1997-11-05 1999-12-03 Michelin & Cie Armature de sommet pour pneumatique "poids-lours"
JP2001039118A (ja) * 1999-07-27 2001-02-13 Bridgestone Corp 空気入りタイヤ
JP2002103916A (ja) * 2000-09-27 2002-04-09 Bridgestone Corp 空気入りタイヤ
JP2002144818A (ja) * 2000-11-16 2002-05-22 Bridgestone Corp 空気入りタイヤ
EP1403096B1 (en) * 2001-03-16 2006-02-08 Bridgestone Corporation Pneumatic tire
DE60229771D1 (de) * 2001-12-14 2008-12-18 Sumitomo Rubber Ind Reifen für hohe beanspruchungen
JP4392220B2 (ja) 2003-10-22 2009-12-24 住友ゴム工業株式会社 重荷重用ラジアルタイヤ
JP2006021702A (ja) * 2004-07-09 2006-01-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ及び小型トラック用空気入りタイヤ
JP4939854B2 (ja) * 2006-06-28 2012-05-30 住友ゴム工業株式会社 重荷重用空気入りタイヤ
CN101541562B (zh) * 2007-01-30 2011-08-03 横滨橡胶株式会社 充气轮胎
JP4479772B2 (ja) 2007-09-20 2010-06-09 横浜ゴム株式会社 空気入りタイヤ
JP4670880B2 (ja) * 2008-03-11 2011-04-13 横浜ゴム株式会社 重荷重用空気入りタイヤ
JP4553064B2 (ja) * 2008-11-21 2010-09-29 横浜ゴム株式会社 空気入りタイヤ
JP5210334B2 (ja) 2010-02-05 2013-06-12 住友ゴム工業株式会社 重荷重用タイヤ
KR101285338B1 (ko) * 2011-09-22 2013-07-11 요코하마 고무 가부시키가이샤 공기입 타이어
WO2013042255A1 (ja) 2011-09-22 2013-03-28 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301425A (ja) * 2000-04-24 2001-10-31 Bridgestone Corp 空気入りタイヤ
JP4642760B2 (ja) 2003-07-18 2011-03-02 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663639B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663638B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP2008001264A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012522686A (ja) 2009-04-07 2012-09-27 ソシエテ ド テクノロジー ミシュラン 周方向補強要素の層を有する大型車両用タイヤ
JP4984013B1 (ja) * 2011-09-22 2012-07-25 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
US9950570B2 (en) 2018-04-24
KR101711815B1 (ko) 2017-03-13
JP6107648B2 (ja) 2017-04-05
DE112012007266T5 (de) 2015-09-24
CN104884271A (zh) 2015-09-02
DE112012007266B4 (de) 2021-05-20
CN104884271B (zh) 2018-07-06
JPWO2014103062A1 (ja) 2017-01-12
US20150321515A1 (en) 2015-11-12
WO2014103062A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
KR101741056B1 (ko) 공기입 타이어
KR101741054B1 (ko) 공기입 타이어
KR101730942B1 (ko) 공기입 타이어
KR101711817B1 (ko) 공기입 타이어
KR101711818B1 (ko) 공기입 타이어
KR101710068B1 (ko) 공기입 타이어
KR101741788B1 (ko) 공기입 타이어
KR101730943B1 (ko) 공기입 타이어
KR101741051B1 (ko) 공기입 타이어
KR101711816B1 (ko) 공기입 타이어
KR101711815B1 (ko) 공기입 타이어
KR101730941B1 (ko) 공기입 타이어
KR101710070B1 (ko) 공기입 타이어
KR101730944B1 (ko) 공기입 타이어

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 4